运筹学基础及应用(全套课件296P) ppt课件

合集下载

运筹学基础及应用

运筹学基础及应用


2 0 5 3
能力
12 16 15
Ⅰ,Ⅱ各生产多少, 可获最大利润?
3
解:设产品Ⅰ, Ⅱ产量分别为变量x1 , x2 max Z= 2x1 +3x2 2x1+2x2 12 4x1 x1,x2 0 16 5x2 15
注意模型特点
2019/2/9 4
线性规划模型特点

决策变量:向量X=(x1… xn)T 决策人要考虑 和控制的因素,非负 约束条件:关于X的线性等式或不等式
都构成基。而 ( P 1
2019/2/9
P 3
P4 ) 不构成基。
20
(3)基向量、基变量
P P2 , P5 是对应于基 B2 的三个基向量,而 1, x1 , x2 , x5 是对应于这三个基向量的基变量。
(4)基解、基可行解、可行基
(0, 0, 12, 16 15) 是对应于基 B1 的一个基解、基可行解。 ( 4,2,0,0,5) 是对应于基 B2的一个基解、基可行解。 B1 , B2 均是可行基 。
目标函数:Z=ƒ(x1 … xn) 为关于X 的线性函数, 求Z极大或极小


2019/2/9
5
1.2 线性规划问题的数学模型
三个组成要素:
1.决策变量:是决策者为实现规划目标采取的 方案、措施,是问题中要确定的未知量。 2.目标函数:指问题要达到的目的要求,表 示为决策变量的函数。 3.约束条件:指决策变量取值时受到的各种可 用资源的限制,表示为含决策变量的等式或 不等式。
2 z 3、目标函数等值线: Z 2 x1 3x2 x2 3 x1 3
目标函数等值线有无数条,且平行。(观察规律)
4、目标函数最优值: 最大截距所对应的 Z 。

运筹学全套课件

运筹学全套课件

§4、运筹学的模型
• 运筹学在解决问题时,按研究
对象不同可构造各种不同的模 型。模型是研究者对客观现实 经过思维抽象后用文字、图表、 符号、关系式以及实体模样描 述所认识到的客观对象。
• 模型有三种基本形式:(1)形象模型, • • • • • •
( 2 )模拟模型,( 3 )符号或数学模型 。
这时有近似关系式
• [0.8(2-x1)+(1.4-x2)]/700≤2/1000由于每个工厂
工厂1(工业污水2万m3 )治污成本 1000元/ m3 500万m3 20%自然净化 200万m3
要求污水含量不大于0.2%
工厂2 (工业污水1.4万描述。设
两化工厂每天处理工业污水量 • 分别为 x1,x2 万 m3. 由于要求从第一 化工厂到第二化工厂之间,河流中 工业污水含量不大于0.2%,由此可 得近似关系式 • (2-x1)/500≤2/1000 • 流经第二化工厂后,河流中的工业 污水量不大于0.2%,
建立数学模型的方法主要有以下五种: (1)直接分析法 (2)类比法 (3)数据分析法 (4)试验分析法 (5)想定(构想)法
§5、运筹学的应用
• 运筹学在早期的应用主要在军
事领域。现已发展到广泛的领 域: • (1)市场销售 • (2)生产计划 • (3)库存管理 • (4)运输问题
• (5)财政和会计 • (6)人事管理 • ( 7 )设备维修、更新和可靠




可用其它方法)将模型求解。解可以是最优解、 次优解、满意解。复杂模型的求解需用计算机, 解的精度要求可由决策者提出。 (4)解的检验。首先检查求解步骤和程序有无 错误,然后检查解是否反映现实问题。 (5)解的控制。通过控制解的变化过程决定对 解是否要做一定的改变。 (6)解的实施。是指将解用到实际中必须考虑 到实施的问题,如向实际部门讲清解的用法, 在实施中可能产生的问题和修改。 以上过程应反复进行。

