二次函数与幂函数_PPT课件
二次函数幂函数课件.ppt
基础诊断
考点突破
课堂总结
4.函数 y=x 的图像是
()
解析 显然 f(-x)=-f(x),说明函数是奇函数,同时由当 0<x <1 时,x >x;当 x>1 时,x <x,知只有 B 选项符合. 答案 B
基础诊断
考点突破
课堂总结
5.已知幂函数 y=f(x)的图像过点2, 22,则此函数的解析式为 ________;在区间________上递减.
a-2,a<1, 综上所述,f(x)min=-1a,a≥1.
基础诊断
考点突破
课堂总结
规律方法 (1)二次函数在闭区间上的最值主要有三种类型:轴 定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的 关键是考查对称轴与区间的关系,当含有参数时,要依据对称 轴与区间的关系进行分类讨论.(2)二次函数的单调性问题则主 要依据二次函数图像的对称轴进行分析讨论求解.
基础诊断
考点突破
课堂总结
规律方法 (1)识别二次函数的图像主要从开口方向、对称轴、 特殊点对应的函数值这几个方面入手.(2)而用数形结合法解决 与二次函数图像有关的问题时,要尽量规范作图,尤其是图像 的开口方向、顶点、对称轴及与两坐标的交点要标清楚,这样 在解题时才不易出错.
基础诊断
考点突破
课堂总结
在 x∈-2ba,+∞上 单调递减
对称性
函数的图象关于 x=-2ba对称
基础诊断
考点突破
课堂总结
2. 幂函数 (1)幂函数的定义 如果一个函数,底数是自变量x,指数是常量α,即y=xα,这 样的函数称为幂函数. (2)常见的5种幂函数的图像
基础诊断
考点突破
课堂总结
(3)常见的5种幂函数的性质
二次函数与幂函数一轮复习课件(共21张PPT)
点拨:解决二次函数最值问题的关键是抓住“三点一轴”,其中“三点”
是指区间的两个端点和抛物线的顶点,“一轴”指的是对称轴,结合配方法,
根据函数的单调性及分类讨论思想即可解题.
点拨
【追踪训练 2】已知函数 f(x)=-x2+2ax+1-a 在[0,1]上的最大值为 2,求
实数 a 的值.
【解析】函数 f(x)=-(x-a)2+a2-a+1 的图象的对称轴为直线 x=a,且函数图象开
有助于把握数学问题的本质,发现解题思路,并且能避开复杂的推理与计算,大大简化解题过程.解决
二次函数问题时,注重“形”与“数”的有机结合.
【突破训练 2】已知函数 f(x)=x2-2x+4 在区间[0,m](m>0)上的最大值为 4,最小
值为 3,则实数 m 的取值范围是 [1,2] .
【解析】作出函数 f(x)的图象,如图所示,从图
3-2
【解析】(1)函数 f(x)图象的对称轴为直线 x=
1
3-2
2
2
∵0<m≤ ,∴
2
.
≥1,
∴g(m)=max{|f(-1)|,|f(1)|}=max{|3m-2|,|4-m|}=max{2-3m,4-m}.
又∵(4-m)-(2-3m)=2+2m>0,∴g(m)=4-m.
解析
3-2
(2)函数 f(x)图象的对称轴为直线 x=
1
3
, 3 ,则 f
1
2
=
.
【解析】(1)设幂函数的解析式为 f(x)=xα,∵该函数的图象经过点
1
,
3
1
2
3 ,∴3-α= 3,解得 α=- ,
第5讲二次函数与幂函数PPT课件
或1a≥4, f4=16a-8+2≥0,
∴aa≥≥10, 或14a<>a12<1,
或aa≤≥1438,.
∴a≥1 或12<a<1 或∅,即 a>12;
(2)当 a<0 时, f1=a-2+2≥0, f4=16a-8+2≥0, 解得 a∈∅; (3)当 a=0 时, f(x)=-2x+2,f(1)=0,f(4)=-6, ∴不合题意.
,
增
[0,+∞)增
(0,0),(1,1)
[0,+∞) 非奇非偶
增
y=x-1
{x|x∈R且 x≠0}
{y|y∈R 且y≠0}
奇 (-∞,0)减
, (0,+∞)减
(1,1)
2.二次函数 (1)二次函数的定义 形如 f(x)=ax2+bx+c(a≠0) 的函数叫做二次函数. (2)二次函数的三种常见解析式 ①一般式:f(x)=ax2+bx+c(a≠0); ②顶点式:f(x)=a(x-m)2+n(a≠0); ③两根式:f(x)=a(x-x1)(x-x2)(a≠0).
答案 f(x)= x
5.二次函数y=f(x)满足f(3+x)=f(3-x)(x∈R)且f(x)=0有两个实根x1, x2,则x1+x2=________.
解析 由 f(3+x)=f(3-x),知函数 y=f(x)的图象关于直线 x=3 对称,
应有x1+2 x2=3⇒x1+x2=6.
答案 6
考点一 幂函数的图象与性质
【训练3】 函数f(x)=-x2+4x-1在区间[t,t+1](t∈R)上的最大值为g(t).
