温度检测仪表介绍

合集下载

温度检测及仪表全

温度检测及仪表全

热电效应
1821年,德国物理学家赛贝克用两种不同金属组成闭合 回路,并用酒精灯加热其中一个接触点(称为结点),发现放 在回路中的指南针发生偏转(说明什么?),如果用两盏酒精 灯对两个结点同时加热,指南针的偏转角反而减小(又说明 什么?) 。
指南针的偏转说明回路中有电动势产生并有电流在回 路中流动,电流的强弱与两个结点的温差有关。
一、热电偶
(1).热电现象及测温原理 热电偶工作原理演示
热电极A
左端称为:
测量端
A
(工作端、
热端)
B
热电势
热电极B
右端称为:
自由端
(参考端、 冷端)
结论:当两个结点温度不相同时,回路中将产生电动势。
(1).热电现象及测温原理
热电势的产生
– 不同金属具有不同的电子密度;
– 两种金属接触面因为电子的扩散作用而产 生电场;
膨胀式玻 双璃 金液 属体 : 8: 05~06~0060C0C
接触式压力式铂 蒸 液 气铑 汽 体 体
: 30 ~ 600C : 20 ~ 350C : 0 ~ 250C 铂 : 0 ~ 1600C
温度计
热 热电 电阻 偶: 镍 镍铂铬 铬:
镍硅 考铜
200 ~
: 50 ~ 1000C : 50 ~ 600C 600C、铜 : 50
三、温度测量仪表的种类
• 600ºC以上-------高温计 600ºC以下-------温度计
• 接触式、非接触式
四、温度测量的基本原理及方法
1、物体受热,体积膨胀 V--T 2、压力随温度变化 P--T 3、金属导体电阻随温度变化 R--T 4、热电效应原理 E--T 5、热辐射原理
常用温度计的种类及适用温度

仪器仪表基础知识-第二节温度检测仪表

仪器仪表基础知识-第二节温度检测仪表

仪器仪表基础知识
补偿导线法: 补偿导线的作用是将热电偶的冷端延长,使之 延长至距离热源较远的地方或温度比较稳定的地方。 A t0‘ A’ t0
t B t0‘ B’ t0
仪器仪表基础知识
例:用镍铬—镍硅热电偶测量某一实际为 1000℃的对象温度。所配用仪表在温度为 20℃的控制室里,设热电偶冷端温度为50℃。 当热电偶与仪表之间用补偿导线或普通铜导线 连接时,测得温度各为多少?又与实际温度相差 多少?
仪器仪表基础知识
温度检测仪表
仪器仪表基础知识
常见的检测仪表
温度检测仪表 压力检测仪表 流量检测仪表 物位检测仪表 机械量的测量
仪器仪表基础知识
温度的概念
温度是表示物质冷热程度的一个量,它反映 物质内部热运动的状况,任何一种物质都是由 大量的分子组成的,这些分子总是处于热运动 的状态,分子热运动越快,物质的温度越高, 相反分子的热运动越慢,物质的温度越低。
仪器仪表基础知识
总电动势
△EAB(t,t0)=△ EAB(t)+△ EB (t,t0)- △ EAB(t0) - △ EA (t,t0) 温差电动势与接触电动势相比要小的多,因此在总电动势中, 接触电动势起决定性的作用,一般会忽略温差电动势的影响, 则总电动势为: △EAB(t,t0)=△ EAB(t)- △ EAB(t0)
压力式温度计是利用感温物质的压力随温度而 变化的特性工作的。当温包内的感温物质受到温 度的作用后,密闭系统内的压力发生变化,使弹 簧管的自由端产生位移。
仪器仪表基础知识
压力式温度计组成
1.温包:温包是感受被测介质温度变化的敏感元件。
2.毛细管:毛细管是由铜或钢的无缝管冷拉而成, 其作用是传递压力
3.压力计:它是用来测量压力的变化并指示被测温 度。

仪表及自动化-3、常用仪表

仪表及自动化-3、常用仪表
热电偶结构
温度检测及仪表 温度检测常用几类
四、热电阻温度计
热电阻温度计是由热电阻(感温元件),显示仪表以及连接 导线所组成。在中、低温区,一般是使用热电阻温度计来进 行温度的测量较为适宜。
热电阻温度计示意图
温度检测及仪表 温度检测常用几类
四、热电阻温度计
测温原理 利用金属导体的电阻值随温度变化而变化的特性(电阻温度 效应)来进行温度测量的。 热电阻温度计适用于测量200~+500℃范围内液体、气体、蒸汽及固体表面的温度。
温度检测及仪表 温度检测常用几类
二、压力式温度计 压力式温度计的原理是基于密闭测温系统内蒸发液体 的饱和蒸汽压力和温度之间的变化关系,而进行温度测量的。 当温包感受到温度变化时,密闭系统内饱和蒸汽产生相应的 压力,引起弹性元件曲率的变化,使其自由端产生位移,再 由齿轮放大机构把位移变为指示值,这种温度计具有温包体 积小,反应速度快、灵敏度高、读数直观等特点。
化工仪表及自动化
常用仪表
常用现场仪表
温度检测及仪表 压力检测及仪表 流量检测及仪表 物位检测及仪表 调节阀 开关阀
温度检测及仪表
定义
温度是表示物体冷热程度的物理量,微观上讲是物体 分子热运动的剧烈程度。 温度测量仪表按测温方式可分为接触式和非接触式两 大类。通常来说接触式测温仪表比较简单、可靠,测量精度 较高;但因测温元件与被测介质需要进行充分的热交换,故 需要一定的时间才能达到热平衡,所以存在测温延迟现象, 同时受耐高温材料的限制,不能应用于很高的温度测量。 非接触式仪表测温是通过热辐射原理来测量温度的, 测温元件不需与被测介质接触,测温范围广,不受测温上限 的限制,也不会破坏被测物体的温度场,反应速度一般也比 较快;但受到物体的发射率、测量距离、烟尘和水气等外界 因素的影响,其测量误差较大。