《运筹学》课件

《运筹学》课件

cj→
CB
XB
31
x1
0
x4
0
x5
-z
b
30 280 120 -930
31 22 0 0 0
ห้องสมุดไป่ตู้
x1
x2
x3
x4
x5
1 1/3 1/6 0 0
约束条件:≥,=,≤
∑aijxj ≤(=, ≥) bi (i=1,2, …n)
变量符号:≥0,unr,≤0 xj ≥0
(j=1,2, …n)
线性规划的标准形式 目标函数:max 约束条件 := 变量符号 :≥0
max z=∑cjxj ∑aijxj = bi (i=1,2, …n) xj ≥0 (j=1,2, …n)
x2
50
当z的值增加时,目
标函数与约束条件:
40
4x1+3x2 120
30
重合,Q1与Q2之间都
是最优解。
20
Q2(15,20)
可行域
10
Q1(25,0)
10
20
30
40
x1
解的讨论:
无界解:
例:max z=x1+x2 s.t. -2x1+x2 40 x1-x2 20 x1,x2 0
取目标函数最大正系数对应的非基变量为入基变量;取最小比值所对应 方程的基变量为出基变量。本例中,取 x1为入基变量, x3为出基变量。
x1+ 1/3x2 +1/6x3 26/3x2 -2/3x3 +x4 4x2 -1/2x3 +x5
= 30 =280 =120
令 非 基 变 量 x2=x3=0,z(1)=930, 相 应 的 基 可 行 解 为 x(1)=(30,0,0,280,120)T

运筹学ppt课件

运筹学ppt课件
– 无穷多个最优解。若将例1中的目标函数变为 max z=50x1+50x2,则线段BC上的所有点都代表 了最优解;
– 无界解。即可行域的范围延伸到无穷远,目标 函数值可以无穷大或无穷小。一般来说,这说 明模型有错,忽略了一些必要的约束条件;
– 无可行解。若在例1的数学模型中再增加一个约 束条件4x1+3x2≥1200,则可行域为空域,不存在 满足约束条件的解,当然也就不存在最优解了。
• 交叉学科 --涉及经济、管理、数学、工程和系统等 多学科
• 开放性 --不断产生新的问题和学科分支
• 多分支 --问题的复杂和多样性
2
运筹学的主要内容
线性规划
数 非线性规划

整数规划

动态规划

多目标规划

双层规划
最优计数问题

组 合
网络优化

优 排序问题 化 统筹图

对策论
随 排队论
机 优 化
13
组织 宝洁公司 法国国家铁路
应用
Interface 每年节支 期刊号 (美元)
重新设计北美生产和分销系统以 1-2/1997 2亿 降低成本并加快了市场进入速 度
制定最优铁路时刻表并调整铁路 1-2/1998 1500万更多
日运营量
年收入
Delta航空公司 IBM
进行上千个国内航线的飞机优化 配置来最大化利润
负。当某一个右端项系数为负时,如 bi<0,则把该 等式约束两端同时乘以-1,得到:-ai1 x1-ai2 x2… -ain xn = -bi。
30
例:将以下线性规划问题转化为标准形式
则该极小化问题与下面的极大化问题有相同的最优解,

运筹学课件PPT课件

运筹学课件PPT课件

整数规划的解法
总结词
整数规划的解法可以分为精确解法和近似解法两大类。
详细描述
整数规划的解法可以分为两大类,一类是精确解法,另一类是近似解法。精确解法包括割平面法、分支定界法等, 这些方法可以找到整数规划的精确最优解。而近似解法包括启发式算法、元启发式算法等,这些方法可以找到整 数规划的近似最优解,但不一定能保证找到最优解。
模拟退火算法采用Metropolis准则来 判断是否接受一个较差解,即如果新 解的能量比当前解的能量低,或者新 解的能量虽然较高但接受的概率足够 小,则接受新解。
模拟退火算法的应用
01
模拟退火算法在旅行商问题中得到了广泛应用。通过模拟退火算 法,可以求解旅行商问题的最优解,即在给定一组城市和每对城 市之间的距离后,求解访问每个城市恰好一次并返回出发城市的 最短路径。
动态规划的解法
确定问题的阶段和状态
首先需要确定问题的阶段和状态,以便将问 题分解为子问题。
建立状态转移方程
根据问题的特性,建立状态转移方程,描述 状态之间的转移关系。
求解子问题
求解每个子问题,并存储其解以供将来使用。
递推求解
从最后一个阶段开始,通过递推方式向前求 解每个阶段的最优解。
动态规划的应用
线性规划的解法
单纯形法
01
单纯形法是求解线性规划问题的经典方法,通过迭代过程逐步
找到最优解。
对偶理论
02
对偶理论是线性规划的一个重要概念,它通过引入对偶问题来
简化求解过程。
分解算法
03
分解算法是将大规模线性规划问题分解为若干个小问题,分别
求解后再综合得到最优解。
线性规划的应用
生产计划
线性规划可以用于生产计划问题, 通过优化资源配置和生产流程, 提高生产效率和利润。