(1)求g(t)的解析式; 请先暂停,完成题目后继续观看!
(2)求g(t)的最大值. 解 (1)f(x)=-x2+4x-1=-(x-2)2+3.对称轴x=2. ①当t+1<2,即t<1时,函数f(x)在区间[t,t+1]上为增函数,
专题10二次函数与幂函数ppt课件
D.5a<5-a<0.5a
解析 5-a=15a,因为 a<0 时,函数 y=xa 在(0,+∞)上单调递减,且15<0.5<5, 所以 5a<0.5a<5-a.
第1轮 ·数学
返回导航
第三章 为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能
第1轮 ·数学
返回导航
第三章 为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能
函数、导数及其应用
3.(2019·山东威海模拟)若a<0,则0.5a,5a,5-a的大小关系是( B )
A.5-a<5a<0.5a
B.5a<0.5a<5-a
C.0.5a<5-a<5a
在 x∈-2ba,+∞上单调递增
在 x∈-2ba,+∞上单调递减
函数的图象关于 x=-2ba对称
第1轮 ·数学
返回导航
第三章 为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能
函数、导数及其应用
1.幂函数的图象和性质
(1)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是
第1轮 ·数学
返回导航
第三章 为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能
函数、导数及其应用
考向 1:二次函数的图象
已知函数 f(x)=ax2-x-c,且 f(x)>0 的解集为(-2,1),则函数 y=f(-x) 的图象为( D )
幂函数_PPT
Δ=k2-8m>0, ∵f(0)=2,故需满足0<2km<1,
m>0, f1>0
k2>8m m>0, ⇒0m<-k<k2+m2,>0,
将 k 看做函数值,m 看做自变量,画出可行域如图阴影部分所示,
因为 m,k 均为整数,结合可行域可知 k=7,m=6 时,m+k 最小,最
小值为 13.
答案:D
幂函数
幂函数与性质
+ 二、二次函数的表示形式 + 1.一般式:y= ax2+bx+c(a≠0) . + 2.顶点式:y= a(x-h)2+k(a≠0) ,其中 (h,k) 为抛物线的顶
点坐标. + 3.零点式:y= a(x-x1)(x-x2)(a≠0) ,其中x1、x2是抛物线与x轴交
[答案] -21
+ 2.(2013年济南质检)如图是一个二次函数y=f(x)的图象. + (1)写出这个二次函数的零点; + (2)写出这个二次函数的解析式及x∈[-2,1]时函数的值域.
+ 解析:(1)由图可知这个二次函数的零点为x1=-3,x2=1. + (2)可设两点式f(x)=a(x+3)(x-1),又图象过(-1,4)点,代入得a=
+ (2)f(x)>x+k在区间[-3,-1]上恒成立,转化为x2+x+1>k在[-3, -1]上恒成立.设g(x)=x2+x+1,x∈[-3,-1],则g(x)在[-3, -1]上递减.∴g(x)min=g(-1)=1.
+ ∴k<1,即k的取值范围为(-∞,1).
+ 在本例(1)的条件下,若存在x∈[-3,-1]使f(x)>x+k在[-3,-1] 上成立,试求k的取值范围.
高考数学《二次函数与幂函数》公开课优秀课件(经典、完美、值得收藏)
0, ,0 0,
0,
非奇非 偶函数
增函数
,0 0,
奇函数
在 , 0和
0, 上递减
定点
0, 0 , 1,1
1,1
2.二次函数
(1)二次函数的解析式
ax2 bx c
h, k
(2)二次函数的图象与性质
函数
y ax2 bx c (a 0)
图象
y ax2 bx c (a 0)
例1(2)已知
2,1,
1 2
,
1 2
,1,2,3.
若幂函数
f (x) x为奇函数,
且在 (0,) 上递减,则 =____1____.
解:(2)由题意知 α 可取-1,1,3. 又 y=xα 在(0,+∞)上是减函数,
∴α<0,取 α=-1.
考点二 二次函数的解析式
例2 已知二次函数 f (x)满足 f (2) 1, f (1) 1 ,且 f (x) 的最大值是8, 试确定该二次函数的解析式.
分析: f (x) x2 2ax 1 a
当 a≥1 时 ymax a
当0 a 1时 ymax a2 a 1
当a ≤0 时 ymax 1 a
根据已知条件得
a≥1 a 2
或
0 a 1 a2 a 1 2
或
a≤0 1 a 2
解之得 a 2 或 a 1
五、总结提升
1.与二次函数单调性有关的问题. 2.求二次函数最值的类型及解法. 3.不等式恒成立问题的解法.
考点二 二次函数的解析式
例2 已知二次函数 f (x)满足 f (2) 1, f (1) 1 ,且 f (x) 的最大值是8, 试确定该二次函数的解析式.
