线性代数学习有感

合集下载

线性代数心得体会

线性代数心得体会

线性代数心得体会作为一门数学分支,线性代数一直是大学数学课程中的重头戏之一,它被广泛使用于科学、工程和经济学等许多领域。

在我大学的数学学习中,我也学习了线性代数,虽然在学习过程中也遇到了一些难以理解的部分,但最终还是能够掌握其中的精髓,今天就和大家分享一下我的心得体会。

线性代数的基础知识部分可以说是比较简单的,但必须掌握好线性空间、线性变换、矩阵及其运算这些概念,因为这些是后续内容的基础。

线性代数的核心就是线性方程组的求解,虽然这是高中数学学过的内容,但是在高维空间中依然是非常重要的。

在求解线性方程组时,可以通过高斯消元法、列主元法等方法来简化运算,但还需要注意矩阵的模型化表示方式。

此外,线性方程组的解不一定存在,解也不一定唯一,需要注意分类讨论,判断解的性质。

在学习线性代数的过程中,最抽象的内容可能是线性变换。

线性变换有很多种类型,比如旋转、幂等变换、逆变换等,需要通过几何图形进行理解。

例如,线性变换可以将空间中的点变成同一曲面上的点,这也就意味着线性变换可以保持点之间的任何关系不变,这一点在研究旋转、平移、缩放等问题时非常有用。

线性代数最常见的应用之一就是图像处理,在这个领域中,线性运算的应用尤为重要。

矩阵的储存方式对于图像处理的速度也有不小的影响。

线性代数可以将三维图像数据储存为二维矩阵,从而更加方便处理。

除此之外,在数据分析、机器学习、人工智能等领域中,线性代数也是基础而重要的学科。

总的来说,线性代数虽然看起来非常抽象,但其实是个低门槛的高深数学,掌握了基础理论,便可以探索许多令人惊奇的应用。

我个人认为,理解概念、掌握运算、熟记定理,三者缺一不可,要想在学习中达到更好的理解,也要学会多观察、多思考,从多个角度来审视问题,才能真正掌握线性代数这门学科的精髓。

对参加《线性代数》课程培训的心得与体会

对参加《线性代数》课程培训的心得与体会
三天的《线性代数》精品课程培训马上就要结束了,时间虽然短暂,但给我的触动是很深的,启示是很大的。
首先,是关于行列式的问题,李老师从全新的角度给出了全新的定义。象李老师描述的一样,我深有同感。几乎所有的线性代数教材在介绍行列式时都是通过解二元及三元一次线性方程组而引入的,曾经有一个学生课后验证四元一次线性方程组后跟我说和行列式不符。我觉得用方程组引入行列式定义有两个困惑:第一,二元及三元一次线性方程组的求解学生早在初中就很熟悉,非要用商的形式表达解有点化简单为烦琐的味道。第二,即使解出系数行列式,也很难观察归纳总结出一般规律。基于以上两点考虑,每次讲到行列式定义时,我都是在讲完全排列,逆序数后直接给出行列式的`定义。由于理解上本身就有难度,所以我在讲解时给出详细的注释:行列式就是一个数,只是得来的过程有点麻烦;行列式具体说就是取自所有不同行不同列的n个元素乘积的代数和。然后按照定义,和学生们一起求出二阶和三阶行列式的计算公式,即对角线法则。而李老师从向量的角度,从几何上的面积空间立方体的体积以及n维向量的体积角度给出了全新的定义,是一种全新的思想和理念。当然,由于教材编排顺序以及学生接受程度的差异,要仿效和实施李老师的行列式的定义是很难的。但是李老师的数形结合、深入浅出、由几何到代数的思想却是培训留给我的最大的财富,使我对如何教好学生有了更深的体会。
最后谢谢两位老师给我们带来这么精彩而难忘的培训,辛Βιβλιοθήκη 了!请输入内容保存成功
保存失败,请稍后再试
编辑文档
《对参加《线性代数》精品课程培训的心得与体会范文.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
下载文档
润稿
写作咨询
���
д����ѯ
我会以这次培训为契机认真总结并学习两位老师的教学思想和理念并将之贯穿于今后的教学中努力钻研教材尽可能从各个角度各个侧面理解课程内容力求融会贯通

线性代数学习心得

线性代数学习心得

线性代数学习心得
学习线性代数,对于我这个大三学生来说是一件很有意思,也有很多收获的事情。


这一学期里,我了解了很多有关线性代数的知识,也有更多地深刻地认识到它在我们日常
生活中的重要性。

首先,我学习了线性代数的基本知识,掌握了线性方程组,向量,矩阵,行列式以及
其它基本概念,解决了一些相关的问题,深入了解了基要事实的原理和正确的计算方法。

另外,我也学习了矩阵的性质及其内容,掌握了基于矩阵的一些游戏,探索了矩阵的特殊
性质,丰富了我对矩阵的理解。

此外,学习线性代数时,我非常体会到它在实际应用中的重要性。

比如,在经济、工程、心理学等诸多领域,线性代数的技术已被广泛采用。

另外,线性代数的技术也可用于
解决极大的计算机数学,虚拟现实技术、机器学习等领域中的复杂问题。

因此,线性代数
在日常生活中十分重要。

在学习过程中,对于新概念,我会有着一定的坚持精神和探究精神,尤其是对于很多
复杂的问题,会采取分析、比较和考虑不同角度,努力探究真相,再以最佳的方式来解决
问题。

总而言之,线性代数是一门重要的学科,它的技术已被广泛应用到日常的科学技术领域,并且有着十分巨大的潜力发挥,所以,为了澳游我们的能力,我们更应该深入学习线
性代数的相关知识,充分利用线性代数的技术,不断提高学习成果,为自己的学习贡献力。

《线性代数》学习心得800字.doc

《线性代数》学习心得800字.doc

《线性代数》学习心得800字.doc关,可偏偏数学却是我致命的弱项,在学好数学的路上付出了很多,也有所收获,但也仅仅只是皮毛。

在这里分享我的经验,希望大家有所收获。

一开始学习线代时,便感觉到线代不同于高等数学的地方,在于它几乎从一开始就是一个全新的概念。

其研究的范围通常都不是我们能想象到的二维空间,而是上升到n维空间,并且在线性代数的学习过程中,我们几乎都是跟一些新的概念,新的定理打交道,因此理解和记忆起来有相当大的困难,常常是花很久的时间还是理解不了。

因此需要课前预习,上课紧跟老师讲解,下课练习课后习题以助更好的理解掌握。

线性代数主要研究三种对象:矩阵、方程组和向量。

这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法。

因此,学习线性代数时应能够熟练地从一种理论的叙述转移到另一种中去。

如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性。

由此可见,掌握矩阵、方程组和向量的内在联系十分重要。

线代的概念多,比如对于矩阵,有对角矩阵、伴随矩阵、逆矩阵、相似矩阵等。

运算法则多,比如求逆矩阵,求矩阵的秩,求向量组的秩,求基础解系,求非齐次线性方程组的通解等。

内容相互纵横交错,在学到后面的知识点时常常出现需要和前面的知识点的应用,但经常记不起来,就需要不断地复习前面的知识点。

要能够做到当题干给出一个信息时必须能够想到该信息等价的其他信息,比如告诉你一个矩阵是非奇异矩阵,它包含的信息有:首先明确它是一个n阶方阵,它的秩是n,它便是满秩矩阵,它所对应的n阶行列式不等于零,那么n 个n维向量便线性无关,还有这个方阵是可逆方阵,并且可以想到它的转置矩阵也是可逆的。

