微分几何习题全解(梅向明高教版第四版)

合集下载

微分几何第四版习题答案梅向明知识分享

微分几何第四版习题答案梅向明知识分享

第一章曲统论§2向虽函敎缶向试曲数只/)具冇固定方向的充雯条件衆产⑺X ?'(/)= 0・分析:一个向量函数只刀•般可以写成尺/)二久⑺2(/)的尬式’其中乳0为单位向量函数‘ 粗刀为数量函数.那么尺”具有因宦方向的充要条件是只"具有固宦方向*即罠/)为常向量, (例为秋/)的长度固定人证对F向虽函数?(/),设机/)为梵单位向負则尺f)二几⑺&⑺,若疋具有園定方向1 如巩“对常向殳’那么?(/) = A r(/) e ,所以rX7 = ^ }:<^X ) =o・反 Z,若?x?=0 ★对 ^(/) = A(/) e(/)求 A 1i+A 0・rft?XF=A1〔3><了)”6・则有Z 7 或e\e'=Q时* ?(^) = 0可与任意方向平杜hZ * 0 时,有&x 0—6.血(Ex 0 ~(e e* )2-e,2t (因为$ 貝冇固运匕t所以?=O.即P为常向第。

所以,r(/)A有固运方向.6.向绘歯数半行于固立屮面的充摆杀件是(F尹产)司卩分析:向呈诵数?W平If于固定平面的充要余件是存在•牛定向向蚩50*使?(心 = 0 ,所以我们蹩耳求这个向旅亓及万与尹.严的尢系"证若尺刀半苻于個址羊面—设乔足¥面斗的•个单位迖向嵐则习为常向議H?(/) 7t-0 -两次求微商色尸7 =0・?y 7i=0 ,即问最孑,戸‘唾直于同•非零向輦无因而典而*即(F戶尹')刃.反之,若(? r1 F M) =0i则有r x ?=6戒产x戸工6 .若产x? = 0i由匕题柯产(/) 具冇■的崔方向、白然半fr于一固宦半面,若rx? H 0(则存圧数母焰数入(“、H&n使戸'= 乔*尹①令聞*厂桁丰6,且;V)丄讯/)* 4^7 X?求微商井将①式代入得用=Fx P*—/I t r X r1)—p f是x ^' —6 .市上题划另4fhM眾方向,而F(f)丄苑即巩f) 平存于固進半而S3曲线的概念1-求圆柱螺^T=cosr- ,F=sinr, f *在(1Q 0)的切线和注平面。

微分几何第四版习题答案解析梅向明

微分几何第四版习题答案解析梅向明

§1曲面的概念1、求正螺面r r={ u v cos ,u v sin , bv }的坐标曲线、解 u-曲线为r r={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r r={0u v cos ,0u v sin ,bv }为圆柱螺线.2.证明双曲抛物面r r={a(u+v), b(u-v),2uv }的坐标曲线就就是它的直母线。

证 u-曲线为r r={ a(u+0v ), b(u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线;v-曲线为r r={a(0u +v), b(0u -v),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。

3.求球面r r=}sin ,sin cos ,sin cos {ϑϕϑϕϑa a a 上任意点的切平面与法线方程。

解 ϑr ρ=}cos ,sin sin ,cos sin {ϑϕϑϕϑa a a -- ,ϕr ρ=}0,cos cos ,sin cos {ϕϑϕϑa a -任意点的切平面方程为00cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------ϕϑϕϑϑϕϑϕϑϑϕϑϕϑa a a a a a z a y a x即 xcos ϑcos ϕ + ycos ϑsin ϕ + zsin ϑ - a = 0 ; 法线方程为ϑϑϕϑϕϑϕϑϕϑsin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。

4.求椭圆柱面22221x y a b+=在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个切平面 。

微分几何第四版习题答案梅向明(完整资料).doc

微分几何第四版习题答案梅向明(完整资料).doc

【最新整理,下载后即可编辑】§1曲面的概念1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线. 解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线.2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。