运筹学教学课件(全)

运筹学教学课件(全)

实用举例
某公司通过市场调研,决定生产高中档新型拉杆箱。 某分销商决定买进该公司3个月内的全部产品。拉杆箱生 产需经过原材料剪裁、缝合、定型、检验和包装4过程。
通过分析生产过程,得出:生产中档拉杆箱需要用 7/10小时剪裁、5/10小时缝合、1小时定型、1/10小时检 验包装;生产高档拉杆箱则需用1小时剪裁、5/6小时缝合、 2/3小时定型、1/4小时检验包装。由于公司生产能力有限, 3月内各部的最大生产时间为剪裁部630小时、缝合部600 小时、定型部708小时、检验包装部135小时。
D {x | Ax b, x (x1,, xi ,, xn ) 0}
是凸集(凸多面体)。
引理2.1:线性规划的可行解 x (x1 ,, xn )T 为基本可行解的 充分必要条件是x的正分量所对应的系数列向量是线性无关的, 即每个正分量都是一个基变量。
定理2.2:线性规划问题的基本可行解x对应于可行域的顶点
通过分析生产过程,得出:生产中档拉杆箱需要用
7/10小时可剪裁以、通5/1过0小线时性缝合规、划1小求时定解型!、1/10小时
检验包装;生产高档拉杆箱则需用1小时剪裁、5/6小时 缝合、2/3小时定型、1/4小时检验包装。由于公司生产 能力有限,3月内各部的最大生产时间为剪裁部630小时、 缝合部600小时、定型部708小时、检验包装部135小时。
x2
L1:x1=6 L3:2x1+3x2=18
B 可行域
L2:x2=4 最优解
x1
4x1+3x2
解的特殊情况——解的特殊情况——无界解
线性规划的基本性质
若线性规划有最 优解,则最优解必在可 行域的顶点上达到。
X
可行域内部的点 • 可行解? 是 • 最优解? 不

运筹学基础及应用课件

运筹学基础及应用课件

x
a


此为无约束的极值问题
21
例2 常山机器厂生产 I、II 两型产品。这两型 产品都分别要在A、B、C三种不同设备上加工。按 工艺规定,生产每件产品的单位利润、消耗三种设 备的工时以及各种设备工时的限额如下表:
单位产品消耗设 备工时 I II 设备工时限量 (小时)
设备A 设备B 设备C 单位利润(元)
右端列向量
28
矩阵形式
其中
C (c1 , c2 ,
, cn )
称为价值行向量;
x1 x2 X xn
决策列向量
b1 b2 b bm
右端列向量
a11 a12 a21 a22 A am1 am 2
2 4 0 2
2 生产才能使总的利润最大?
22
解:设计划期内两种产品的数量分别为x1,x2,则总利润为: z=2 x1+3 x2 简记为: max s.t. (约束于:) z=2 x1+3 x2 2 x1+2 x2 12 4x1 16 5 x2 15 x10, x2 0 在满足限制条件下求z的最大值。
24
2、规划问题
即求目标函数在若干约束条件下的最值。
3、规划问题数学模型的三要素
(1)决策变量:决策者为实现规划目标采取的方案、措施, 是问题中要确定的未知量。用x1,x2,…,xn表示。 (2)目标函数:问题要达到的目标要求,表示为决策变量的 函数。用 z=f(x1,x2,…,xn)表示。 (3)约束条件:决策变量取值时受到的各种可用资源的限制, 表示为含决策变量的等式或不等式。
a1n a2 n P 1, P 2, amn