高中数学必修1课件 第二章基本初等函数之二次函数和幂函数
2.二次函数y=f(x)与y=g(x)的图像开口大 小相同, 开口方向也相同,已知函数g(x)=x2+1, f(x)图像 的顶点为(3,2),则f(x)的表达式为Y=(x-3) 2+2
发展性训练 1.由y=3(x+2)2+4的图像经过怎样的平移 变换, 可以得到y=3x2的图像. 右移2单位,下移4单位 2.把函数y=x2-2x的图像向右平移2个单 位, 再向下平移3个单位所得图像对应的函 数 2 -2(x-2)-3=x 2 -6x+5= (x-3) 2 -4 Y=(x-2) 解析式为
2、(2002河南两广高考)已知 a>0,f(x)=ax-bx2. (1)b>0时,若对任意x ∈ R都有 f(x)≤ 1,证明a≤ 2 . b (2)b>1时,证明 对任意 x ∈[ 0,1 ], │ f(x) │≤1的充要条件是 b-1 ≤ a ≤ 2 b
(3)0<b ≤ 1时, 求 对任意 x∈[ 0, 1 ], │ f(x) │≤ 1的充要条件。
求下列函数的定义域和值域:
x 3 x 4 (1) y= 2 x 3 x 4
2
(2) y= 1 2x x (3) y= 1 x x 3
作函数的图象的常用方法
1. 描点作图法; 2. 变换作图法.
基础练习
画出下列函数的图象, 并 说明它们的关系:
(1) (2)
(3)
变换作图法
平移变换
对称变换
作 业
画出下列函数的图象:
(1) (2) y=x2+2 x +1 y= x 2 x
2
② y=-x2-2x+3, x∈[-5, 0] ③ y= x 1 x
二次函数与幂函数
4 已知函数 f( x) =ax2+x+5 的图象在 x 轴上方, 则 a 的取值范围 是
.
������ -������������
5 幂函数 y=������������
( m∈Z) 的图象如图所示, 则 m 的值为
.
4【 . 解析】 因为 f(x)=ax2+x+5 的图象在 x 轴上方, 所以 Δ=1-20a<0 且 a>0, 解得 a>������������. 【答案】
������ , ������������ ������
+∞
������ -������������
5.【解析】∵y=������������ 即 0<m<4.
(m∈Z)的图象与坐标轴没有交点, ∴m2-4m<0,
又∵该函数的图象关于 y 轴对称, 且 m∈Z, ∴m2-4m 为偶数, ∴m=2. 【答案】2
1 2
2 3
,b=
1 5
2 3
,c=
1 2
1 3
,则 a,b,c 的大小关系
) B. c<a<b D. b<a<c
(2)因为 y=������ (x>0)是增函数,所以 a= a=
1 2 1 2
2 3 2 3
2 3
> <
1 5 1 2
2 3 1 3
=b.因图像
{x|x≥0} {y|y≥0}
{x|x≠0} {y|y≠0} 奇
函数 在 (-∞,0) 和 (0,+∞) 上 单调递减
奇
函数 在R上
{y|y≥0} 偶
函数 在 (-∞,0) 上 单调递减,
高考数学学业水平测试复习专题三第11讲二次函数与幂函数pptx课件
1.求二次函数的解析式 (1)二次函数的图象过点(0,1),对称轴为x=2,最小值为
-1,则它的解析式是________________. (2)若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它 的值域为(-∞,4],则该函数的解析式f(x)=________.
解析:(1)依题意可设 f(x)=a(x-2)2-1,又其图象过点(0,1),所 以 4a-1=1,所以 a=12. 所以 f(x)=12(x-2)2-1.
解:(1)设 f(x)=ax2+bx+c(a≠0), 则ff( (-3)1) == 9aa+-3bb+ +cc= =33, ,
f(1)=a+b+c=-1, 解得 a=1,b=-2,c=0. 所以 f(x)=x2-2x.
(2)根据题意: a-1≤1≤a+1, (a+1)-1≥1-(a-1), 解得 1≤a≤2, 所以 a 的取值范围为[1,2].
1.幂函数f(x)=xa2-10a+23(a∈Z)为偶函数,且f(x)在区间(0,
+∞)上是减函数,则a等于( )
A.3
B.4
C.5
D.6
C 因为a2-10a+23=(a-5)2-2,
f(x)=x(a-5)2-2(a∈Z)为偶函数,且在区间(0,+∞)上是减
函数,
所以(a-5)2-2<0,从而a=4,5,6,
因为 0<x<1,
当 x=12时,函数取得最大值34.
故选 C.
5 . 已 知 函 数 y = 2x2 - 6x + 3 , x∈( - 1 , 1) , 则 y 的 最 小 值 是 ______.
解析:函数 y=2x2-6x+3 的图象的对称轴为 x=32>1,所以函数 y=2x2-6x+3 在(-1,1)上单调递减,所以 ymin=2-6+3=-1.
二次函数与幂函数PPT教学课件
3.与坐标轴的交点 (1)与y轴的交点是(0,c). (2)当Δ>0时,与x轴两交点的横坐标x1、x2分别是方程ax2+ bx+c=0的两根. 当Δ=0时,与x轴切于一点 当Δ<0时,与x轴不相交 .
4.幂函数 (1)一般地,形如 y=xα 的函数叫做幂函数,其中x是自变量, α是常数. (2)在同一平面直角坐标系中,幂函数y=x,y=x2,y=x3,y =x ,y=x-1的图象如下图所示
1.已知f(x)=(m2+2m)x (1)正比例函数; (2)反比例函数; (3)幂函数.