常用温度测量仪表分类

常用温度测量仪表分类

温度测量仪表的分类温度测量仪表按测温方式可分为接触式和非接触式两大类。

通常来说接触式测温仪表比较简单、可靠,测量精度较高;但受耐高温材料的限制,不能应用于很高的温度测量。

非接触式仪表测温是通过热辐射原理来测量温度的,测温元件不需与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。

按工作原理分为膨胀式、电阻式、热电式,辐射式。

玻璃管温度计是根据液体热膨胀原理测温,双金属温度计是根据固体热膨胀原理测温,热电阻根据热阻效应原理测温,热电偶根据热电效应原理测温,辐射高温计根据热辐射原理测温。

一、热电偶热电偶是工业上最常用的温度检测元件之一。

其优点是:①测量精度高、热惯性小。

因热电偶直接与被测对象接触,不受中间介质的影响。

②测量范围广。

常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。

③构造简单,使用方便。

④输出信号为电信号,便于远传。

1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个电流,这种现象称为热电效应。

热电偶就是利用这一效应来工S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。

工业用热电偶的测温范围见下表:在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃,B偶不用补偿导线,用普通的屏蔽线。

2、热电偶的结构一般由热电极、绝缘套管、保护管、接线盒组成。

普通型热电偶按其安装时的固定形式可分为固定螺纹连接、固定法兰连接、活动法兰连接无固定装置等多种形式。

热电极:一般金属Φ0.5~3.2mm,昂贵金属Φ0.3~0.6mm,长度与被测物质有关,一般为300~2000mm,通常在350mm左右;绝缘管:隔离热电偶与被测物,一般在室温下要5MΩ左右;保护套管:避免受被测介质的化学腐蚀和机械损伤;接线盒:固定接线座,连接补偿导线。

温度检测仪表工作原理

温度检测仪表工作原理

温度检测仪表工作原理嗨,小伙伴们!今天咱们来唠唠温度检测仪表这个超有趣的东西的工作原理呀。

你看啊,温度检测仪表就像是一个小小的温度侦探呢。

最常见的一种温度检测仪表是利用热胀冷缩的原理来工作的。

比如说温度计,里面装着水银或者酒精之类的液体。

当温度升高的时候,这些液体就像是被叫醒的小懒虫,开始活跃起来,体积就膨胀啦,然后就顺着那个细细的玻璃管往上爬。

就像我们人在暖和的环境里会伸懒腰一样,它们也在伸展自己的身体呢。

温度越高,它们就爬得越高,这样我们就能从玻璃管上的刻度读出温度是多少啦。

还有一种是双金属温度计哦。

这就更有趣啦。

它里面有两种不同的金属片紧紧地贴在一起。

这两种金属就像两个性格不太一样的小伙伴,一种金属对温度变化比较敏感,另一种相对迟钝一点。

当温度发生变化的时候,敏感的那个金属就会比迟钝的那个膨胀或者收缩得更多,这样它们两个就会弯曲啦。

就好像两个小伙伴意见不合,一个想往左走,一个想往右走,然后就把身体弯向一边了。

通过这个弯曲的程度,就能知道温度是多少了呢。

再来说说热电偶温度计吧。

这可是个很神奇的东西呢。

它有两种不同的金属材料,一端连接在一起。

当这个连接点的温度和另一端的温度不一样的时候,就会产生一个小小的电压。

你可以把它想象成是两个地方的温差在这两种金属之间产生了一种特殊的“电流小情绪”。

这个电压的大小和温度差是有关系的。

我们只要测量出这个电压,就能算出温度啦。

就像是根据一个人的表情来猜他的心情一样,根据这个电压就能知道温度的情况啦。

热电阻温度计也很厉害呢。

它是利用金属或者半导体的电阻随温度变化而变化的特性。

比如说,有一种金属,温度升高的时候,它内部的原子就像是在开派对一样,变得更加活跃,电子在里面跑来跑去就没那么顺畅了,电阻就增大了。

通过测量这个电阻的变化,就能知道温度的变化啦。

就像我们看一群小动物的活动状态来判断周围的环境是不是变热或者变冷了呢。

这些温度检测仪表在我们的生活里可都是大功臣呢。

温度检测仪表的应用与作用

温度检测仪表的应用与作用

温度检测仪表的应用与作用一、温度测量的基本概念温度是表征物体冷热程度的物理量。

温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。

它规定了温度的读数起点(零点)和测量温度的基本单位。

目前国际上用得较多的温标有华氏温标、摄氏温标、热力学温标和国际实用温标。

华氏温标(oF)规定:在标准大气压下,冰的熔点为32度,水的沸点为212度,中间划分180等分,每第分为报氏1度,符号为oF。

摄氏温度(℃)规定:在标准大气压下,冰的熔点为0度,水的沸点为100度,中间划分100等分,每第分为报氏1度,符号为℃。

热力学温标又称开尔文温标,或称绝对温标,它规定分子运动停止时的温度为绝对零度,记符号为K。

国际实用温标是一个国际协议性温标,它与热力学温标相接近,而且复现精度高,使用方便。

目前国际通用的温标是1975年第15届国际权度大会通过的《1968年国际实用温标-1975年修订版》,记为:IPTS-68(Rev-75)。

但由于IPTS-68温示存在一定的不足,国际计量委员会在18届国际计量大会第七号决议授权予1989年会议通过了1990年国际温标ITS-90,ITS-90温标替代IPTS-68。