正是因为线性代数各知识点之间有着千丝万缕的联系,线性代数题的综合性与灵活性较大。

因此课本的课后习题要多加练习。

万变不离其宗,把握套路,老师也不会太为难我们,基本是在课后题上变形。

线性代数期末自我总结

线性代数期末自我总结

线性代数期末自我总结作为一门重要的数学基础课程,线性代数在我大学学习生涯中起到了关键性的作用。

在经过一个学期的学习之后,我深刻体会到线性代数的重要性,并且在这门课程中取得了一些收获和提高。

以下是我对线性代数期末的自我总结。

首先,我对线性代数概念的理解有了很大的提高。

在课堂上,老师讲授了线性代数的基本概念和基本原理,包括矩阵、向量空间、线性变换等。

通过课堂的示范和实例分析,我对这些概念有了更清晰的认识,并且能够运用这些概念解决具体的问题。

我学会了使用矩阵进行线性方程组的求解,使用向量空间的性质来证明一些线性代数问题,以及使用线性变换解决具体的应用问题。

这些基本概念和原理是线性代数学习的基石,我相信在以后的学习和工作中会发挥重要的作用。

其次,我在计算线性方程组的过程中提高了自己的计算能力。

在学习线性代数的过程中,我们需要经常求解线性方程组。

线性方程组是线性代数的一个重要应用,解决实际问题的时候经常会遇到。

通过大量的练习和计算,我提高了自己的计算速度和准确性。

我掌握了高斯消元法和矩阵求逆的方法,能够迅速将线性方程组化简为最简形式,并求得其解。

在实践中,我学会了如何选择消元的顺序和方程组的pivot,以提高计算的效率和准确性。

这些计算技巧将会在我的数学学习和工程实践中发挥重要的作用。

另外,在学习线性代数的过程中,我也加强了自己的逻辑推理能力。

线性代数是一门很抽象的数学学科,需要运用逻辑推理来证明一些定理和性质。

在课堂上,老师经常布置一些证明题,要求我们用逻辑推理来证明某个结论。

通过这些练习,我学会了如何通过逻辑推理合理地组织证明过程,使得论证的过程更加严谨和严密。

逻辑推理是一种思维方式,通过学习线性代数,我不仅提升了数学推理能力,也对其他学科的推理和证明有了更深入的认识。

此外,在线性代数的学习中,我也通过完成一些实际例题,培养了一定的应用能力。

线性代数不仅仅是一门纯粹的理论学科,也是一门可以应用到实际问题中的学科。

浅谈线性代数学习感想

浅谈线性代数学习感想

从线性代数知识内容感想浅谈当代应用一、前言感想从大学大一下半学期开始,学校就开设了这门课程,经过一个学期的学习,对其中的一些知识要点也有了深刻的认识与体会。

在我的身边,线性代数被不少同学排斥,足见这门课给同学们造成的困难。

在这门课的学习过程中,很多同学上课听不懂,一上课就想睡觉{包括我自己},公式定理理解不了,知道了知识但不会做题,记不住等问题。

慢慢的,我发现,只要有正确的方法,再加上自己的努力,就可以学好它。

一定要重视上课听讲,不能使线代的学习退化为自学。

上课时,老师的一句话就可能使你豁然开朗,就可能改变你的学习方法甚至改变你的生。

上课时一定要“虚心”,即使老师讲的某个题自己会做也要听一下老师的思路。

当然,说句实话,线性代数给我个人的感觉是要比高数《微积分》要难许多。

首先,它涉及到的知识内容有很多,很多都是前后关联的;其次,它其中的定义概念很多,重点知识也要熟记才能够得心应手的应用;第三,概念抽象,很难去理解,只能是通过做题来理解加深印象;最后,计算繁琐,一步错,步步错,需要耐心仔细等等。

这些都是个人的一些感受。

而我课余为了多加强练习,也从网上找了很多试题来练习等等方法。

下面就说说一些个人感觉线性代数的基本应用。

二、当代应用矩阵。

应该说矩阵是一种非常常见的数学现象。

从学校的课表、工厂里的生产进度表、价目表、数据分析表等等都可以看到它的影子,它是表述或处理大量的生活、生产与科研问题的有力的工具。

矩阵的重要作用主要是它能把头绪纷繁的十五按一定的规则清晰地展现出来,并通过矩阵的运算或变各种换来揭示事物之间的内在联系。

矩阵的初等变化,矩阵的秩,初等矩阵,线性方程组的解。

向量组的线性相关,向量空间,向量组的秩等,这些都是线性代数的核心概念。

如我们土木老师所说的,通过计算机并广泛应用于解决桥梁设计,交通规划,石油勘探,经济管理等科学领域。

当然,线性代数也应用于自然科学和社会科学中。

线性代数在数学、物理学和技术学科中也有各种重要应用,因而它在各种代数分支中占居首要地位;线性代数方法是指使用线性观点看待问题,并用线性代数的语言描述它、解决它(必要时可使用矩阵运算)的方法。

线性代数学习心得体会

线性代数学习心得体会

线性代数学习心得体会篇一:学习线性代数的心得体会学习线性代数的心得体会线代课本的前言上就说:“在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。

”我们的线代教学的一个很大的问题就是对线性代数的应用涉及太少,课本上涉及最多的只能算解线性方程组了,但这只是线性代数很初级的应用。

我自己对线性代数的应用了解的也不多。

但是,线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。

线性代数被不少同学称为“天书”,足见这门课给同学们造成的困难。

在这门课的学习过程中,很多同学遇到了上课听不懂,一上课就想睡觉,公式定理理解不了,知道了知识但不会做题,记不住等问题。

我认为,每门课程都是有章可循的,线性代也不例外,只要有正确的方法,再加上自己的努力,就可以学好它。

线代是一门比较费脑子的课,所以如果前一天晚上睡得太晚第二天早上的线代课就会变成“催眠课”。

那么,就应该在第二天有线代课时晚上睡得早一点。

如果你觉得上课跟不上老师的思路那么请预习。

这个预习也有学问,预习时要“把更多的麻烦留给自己”,即遇到公式、定理、结论马上把证明部分盖住,自己试着证一下,可以不用写详细的过程,想一下思路即可;还要多猜猜预习的部分会有什么公式、定理、结论;还要想一想预习的内容能应用到什么领域。

当然,这对一些同学有困难,可以根据个人的实际情况适当调整,但要尽量多地自己思考。

一定要重视上课听讲,不能使线代的学习退化为自学。

上课时干别的会受到老师讲课的影响,那为什么不利用好这一小时四十分钟呢?上课时,老师的一句话就可能使你豁然开朗,就可能改变你的学习方法甚至改变你的一生。

上课时一定要“虚心”,即使老师讲的某个题自己会做也要听一下老师的思路。

上完课后不少同学喜欢把上课的内容看一遍再做作业。

实际上应该先试着做题,不会时看书后或做完后看书。

这样,作业可以帮你回忆老师讲的内容,重要的是这些内容是自己回忆起来的,这样能记得更牢,而且可以通过作业发现自己哪些部分还没掌握好。

线性代数心得体会精选6篇

线性代数心得体会精选6篇

第1篇:线性代数心得体会浅谈线性代数的心q导体会系别:XXX系班级:XXX班姓名:XXX线性代数心W导姓名:XXX学号:XXX通过线性代数的学习,能使学生获得应用科学中常用的矩阵、线性方程组等理论及其有关基本知识,并具有较熟练的矩阵运算能力和用矩阵方法解决一些实际问题的能力。