证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线; v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。

3.求球面r =}sin ,sin cos ,sin cos {ϑϕϑϕϑa a a 上任意点的切平面和法线方程。

解 ϑr =}cos ,sin sin ,cos sin {ϑϕϑϕϑa a a -- ,ϕr=}0,cos cos ,sin cos {ϕϑϕϑa a -任意点的切平面方程为00cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------ϕϑϕϑϑϕϑϕϑϑϕϑϕϑa a a a a a z a y a x即 xcos ϑcos ϕ + ycos ϑsin ϕ + zsin ϑ - a = 0 ; 法线方程为ϑϑϕϑϕϑϕϑϕϑsin sin sin cos sin cos cos cos cos cos a z a y a x -=-=-。

微分几何第四版习题答案解析梅向明

微分几何第四版习题答案解析梅向明

§1曲面的概念1。

求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线.解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线. 2.证明双曲抛物面r ={a(u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。

证 u —曲线为r ={ a (u+0v ), b (u —0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a ,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b ,20v }为方向向量的直线;v-曲线为r ={a(0u +v), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,—b ,20u }表示过点(a 0u , b 0u ,0)以{a,-b ,20u }为方向向量的直线。

3.求球面r =}sin ,sin cos ,sin cos {ϑϕϑϕϑa a a 上任意点的切平面和法线方程.解 ϑr=}cos ,sin sin ,cos sin {ϑϕϑϕϑa a a -- ,ϕr =}0,cos cos ,sin cos {ϕϑϕϑa a -任意点的切平面方程为00cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------ϕϑϕϑϑϕϑϕϑϑϕϑϕϑa a a a a a z a y a x即 xcos ϑcos ϕ + ycos ϑsin ϕ + zsin ϑ - a = 0 ;法线方程为ϑϑϕϑϕϑϕϑϕϑsin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。

微分几何习题全解(梅向明高教版第四版)

微分几何习题全解(梅向明高教版第四版)

第一章 曲线论§2 向量函数5. 向量函数)(t r具有固定方向的充要条件是)(t r×)('t r= 0 。

分析:一个向量函数)(t r一般可以写成)(t r=)(t λ)(t e的形式,其中)(t e为单位向量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。

证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r具有固定方向,则)(t e 为常向量,那么)('t r=)('t λe ,所以 r ×'r =λ'λ(e ×e )=0 。

反之,若r ×'r =0 ,对)(t r =)(t λ)(t e求微商得'r ='λe +λ'e ,于是r ×'r =2λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。

当)(t λ= 0时,)(t r =0 可与任意方向平行;当λ≠0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e 2)=2'e ,(因为e具有固定长, e ·'e = 0) ,所以 'e =0 ,即e 为常向量。

所以,)(t r 具有固定方向。

6.向量函数)(t r平行于固定平面的充要条件是(r 'r ''r )=0 。

分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n,使)(t r·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r 的关系。

微分几何第四版习题答案解析梅向明

微分几何第四版习题答案解析梅向明

§1曲面的概念r ={ u v cos ,u v sin , bv }的坐标曲线.解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线.2.证明双曲抛物面r ={a 〔u+v 〕, b 〔u-v 〕,2uv }的坐标曲线就是它的直母线。

证 u-曲线为r ={ a 〔u+0v 〕, b 〔u-0v 〕,2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线;v-曲线为r ={a 〔0u +v 〕, b 〔0u -v 〕,20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。

3.求球面r =}sin ,sin cos ,sin cos {ϑϕϑϕϑa a a 上任意点的切平面和法线方程。

解 ϑr =}cos ,sin sin ,cos sin {ϑϕϑϕϑa a a -- ,ϕr=}0,cos cos ,sin cos {ϕϑϕϑa a -任意点的切平面方程为00cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------ϕϑϕϑϑϕϑϕϑϑϕϑϕϑa a a a a a z a y a x即 xcos ϑcos ϕ + ycos ϑsin ϕ + zsin ϑ - a = 0 ;法线方程为ϑϑϕϑϕϑϕϑϕϑsin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。