我国自1994年1月1日起全面实施ITS-90国际温标。

1990年国际温标(ITS-90)简介如下。

1.温度单位热力学温度(符号为T)是基本功手物理量,它的单位为开尔文(符号为K),定义为水三相点的热力学温度的1/273.16。

由于以前的温标定义中,使用了与273.15K(冰点)的差值来表示温度,因此现在仍保留这各方法。

根据定义,摄氏度的大小等于开尔文,温差亦可以用摄氏度或开尔文来表示。

国际温标ITS-90同时定义国际开尔文温度(符号为T90)和国际摄氏温度(符号为t90)2.国际温标ITS-90的通则ITS-90由0.65K向上到普朗克辐射定律使用单色辐射实际可测量的最高温度。

ITS-90是这样制订的,即在全量程中,任何温度的T90值非常接近于温标采纳时T的最佳估计值,与直接测量热力学温度相比,T90的测量要方便得多,而且更为精密,并具有很高的复现性。

温度检测方法及仪表

温度检测方法及仪表
测量原理 物体受热时产生膨胀 固体膨胀式温度计
液体膨胀式温度计
玻璃管温度计
双金属温度计
阳光国际生物有限公司 Sunshine Biotech International Co.,Ltd.
应用热电效应测温
测量原理
热电极
两种不同的金属A和B构成闭合回路
当两个接触端 T﹥ T0时,回路中会产生热电势
热电势由两种材料的接触电势和单一材料的温差电势决定
(3)热电偶温度计
(4)其他原理的温度计
特点
非接触测温
直观、可靠,测量仪表也比较简单
温度敏感元件不与被测对象接触,而是通过辐射能量进行热交换,由辐射能的大 小来推算被测物体的温度。 (1) 辐射式温度计 (2) 光纤式温度计:
特点
不与被测物体接触,不破坏原有的温度场。精度一般不高。
阳光国际生物有限公司 Sunshine Biotech International Co.,Ltd.
阳光国际生物有限公司 Sunshine Biotech International Co.,Ltd.
常用热电阻
铂电阻
电阻率较大,电阻-温度关系呈非线性,但测温范围广,精度高, 且材料易提纯,复现性好 工业用铂电阻分度号为Pt100和Pt10
铜电阻
电阻值与温度的关系几乎呈线性,电阻温度系数也较大,而且其材 料易提纯,价格比较便宜,但缺点是在100℃以上易被氧化 工业用铜热电阻的分度号为Cu50和Cu100
热力学温标 ---------又称开尔文温标,单位为开尔文(K)。 国际实用温标 ---------是一种符合热力学温标又使用简单的温标。 最新温标是1990年国际温标 (ITS-90)
阳光国际生物有限公司 Sunshine Biotech International Co.,Ltd.

温度类仪表培训资料

温度类仪表培训资料

02
使用
温度类仪表的选型原则
根据测量范围选择
根据实际测温需求,选择量程 合适的温度仪表。
根据精度要求选择
根据测温的精度要求,选择具 有相应精度的温度仪表。
根据安装环境选择
考虑温度、湿度、压力等环境 因素对仪表的影响,选择适合 的仪表型号。
根据可靠性要求选择
选择具有高可靠性、长寿命的 温度仪表,以确保测温的准确
在物理、化学、生物学等科学研究中,温 度是重要的实验参数之一,需要使用高精 度的温度类仪表进行测量。
医疗保健
环境监测
在医疗领域,体温是常见的生理参数之一 ,而温度类仪表则是测量体温的重要工具 。
在环保和气象领域,温度类仪表用于监测 环境温度变化,为气象预报和环境评估提 供数据支持。
温度类仪表的选型与
性和稳定性。
温度类仪表的使用方法
安装与调试
按照说明书正确安装温 度仪表,并进行必要的
调试。
操作与使用
熟悉温度仪表的操作界 面和功能,正确设置参
数和使用。
数据读取
定期读取温度仪表的测 量数据,并记录在相应
的记录表中。
异常处理
发现温度仪表异常时, 应及时处理或联系专业
人员进行检修。
温度类仪表的维护与保养
温度类仪表的技术创新
精度提高
通过改进传感器材料、优 化信号处理算法等手段, 提高温度测量的精度和稳 定性。
智能化
借助物联网、云计算等技 术,实现温度仪表的远程 监控、数据分析和故障预 警等功能。
节能环保
开发低功耗、环保型的温 度仪表,减少对环境的负 面影响。
未来温度类仪表的应用前景
工业自动化
随着工业自动化程度的提高,温 度仪表将在智能制造、流程控制

工业上常用的温度检测仪表分为两大类:非接触式测温仪表

工业上常用的温度检测仪表分为两大类:非接触式测温仪表

工业上常用的温度检测仪表分为两大类:非接触式测温仪表(如:辐射式、红外线)。

接触式测温仪表(如:膨胀式、压力式、热电偶、热电阻)。

本文将对实际工作中温度仪表出现的故障进行分析并说明处理办法,详情请看下文。

1热电阻测温计工业热电阻的常见故障是工业热电阻断路和短路。

一般断路更常见,这是因为热电阻丝较细所致。

断路和短路是很容易判断的,可用万用表的“×1Ω”档,如测得的阻值小于R0,则可能有短路的地方;若万用表指示为无穷大,则可判定电阻体已断路。

电阻体短路一般较易处理,只要不影响电阻丝长短和粗细,找到短路处进行吹干,加强绝缘即可。

电阻体断路修理必须要改变电阻丝的长短而影响电阻值,为此以更换新的电阻体为好,若采用焊接修理,焊接后要校验合格后才能使用。

热电阻测温系统在运行中常见故障及处理方法如下表:2热电偶测温计正确使用热电偶不但可以准确得到温度的数值,保证产品合格,而且还可节省热电偶的材料消耗,既节省资金又能保证产品质量。