同时,该课程对于培养学生的逻辑推理和抽象思维能力、空间直嬲口想象能力具有重要的作用。

在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。

但是线性代数教学却对线性代数的应用涉及太少,课本上涉及最多的应用只有算解线性方程组,但这只是线性代数很初级的应用。

而线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。

线性代数被不少同学称为天书,足见这门课给同学们造成的困难。

我认为,每门课程都是有章可循的,线性代数也不例外,只要有正确的方法,再加上自己的努力,就可以学好它。

线性代数主要研究三种对象:矩阵、方程组和向量。

这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法。

因此,熟练地从一种理论的叙述转移到另一种中去,是学习线性代数时应养成的一种重要习惯和素质。

如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性。

由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易。

线性代数课程特点比较鲜明:概念多、运算法则多内容相互纵横交错正是因为线性代数各知识点之间有着千丝万缕的联系,线性代数题的综合性与灵活性较大,线性代数的概念多比如代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,矩阵的秩,线性组合与线性表示,线性相关与线性无关等。

线性代数中运算法则多比如行列式的计算,求逆矩阵,求矩阵的秩,求向量组的秩与极大线性无关组,线性相关的判定,求基础解系,求非齐次线性方程组的通解等。

最新学线性代数的感受

最新学线性代数的感受

学线性代数的感受经过大半个学期的学习,线性代数这门课的内容也即将学完。

下面将我的学习感受与大家分享一下。

《线性代数》一共有七章,分别是行列式、矩阵、线性方程组、n维向量空间、矩阵相似对角形、二次型以及线性变换。

在学期开始的时候,我就将这门课的内容大致看了一下,给我的直观感受是比较复杂,但应该不难。

我提醒自己,只要做好课前预习,课上认真听讲,课后认真复习与完成作业,应该是可以学好的。

学习行列式的时候,课上听老师讲,感觉真的很简单,不就是行列式的几个性质吗?行列互换,把某一行(列)的k倍加到另一行(列),以及行列式的展开等等。

但是当我做课后习题的时候,我却感觉难度非常的大。

尤其是是行列式的计算,虽然知道行列式的性质,但是根本不知从何下手。

结果一个题目就花了我很长的时间却做不出来。

于是我从网上找了很多关于行列式的计算题目,结果发现,是因为我不知道行列式是有题型的。

虽然知道行列式的性质,但由于不知计算方法而无从下手。

行列式的计算方法主要有定义法、降阶法、三角化法、递推法、加边法、数学归纳法以及公式法。

针对每种方法,又有与之对应的各种题型。

通过对这些方法与题型的研究,我对行列式的计算基本上已经没有问题了。

学习矩阵的时候,让我感到头疼的就是矩阵的证明题。

这些题目需要应用矩阵的很多性质,比如伴随矩阵的性质,逆矩阵的性质以及伴随矩阵与逆矩阵的关系。

他们之间转换来转化去,非常麻烦。

我看了很多相关题目,对他们之间的转化有了比较深的认识。

至于矩阵的初等变换与行列式差不多,我掌握的还是比较好的。

学习线性方程组的时候,还是比较轻松的,掌握线性方程组有解的判别定理和解的结构,解题没有太大问题。

学习n维向量空间的时候,主要是在正交矩阵的相关证明与计算上遇到了比较大的问题,我想应该是我对正交矩阵的性质掌握的不是太好,因此我还要看一下参考书加深理解。

学习矩阵相似对角形的时候,主要是矩阵的特征值与特征向量以及矩阵的对角化,通过做题发现并不是太难,关键是要掌握计算方法。

学习线性代数的心得体会

学习线性代数的心得体会

学习线性代数的心得体会
学习线性代数的心得体会:
1. 线性代数是一门基础且重要的学科,它为各个数学领域和其他学科提供了基本的数学工具和理论基础。

2. 学习线性代数需要掌握一定的数学基础,如矩阵运算、向量空间等。

建议在学习线性代数之前,先进行数学基础的复习和巩固,以便更好地理解和应用线性代数的概念和方法。

3. 在学习线性代数的过程中,需要注重理论和实践的结合。

通过解题、编程等实际操作,可以更好地理解和运用线性代数的知识。

4. 线性代数的概念和性质相对较为抽象和复杂,需要进行积极的思考和理解。

在遇到困难时,可以多进行思考、讨论和请教他人,以便更好地理解和掌握相关内容。

5. 线性代数是一个渐进性的学科,各个概念和方法之间都有一定的联系。

建议在学习过程中保持积极的学习态度,不断拓展自己的知识和能力。

6. 线性代数作为一门基础学科,在计算机科学、物理、工程等领域都有广泛的应用。

学习线性代数不仅可以提升数学素养,还可以为其他学科的学习和研究提供强大的支持。

学习线性代数需要保持充分的学习热情和积极的学习态度,注
重理论和实践的结合,培养抽象思维和问题解决能力,为自己的学习和发展打下坚实的数学基础。

线性代数学习体会与理解

线性代数学习体会与理解
五、再看向量:20100319
前面简单介绍了向量,现在再来看下向量的表示,我们来看下下面的等式,①3=1*3=2*1.5=500*(3/500)=4*(3/4)=………和②
看出什么问题来了么?
如果我们把①等式中的3看成是描述某物体的重量3斤,那么1*3中前一个数字可以看成是1斤体系,后面数字3为物体重量。相应的2*1.5中前1个数字2可以看成是公斤体系,在公斤体系下物体重量为1.5,那么500*(3/500)可以看成是500斤体系下物体重量是3/500,原来描述物体的重量的数值是需要说明你是在哪个系下才能说得清楚你要描述的物体重量。如果你说这物体重量为a,只要a不为0,都是对的,为什么?现在不用说也知道为什么了。因此要确切的表示,其实3斤应表示成=1斤*3。那扩展到2维,3维。。N维去考虑呢?道理其实是一样的,看下式子②就清楚了,前面的那个矩阵A1,A2,A3不就是刚才我们说的坐标系么,向量α1,α2,α3不就是我们要描述的同一个物体特性的向量啊,原来描述同样事物特性,你也可以用不同的向量去描述,只是你得再向量的前面填上矩阵A1 、A2或A3。而我们常说的向量(4,3)其实是按习惯针对单位矩阵I所说(4,3)T=I*(4,3)T所说的。其实矩阵A1,A2,A3就是坐标系(把组成它的列向量叫成一组基),向量α的各分量就是坐标值。推广到N维也是一样道理。
线性代数学习体会与理解
线性代数学习体会与理解
过去学线性代数,总觉得枯燥,难理解,概念多,推理多,只知道把它用来解方程,完全不了解它还有什么其他应用。这段时间抽空进行了复习,对它有了些新的理解和体会,把这些理解和体会特别是对一些概念的理解记录下来以供后用。
一、数的理解:
对于单个的数,数学上它可用数轴上的一个点来表示。如我写下各90,那么我能了解的就是这个90本身,数轴上的一个点,但它表示的是现实世界中的什么事物我是不知道的,有可能是物体长度是90米,有可能是物体90斤重,可是如果我在这个数的旁边写下