运筹学全册精品完整课件

运筹学全册精品完整课件
否则,目标函数等值线与可行域 将交于无穷远处,此时称无有限最 优解。
36
例2-2 考虑例2-1
某工厂拥有A、B、C 三种类型的设备,
生产甲、乙两种产品。每件产品在生产中 需要占用的设备机时数,每件产品可以获 得的利润以及三种设备可利用的时数如下 表所示。问题:工厂应如何安排生产可获 得最大的总利润?
一、线性规划问题的提出
在实践中,根据实际问题的要求,常常 可以建立线性规划问题数学模型。
例2-1 我们首先分析开篇案例提到的问题。 解:设变量 xi 为第 i 种(甲、乙)产品的 生产件数(i=1,2)。根据题意,我们知道 两种产品的生产受到设备能力(机时数)的 限制。对设备A:两种产品生产所占用的机时 数不能超过65,于是我们可以得到不等式:
运筹学是运用科学的方法(如 分析、试验、量化等)来决定如何 最佳地运营和设计各种系统的一门 学科。
4
运筹学概述
运筹学能够对经济管理系统中 的人力、物力、财力等资源进行统 筹安排,为决策者提供有依据的最 优方案,以实现最有效的管理。
通常以最优、最佳等作为决策 目标,避开最劣的方案。
5
运筹学的产生和发展
8பைடு நூலகம்
运筹学在管理中的应用
生产计划:生产作业的计划、日程表的
编排、合理下料、配料问题、物料管 理等。
库存管理:多种物资库存量的管理,库
存方式、库存量等。
运输问题:确定最小成本的运输线路、
物资的调拨、运输工具的调度以及建
厂地址的选择等。
9
运筹学在管理中的应用
• 人事管理:对人员的需求和使用的 预测,确定人员编制、人员合理分 配,建立人才评价体系等。
x1 ,x2 ,… ,xn ≥ 0

运筹学PPT完整版

运筹学PPT完整版

线性规划问题的数学模型
4. 建模步骤
(1) 确定决策变量:即需要我们作出决策或选择的量。一般 情况下,题目问什么就设什么为决策变量;
(2) 找出所有限定条件:即决策变量受到的所有的约束; (3) 写出目标函数:即问题所要达到的目标,并明确是max 还是 min。
线性规划问题的数学模型
5. 线性规划数学模型的一般形式
2x1 + 2x2 ≤ 12
A 2
B 1
C 4
D 0
利润 (元)

2

有效台时
2
12
2
8
0
16
4
12
3
x1 + 2x2 ≤ 8
4x1 ≤ 16 4x2 ≤ 12 x1 ≥ 0 , x2 ≥ 0
线性规划问题的数学模型
例1.4 某厂生产三种药物, 这些药物可以从四种不同的 原料中提取。下表给出了单 位原料可提取的药物量
项目 设备 A(h) 设备 B(h) 调试工序(h) 利润(元) Ⅰ 0 6 1 2 Ⅱ 5 2 1 1 每天可用能力 15 24 5
解: 1.决策变量:设产品I、II的产量
分别为 x1、x2
2.目标函数:设总利润为z,则有: max z = 2 x1 + x2 3.约束条件: 5x2 ≤ 15 6x1+ 2x2 ≤ 24 x1+ x2 ≤ 5 x1, x2≥0
9、决策分析(Decision Analysis) :主要研究定量化决策。
本课程的教材及参考书
选用教材

《运筹学教程》胡运权主编 (第3版)清华出版社 《运筹学基础及应用》胡运权主编 哈工大出版社
参考教材

运筹学PPT完整版胡运权

运筹学PPT完整版胡运权
约束方程的系数矩阵为25矩阵????????10261001115ara22阶子矩阵有10个其中基矩阵只有9个即??????????????????????????????????????1??????????????????????10011600211120101015061111005261161015987654321bbbbbbbbbpage31图解法图解法线性规划问题的求解方法一般有两种方法图解法单纯形法两个变量直角坐标三个变量立体坐标适用于任意变量但必需将一般形式变成标准形式般形式变成标准形式下面我们分析一下简单的情况只有两个决策变量的线性规划问题这时可以通过图解的方法来求解
x
v a 2x2 x a dv 0 dx
2(a 2 x) x (2) (a 2 x)2 0
x a 6
Page 14
线性规划问题的数学模型
Page 15
例1.2 某企业计划生产甲、乙两种产品。这些产品分 别要在A、B、C、D、四种不同的设备上加工。按工 艺资料规定,单件产品在不同设备上加工所需要的台 时如下表所示,企业决策者应如何安排生产计划,使 企业总的利润最大?
设备 产品
A
B
C
D 利润(元)