4.求椭圆柱面22221x y a b+=在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个切平面 。

最新微分几何课后习题答案第四版梅向明黄敬之编[1]

最新微分几何课后习题答案第四版梅向明黄敬之编[1]

微分几何课后习题答案第四版梅向明黄敬之编[1]§1曲面的概念1.求正螺面«Skip Record If...»={ u«Skip Record If...»,u «Skip Record If...», bv }的坐标曲线.解u-曲线为«Skip Record If...»={u«Skip Record If...»,u «Skip Record If...»,bv«Skip Record If...» }={0,0,bv«Skip Record If...»}+u {«Skip Record If...»,«Skip Record If...»,0},为曲线的直母线;v-曲线为«Skip Record If...»={«Skip Record If...»«Skip Record If...»,«Skip Record If...»«Skip Record If...»,bv }为圆柱螺线.2.证明双曲抛物面«Skip Record If...»={a(u+v), b(u-v),2uv}的坐标曲线就是它的直母线。

证 u-曲线为«Skip Record If...»={ a(u+«Skip Record If...»), b(u-«Skip Record If...»),2u«Skip Record If...»}={ a«Skip Record If...», b«Skip Record If...»,0}+ u{a,b,2«Skip Record If...»}表示过点{ a«Skip Record If...», b«Skip Record If...»,0}以{a,b,2«Skip Record If...»}为方向向量的直线;v-曲线为«Skip Record If...»={a(«Skip Record If...»+v), b(«Skip Record If...»-v),2«Skip Record If...»v}={a«Skip Record If...», b«Skip Record If...»,0}+v{a,-b,2«Skip Record If...»}表示过点(a«Skip Record If...», b«Skip Record If...»,0)以{a,-b,2«Skip Record If...»}为方向向量的直线。

微分几何第四版习题答案梅向明之欧阳计创编

微分几何第四版习题答案梅向明之欧阳计创编

§1曲面的概念时间:2021.02.11 创作:欧阳计1.求正螺面={ u ,u , bv }的坐标曲线.解u-曲线为={u ,u bv ??}??{,bv}+u{},为曲线的直母线;v曲线为??{,,bv }为圆柱螺线.2.证明双曲抛物面={a(u+v), b(u-v),2uv}的坐标曲线就是它的直母线。

证u-曲线为={ a(u+), b(u-),2u}={ a, b,0}+ u{a,b,2}表示过点{ a, b,0}以{a,b,2}为方向向量的直线;v-曲线为={a(+v), b(-v),2v}={a, b,0}+v{a,-b,2}表示过点(a, b,0)以{a,-b,2??.求球面??解??????,??任意点的切平面方程为即 xcos cos+ycos sin+zsin-a=0 ;法线方程为。

4.求椭圆柱面在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个切平面。

解椭圆柱面的参数方程为x=cos, y=asin, z = t ,,。

所以切平面方程为:,即xbcos+yasin- ab = 0此方程与t无关,对于的每一确定的值,确定唯一一个切平面,而的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面。