线性代数的心得体会

线性代数的心得体会

线性代数的心得体会线性代数是一门关于向量空间和线性映射的数学学科,它在多个学科领域中都有广泛的应用。

在学习线性代数的过程中,我收获了很多知识和体会。

下面我将用1000字介绍我对线性代数的心得体会。

首先,线性代数能够帮助我们更深入地理解向量空间和线性映射。

在学习线性代数之前,我对向量空间和线性映射的概念只是浅显的了解。

然而,通过学习线性代数,我了解到向量空间是由一组向量组成的,它的性质由向量的线性组合所决定。

线性映射则是将一个向量空间映射到另一个向量空间的函数,它具有保持加法和数量乘法运算的性质。

这些概念使我对向量空间和线性映射的本质有了更深刻的认识。

其次,线性代数为解决线性方程组提供了有效的工具。

线性方程组是数学和工程中的常见问题,这些问题的解决对于数学模型的应用至关重要。

通过学习线性代数,我学会了使用矩阵和向量的方式来表示和求解线性方程组。

矩阵的行、列和秩等概念,使我能够更加直观地理解线性方程组的解的几何意义。

此外,线性代数还提供了高斯消元法、克拉默法则以及矩阵求逆等方法,使我能够更加高效地求解线性方程组的解。

这些解法对于解决实际问题非常有帮助。

此外,线性代数也为矩阵的特征值和特征向量提供了深入的研究。

通过学习线性代数,我理解了特征值和特征向量在矩阵变换中的重要性。

特征值和特征向量可以用来描述矩阵变换后的平移、旋转和拉伸等变化。

因此,特征值和特征向量在图像处理、数据降维和机器学习等领域中具有广泛的应用。

通过研究特征值和特征向量,我能够更加深入地理解矩阵变换的本质,并且能够运用它们来解决实际问题。

最后,线性代数的学习也让我受益良多的思维方式。

在学习线性代数的过程中,我逐渐养成了抽象思维的习惯。

线性代数中的许多概念和定理需要通过抽象的方式来理解和证明。

通过学习线性代数,我能够更加灵活地运用抽象思维解决问题。

此外,线性代数还培养了我的逻辑思维能力和推理能力。

在证明线性代数中的定理和推导公式时,我需要运用逻辑推理的方法,这锻炼了我的思维能力。

线性代数学习有感

线性代数学习有感

线性代数学习有感从素未谋面到一知半解,或许将来会有相见恨晚。

总之到现在为止,经过将近一个学期的学习,我对线性代数有了一些小小的感想。

线性代数是高等院校一门重要的基础数学课程,具有较强的了逻辑性,抽象性和广泛的实用性。

这是我在上网查阅资料时看到的大家对于线性代数的定义。

不同于高等数学的是,线性代数几乎从一开始就是一个全新的概念,至少给我的感觉是这样。

虽说线性代数主要就是为了解齐次或非齐次的线性方程组,这个目的之于我并不算太陌生,可是它所运用到的东西却是我几乎从未见到过的。

我们都知道,线性代数研究的范围通常都不是我们能想象到的二维空间,而是上升到n维空间,这一点相当不可爱。

并且在线性代数的学习过程中,我们几乎每天都是跟一些新的概念,新的定理打交道,因此理解和记忆起来有相当大的困难,常常是花很久的时间还是理解不了。

我跟一些就读于其他高校的高中同学交流了一下各自学校线性代数的教学情况,很多同学都谈到了同一个问题。

不少老师在教学的时候,经常会舍弃一些重要概念、性质和定理的引入,以及相关的几何意义的解释,以至于学生接受的通常是一个个被硬生生灌输的概念,法则或定理。

平心而论,我觉得北邮线性代数的老师在这一点上做得还是不错的,至少给我授课的张鹏老师对这一点抓得比较好。

张老师对细节的要求比较高,她会时不时询问学生对知识的理解情况,经常会多次讲解,这真的是一个好现象。

不过说实话,由于课时的限制,老师不可能把所有东西都讲解得很透彻,尽管老师尽力讲解了,可每次上完课我仍会有些许疑惑。

不过乐观地看,这也未必不是件好事。

这就要求我们自己在课下去总结去思考,才能有深刻的理解,并且这样能更好地培养我们的逻辑思维能力。

俗话说得好:“学而不思则罔”。

如果我们不去进行深入的思考,那么我们所学到的线性代数的知识就只是一些零散的孤立的概念和方法,无法理解这些概念和方法的意义以及它们之间的联系,到头来只会做一些简单的计算,我们的眼光会被限制,无法上升到一个高度去看待线性代数问题,无法将所学的知识点融会贯通。

学习线性代数的感想

学习线性代数的感想

学习线性代数的感想我们这一代到了大学的专业里学习,多数人已经不会把刷题磨练基本功太当回事了,因为空闲时间少,也感觉上进的动力也没有那么迫切,处在一种努力摸索人生出路的状态。

一直是老一辈数学工作者在耳边磨做题的重要性,才留下了一个“多做题肯定有好处”这么一个粗浅的印象。

于是,想重新读一读一些基础课的经典,如果跟着我的“视频读书”过来的“老铁”们一定知道,这一次学习我没有马虎,每一节的几十道题目几乎是一题不拉的在做,虽然进度就不那么快了,但确实感觉长了些功夫。

另一方面,个人感觉大学专业的学习其实并没有人们想象的那么扎实。

所以,想写一写,自己慢读下来长了些什么样功夫。

是不是应该多推崇一下这种慢读慢学的模式。

大学里学专业课,基础课,课后题虽然有不少,但很多题都是不布置的,布置个几个题目,老师看一下反馈也就完了。

所以很多同学也不会把课后题目全做了,更不会找其他的书的题来做。

以前有位网友说,上大学学的微积分缺少以前的那种“掌控感”,很重要的一个原因,就是缺乏做题的磨练,这是普遍的情况。

其实哪怕是最简单的事情,貌似已经理解掌握的概念,反复磨练一下也是很有好处的。

比如线性代数里讲到矩阵,这是个新的概念。

一般的教材里,也就是介绍一下矩阵的概念和定义,证明一下关于矩阵的一些结果,再举一些例子就完了。

打个不恰当的比喻,就好像学完之后就感觉这个东西此生跟自己再无关系了,遇到它仿佛还是陌生人一般。

不知道学了有什么用,只是以前“学过”而已。

可是回想一下,大概考上大学的同学都不会觉得四则运算,三角函数,平面几何没什么用,也感觉这方面的问题自己还是可以思考思考的。

因为,在中学,我们做了许多许多题目,但其实尽管这样,还有许多问题我们难以解决。

不能解决,一方面是因为有一些方法很巧,不在书本里,自己也想不到。

不过更重要的是,还有些高级的东西还没有学过,比如微积分,比如线性代数。

前面我讲过微积分做什么的,那么线性代数是做什么的呢?学线性代数可以帮助我们提高什么能力呢?这里不说虚的,什么思维能力啥的,那是什么学科都可以培养的,就说线性代数本身是什么。