2
1
4
0
2

2
2
0
4
3
有效台时
12
8
16 12
线性规划问题的数学模型
Page 16
解:设x1、x2分别为甲、乙两种产品的产量,则数学模型为:
max Z = 2x1 + 3x2 2x1 + 2x2 ≤ 12
x1 + 2x2 ≤ 8
s.t.
4x1

《运筹学》全套课件(完整版)

《运筹学》全套课件(完整版)
负指数分布、几何分布、爱尔朗分布等。
服务时间分布
负指数分布、确定型分布、一般分布等。
顾客到达和服务时间的独立性
假设顾客到达和服务时间是相互独立的。
单服务台排队系统
M/M/1排队系统
顾客到达服从泊松分布,服务时间服从负指 数分布,单服务台。
M/D/1排队系统
顾客到达服从泊松分布,服务时间服从确定 型分布,单服务台。
投资组合优化
确定投资组合中各种资产的最 优配置比例,以最大化收益或
最小化风险。
03
整数规划
整数规划问题的数学模型
01
整数规划问题的定 义
整数规划是数学规划的一个分支 ,研究决策变量取整数值的规划 问题。
02
整数规划问题的数 学模型
包括目标函数、约束条件和决策 变量,其中决策变量要求取整数 值。
03
Edmonds-Karp算法
介绍Edmonds-Karp算法的原理、步骤和实现方法,以及其与FordFulkerson算法的比较。
网络最大流问题的应用
列举网络最大流问题在资源分配、任务调度等领域的应用案例。
最小费用流问题
最小费用流问题的基本概 念
介绍最小费用流问题的定义、 分类和应用背景。
Bellman-Ford算法
优点是可以求解较大规模的整数规划问题,缺点是计算量较大,需 要较高的计算精度。
割平面法
割平面法的基本思想
通过添加新的约束条件(割平面)来缩小可行域的范围,从而逼 近最优解。
割平面法的步骤
包括构造割平面、求解子问题和更新割平面三个步骤,通过不断 迭代找到最优解。
割平面法的优缺点
优点是可以处理较复杂的整数规划问题,缺点是构造割平面的难 度较大,需要较高的数学技巧。

运筹学PPT完整版

运筹学PPT完整版
优化炼油程序及产品供应、配送和营销
每年节约成本600万美元 每年节约成本7000万
优化商业用户的电话销售中心选址
控制成本库存(制定最优再定购点和定购 量确保安全库存) 制定最优铁路时刻表并调整铁路日运营量
优化员工安排,以最低成本服务客户
每年节约成本4.06亿美元,销 售额大幅增加 每年节约成本380万美元
s.t

n j1
aij
xj
bi
(i 1,2,,m)
(2)
xj 0, j 1,2,,n (3)
求解线性规划问题,就是从满足约束条件(2)、(3)的方程组 中找出一个解,使目标函数(1)达到最大值。
线性规划问题的数学模型
Page 28
可行解:满足约束条件②、③的解为可行解。所有可行解 的集合为可行域。
(5) 目标函数是最小值,为了化为求最大值,令z′=-z,得到max z′=-z,即当z达到最小值时z′达到最大值,反之亦然;
线性规划问题的数学模型
标准形式如下:
maxZ 2x1 x2 3(x3 x3)0x4 0x5
5x1 x2 (x3 x3) x4 7
1 2
1 0
0 1
r(A)=2,2阶子矩阵有10个,其中基矩阵只有9个,即
5 1
1 1 5 0 1 1
B 1 106 B 2 6 2 B 3 101 B 4 6 0
5 1 1 0
1 1 1 0
1 0
B 5 100 B 6 2 1 B 7 2 0 B 8 6 1 B 9 0 1
线性规划问题的数学模型
Page 17
2. 线性规划的数学模型由三个要素构成 决策变量 Decision variables 目标函数 Objective function 约束条件 Constraints