5.证明曲面的切平面和三个坐标平面所构成的四面体的体积是常数。

证,。

切平面方程为:。

与三坐标轴的交点分别为(3u,0,0),(0,3v,0),(0,0,)。

于是,四面体的体积为:是常数。

§2曲面的第一基本形式1.求双曲抛物面={a(u+v), b(u-v),2uv}的第一基本形式.解,∴I = 2。

2.求正螺面={ u ,u , bv }的第一基本形式,并证明坐标曲线互相垂直。

解,,,,∴I =,∵F=0,∴坐标曲线互相垂直。

3.在第一基本形式为I =的曲面上,求方程为u = v的曲线的弧长。

解由条件,沿曲线u = v有du=dv ,将其代入得=,ds=coshvdv , 在曲线u = v上,从到的弧长为。

微分几何第四版习题答案梅向明

微分几何第四版习题答案梅向明
若为双曲点,则曲面上存在渐近曲线网.由19题,渐近方向满足=1,
即=/4,=- /4,两渐近线的夹角为,即渐近曲线网构成正交网.
==2+2 dudv+(+1)= I .
所以螺面和旋转曲面之间可建立等距映射=arctgu + v , t = .
§3曲面的第二基本形式
1.计算悬链面={coshucosv,coshusinv,u}的第一基本形式,第二基本形式.
解={sinhucosv,sinhusinv,1},={-coshusinv,coshucosv,0}
解曲面的向量表示为,
,,,
,, E = 1, F = 0 , G = 1 ,L = 5 .证明对于正螺面={u,u,bv},-∞<u,v<∞处处有EN-2FM+GL=0。
解,={0,0,0},
={-uucosv,cosv,0},={-ucosv,-usinv,0},,,,L= 0, M = , N = 0 .所以有EN - 2FM + GL= 0 .
§1
1.求正螺面={ u ,u , bv }的坐标曲线.
解u-曲线为={u ,u ,bv }={0,0,bv}+u {,,0},为曲线的直母线;v-曲线为={,,bv }为圆柱螺线.
2.证明双曲抛物面={a(u+v), b(u-v),2uv}的坐标曲线就是它的直母线。
证u-曲线为={ a(u+), b(u-),2u}={ a, b,0}+ u{a,b,2}表示过点{ a, b,0}以{a,b,2}为方向向量的直线;
得,所以,即-·=0,则有=0,或·=0 .
若=0,则L是平面曲线;若·=0,L又是曲面的渐近线,则沿L,=0,这时d=,为常向量,而当L是渐近线时,=,所以为常向量,L是一平面曲线.

精编微分几何习题全解(梅向明高教版第四版)资料

精编微分几何习题全解(梅向明高教版第四版)资料

第一章 曲线论§2 向量函数5. 向量函数)(t r 具有固定方向的充要条件是)(t r × )('t r= 0 。

分析:一个向量函数)(t r 一般可以写成)(t r =)(t λ)(t e 的形式,其中)(t e为单位向量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。

证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r具有固定方向,则)(t e 为常向量,那么)('t r =)('t λe ,所以 r ×'r=λ'λ(e ×e )=0 。

反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ'e ,于是r×'r =2λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。

当)(t λ= 0时,)(t r =0 可与任意方向平行;当λ≠0时,有e ×'e=0,而(e ×'e 2)=22'e e -(e·'e2)=2'e ,(因为e具有固定长, e ·'e = 0) ,所以 'e =0 ,即e为常向量。

所以,)(t r 具有固定方向。

6.向量函数)(t r平行于固定平面的充要条件是(r 'r ''r )=0 。

分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n,使)(t r ·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r的关系。

微分几何第四版习题答案梅向明2

微分几何第四版习题答案梅向明2

§1曲面的概念1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线.解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线.2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。

证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线;v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。

3.求球面r =}sin ,sin cos ,sin cos {ϑϕϑϕϑa a a 上任意点的切平面和法线方程。

解 ϑr =}cos ,sin sin ,cos sin {ϑϕϑϕϑa a a -- ,ϕr=}0,cos cos ,sin cos {ϕϑϕϑa a -任意点的切平面方程为00cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------ϕϑϕϑϑϕϑϕϑϑϕϑϕϑa a a a a a z a y a x即 xcos ϑcos ϕ + ycos ϑsin ϕ + zsin ϑ - a = 0 ;法线方程为ϑϑϕϑϕϑϕϑϕϑsin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。

4.求椭圆柱面22221x y a b+=在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个切平面 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 曲线论§2 向量函数5. 向量函数)(t r具有固定方向的充要条件是)(t r×)('t r= 0 。