除了补偿导线接反,用错及接线松动引起的常见误差外(处理方法:正确使用补偿导线,紧固接线端子),安装不正确,热导率和时间滞后等误差,它们是热电偶在使用中的主要误差。

2.1.安装不当引入的误差如热电偶安装的位置及插入深度不能反映炉膛的真实温度等,换句话说,热电偶不应装在太靠近门和加热的地方,插入的深度至少应为保护管直径的8~10倍;热电偶的保护套管与壁间的间隔未填绝热物质致使炉内热溢出或冷空气侵入,因此热电偶保护管和炉壁孔之间的空隙应用耐火泥或石棉绳等绝热物质堵塞以免冷热空气对流而影响测温的准确性;热电偶冷端太靠近炉体使温度超过100℃;热电偶的安装应尽可能避开强磁场和强电场,所以不应把热电偶和动力电缆线装在同一根导管内以免引入干扰造成误差;热电偶不能安装在被测介质很少流动的区域内,当用热电偶测量管内气体温度时,必须使热电偶逆着流速方向安装,而且充分与气体接触。

2.2.绝缘变差而引入的误差如热电偶绝缘了,保护管和拉线板污垢或盐渣过多致使热电偶极间与炉壁间绝缘不良,在高温下更为严重,这不仅会引起热电势的损耗而且还会引入干扰,由此引起的误差有时可达上百度。

温度测量仪表

温度测量仪表
由于电子器件的发展,便携式数字温度计已逐渐得到应用。它配有各种样式的热电偶和热电阻探头,使用比较方便灵活。便携式红外辐射温度计的发展也很迅速,装有微处理器的便携式红外辐射温度计具有存贮计算功能,能显示一个被测表面的多处温度或一个点温度的多次测量的平均温度、最高温度和最低温度等。
此外,现代还研制出多种其他类型的温度测量仪表,如用晶体管测温元件和光导纤维测温元件构成的仪表;采用热象扫描方式的热象仪,可直接显示和拍摄被测物体温度场的热象图, 可用于检查大型炉体、发动机等的表面温度分布,对于节能非常有益;另外还有利用激光,测量物体温度分布的温度测量仪器等。
目前,用于热电阻的材料主要有铂、铜、镍等,采用这些材料主要是它们在常用温度段的温度与电阻的比值是线性关系,我们这里主要介绍铂电阻温度计。
铂是一种贵金属,它的物理化学性能很稳定,尤其是耐氧化能力很强,它易于提纯,有良好的工艺性,可以制成极细的铂丝,与铜,镍等金属相比,有较高的电阻率,复现性高,是一种比较理想的热电阻材料,缺点是电阻温度系数较小,在还原介质0
R100表示100℃时的电阻值;R0表示0℃时的电阻值
根据IEC标准,采用W(100)=1.3850 初始电阻值为R0=100Ω(R0=10Ω)的铂电阻为工业用标准铂电阻,R0=10Ω的铂电阻温度计的阻丝较粗,主要应用于测量600℃以上的温度。铂电阻的电阻与温度方程为一分段方程:
Rt=R0[1+At+Bt2+C(t-100℃)t3] t表示在-200~0℃
4.温度测量仪表的测量方法
4.1热电阻温度仪表
热电阻温度计的原理是利用导体或半导体的电阻随温度变化这一特性。热电阻温度计的主要优点有:测量精度高,复现性好;有较大的测量范围,尤其是在低温方面;易于使用在自动测量中,也便于远距离测量。同样,热电阻也有缺陷,在高温(大于850℃)测量中准确性不好;易于氧化和不耐腐蚀。

温度仪表类型的判断及接线

温度仪表类型的判断及接线

温度仪表类型的判断及接线一、温度测量仪表的构成一般的温度测量仪表都有检测和显示两个部分。

在简单的温度测量仪表中,这两部分是连成一体的,如水银温度计;在较复杂的仪表中则分成两个独立的部分,中间用导线联接,如热电偶或热电阻是检测部分,而与之相配的指示和记录仪表是显示部分。

二、温度测量仪表的分类按测量方式,温度测量仪表可分为接触式和非接触式两大类。

按接触式温度测量仪表一般有热电偶、热电阻、双金属温度计等,非接触式一般有远红外测温仪等。

具体分类如下:1、热膨胀式温度计是利用液体、气体或固体热胀冷缩的性质测量温度。

分为液体膨胀式温度计和固体膨胀式温度计两大类。

(1)、玻璃管液体温度计测温仪表接触式非接触式膨胀式压力表式热电阻式: 热电偶式: Pt10、Pt100B 、S 、K 、E 、T 液体膨胀式: 固体膨胀式: 水银温度计双金属温度计光学高温计 辐射高温计 比色高温计玻璃管液位温度计1—玻璃温包;2—毛细管;3—刻度标尺组成:主要由玻璃温包、毛细管、工作液体和刻度标尺等组成。