线性代数期末心得总结

线性代数期末心得总结

线性代数期末心得总结经过一学期的学习,我对线性代数这门课有了更深入的理解和认识。

在这篇心得总结中,我将回顾我所学到的知识和技能,并对线性代数的应用和意义进行思考和总结。

首先,线性代数是一门基础而重要的数学课程。

它研究向量空间和线性映射,涉及到了矩阵、行列式、特征值和特征向量等概念和理论。

线性代数是现代数学的基石之一,广泛应用于各个学科领域,如物理学、工程学、计算机科学等。

在计算机科学领域,线性代数被广泛应用于计算机图形学、机器学习和数据分析等领域。

在这门课中,我学习了向量空间的定义和性质。

向量空间是由向量组成的集合,满足一定的运算规则和性质。

学习向量空间的定义和性质,使我对线性代数的概念有了更深入的理解。

我也学习了向量的加法和数乘运算,这些运算规则和性质是线性代数的基础。

矩阵是线性代数中一个重要的概念。

矩阵是一个按照矩形排列的数的集合,具有一定的运算规则和性质。

在课程中,我学习了矩阵的加法、数乘和乘法运算,以及矩阵的转置、逆矩阵和行列式等概念和性质。

通过对矩阵的学习,我进一步理解了线性代数的抽象和推导方法。

行列式是线性代数中一个重要的工具和概念。

行列式用于判断矩阵的可逆性和求解线性方程组。

在课程中,我学习了行列式的定义和性质,以及行列式的计算方法和应用。

通过对行列式的学习,我进一步了解了矩阵的性质和线性方程组的解法。

特征值和特征向量是线性代数中一个重要的概念和理论。

特征值和特征向量用于研究矩阵的几何性质和变换。

在课程中,我学习了特征值和特征向量的定义和性质,以及特征值分解和奇异值分解等方法。

通过对特征值和特征向量的学习,我进一步理解了矩阵的谱分解和几何变换。

线性代数的应用非常广泛。

在计算机图形学中,线性代数用于描述和处理几何对象的变换和显示。

在机器学习中,线性代数用于描述和处理数据的特征和模型,以及求解最优化问题。

在数据分析中,线性代数用于描述和处理数据的关系和变换。

线性代数的相关知识和技能对于理解和解决现实生活和工程问题具有重要意义。

线性代数的学习方法和心得体会

线性代数的学习方法和心得体会

线性代数的学习方法和心得体会一、学习方法今天先谈谈对线形空间和矩阵的几个核心概念的理解;这些东西大部分是凭着自己的理解写出来的,基本上不抄书,可能有错误的地方,希望能够被指出;但我希望做到直觉,也就是说能把数学背后说的实质问题说出来;首先说说空间space,这个概念是现代数学的命根子之一,从拓扑空间开始,一步步往上加定义,可以形成很多空间;线形空间其实还是比较初级的,如果在里面定义了范数,就成了赋范线性空间;赋范线性空间满足完备性,就成了巴那赫空间;赋范线性空间中定义角度,就有了内积空间,内积空间再满足完备性,就得到希尔伯特空间;总之,空间有很多种;你要是去看某种空间的数学定义,大致都是“存在一个集合,在这个集合上定义某某概念,然后满足某些性质”,就可以被称为空间;这未免有点奇怪,为什么要用“空间”来称呼一些这样的集合呢大家将会看到,其实这是很有道理的;我们一般人最熟悉的空间,毫无疑问就是我们生活在其中的按照牛顿的绝对时空观的三维空间,从数学上说,这是一个三维的欧几里德空间,我们先不管那么多,先看看我们熟悉的这样一个空间有些什么最基本的特点;仔细想想我们就会知道,这个三维的空间:1. 由很多实际上是无穷多个位置点组成;2. 这些点之间存在相对的关系;3. 可以在空间中定义长度、角度;4. 这个空间可以容纳运动,这里我们所说的运动是从一个点到另一个点的移动变换,而不是微积分意义上的“连续”性的运动,认识到了这些,我们就可以把我们关于三维空间的认识扩展到其他的空间;事实上,不管是什么空间,都必须容纳和支持在其中发生的符合规则的运动变换;你会发现,在某种空间中往往会存在一种相对应的变换,比如拓扑空间中有拓扑变换,线性空间中有线性变换,仿射空间中有仿射变换,其实这些变换都只不过是对应空间中允许的运动形式而已;因此只要知道,“空间”是容纳运动的一个对象集合,而变换则规定了对应空间的运动;下面我们来看看线性空间;线性空间的定义任何一本书上都有,但是既然我们承认线性空间是个空间,那么有两个最基本的问题必须首先得到解决,那就是:1. 空间是一个对象集合,线性空间也是空间,所以也是一个对象集合;那么线性空间是什么样的对象的集合或者说,线性空间中的对象有什么共同点吗2. 线性空间中的运动如何表述的也就是,线性变换是如何表示的我们先来回答第一个问题,回答这个问题的时候其实是不用拐弯抹角的,可以直截了当的给出答案;线性空间中的任何一个对象,通过选取基和坐标的办法,都可以表达为向量的形式;通常的向量空间我就不说了,举两个不那么平凡的例子:L1. 最高次项不大于n次的多项式的全体构成一个线性空间,也就是说,这个线性空间中的每一个对象是一个多项式;如果我们以x0, x1, ..., x n为基,那么任何一个这样的多项式都可以表达为一组n+1维向量,其中的每一个分量a其实i就是多项式中x i-1项的系数;值得说明的是,基的选取有多种办法,只要所选取的那一组基线性无关就可以;这要用到后面提到的概念了,所以这里先不说,提一下而已;下面来回答第二个问题,这个问题的回答会涉及到线性代数的一个最根本的问题;线性空间中的运动,被称为线性变换;也就是说,你从线性空间中的一个点运动到任意的另外一个点,都可以通过一个线性变化来完成;那么,线性变换如何表示呢很有意思,在线性空间中,当你选定一组基之后,不仅可以用一个向量来描述空间中的任何一个对象,而且可以用矩阵来描述该空间中的任何一个运动变换;而使某个对象发生对应运动的方法,就是用代表那个运动的矩阵,乘以代表那个对象的向量;简而言之,在线性空间中选定基之后,向量刻画对象,矩阵刻画对象的运动,用矩阵与向量的乘法施加运动;是的,矩阵的本质是运动的描述;如果以后有人问你矩阵是什么,那么你就可以响亮地告诉他,矩阵的本质是运动的描述;chensh,说你呢可是多么有意思啊,向量本身不是也可以看成是n x 1矩阵吗这实在是很奇妙,一个空间中的对象和运动竟然可以用相类同的方式表示;能说这是巧合吗如果是巧合的话,那可真是幸运的巧合可以说,线性代数中大多数奇妙的性质,均与这个巧合有直接的关系;接着理解矩阵、、、我们说“矩阵是运动的描述”,到现在为止,好像大家都还没什么意见;但是我相信早晚会有数学系出身的网友来拍板转;因为运动这个概念,在数学和物理里是跟微积分联系在一起的;我们学习微积分的时候,总会有人照本宣科地告诉你,初等数学是研究常量的数学,是研究静态的数学,高等数学是变量的数学,是研究运动的数学;大家口口相传,差不多人人都知道这句话;但是真知道这句话说的是什么意思的人,好像也不多;简而言之,在我们人类的经验里,运动是一个连续过程,从A点到B点,就算走得最快的光,也是需要一个时间来逐点地经过AB之间的路径,这就带来了连续性的概念;而连续这个事情,如果不定义极限的概念,根本就解释不了;古希腊人的数学非常强,但就是缺乏极限观念,所以解释不了运动,被芝诺的那些著名悖论飞箭不动、飞毛腿阿喀琉斯跑不过乌龟等四个悖论搞得死去活来;因为这篇文章不是讲微积分的,所以我就不多说了;有兴趣的读者可以去看看齐民友教授写的重温微积分;我就是读了这本书开头的部分,才明白“高等数学是研究运动的数学”这句话的道理;“矩阵是线性空间里跃迁的描述”;可是这样说又太物理,也就是说太具体,而不够数学,也就是说不够抽象;因此我们最后换用一个正牌的数学术语——变换,来描述这个事情;这样一说,大家就应该明白了,所谓变换,其实就是空间里从一个点元素/对象到另一个点元素/对象的跃迁;比如说,拓扑变换,就是在拓扑空间里从一个点到另一个点的跃迁;再比如说,仿射变换,就是在仿射空间里从一个点到另一个点的跃迁;附带说一下,这个仿射空间跟向量空间是亲兄弟;做计算机图形学的朋友都知道,尽管描述一个三维对象只需要三维向量,但所有的计算机图形学变换矩阵都是4 