《运筹学基础及应用》PPT完整版

《运筹学基础及应用》PPT完整版

线性规划问题的数学模型
Page 22
(2)如何化标准形式
目标函数的转换
如果是求极小值即 minz c j x j ,则可将目标函数乘以(-1),
可化为求极大值问题。
即 maxz z c j x j
也就是:令 z z,可得到上式。
变量的变换
若存在取值无约束的变量
x
,可令
j
xj
xj
xj
其中:xj , xj 0
Page 24
例1.3 将下列线性规划问题化为标准形式
min Z 2 x1 x2 3 x3
5 x1 x2 x3 7
x1 x2 4 x3 2 3 x1 x2 2 x3 5
x1 , x2 0, x3无约束
解:(1)因为x3无符号要求 ,即x3取正值也可取负值,标准 型中要求变量非负,所以
线性规划问题的数学模型
Page 18
3. 线性规划数学模型的一般形式
目标函数: max (min) z c1 x1 c2 x2 cn xn
a11 x1 a12 x2 a1n xn ( ) b1
约束条件: am1 x1 am2 x2 amn xn ( ) bm
x1 0 xn 0
艇攻击时损失最少; 3. 在各种情况下如何调整反潜深水炸弹的爆炸深
度,才能增加对德国潜艇的杀伤力等。
Page 4
运筹学的主要内容
Page 5
数学规划(线性规划、整数规划、目标规划、动态 规划等) 图论 存储论 排队论 对策论 排序与统筹方法 决策分析
本课程的教材及参考书
Page 6
选用教材 ➢ 《运筹学基础及应用》胡运权主编 哈工大出版社
x
v a 2x2 x a dv 0 dx
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我国朴素的运筹学思想:田忌赛马、丁渭修皇宫
1938年英国最早出现了军事运筹学,命名为“Operational
Research”,1942年,美国从事这方面工作的科学家命其名为
“Operations Research”这个ppt课名件字一直延用至今。
2
§0.1 运筹学简述
美国运筹学的早期著名工作之一是研究深水炸弹起爆深度问 题。当飞机发现潜艇后,飞机何时投掷炸弹及炸弹的引爆引 度是多少?运筹学工作者对大量统计数字进行认真分析后, 提出如下决策:1.仅当潜艇浮出水面或刚下沉时,方投掷深 水炸弹。2.炸弹的起爆深度为离水面25英尺(这是当时深水 炸弹所容许的最浅起爆点)。空军采用上述决策后,所击沉 潜艇成倍增加,从而为反法西斯战争的胜利做出了贡献,为 运筹学增添了荣誉。
16 y3
4 X2 1Leabharlann y4X1 0 , X2 0
设第i种资源收购价格为yi,( i=1, 2, 3, 4,) 则有 min w= 12y1 + 8y2 + 16y3 +12 y4
s.t 2y1 + y2 + 4y3 +0 y4 2
2y1 +2y2 + 0y3 +4 y4 3 yi 0, (i=1, 2, 3, 4 )
ppt课件
6
§0.2 运筹学的发展
2. 20世纪50年代初期到50年代末期——成长时期 电子计算机技术的迅速发展促进运筹学的推广; 美国的约半数的大公司经营管理中融入运筹学;
大批的国家成立运筹学会,各种运筹学刊物相继问世 ; 1957年,牛津大学,第一次国际运筹学会议 1959年,国际运筹学会 成立
ppt课件
11
第 2 章 线性规划的对偶 理论
Duality 对偶 Dual Problem 对偶问题 Dual Linear Programming 对偶线性规划
Dual Theory 对偶理论
ppt课件
12
2.1 问题的提出
例:某企业计划生产甲、乙两种产品,该两种产 品均需要A、B、C、D 四种不同的材料,按工 艺资料规定,生产一单位甲乙产品需要各种材料 数量及单位产品利润如表中所示。问:如何安排 产品的生产计划,才能使企业获利最大?
可见,将运筹学与计算机科学及其它科学结合应用,将会产生更好的效 果。