,m为何值时,f(x)是
【解析】 (1)若f(x)为正比例函数,则 解得m=1,所以当m=1时,f(x)为正比例函数.
(2)若f(x)为反比例函数,则 解得m=-1,所以当m=-1时,f(x)为反比例函数. (3)若f(x)为幂函数,则m2+2m=1 ∴m=-1± ,所以当m=-1± 时,f(x)为幂函数.
A.f(1)≥25 B.f(1)=25 C.f(1)≤25 D.f(1)>25 【解析】 由题意知对称轴x= ≤-2,∴m≤-16. f(1)=9-m≥25. 【答案】 A
3.若函数f(x)=ax2+bx+c满足f(4)=f(1),那么( ) A.f(2)>f(3) B.f(3)>f(2) C.f(3)=f(2) D.f(3)与f(2)的大小关系不能确定 【解析】 由f(4)=f(1),所以此函数的对称轴为x=. ∴f(2)=f(3).故选C. 【答案】 C
第四节 二次函数与幂函数
1.了解幂函数的概念,结合函数y= 考纲点 x,y=x2,y=x3,y= ,y=x
击 的图象,了解它们的变化情况. 2.理解二次函数的图象和性质 1.以5种幂函数为载体考查幂函数的
高三数学精品课件:二次函数与幂函数
因为函数 y=(m2-m -1)x-5m-3 既是幂函 数又是(0,+∞)上的 减函数,所以 m2-m-1=1, -5m-3<0, 解得 m=2.
[主干知识·自主梳理] [考点分类·深度剖析] [创新考点·素养形成] 课时作业 首页 上页 下页 尾页
考点一 幂函数的图象与性质 (基础考点——自主探究)
A.d>c>b>a C.d>c>a>b
B.a>b>c>d D.a>b>d>c
[主干知识·自主梳理] [考点分类·深度剖析] [创新考点·素养形成] 课时作业 首页 上页 下页 尾页
考点一 幂函数的图象与性质 (基础考点——自主探究)
自主演练
3.当 x∈(0,+∞)时,幂函数 y =(m2-m-1)x-5m-3 为减函数,则 实数 m 的值为( A ) A.m=2 B.m=-1 C.m=-1 或 m=2 D.m≠1±2 5
考点二 二次函数的图象与性质 (核心考点——合作探究)
已知函数 f(x)=x2+2ax+3,x∈[-4,6]. (1)当 a=-2 时,求 f(x)的最值; (2)求实数 a 的取值范围,使 y=f(x)在区间[-4,6]上是单调函数; (3)当 a=-1 时,求 f(|x|)的单调区间.
[主干知识·自主梳理] [考点分类·深度剖析] [创新考点·素养形成] 课时作业 首页 上页 下页 尾页
重温教材 自查自纠
1∵.幂若函幂数函数y=yf=(x)f的(x)图的象图过象点过(点5,(515,),15),则 f(
)为( C )
A∴.13可设 f(x)=xα,
B.12
C∴.325α=15,解得 α=-1D,.-∴1f(x)=x-1.
幂函数与二次函数 PPT
2,则有:
y1 y2
1 2a
log 1 2
2
3 a2 0,
43解a 2得 0,
4
2 3
a
2,
a
23 3
,
即 2 <3 a≤2,所以实数a的取值范围是(
3
答案:( 2 ,3 2]
3
,2 23 ].
3
2.(2014·成都模拟)函数f(x)=loga(6-ax)在[0,2]上为减函数, 则a的取值范围是( )
A.(0,1)
B.(1,3)
C.(1,3]
D.[3,+∞)
【解析】选B.当0≤x≤2时,函数t=g(x)=6-ax单调递减,所以要
使函数f(x)为减函数,所以函数y=logat为增函数,所以有a>1且 g(2)=6-2a>0,即1<a<3,所以a的取值范围是(1,3).
3.(2014·中山模拟)已知函数f(x)=loga(8-ax)(a>0,a≠1),若
记g(x)=f(x)+x+b=x2+(2b+1)x+b+c
=x2+(2b+1)x-b-1,
g3 5 7b>0,
则
g2 1 5b<0, g0 1 b<0,
1<b<5 57
,
g1 b 1>0
即b的取值范围为 ( 1 , 5 ) .