x 4的;说其原因,很多书上都写着“为了使用中方便”,这在我看来简直就是企图蒙混过关;真正的原因,是因为在计算机图形学里应用的图形变换,实际上是在仿射空间而不是向量空间中进行的;想想看,在向量空间里相一个向量平行移动以后仍是相同的那个向量,而现实世界等长的两个平行线段当然不能被认为同一个东西,所以计算机图形学的生存空间实际上是仿射空间;而仿射变换的矩阵表示根本就是4 x 4的;又扯远了,有兴趣的读者可以去看计算机图形学——几何工具算法详解;一旦我们理解了“变换”这个概念,矩阵的定义就变成:“矩阵是线性空间里的变换的描述;”到这里为止,我们终于得到了一个看上去比较数学的定义;不过还要多说几句;教材上一般是这么说的,在一个线性空间V 里的一个线性变换T,当选定一组基之后,就可以表示为矩阵;因此我们还要说清楚到底什么是线性变换,什么是基,什么叫选定一组基;线性变换的定义是很简单的,设有一种变换T,使得对于线性空间V中间任何两个不相同的对象x和y,以及任意实数a和b,有:Tax + by = aTx + bTy,那么就称T为线性变换;接着往下说,什么是基呢这个问题在后面还要大讲一番,这里只要把基看成是线性空间里的坐标系就可以了;注意是坐标系,不是坐标值,这两者可是一个“对立矛盾统一体”;这样一来,“选定一组基”就是说在线性空间里选定一个坐标系;就这意思;好,最后我们把矩阵的定义完善如下:“矩阵是线性空间中的线性变换的一个描述;在一个线性空间中,只要我们选定一组基,那么对于任何一个线性变换,都能够用一个确定的矩阵来加以描述;”同样的,对于一个线性变换,只要你选定一组基,那么就可以找到一个矩阵来描述这个线性变换;换一组基,就得到一个不同的矩阵;所有这些矩阵都是这同一个线性变换的描述,但又都不是线性变换本身;但是这样的话,问题就来了如果你给我两张猪的照片,我怎么知道这两张照片上的是同一头猪呢同样的,你给我两个矩阵,我怎么知道这两个矩阵是描述的同一个线性变换呢如果是同一个线性变换的不同的矩阵描述,那就是本家兄弟了,见面不认识,岂不成了笑话;好在,我们可以找到同一个线性变换的矩阵兄弟们的一个性质,那就是:若矩阵A与B是同一个线性变换的两个不同的描述之所以会不同,是因为选定了不同的基,也就是选定了不同的坐标系,则一定能找到一个非奇异矩阵P,使得A、B之间满足这样的关系:A = P-1BP线性代数稍微熟一点的读者一下就看出来,这就是相似矩阵的定义;没错,所谓相似矩阵,就是同一个线性变换的不同的描述矩阵;按照这个定义,同一头猪的不同角度的照片也可以成为相似照片;俗了一点,不过能让人明白;而在上面式子里那个矩阵P,其实就是A矩阵所基于的基与B矩阵所基于的基这两组基之间的一个变换关系;关于这个结论,可以用一种非常直觉的方法来证明而不是一般教科书上那种形式上的证明,如果有时间的话,我以后在blog里补充这个证明;这样一来,矩阵作为线性变换描述的一面,基本上说清楚了;但是,事情没有那么简单,或者说,线性代数还有比这更奇妙的性质,那就是,矩阵不仅可以作为线性变换的描述,而且可以作为一组基的描述;而作为变换的矩阵,不但可以把线性空间中的一个点给变换到另一个点去,而且也能够把线性空间中的一个坐标系基表换到另一个坐标系基去;而且,变换点与变换坐标系,具有异曲同工的效果;线性代数里最有趣的奥妙,就蕴含在其中;理解了这些内容,线性代数里很多定理和规则会变得更加清晰、直觉;二、学习心得线性代数是一门对理工科学生极其重要数学学科;线性代数主要处理的是线性关系的问题,随着数学的发展,线性代数的含义也不断的扩大;它的理论不仅渗透到了数学的许多分支中,而且在理论物理、理论化学、工程技术、国民经济、生物技术、航天、航海等领域中都有着广泛的应用;同时,该课程对于培养学生的逻辑推理和抽象思维能力、空间直观和想象能力具有重要的作用;线代课本的前言上就说:“在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了;”我们的线代教学的一个很大的问题就是对线性代数的应用涉及太少,课本上涉及最多的只能算解线性方程组了,但这只是线性代数很初级的应用;我自己对线性代数的应用了解的也不多;但是,线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用;没有应用到的内容很容易忘,就像现代一样,我现在高数还基本记得;因为高数在很多课程中都有广泛的应用,比如在开设的大学物理课中;所以,如果有时间的话,要尽可能地到网上或图书馆了解线性代数在各方面的应用;如:线性代数居余马等编,清华大学出版社上就有线性代数在“人口模型”、“马尔可夫链”、“投入产出数学模型”、“图的邻接矩阵”等方面的应用;也可以试着用线性代数的方法和知识证明以前学过的定理或高数中的定理,如老的高中解析几何课本上的转轴公式,它就可以用线性代数中的过渡矩阵来证明;线性代数被不少同学称为“天书”,足见这门课给同学们造成的困难;在这门课的学习过程中,很多同学遇到了上课听不懂,一上课就想睡觉,公式定理理解不了,知道了知识但不会做题,记不住等问题;我认为,每门课程都是有章可循的,线性代也不例外,只要有正确的方法,再加上自己的努力,就可以学好它;一定要重视上课听讲,不能使线代的学习退化为自学;上课时干别的会受到老师讲课的影响,那为什么不利用好这一小时四十分钟呢上课时,老师的一句话就可能使你豁然开朗,就可能改变你的学习方法甚至改变你的一生;上课时一定要“虚心”,即使老师讲的某个题自己会做也要听一下老师的思路;上完课后不少同学喜欢把上课的内容看一遍再做作业;实际上应该先试着做题,不会时看书后或做完后看书;这样,作业可以帮你回忆老师讲的内容,重要的是这些内容是自己回忆起来的,这样能记得更牢,而且可以通过作业发现自己哪些部分还没掌握好;作业尽量在上课的当天或第二天做,这样能减少遗忘给做作业造成的困难;做作业时遇到不会的题可以问别人或参考同学的解答,但一定要真正理解别人的思路,绝对不能不弄清楚别人怎么做就照抄;适当多做些题对学习是有帮助的;数学上的方法是相通的;比如,考虑特殊情况这种思路;线性代数中行列式按行或列展开公式的证明就是从更简单的特殊情况开始证起;解线性方程组时先解对应的齐次方程组,这些都是先考虑特殊情况;高数上解二阶常系数线性微分方程时先解其对应的齐次方程,这用的也是这种思路;方法真的很难讲,而方法包含许多细节的内容很难讲出来甚至我都意识不到,但它们会对学习起很大的作用;我感觉“做完题要总结”,“上课想到老师前面”,“注重知识之间的联系”很重要;以上就是我学习线性代数的心得;。