ppt课件
4
§0.1 运筹学简述
《史记-高祖本纪》记载: 夫运筹策帷帐之中,决胜於千里之外,吾不如子房。 镇国家,抚百姓,给馈饷,不绝粮道,吾不如萧何。 连百万之军,战必胜,攻必取,吾不如韩信。 此三者,皆人杰也,吾能用之,此吾所以取天下也。
(原问题)
<========>
( 对偶问题)
ppt课件
14
2.2 原问题与对偶问题
一般表示式:(m种资源,n种产品)
原问题:
max z = c1 X1 + c2 X2 + ┈ + cn Xn
s.t
a11 X1 + a12 X2 + ┈ + a1n Xn b1
运筹学
(O.R.)
ppt课件
1
§0.1 运筹学简述
运筹学(Operations Research)是系统工程的最重要的理 论基础之一,在美国有人把运筹学称之为管理科学 (Management Science)。运筹学所研究的问题,可简单地归 结为一句话:“依照给定条件和目标,从众多方案中选择最 佳方案”,故有人称之为最优化技术。
设备
产品
A
B
C
D 单位利润
甲产品 2
1
4
0
2
乙产品 2
2
0
4
3
现有材料 数量
12
8
16 12
ppt课件
13
1.最大生产利润模型
2.资源最低售价模型
设 企业生产甲产品为X1件, 乙产品为X2件,则
max z= 2 X1 +3 X2
s.t 2 X1 +2 X2 12 y1
X1 +2 X2 8
y2
4 X1
ppt课件
7
§0.2 运筹学的发展
3. 20世纪60年代后——迅速发展和开始普及时期 运筹学进一步细分为各个分支; 更多团队,更多期刊,更多书籍,更多学校开设课程;
开始研究一些大的复杂系统,如城市交通、环境污染、国民 经济计划
ppt课件
8
§0.2 运筹学的发展
我国的运筹学发展:
1956年 第一个运筹学小组于中国科学院力学研究所成 立
1957年,我国将O.R.正式译为“运筹学”
ppt课件
5
§0.2 运筹学的发展
战后运筹学的活动扩展到工业和政府部门,发展大致可分为 三个阶段:
1. 1945年到50年代初——创建时期 人数少,范围小,出版物学会寥寥无几。
1948年,英国 “运筹学俱乐部”,美国麻省理工 介 绍该课程;1950年,英国伯明翰大学正式开设课程,第一本 《运筹学季刊》在英国创刊; 1952年美国喀斯工业大学设 运筹学硕士和博士学位; 美国运筹学会成立
1958年 成立运筹学研究室
1960年 山东济南召开全国应用运筹学经验交流会
1962年和1978年 先后在北京和成都召开全国运筹学专业学 术会议
1980年4月 中国运筹学会 正式成立
ppt课件
9
§0.3 运筹学的主要内容
规划理论 线性规划 运输问题 动态规划
图与网络理论 排队论 存储论 决策论 对策论
非线性规划 整数规划 目标规划
ppt课件
10
§0.4 运筹学方法解决问题的思路
☆ 提出问题:从实际问题中提出需运作、决策的 问题。
☆ 建立模型:抽象归纳形成表达式。 ☆ 求解:运用运筹学方法求出问题的解。
☆ 结果分析与调整:分析解是否合理,如果需要,修 改模型后在求解。
☆ 实施:按获取的方案组织实施。
ppt课件
3
§0.1 运筹学简述
运筹学是研究从众多方案(甚至无限多个方案)中选佳的优化技术,那 么在当代计算机技术迅速发展的今天,这种优化技术是否会丧失其重要 性?事实正相反,新型计算机的出现,恰为运筹学的应用开辟了新天地。
假设有70艘油轮向70个港口运货,已知每艘油轮驶向每个港口的费用, 油轮公司需制订出最优运输方案。采用全枚举法(穷举法)需计算方案 数为70!(大于10100 );IBM公司当时生产的大计算机1秒种大约可算出 109(即10亿)个方案。若要逐个算出全部方案,则需调用占有空间为 1050个地球一样大的IBM公司生产的众多大计算机同时计算几百亿年以上。 而在这种大机器上用线性规划的单纯形法计算只需几秒钟(这是整数规 划问题)。
相关文档
最新文档