57
【通关锦囊】
【加固训练】
1.(2014·广州模拟)已知函数f(x)=x2-2ax+5在(-∞,2]上是减
幂函数与二次函数
(2)根据题意,作出函数y=f(x)+ 3 a 2
4
的图象,
第4讲 幂函数与二次函数
第4讲 幂函数与二次函数基础知识整合1.幂函数(1)定义:形如□01y =x α的函数称为幂函数,其中底数x 是自变量,α为常数.常见的五类幂函数为y =x ,y =x 2,y =x3,y =x 12,y =x -1.(2)常见的5种幂函数的图象(3)性质①幂函数在(0,+∞)上都有定义.②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增. ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 2.二次函数的图象和性质 解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 (-∞,+∞)(-∞,+∞)值域□02⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ □03⎝ ⎛⎦⎥⎤-∞,4ac -b 24a 单调性在x ∈⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递减;在x ∈□05⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递增;在x ∈□04⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递增 在x ∈⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递减对称性函数的图象关于x =-b2a 对称1.幂函数图象特征(1)在(0,1)上,幂函数中指数越大,函数图象越接近x 轴(简记为“指大图低”); (2)在(1,+∞)上,幂函数中指数越大,函数图象越远离x 轴. 2.二次函数解析式的三种形式 (1)一般式:f (x )=ax 2+bx +c (a ≠0). (2)顶点式:f (x )=a (x -m )2+n (a ≠0). (3)两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 3.一元二次不等式恒成立的条件(1)“ax 2+bx +c >0(a ≠0)恒成立”的充要条件是“a >0且Δ<0”. (2)“ax 2+bx +c <0(a ≠0)恒成立”的充要条件是“a <0且Δ<0”. 4.二次函数的对称轴二次函数y =f (x )对定义域内的所有x ,都有f (a +x )=f (a -x )成立的充要条件是函数y =f (x )的图象关于直线x =a 对称(a 为常数).5.设f (x )=ax 2+bx +c (a >0),则二次函数在闭区间[m ,n ]上的最大、最小值的分布情况(1)若-b 2a ∈[m ,n ],则f (x )max =max{f (m ),f (n )},f (x )min =f ⎝ ⎛⎭⎪⎫-b 2a .(2)若-b2a ∉[m ,n ],则f (x )max =max{f (m ),f (n )},f (x )min =min{f (m ),f (n )}. 另外,当二次函数开口向上时,自变量的取值离对称轴越远,则对应的函数值越大;反过来,当二次函数开口向下时,自变量的取值离对称轴越远,则对应的函数值越小.1.已知幂函数f (x )的图象经过点⎝ ⎛⎭⎪⎫2,22,则f (x )为( )A .偶函数B .奇函数C .定义域内的增函数D .定义域内的减函数答案 D解析 设幂函数f (x )=x α,∵其图象过点⎝⎛⎭⎪⎫2,22,∴2α=22=2-12 ,解得α=-12,∴f (x )=x -12,∴f (x )在(0,+∞)上为减函数.故选D .2.若函数y =x 2-2tx +3在[1,+∞)上为增函数,则t 的取值范围是( ) A .t ≤1 B .t ≥1 C .t ≤-1 D .t ≥-1答案 A解析 ∵函数y =x 2-2tx +3的图象关于直线x =t 对称,且开口向上,∴t ≤1. 3.(2019·河南安阳模拟)已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为( )A .1B .0C .-1D .2答案 A解析 ∵f (x )=-x 2+4x +a =-(x -2)2+a +4,∴函数f (x )=-x 2+4x +a 在[0,1]上单调递增,∴当x =0时,f (x )取得最小值,当x =1时,f (x )取得最大值,∴f (0)=a =-2,f (1)=3+a =3-2=1,故选A .4.函数g (x )=x 2-2x (x ∈[0,3])的值域是________. 答案 [-1,3]解析 ∵g (x )=(x -1)2-1,∴g (x )min =g (1)=-1,g (x )max =g (3)=3.∴所求值域为[-1,3].5.已知α∈⎩⎨⎧⎭⎬⎫-2,-1,-12,12,1,2,3.若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α=________.答案 -1解析 ∵幂函数f (x )=x α为奇函数,∴α可取-1,1,3,又f (x )=x α在(0,+∞)上递减,∴α<0,故α=-1.6.若关于x 的不等式x 2-4x ≥m 对任意x ∈(0,1]恒成立,则m 的取值范围为________.答案 (-∞,-3]解析 只需要在x ∈(0,1]时,(x 2-4x )min ≥m 即可.因为函数f (x )=x 2-4x 在(0,1]上为减函数,所以当x =1时,(x 2-4x )min =1-4=-3,所以m ≤-3.核心考向突破考向一 幂函数的图象与性质例1 (1)(2019·九江模拟)幂函数f (x )=(m 2-4m +4)x m 2-6m +8在(0,+∞)上为增函数,则m 的值为( )A .1或3B .1C .3D .2答案 B解析 由题意知⎩⎨⎧m 2-4m +4=1,m 2-6m +8>0,解得m =1.