工作液:一般采用水银和酒精作为工作液,其中水银与其它液体相比有许多优点,如不粘附玻璃、不易氧化、测量温度高、容易提纯、线性较好、准确度高。

应用:玻璃管液体温度计是应用最广泛的一种温度计,其结构简单、使用方便、准确度高、价格低廉。

按用途分类,可分为工业、标准和实验室用三种。

标准玻璃温度计是成套供应的,可以作为检定其他温度计用,准确度可达0.05 ~ 0.1摄氏度;工业用玻璃温度计为了避免使用是被碰碎,在玻璃管外通常由金属保护套管,仅露出标尺部分,供操作人员读数。

实验室用的玻璃管温度计的形式和标准的相仿,准确度也较高。

(2)双金属温度计双金属温度计1-表玻璃;2-指针;3-刻度盘;4-表壳;5-安装压帽;6-金属保护管;7-指针轴;8-双金属螺旋;9-固定端双金属片是由两种膨胀系数不同的金属薄片叠焊在一起制成的测温元件。

利用两种膨胀系数不同的金属元件的膨胀差异测量温度。

温度巡检仪说明

温度巡检仪说明

备忘:一、一、 概述概述二、二、 技术规格技术规格三、三、  仪表使用注意事项及仪表维护四、四、 仪表外形仪表外形五、五、 仪表接线仪表接线六、 仪表面板及操作说明(一)、 面板说明(二)、 操作说明七、七、  仪表参数说明(一)、 参数速查表(二)、 参数详细说明 1、 报警参数AH**、AL** 2、 线型输入标定参数dH**、dL** 3、 输入修正参数Sc**与增益修正参数Fi** 4、通讯参数Addr和bAud (兼作打印时间设置参数) 5、 巡检间隔时间参数L_ti 6、 巡检软件点数设置参数CH目 录录145669910111113141515131415 7、 回差参数dF** 8、 仪表功能定义参数ALP 9、 输入规格参数Sn 10、 小数点位置参数dP** 11、 打印间隔时间P_ti 12、 冷补修正参数CSC八、八、 仪表与TP系列打印机接口九、 常见问题解答十、十、 仪表抗干扰说明161719202122161919 XMX系列智能多点巡检仪一、概述(一)主要特点 ▲ 采用先进的ASIC芯片及技术制造,减小体积,并提高可靠性及抗干扰性能。

▲ 输入采用数字校正系统,测量精确稳定,可扩展使用任意分度号的非线性传感器,消除了温漂和时漂引起的测量误差。

▲产品有多种规格可选,标准规格有八点、十六点和三十二点三种。

▲ 按国际标准制造,具备100-240VAC宽范围输入的开关电源及WATCHDOG功能。

在强干扰环境下也能保持精确的测量及稳定的工作。

▲ 仪表接线全部采用进口高品质接线端子,接线方便、牢固。

▲ 仪表的巡检点数可任意设定。

不用的点在自动/手动巡检过程中可自动跳过。

▲ 仪表的两个公共报警输出可以任意配置成多种报警方式,上下限、上上限或下下限。

▲ 面板尺寸为160×80mm,上排显示数码管为0.8英寸高亮大数码管,还可选配液晶显示。

▲ 仪表接热电阻输入时,采用三线制接线,消除了引线带来的误差;接热电偶输入时,仪表内部自带冷端补偿部件;接电压/电流输入时,对应显示的物理量程可任意设置。

第3章第5节温度检测及仪表

第3章第5节温度检测及仪表

热电偶温度计测温系统示意图 1—热电偶;2—导线;3—测量仪表
7
热电偶示意图
(1)热电现象及测温原理
热电现象
接触电势形成的过程
左图闭合回路中总的热电势
E t, t0 e AB t e AB t0
热电偶原理
8

E t, t0 e AB t eBA t0
结构简单、不怕震动、具有 精度低、测量距离较远时 ,仪 防爆性、价格低廉、能记录、 表的滞后性较大、一般离开测 量点不超过 10米 报警与自控 测量精度高 ,便于远距离、 多点、集中测量和自动控制 结构复杂、不能测量高温 ,由 于体积大 ,测点温度较困难
0 ~500(-50 ~ 600)液体型 0 ~100(-50 ~ 200)蒸汽型 -150 ~500(-200 ~ 600)铂电阻 0 ~100(-50 ~ 150)铜电阻 -50 ~150(180)镍电阻 -100 ~200(300)热敏电阻 -20 -50 -40 -40 ~1300(1600)铂铑10-铂 ~1000(1200)镍铬-镍硅 ~800(900)镍铬-铜镍 ~300(350)铜-铜镍
17
(4)热电偶的构造及结构形式
热电极 绝缘管
保护套管
接线盒
热电偶的结构
18
2.补偿导线
采用一种专用导线,将热电偶的冷端延伸出来,这 既能保证热电偶冷端温度保持不变,又经济。 它也是由两种不同性质 的金属材料制成,在一定温 度范围内(0~100℃)与所 连接的热电偶具有相同的热 电特性,其材料又是廉价金 属。见左图。
5
双金属温度计
双金属温度信号器 双金属片 1—双金属片;2—调节螺钉; 3—绝缘子;4—信号灯
5