线性代数的心得体会(优秀5篇)

线性代数的心得体会(优秀5篇)

线性代数的心得体会(优秀5篇)线性代数的心得体会篇1线性代数是一门研究线性方程组、向量空间、矩阵等概念的数学分支,它是现代数学的基础,同时也在科学、工程、计算机科学等领域中有广泛应用。

在我学习线性代数的过程当中,我不仅收获了知识,更深入地理解了数学的本质和它在各个领域的重要性。

首先,线性代数的学习过程让我深刻地理解了数学符号和公式的力量。

线性代数中的符号和公式虽然简洁,但却具有强大的表达能力。

通过这些符号和公式,我们可以准确地描述和解决问题,从而更好地理解数学的本质。

其次,线性代数的学习过程也让我体验到了数学思维的乐趣。

在学习过程中,我逐渐养成了用数学思维去解决问题的习惯。

通过抽象、归纳、推理等数学思维方法,我能够更准确地理解问题,并找到有效的解决方法。

再者,我了解到线性代数在各个领域的应用价值。

在科学、工程、计算机科学等领域中,线性代数是必不可少的数学工具。

通过学习线性代数,我能够更好地理解实际问题,找到合适的解决方法,并在实际应用中取得成功。

最后,我认为在学习线性代数的过程中,要注重理解和应用。

只有真正理解了线性代数的概念和公式,才能在实际问题中灵活应用。

此外,我们还需要注重练习,通过大量的习题训练,提高自己的解题能力。

总之,学习线性代数是一个不断积累知识和提高自己的过程。

在这个过程中,我收获了知识、提高了解决问题的能力,也更好地理解了数学的本质和它在各个领域的重要性。

我相信,通过不断的学习和探索,我会在数学领域中取得更大的进步。

线性代数的心得体会篇2线性代数是一门非常重要的数学分支,它为解决许多实际问题提供了有力的工具。

在这篇*中,我将分享我的心得体会,包括学习线性代数的过程、对我产生影响的关键点和所学到的教训。

1.学习背景和过程我开始学习线性代数的原因是我对计算机科学和数据科学感兴趣。

在我开始接触线性代数之前,我学习了大量的基础数学知识,如微积分、线性方程组、几何学等。

这些知识为理解线性代数提供了坚实的基础。

学习《线性代数》的七点体会

学习《线性代数》的七点体会

学习《线性代数》的七点体会由于它的简便,所以就代数在数学和物理的各种不同分支的应用来说,线性代数具有特殊的地位.以下是哥的一点学习体会。

一.处理好听课和看书的关系哥认真上好每一堂课对于学习好线性代数是格外重要的.教材上的知识和技巧主要由老师在课堂上以授课的形式传授给你.你在上课时应集中精力听讲,积极思考老师提出的问题,迅速而恰当地做笔记.,看书的准确程序是:课前看书(通读教材,留神有疑问处),课上尽量不看书(老师要求看书时除外),下课后再看书(复习巩固).有的人恰恰相反,他们在课上埋头看自己的书,丝毫不理会老师的讲授,这样做是十分不可取的.二.理清学习与考试的关系据哥的学习经验,有的学生特别害怕考试,甚至在课程进行之初就为数月之后的期中、期末考试而惴惴不安,结果学习时顾虑重重,效率低下.平心而论,没有一位老师也不愿意"抓"学生,因为相对于学生不及格来说,抓学生给老师带来的"麻烦"会更大.学生只要端正态度,付出努力,考试过关本来就不成问题.所以你应把眼光放到真正学习到知识乃至将来的考研上,那才是应该为之奋斗的更高目标.三.阅读教科书外的其它教材不同作者在编书时,思路、组材、行文和侧重点等方面都是有一些子差异的.仅仅阅读一本教材,不免会使你陷入"偏听则暗"的狭隘局限.因此,哥建议你在学校统一订购的教材之外,还应多参考几本其它作者、高校和出版社的线性代数教材.在老师讲授教科书,同步进行阅读、比较、鉴别和取舍,以起到查缺补漏、完善知识的功效.四.切实理解每一个概念与其它数学课程的学习方法一样,线性代数的学习也要特别注重理解.死记硬背或许会起一时的效果,透彻理解方能永久掌握.注重理解重要概念,正如"狗子"讲的那样,如:模、秩、基等。

五.切实掌握每一个例题教材上的每一个例题都是作者针对知识点而精心挑选的.这就要求你除了掌握教材提供的例题的解法以外,自己还要延伸思考与其相关的问题,并寻求相应的解法.此外,牢记一些重要的例题的结论也是大有裨益的,如常见行列式的值等.六.力求会做每一个习题现行线性代数教材的习题一般分为基础题、难点题两部分,前者,较为容易,后者有很大一部分较为困难.如果仅仅为了考试过关,那么会做前者也就足够了;但是,如果为了将来考研做准备,那么这两部分的每一个题目都应该会做,最好能达到搭眼一瞧就知道怎么解的程度.这样做,在巩固知识和提供能力两方面都比东寻西找一些所谓的"难题"来做更为有效迅捷.七.慎用"题海"战术学习线性代数和其它数学课程一样,当然需要做一定数量的练习题目,以达到巩固和提高的目的."熟能生巧",此之谓也.然而,初学者切不可盲目去追求多做题,做难题.切不可一上来就把往年的考研试题和辅导材料上的题目拿来"啃",这些题目的难度系数都很高,而你尚未具备解决它们的知识和能力,结果被搞得焦头烂额,信心全无.其实,教材上的例题和习题无论从数量和难度,对一个初学者来说已经是足够了.全部做会了这些题目,你将来才可以去应对更难的题目. MSN(中国大学网)。