故选B .(2)若四个幂函数y =x a ,y =x b ,y =x c ,y =x d ,在同一平面直角坐标系中的图象如图所示,则a ,b ,c ,d 的大小关系是( )A .d >c >b >aB .a >b >c >dC .d >c >a >bD.a>b>d>c答案 B解析由幂函数的图象可知在(0,1)上幂函数的指数越大,函数图象越接近x 轴,由题图知a>b>c>d,故选B.幂函数的图象特征(1)对于幂函数图象的掌握只要抓住在第一象限内三条线分第一象限为六个区域,即x=1,y=1,y=x分的区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.(2)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.[即时训练]1.已知幂函数f(x)=(n2+2n-2)x n2-3n(n∈Z)的图象关于y轴对称,且在(0,+∞)上是减函数,则n的值为()A.-3 B.1C.2 D.1或2答案 B解析由于f(x)为幂函数,所以n2+2n-2=1,解得n=1或n=-3,经检验只有n=1符合题意.故选B.2.(2019·昆明模拟)设a=20.3,b=30.2,c=70.1,则a,b,c的大小关系为() A.a<c<b B.c<a<bC.a<b<c D.c<b<a答案 B解析由已知得a=80.1,b=90.1,c=70.1,构造幂函数y=x0.1,x∈(0,+∞),根据幂函数的单调性,知c<a<b.考向二求二次函数的解析式例2 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.解 解法一:(利用一般式) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎨⎧4a +2b +c =-1,a -b +c =-1,4ac -b24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数的解析式为f (x )=-4x 2+4x +7. 解法二:(利用顶点式) 设f (x )=a (x -m )2+n (a ≠0). ∵f (2)=f (-1), ∴抛物线的对称轴为x =2+(-1)2=12. ∴m =12.又根据题意函数有最大值8,∴n =8. ∴y =f (x )=a ⎝ ⎛⎭⎪⎫x -122+8.∵f (2)=-1,∴a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,∴f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.解法三:(利用两根式)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1.又函数有最大值f (x )max =8,即4a (-2a -1)-a 24a =8.解得a =-4或a =0(舍去).∴所求函数的解析式为f (x )=-4x 2+4x +7.确定二次函数解析式的方法根据已知条件确定二次函数解析式,一般用待定系数法,选择规律如下:[即时训练] 3.已知二次函数f(x)满足f(1+x)=f(1-x),且f(0)=0,f(1)=1,求f(x)的解析式.解解法一:(一般式)设f(x)=ax2+bx+c(a≠0),则⎩⎪⎨⎪⎧c=0,a+b+c=1,-b2a=1⇒⎩⎪⎨⎪⎧a=-1,b=2,c=0,∴f(x)=-x2+2x.解法二:(两根式)∵f(x)图象的对称轴方程为x=1,∴f(2)=f(0)=0,f(x)=0的两根分别为0,2.∴可设其解析式为f(x)=ax(x-2).又f(1)=1,可得a=-1,∴f(x)=-x(x-2)=-x2+2x.解法三:(顶点式)由已知,可得顶点为(1,1),∴可设其解析式为f(x)=a(x-1)2+1.又由f(0)=0,可得a=-1,∴f(x)=-(x-1)2+1=-x2+2x.精准设计考向,多角度探究突破考向三二次函数的图象与性质角度1 二次函数的单调性例3 (1)函数f (x )=ax 2-2x +3在区间[1,3]上为增函数的充要条件是( ) A .a =0 B .a <0 C .0<a ≤13 D .a ≥1答案 D解析 当a =0时,f (x )为减函数,不符合题意;当a ≠0时,函数f (x )=ax 2-2x +3图象的对称轴方程为x =1a ,要使f (x )在区间[1,3]上为增函数,则⎩⎪⎨⎪⎧a <0,1a ≥3或⎩⎪⎨⎪⎧a >0,1a≤1,解得a ≥1.故选D .(2)已知函数f (x )=-2x 2+bx ,若对任意的实数t 都有f (4+t )=f (4-t ),则f (-2),f (4),f (5)的大小关系为( )A .f (5)>f (-2)>f (4)B .f (4)>f (5)>f (-2)C .f (4)>f (-2)>f (5)D .f (-2)>f (4)>f (5)答案 B解析 因为对任意的实数t 都有f (4+t )=f (4-t ),所以函数f (x )=-2x 2+bx 的图象关于直线x =4对称,所以f (-2)=f (10),又函数f (x )=-2x 2+bx 的图象开口向下,所以函数f (x )在[4,+∞)上是减函数,因为4<5<10,所以f (4)>f (5)>f (10),即f (4)>f (5)>f (-2).(1)对于二次函数的单调性,关键是开口方向与对称轴的位置,若开口方向或对称轴的位置不确定,则需要分类讨论求解.(2)利用二次函数的单调性比较大小,一定要将待比较的两数通过二次函数的对称性转化到同一单调区间上比较.[即时训练] 4.已知函数f (x )=x 2+2ax +3,x ∈[-4,6].(1)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数; (2)当a =1时,求f (|x |)的单调区间.解 (1)由于函数f (x )的图象开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4.