分析:一个向量函数)(t r一般可以写成)(t r=)(t λ)(t e的形式,其中)(t e为单位向量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。

证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r具有固定方向,则)(t e 为常向量,那么)('t r=)('t λe ,所以 r ×'r =λ'λ(e ×e )=0 。

反之,若r ×'r =0 ,对)(t r =)(t λ)(t e求微商得'r ='λe +λ'e ,于是r ×'r =2λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。

当)(t λ= 0时,)(t r =0 可与任意方向平行;当λ≠0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e 2)=2'e ,(因为e具有固定长, e ·'e = 0) ,所以 'e =0 ,即e 为常向量。

所以,)(t r 具有固定方向。

6.向量函数)(t r平行于固定平面的充要条件是(r 'r ''r )=0 。

分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n,使)(t r·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r 的关系。

证 若)(t r平行于一固定平面π,设n 是平面π的一个单位法向量,则n 为常向量,且)(t r·n = 0 。

两次求微商得'r ·n = 0 ,''r ·n = 0 ,即向量r ,'r ,''r 垂直于同一非零向量n,因而共面,即(r 'r ''r )=0 。

反之, 若(r 'r ''r )=0,则有r ×'r =0 或r ×'r ≠0 。

若r ×'r =0,由上题知)(t r具有固定方向,自然平行于一固定平面,若r ×'r ≠,则存在数量函数)(t λ、)(t μ,使''r= r λ+μ'r ①令n =r ×'r ,则n≠0 ,且)(t r ⊥)(t n。

对n =r ×'r 求微商并将①式代入得'n =r ×''r =μ(r ×'r )=μn ,于是n ×'n =0 ,由上题知n 有固定方向,而)(t r⊥n ,即)(t r平行于固定平面。

§3 曲线的概念1.求圆柱螺线x =t cos ,y =t sin ,z=t 在(1,0,0)的切线和法平面。

解 令t cos =1,t sin =0, t =0得t =0, 'r(0)={ -t sin ,t cos ,1}|0=t ={0,1,1},曲线在(0,1,1)的切线为 111z y x ==- ,法平面为 y + z = 0 。

2.求三次曲线},,{32ct bt at r =在点0t 的切线和法平面。

解 }3,2,{)('2000ct bt a t r = ,切线为230020032ct ct z bt bt y a at x -=-=-, 法平面为 0)(3)(2)(30202000=-+-+-ct z ct bt y bt at x a 。

3. 证明圆柱螺线r ={ a θcos ,a θsin ,θb } (+∞∞- θ)的切线和z 轴作固定角。

证明 'r= {-a θsin ,a θcos ,b },设切线与z 轴夹角为ϕ,则ϕcos=22||||'ba be r k r +=⋅ 为常数,故ϕ为定角(其中k 为z 轴的单位向量)。

4. 求悬链线r ={t,ta cosh }(-∞∞ t )从t =0起计算的弧长。

解 'r = {1,a tsinh },|'r| =a t2sinh 1+ = a tcosh , s=a tta ta dt sinh cosh=⎰ 。

9.求曲线2232,3axz y a x ==在平面3ay =与y = 9a 之间的弧长。

解 曲线的向量表示为r =}2,3,{223xa a x x ,曲面与两平面3a y = 与y = 9a 的交点分别为x=a 与x=3a , 'r =}2,,1{2222xa ax -,|'r |=444441x a a x ++=22222xa a x +,所求弧长为a dx xa a x s aa9)2(22322=+=⎰。

10. 将圆柱螺线r ={a t cos ,a t sin ,b t }化为自然参数表示。

解 'r= { -a t sin ,a t cos ,b },s =t b a dt r t220|'|+=⎰,所以22ba s t +=,代入原方程得 r ={a cos 22ba s +, a sin22ba s+, 22ba bs +}11.求用极坐标方程)(θρρ=给出的曲线的弧长表达式。