线性代数课后思想感悟总结

线性代数课后思想感悟总结

线性代数课后思想感悟总结线性代数是一门关于向量、矩阵和线性方程组的数学课程。

在学习过程中,我深刻体会到线性代数的重要性和应用广泛性。

通过这门课程,我不仅获得了知识上的提升,还收获了一些思想感悟。

首先,线性代数教会了我抽象思维的重要性。

在以前的学习中,我习惯于通过具体的例子和事实进行思考和解决问题。

但是,在线性代数中,我们需要将问题抽象成向量、矩阵和线性方程组的形式,这让我体会到了抽象思维的威力。

通过抽象的方式,我们能够更加深入地理解问题的本质,找到问题的共性和规律。

这对于解决现实生活中的问题也具有很大的帮助,使我更加善于从多个角度思考问题,寻找解决方案。

其次,线性代数让我认识到数学的美和逻辑的巧妙。

在线性代数中,很多概念和定理都具有很高的美感,如向量空间的定义和性质、矩阵的特征值和特征向量、线性变换的本质等等。

这些概念和定理之间存在着巧妙的逻辑关系,通过推导和证明,我们可以揭示出数学的内在美和逻辑的巧妙。

这让我对数学产生了更深的兴趣和热爱,也让我更加尊重逻辑思维和推导能力。

此外,线性代数加深了我对计算机科学的理解。

在线性代数中,我们经常提到矩阵运算、向量空间和线性变换,这些概念和方法在计算机科学中也有重要的应用。

例如,图像处理、数据分析、机器学习等领域都离不开线性代数的知识。

通过学习线性代数,我更加认识到数学与计算机科学的密切关系,这对于我的专业发展具有重要的指导意义。

最后,线性代数培养了我解决问题的能力和思维方式。

线性代数中的很多概念和方法都涉及到抽象和推导,这要求我通过逻辑和严谨的思维方式来分析和解决问题。

在解决线性方程组时,我们需要通过高斯消元法、矩阵的行列式和逆等方法来求解未知数。

这个过程需要我们有条理地分析问题,运用相应的方法和技巧,这培养了我解决问题的能力和思维方式。

总之,线性代数是一门非常重要和有用的数学课程。

通过学习线性代数,我不仅提高了数学水平,更重要的是培养了抽象思维能力、美感和逻辑思维、对计算机科学的理解以及解决问题的能力和思维方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数学习有感
从素未谋面到一知半解,或许将来会有相见恨晚。

总之到现在为止,经过将近一个学期的学习,我对线性代数有了一些小小的感想。

线性代数是高等院校一门重要的基础数学课程,具有较强的了逻辑性,抽象性和广泛的实用性。

这是我在上网查阅资料时看到的大家对于线性代数的定义。

不同于高等数学的是,线性代数几乎从一开始就是一个全新的概念,至少给我的感觉是这样。

虽说线性代数主要就是为了解齐次或非齐次的线性方程组,这个目的之于我并不算太陌生,可是它所运用到的东西却是我几乎从未见到过的。

我们都知道,线性代数研究的范围通常都不是我们能想象到的二维空间,而是上升到n维空间,这一点相当不可爱。

并且在线性代数的学习过程中,我们几乎每天都是跟一些新的概念,新的定理打交道,因此理解和记忆起来有相当大的困难,常常是花很久的时间还是理解不了。

我跟一些就读于其他高校的高中同学交流了一下各自学校线性代数的教学情况,很多同学都谈到了同一个问题。

不少老师在教学的时候,经常会舍弃一些重要概念、性质和定理的引入,以及相关的几何意义的解释,以至于学生接受的通常是一个个被硬生生灌输的概念,法则或定理。

平心而论,我觉得北邮线性代数的老师在这一点上做得还是不错的,至少给我授课的张鹏老师对这一点抓得比较好。

张老师对细节的要求比较高,她会时不时询问学生对知识的理解情况,经常会多次讲解,这真的是一个好现象。

不过说实话,由于课时的限制,老师不可能把所有东西都讲解得很透彻,尽管老师尽力讲解了,可每次上完课我仍会有些许疑惑。

不过乐观地看,这也未必不是件好事。

这就要求我们自己在课下去总结去思考,才能有深刻的理解,并且这样能更好地培养我们的逻辑思维能力。

俗话说得好:“学而不思则罔”。

如果我们不去进行深入的思考,那么我们所学到的线性代数的知识就只是一些零散的孤立的概念和方法,无法理解这些概念和方法的意义以及它们之间的联系,到头来只会做一些简单的计算,我们的眼光会被限制,无法上升到一个高度去看待线性代数问题,无法将所学的知识点融会贯通。

记得张老师说过,当给你一个信息的时候,尤其是一些不太明显的信息,你要能立刻理解它的内涵,也就是说能够马上联想到与它等价的一些信息。

比如说,告诉你一个矩阵是非奇异矩阵,它包含的信息有:首先明确它是一个n阶方阵,它的秩是n,它便是满秩矩阵,它所对应的n阶行列式不等于零,那么n个n维向量便线性无关,还有这个方阵是可逆方阵,并且可以想到它的转置矩阵也是可逆的······还有一点,在线性代数的学习过程中,大片大片的定理确实令人头痛,不过我觉得,其实有些定理或推论是没有必要去背的,因为它们就是另外某个定理的特殊情况,而这些特殊情况,只要我们稍微思考一下,思维稍微开放一点,完全可以自己概括,没有必要多记几个来增加自己的记忆负担。

比如说向
“当m>n时,m个n维向量一定线性无关”,量组的线性相关性的定理6的推论2:
看过定理6后你会觉得这完全就是废话嘛,如果你把这当作另一个定理来记忆的话,说句不脸红的话,我们自己都可以联想出很多这种“推论”,会让你记到疯掉。

再有就是在记忆一些定理概念的时候,不一定非得按原文记忆,我们可以按照自己的理解来记忆,适合自己的方法才是最好的方法。

在学习线性代数的过程中,联想和思考是非常重要的,不要畏惧线性代数的抽象性,理解后的喜悦是难以言表的。

通过联想和思考,把学过的知识点串起来,深化理解,我们才能把线性代数学得更好。

作为一名大一新生,到现在为止,我们的线性代数课程已经快接近尾声了,但是我相信大多数同学跟我一样只感受到了线性代数的较强的逻辑性和超强的抽象性,对于所谓的广泛的实用性,并没有太深刻的体会。

说得更加“肤浅”一点,从我们的专业相关性来说,我们并不是很清楚线性代数对我们今后的专业学习有多大的帮助,我想这是许多学生对线性代数的学习热情不高的原因之一吧。

事实也是这样,工科学生的线性代数课本跟理科学生是不一样的,最明显的区别就是我们工科课本中没有与实际应用相关的问题,都是一些计算证明题,老师在授课的过程中也没怎么提及。

不过我想这是因为对我们的要求有所不同吧,毕竟连基本概念都难以理解完全,又怎么谈得上应用呢,不管怎么说都得先把基础打好吧。

任何一门学科都有它自己的作用,通过学习它们,我们可以培养各种各样的能力,我相信只要抱着一颗热爱的心认真去学,不管结果怎么样,我们都是收获的。

相关文档
最新文档