(2)当a =1时,f (x )=x 2+2x +3,∴f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-4,6], 且f (x )=⎩⎨⎧x 2+2x +3,x ∈(0,6],x 2-2x +3,x ∈[-4,0].∴f (|x |)的单调递增区间是(0,6], 单调递减区间是[-4,0]. 角度2 二次函数的最值问题例4 (1)(2019·南昌模拟)如果函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,那么实数a =________.答案 1解析 因为函数f (x )=x 2-ax -a 的图象为开口向上的抛物线,所以函数的最大值在区间的端点取得.因为f (0)=-a ,f (2)=4-3a ,所以⎩⎨⎧ -a >4-3a ,-a =1或⎩⎨⎧-a ≤4-3a ,4-3a =1,解得a =1.(2)已知函数f (x )=x 2-2x -3,x ∈[t ,t +2]. ①求f (x )的最值;②当f (x )的最大值为5时,求t 的值.解 f (x )=x 2-2x -3=(x -1)2-4,其图象的对称轴为直线x =1.①ⅰ.若t >1,则当x =t 时,f (x )min =f (t )=t 2-2t -3;当x =t +2时,f (x )max =f (t +2)=t 2+2t -3.ⅱ.若t ≤1<t +1,即0<t ≤1,则当x =1时,f (x )min =f (1)=-4;当x =t +2时,f (x )max =f (t +2)=t 2+2t -3.ⅲ.若t +1≤1<t +2,即-1<t ≤0,则当x =1时,f (x )min =f (1)=-4;当x =t 时,f (x )max =f (t )=t 2-2t -3.ⅳ.若t +2≤1,即t ≤-1,则当x =t 时,f (x )max =f (t )=t 2-2t -3;当x =t +2时,f (x )min =f (t +2)=t 2+2t -3.②由①,可知当t ≤0时,f (x )max =t 2-2t -3;当t >0时,f (x )max =t 2+2t -3, 设f (x )的最大值为g (t ),则g (t )=⎩⎨⎧t 2-2t -3,t ≤0,t 2+2t -3,t >0,因为g (t )=5,所以⎩⎨⎧t ≤0,t 2-2t -3=5⇒⎩⎨⎧t ≤0,t =-2或t =4⇒t =-2;⎩⎨⎧ t >0,t 2+2t -3=5⇒⎩⎨⎧t >0,t =2或t =-4⇒t =2. 故当f (x )的最大值为5时,t =2或t =-2.二次函数最值问题的类型及求解策略(1)类型:①对称轴、区间都是给定的;②对称轴动、区间固定;③对称轴定、区间变动.(2)求解策略:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想即可完成.[即时训练] 5.已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值.解 f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去. (2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38.(3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3.综上可知,a 的值为38或-3.角度3 与二次函数有关的恒成立问题例5 (1)(2019·合肥模拟)设函数f (x )=mx 2-mx -1,若对于x ∈[1,3],f (x )<-m +4恒成立,则实数m 的取值范围为( )A .(-∞,0]B .⎣⎢⎡⎭⎪⎫0,57C .(-∞,0)∪⎝ ⎛⎭⎪⎫0,57D .⎝ ⎛⎭⎪⎫-∞,57答案 D解析 由题意,f (x )<-m +4对于x ∈[1,3]恒成立即m (x 2-x +1)<5对于x ∈[1,3]恒成立.∵当x ∈[1,3]时,x 2-x +1∈[1,7],∴不等式f (x )<-m +4等价于m <5x 2-x +1.∵当x =3时,5x 2-x +1取最小值57, ∴若要不等式m <5x 2-x +1对于x ∈[1,3]恒成立,则必须满足m <57,因此,实数m 的取值范围为⎝ ⎛⎭⎪⎫-∞,57,故选D .(2)已知函数f (x )=x 2+2(a -2)x +4,若∀x ∈[-3,1],f (x )>0恒成立,则实数a 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫-12,4解析 因为f (x )=x 2+2(a -2)x +4,其图象的对称轴为x =-(a -2),∀x ∈[-3,1],f (x )>0恒成立,所以讨论对称轴与区间[-3,1]的位置关系得⎩⎨⎧-(a -2)<-3,f (-3)>0或⎩⎨⎧-3≤-(a -2)≤1,Δ<0或⎩⎨⎧-(a -2)>1,f (1)>0,解得a ∈∅或1≤a <4或-12<a <1,所以a 的取值范围为⎝ ⎛⎭⎪⎫-12,4.由不等式恒成立求参数取值范围的思路及关键(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2)两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .[即时训练] 6.已知两函数f (x )=8x 2+16x -k ,g (x )=2x 2+4x +4,其中k 为实数.(1)对任意x ∈[-3,3],都有f (x )≤g (x )成立,求k 的取值范围; (2)存在x ∈[-3,3],使f (x )≤g (x )成立,求k 的取值范围; (3)对任意x 1,x 2∈[-3,3],都有f (x 1)≤g (x 2),求k 的取值范围.解 (1)设h (x )=f (x )-g (x )=6x 2+12x -4-k ,问题转化为x ∈[-3,3]时,h (x )≤0恒成立,故h (x )max ≤0.由二次函数的性质可知h (x )max =h (3)=86-k ,有86-k ≤0,得k ≥86.