解 由θθρcos )(=x ,θθρsin )(=y 知'r={)('θρθcos -θθρsin )(,)('θρθsin +θθρcos )(},|'r | =)(')(22θρθρ+,从0θ到θ的曲线的弧长是s=⎰θθ0)(')(22θρθρ+d θ 。

§4 空间曲线1.求圆柱螺线x =a t cos ,y=a t sin ,z = b t 在任意点的密切平面的方程。

解 'r={ -a t sin ,a t cos ,b },''r={-a t cos ,- a t sin ,0 } 所以曲线在任意点的密切平面的方程为sin cos cos sin sin cos ta ta b t a ta bt z t a y t a x ------ = 0 ,即(b t sin )x-(b t cos )y+a z-ab t=0 .2. 求曲线r = { t t sin ,t t cos ,t t e } 在原点的密切平面、法平面、从切面、切线、主法线、副法线。

解 原点对应t=0 , 'r(0)={ t sin +t t cos ,t cos - t t sin ,t e +t t e 0}=t ={0,1,1},=)0(''r{2t cos + t t cos ,t cos - t t sin ,2t e +t t e 0}=t ={2,0,2} ,所以切线方程是110zy x == ,法面方程是 y + z = 0 ; 密切平面方程是202110zy x =0 ,即x+y-z=0 ,主法线的方程是⎩⎨⎧=+=-+00z y z y x 即112zy x =-=; 从切面方程是2x-y+z=0 ,副法线方程式111-==zy x 。

3.证明圆柱螺线x =a t cos ,y =a t sin ,z = b t 的主法线和z 轴垂直相交。

证 'r ={ -a t sin ,a t cos ,b }, ''r={-a t cos ,- a t sin ,0 } ,由'r⊥''r知''r为主法线的方向向量,而''r 0=⋅k所以主法线与z 轴垂直;主法线方程是sin sin cos cos btz t t a y t t a x -=-=-与z 轴有公共点(o,o,bt)。

故圆柱螺线的主法线和z 轴垂直相交。

4.在曲线x = cos αcost ,y = cos αsint , z = tsin α的副法线的正向取单位长,求其端点组成的新曲线的密切平面。

解 'r = {-cos αsint, cos αcost, sin α } , ''r={ -cos αcost,- cos αsint , 0 }=⨯⨯=|'''|'''r r r rγ{sin αsint ,- sin αcost , cos α }新曲线的方程为r ={ cos αcost + sin αsint ,cos αsint- sin αcost ,tsin α + cos α }对于新曲线'r={-cos αsint+ sin αcost ,cos αcost+ sin αsint ,sin α }={sin(α-t),cos(α-t), sin α} , ''r={ -cos(α-t), sin(α-t),0} ,其密切平面的方程是00)sin()cos(sin )cos()sin(sin sin cos cos cos =--------t a t a a t a t a a t z t a y t a x即 sin α sin(t-α) x –sin α cos(t-α) y + z – tsin α – cos α = 0 .5.证明曲线是球面曲线的充要条件是曲线的所有法平面通过一定点。

证 方法一:⇒设一曲线为一球面曲线,取球心为坐标原点,则曲线的向径)(t r具有固定长,所以r ·'r= 0,即曲线每一点的切线与其向径垂直,因此曲线在每一点的法平面通过这点的向径,也就通过其始点球心。

⇐ 若一曲线的所有法平面通过一定点,以此定点为坐标原点建立坐标系,则r ·'r = 0,)(t r具有固定长,对应的曲线是球面曲线。

方法二:()r r t =是球面曲线⇔存在定点0r (是球面中心的径矢)和常数R (是球面的半径)使220()r r R -=⇔02()0r r r '-⋅= ,即0()0r r r '-⋅= (﹡)而过曲线()r r t =上任一点的法平面方程为()0r r ρ'-⋅= 。

相关文档
最新文档