第三章第五节温度检测及仪表

第三章第五节温度检测及仪表

(2).插入第三种导线的问题 用热电偶测温时,需接仪表来测热电势,而仪表要远 离测温点,这就需接第三种导线C。热电偶回路中接 入连接导线C,就构成新的接点,但不影响热电偶的 总热电势。
(2).插入第三种导线的问题: 如右(a)图:新的接点为3点和4点,两点的温度相同为
t1,则总热电势E(t,t0)为: E(t,t0)=eAB(t)+eBC(t1)+eCB(t1)+eBA(t0) = eAB(t)+eBC(t1)- eBC (t1)+ eBA(t0) = eAB(t)+ eBA(t0) = eAB(t)- eAB(t0) 可见,与没有接入第三种导线时 总热电势相等。
三、热电阻温度计
原理: 利用金属导体的电阻随温度的变化而变化 的原理来测温。
特点:在300℃下的灵敏度高于热电偶,在中、低温 (-200℃~650℃)的测量中得到了广泛应用。 组成:热电阻(感温元件).显示仪表(不平衡电桥或 平衡电桥).连接导线。连接导线采用三线制接法。 1.测温原理:测温元件(金属导体)的电阻随温度的 变化而变化的特性来测温的,电阻值与温度关系:
解:查表得:E(30,0)=1801µV, 则:E(t,0)= E(t,30)+ E(30,0)= 66982+1801=68783µV 查表得: E(900,0)= 68783µV, 即实际温度为t=900 ℃。 而不是66982µV对应的温度t’再加上30℃。
E(870,0)=66473µV, E(880,0)=67245µV 66982µV对应的温度t’→ t’ =870+(66982-66473)/(67245-66473)×10=876.6℃
温度相同。同理,如果回路中串接多 种导线,只要引线两端的温度相同, 就不影响热电偶所产生的热电势值。

第5章 温度检测及仪表

第5章 温度检测及仪表

图5-6 热电偶原理示意图
1-工作端;2-热电极;3-指南针;4-参考端
两种不同材料的导体或半导体所组成的回路称为“热 电偶”,组成热电偶的导体或半导体称为“热电极”。置 于温度为T的被测介质中的接点称为测量端,又称工作端 或热端。置于参考温度为 的温度相对固定处的另一接点 T0 称为参考端,又称固定端、自由端或冷端。
3. 国际实用温标 国际实用温标又称为国际温标,是一个国际协议性温 标。它是一种即符合热力学温标又使用方便、容易实现的 温标。它选择了一些纯物质的平衡态温度(可复现)作为 基准点,规定了不同温度范围内的标准仪器,建立了标准 仪器的示值与国际温标关系的标准内插公式,应用这些公 式可以求出任何两个相邻基准点温度之间的温度值。 第一个国际实用温标自1927年开始采用,记为ITS-27 。目前国际实用温标定义为1990年的国际温标ITS-90。
热 电 阻
-200 ~600 -50 ~150 400 ~2000 700 ~3200 900 ~1700 0 ~3500 200 ~2000
测量精度高,便于远距离、多点 、集中测量和自动控制 测温时,不破坏被测温度场
不能测高温,需注意环境温 度的影响 低温段测量不准,环境条件 会影响测温准确度 易受外界干扰,标定困难
E AB (T , T0 )
e AB (T ) C (T )
(5-4)
它只与 eAB (T )有关,A、B选定后,回路总电动势就只是 温度 T 的单值函数,只要测得 eAB (T ) ,即可得到温度,这就 是热电偶测温的基本原理。
从上面的分析可知热电偶工作的两个基本条件:
(1) 如果组成热电偶的两电极材料相同,两接点温度 不同,热电偶回路不会产生热电势,即回路电动势为零。

温度仪表设备简介

温度仪表设备简介

温度仪表温度仪表采纳模块化结构方案,结构简单、操作便利、性价比高,适用于塑料、食品、包装机械等行业,也适用于需要进行多段曲线程序升/降温掌控的系统。

目录概述常见的型号种类选用安装方式安装注意事项故障维护技巧概述温度仪表是浩繁仪表中的一个分支,常见的温度仪表有温度计,温度记录仪,温度送变器等。

温度测量仪表按测温方式可分为接触式和非接触式两大类。

通常来说接触式测温仪表测温仪表比较简单、牢靠,测量精度较高;但因测温元件与被测介质需要进行充分的热交换,帮需要肯定的时间才能达到热平衡,所以存在测温的延迟现象,同时受耐高温材料的限制,不能应用于很高的温度测量。

非接触式仪表测温是通过热辐射原理来测量温度的,测温元件不需与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。

温度仪表通常分一次仪表与二次仪表,一次仪表通常为:热电偶、热电阻、双金属温度计、就地温度显示仪等二次仪表通常为温度记录仪、温度巡检仪、温度显示仪、温度调整仪、温度变送器等常见的型号1、CIR2102、Ti103、de—30034、FlukeTi205、2560系列6、WRN—220(230)7、WRQ—1308、FLUKE*9、HY9000系列10、IR—AH11、WRNK—131612、DT—8869H13、CIR31014、TRM—WD12015、TES—130416、YK—11A种类智能温控仪表智能温控仪表由单片机掌控,可输入各种热电偶、热电阻或线性信号。

具有PV、SV值变送功能。

五种输出方式只须插上相应模块即可,正反掌控任意设置;性能高、质量好,低价格,供给了四种报警方式;手动自动切换。

主控有两位式、PID两种掌控方式。

智能温控仪表出厂前进行严格的测试,提高了仪表的牢靠性。

温控仪表常见的故障一般是操作或参数设置不当引起的。

温度检测仪表

温度检测仪表
可见与没有接入第三种导线的热电势一样。这就说明在 热电偶回路中接人第二种金属导线对原热电偶所产生的 热电势数值并无影响。不过必须保证引入线两端的温度 相同。同理,如果回路中串入更多种导线,只要引入线 两端温度相同、也不影响热电偶所产生的热电势数值。
●最常用的(已标准化)几种热电偶:
①铂铑30—铂铑6热电偶(也称双铂铑热电偶) 此种热 电偶(分度号为B)以铂铑30丝为正极,铂铑6丝为负极; 其测量范围为300—16000C,短期可测18000C。其热电 特性在高温下更为稳定,适于在氧化性和中性介质中 使用。但它产生的热电势小;价格贵。在低温时热电 势极小,因此当冷端温度在400C以下范围使用时,一 般可不需要进行冷端温度修正。
按使用的测量范围分,常把测量6000C以上的测温仪 表叫高温计,把测量6000 C以下的测温仪表叫温度 计。
按工作原理分,则分为膨胀式温度计、压力式温度 计、热电偶、热电阻、辐射高温计等。
若按测量方式分,则可分为接触式与非接触式两大类。前 者测温元件直接与被测介质接触,这样可以使被测介质与 测温元件进行充分地热交换而达到测温目的;后者测温元 件与被测介质不相接触,通过辐射或对流实现热交换来达 到测温的目的。
(3)弹性式压力表是一般压力表用的弹性元 件。
3、热电偶温度计
● 热电偶的组成:
热电偶是工业上最常用的一种测温元件(感温元件)。它 是由两种不同材料的导体A和B焊接而成。如下图
A 测量端
B
焊接的—端插入被测介质中,感受到被测温 度.称为热电偶的工作端、热端或测量端,另 一端与导线连接,称为冷端或自由端。导体A、 B称为热电极。
二、温度检测仪表的分类
温度是表征物体冷热程度的物理量,是各种工业生产 和科学实验中最普遍而重要的操作参数。

温度检测类仪表知识简介

温度检测类仪表知识简介

七、辐射高温计工作原理
(一)工作原理
概念:根据物体在整个波长范围内的辐射能量与其温度之间的函数关 系设计制造的。
使用场合:它适用于冶金、机械、硅酸盐及化学工业部门中连续测 量各种熔炉、高温窖、盐浴池等场合的温度,以及用于其它不适宜装 置热电偶的地方,配合适当的显示仪表,可以指示、记录自动调节被 测温度。
换算关系:℃+32=(℉-32)/1.8
℃ =K-273.15
一、温度检测方式分类及基础知识简介
基础知识点2: 测温仪表的分类 按照测量方式的不同,温度检测仪表可分为接触式和非接触式两类 接触式仪表:感温元件与被测介质直接接触
1、玻璃式温度计
4、热电阻温度计
2、双金属温度计
5、热电偶温度计
3、压力式温度计
非接触式仪表:感温元件不与被测介质相接触
1、光学高温计
2、辐射高温计
二、热电阻工作原理
(一)测温原理
概念:利用金属导体的电阻值随温度变化而变化
优点:输出信号大,测量准确,适用于-200-500℃范围 热电阻温度计:由热电阻、电测仪表 (动圈仪表或平衡电桥)和连按导 线所组成,其中热电阻是感温元件,有导体的和半导体两种。目前应 用最广泛的是铂和铜,分度号Pt50铂电阻、分度号Pt100铂电阻和分度 号Cu50铜电阻、分度号Cu100铜电阻。 (二)常用热电阻
四、双金属温度计工作原理
(一)工作原理 双金属温度计的感温元件是由两层线膨胀系数不同的金属片叠焊在一 起制成的。 线膨胀系数大的金属片称为主动层,另一片则称为被动层,元件的一端 固定,另一端为自由端,当被测温度变化时,由于两层金属片的线膨胀系数 不同,自由端就会受组合力矩而变曲(或叫变形),其变曲率与组成双金属 片的材料的物理性能,长度为每层的厚度,温度有关,而与宽度无关.当温 度设计成后,双金属片的材料和几何尺寸确定,所以变曲率只与温度有关, 如果在自由端配备上传动机构,指针和以温度标示的刻度盘,这样就可以 直接显示出温度的示值。 (二)适用场合 双金属温度计是一种测量中低温度的现场检测 仪表。双金属温度计可以直接测量各种生产过程 中的-80℃~+500℃范围内液体、蒸汽和气体介 质温度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测温时,不破坏被测温 度场
低温段测量,不能破坏被测 温度场,响应快,测温 范围大,适于测温度分 布 结构简单,使用方便, 测量准确,价格低廉
易受外界干扰,标定困 难
接触式 测温仪 表
玻璃液体
测量上限和精度受玻璃 质量的限制,易碎,不 能记录和远传
双金属
压 力 式 液体 气体 蒸汽 热 电 偶 铂铑-铂 镍铬-镍铝 镍铬-考铜 热 电 阻 铂 铜 热敏
国际实用温标 ---------是一种符合热力学温标又使用简单的温标。 最新温标是1990年国际温标 (ITS-90)
3
温度测量仪表的分类
温度测量仪表按测温方式可分为接触式和非接触式两大类。 通常来说接触式测温仪表测温仪表比较简单、可靠,测 量精度较高;但因测温元件与被测介质需要进行充分的热 交换,帮需要一定的时间才能达到热平衡,所以存在测温 的延迟现象,同时受耐高温材料的限制,不能应用于很高 的温度测量。 非接触式仪表测温是通过热辐射原理来测量温度的,测 温元件不需与被测介质接触,测温范围广,不受测温上限 的限制,也不会破坏被测物体的温度场,反应速度一般也 比较快;但受到物体的发射率、测量距离、烟尘和水气等 外界因素的影响,其测量误差较大。
温度检测仪表
1
温度测量的基本概念
温度是表征物体冷热程度的物理量。
温度只能通过物体随温度变化的某些特性来 间接测量,而用来量度物体温度数值的标尺叫温 标。它规定了温度的读数起点(零点)和测量温 度的基本单位。
目前国际上用得较多的温标有华氏温标、摄 氏温标、热力学温标。
2
5 t ( (ttFF 32 32 )) C C 9
1,1.5,2.5 0.5-20 1,1.5,2.5 0.5-20
0.5-2.5 0.5-3
0.1-10 1-10
1-1.5 1-1.5
1-20 1-20
热电偶
0.5-1
5-20
6
热膨胀式测温
液体膨胀式温度计 固体膨胀式温度计
玻璃管温度计
双金属温度计
7
双金属温度计是利用两种不同金属在温度改变时膨 胀程度不同的原理工作的。工业用双金属温度计 主要的元件是一个用两种或多种金属片叠压在一 起组成的多层金属片。为提高测温灵敏度,通常 将金属片制成螺旋卷形状。当多层金属片的温度 改变时,各层金属膨胀或收缩量不等,使得螺旋 卷卷起或松开。由于螺旋卷的一端固定而另一端 和可以自由转动的指针相连,因此,当双金属片 感受到温度变化时,指针即可在一圆形分度标尺 上指示出温度来。这种温度计和棒状的玻璃液体 温度计的用途相似,但可使用在机械强度要求更 高的条件下。
10
热电偶测温基本原理
将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。 当导体A和B的两个连接点t和t0之间存在温差时,两者之间便产生电动势,因 而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用 这一效应来工作的。 如图所示,热电偶的一端将A、B两种导体焊在一起,置于温度为t的被测介中称 为自由端,放在温度为t0的恒定温度下。当工作端的被测介质温度发生变化 时,热电势随之发生变化,将热电势送入显示仪表进行指示或记录,或送入 微机进行处理,即可获得温度值。
4
工业上常用的温度检测仪表的分类如表所示
测温 方式 温度计种类
辐 射 式 辐射式 光学式 比色式 红 外 线 膨 胀 式 热敏探测 光电探测 热电探测
常用测温范围, ℃
400-2000 700-3200 900-1700 -50-3200 0-3500 200-2000 -50-600
优点
缺点
非接触 式测温 仪表
8
WSS系列双金属温度计是一种适合测量中、低温的现场检测仪表,可用来直接测 量气体、液体和蒸汽的温度、该温度计从设计原理及结构上具有防水、防腐 蚀、耐震动、直观、易读数、无汞害、坚固耐用等特点。可取代其它形工的 测温仪表,广泛应用于石油、化工、机械、船舶、发电、纺织、印染等工业 和科研部门。 特点: 无汞害,易读数,坚固耐震。 保护管材为1Gr18Ni9Ti不锈钢和钼二钛,承压、防腐能力强。 抽芯式温度计可不停机短时间维护或更换机芯。 轴向型、径向型、135º 型、万向型等品种齐全,适应于各种现场安装的需要。 使用和维护: 1. WSS系列双金属温度计在保管、安装、使用及运输过程中,应尽量避免碰 撞保护管,切勿使保 .护管弯曲、变形。安装时,严禁扭动仪表外壳。 2. 仪表应在-30℃~80℃的环境温度内正常工作。 3. 仪表经常工作的温度最好能在刻度范围的1/2~3/4处。
9
热电偶
热电偶是工业上最常用的温度检测元件之一。其优 点是: • 测量精度高。因热电偶直接与被测对象接触, 不受中间介质的影响。 • 测量范围广。常用的热电偶从-50-1600℃均可 边续测量,某些特殊热电偶最低可测到-269℃ (如金铁镍铬),最高可达+2800℃(如钨铼)。 • 构造简单,使用方便。热电偶通常是由两种不 同的金属丝组成,而且不受大小和开头的限制, 外有保护套管,用起来非常方便。
华氏温标(º F)规定:在标准大气压下,冰的熔点为32度,水的沸点为 212度,中间划分180等分,每一等分为华氏1度,符号为º F。 摄氏温度(℃)规定:在标准大气压下,冰的熔点为0度,水的沸点为 100度,中间划分100等分,每一等分为摄氏1度,符号为℃。 摄氏温度值t和华低温度值tF有如下关系: t=5/9(tF-32) ℃ 热力学温标又称开尔文温标,或称绝对温标,它规定分子运动停止时的 温度为绝对零度,记符号为K 绝对零度时的温度定义为0K。水的三相点,即液体、固体、气体 状态的水同时存在的温度,定义为273.16K。 水在标准大气压下结冰的温度,即摄氏温标0°C,或华氏温标 32°F,相当于热力学温标273.15K。
需冷端温度补偿,在低温 段测量精度较低
测温精度高,便于远距 离、多点、集中测量和 自动控制
不能测高温,须注意环境 温度的影响
5
温度测量仪表的精度等级和分度值
仪表名称 双金属温 度计 压力式温 度计 玻璃液体 温度计 热电阻 精度等级 分度值,℃ 仪表名称 光学高温 计 辐射温度 计(热电 堆) 部分辐射 温度计 比色温度 计 精度等级 1-1.5 1.5 分度值,℃ 5-20 5-20
-80-600
-30-600 -20-350 0-250 0-1600 0-900 0-600 -200-500 -50~150 -50~300
结构紧凑,牢固可靠
耐震,坚固,防爆,价 格低廉
精度低,量程和使用范 围有限
精度低,测温距离短, 滞后大
测温范围广,精度高, 便于远距离、多点、集 中测量和自动控制
相关文档
最新文档