(2)由题意,存在x ∈[-3,3],使f (x )≤g (x )成立,即h (x )=f (x )-g (x )=6x 2+12x -4-k ≤0在x ∈[-3,3]时有解,故h (x )min ≤0.由二次函数的性质可知h (x )min =h (-1)=-10-k ,有-10-k ≤0,得k ≥-10.(3)对任意x 1,x 2∈[-3,3],都有f (x 1)≤g (x 2)成立,所以f (x )max ≤g (x )min ,x ∈[-3,3].由二次函数的性质可得f (x )max =f (3)=120-k ,g (x )min =g (-1)=2.故有120-k ≤2,得k ≥118.课时作业1.(2019·福州模拟)若f (x )是幂函数,且满足f (4)f (2)=3,则f ⎝ ⎛⎭⎪⎫12=( )A .3B .-3C .13D .-13答案 C解析 设f (x )=x α,则4α2α=3,即2α=3,∴f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫12α=12α=13.2.当x ∈(1,+∞)时,下列函数中图象全在直线y =x 下方的增函数是( )A .y =x 12B .y =x 2C .y =x 3D .y =x -1答案 A解析 结合常用幂函数的图象可知y =x 12的图象满足条件.3.若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则a 的取值范围是( )A .(-∞,2]B .[-2,2]C .(-2,2]D .(-∞,-2)答案 C解析 当a -2=0即a =2时,不等式为-4<0,恒成立.当a -2≠0时,⎩⎨⎧a -2<0,Δ<0,解得-2<a <2,所以a 的取值范围是-2<a ≤2.故选C . 4.当α∈⎩⎨⎧⎭⎬⎫-1,12,1,3时,幂函数y =x α的图象不可能经过( )A .第二象限B .第三象限C .第四象限D .第二、四象限答案 D 解析 y =x-1的图象经过第一、三象限,y =x 12的图象经过第一象限,y =x的图象经过第一、三象限,y =x 3的图象经过第一、三象限.故选D .5.(2020·定州模拟)已知点⎝ ⎛⎭⎪⎫a ,12在幂函数f (x )=(a -1)x b 的图象上,则函数f (x )是( )A .奇函数B .偶函数C .定义域内的减函数D .定义域内的增函数答案 A解析 ∵函数f (x )=(a -1)x b 是幂函数,∴a -1=1,解得a =2,又点⎝ ⎛⎭⎪⎫a ,12在该函数的图象上,∴2b=12,∴b =-1,∴f (x )=x -1,∴函数f (x )是定义域为(-∞,0)∪(0,+∞)上的奇函数,且在每一个区间内是减函数.故选A .6.已知二次函数f (x )=ax 2+bx +5(a ≠0)的图象过点P (-1,11),且其对称轴是直线x =1,则a +b 的值是( )A .-2B .0C .1D .2答案 A解析 因为二次函数f (x )=ax 2+bx +5(a ≠0)的图象的对称轴是直线x =1,所以-b2a =1 ①.又f (-1)=a -b +5=11,所以a -b =6 ②.联立①②,解得a =2,b =-4,所以a +b =-2,故选A .7.(2019·唐山模拟)已知二次函数f (x )满足f (2+x )=f (2-x ),且f (x )在[0,2]上是增函数,若f (a )≥f (0),则实数a 的取值范围是( )A .[0,+∞)B .(-∞,0]C .[0,4]D .(-∞,0]∪[4,+∞) 答案 C解析 由f (2+x )=f (2-x )可知,函数f (x )图象的对称轴为直线x =2+x +2-x2=2,又函数f (x )在[0,2]上单调递增,所以由f (a )≥f (0)可得0≤a ≤4.8.(2019·成都模拟)已知幂函数f (x )=x α,当x >1时,恒有f (x )<x ,则α的取值范围是( )A .(0,1)B .(-∞,1)C .(0,+∞)D .(-∞,0) 答案 B解析当x>1时,恒有f(x)<x,即当x>1时,函数f(x)=xα的图象在y=x的图象的下方,作出幂函数f(x)=xα在第一象限的图象,由图象可知α<1时满足题意.故选B.9.已知函数f(x)=-x2+4x在区间[m,n]上的值域是[-5,4],则m+n的取值范围是()A.[1,7] B.[1,6]C.[-1,1] D.[0,6]答案 A解析∵f(x)=-x2+4x=-(x-2)2+4,∴f(2)=4.又由f(x)=-5,得x=-1或5.由f(x)的图象知,-1≤m≤2,2≤n≤5.因此1≤m+n≤7.10.(2019·西安模拟)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为直线x=-1.给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的是()A.②④B.①④C.②③D.①③答案 B解析因为图象与x轴交于两点,所以b2-4ac>0,即b2>4ac,①正确.对称轴为直线x=-1,即-b=-1,2a-b=0,②错误.2a结合图象,当x=-1时,y>0,即a-b+c>0,③错误.由对称轴为直线x=-1知,b=2a.又函数图象开口向下,所以a<0,所以5a <2a ,即5a <b ,④正确.11.已知不等式xy ≤ax 2+2y 2对x ∈[1,2],y ∈[2,3]恒成立,则实数a 的取值范围是( )A .[-1,+∞)B .(-∞,1]C .[-1,2]D .(0,2]答案 A解析 不等式xy ≤ax 2+2y 2对x ∈[1,2],y ∈[2,3]恒成立,即a ≥y x -2⎝ ⎛⎭⎪⎫y x 2对x∈[1,2],y ∈[2,3]恒成立,令t =yx ,则1≤t ≤3,∴a ≥t -2t 2在[1,3]上恒成立,设y =-2t 2+t =-2⎝ ⎛⎭⎪⎫t -142+18(t ∈[1,3]),∴y max =-1,∴a ≥-1.故选A .12.若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关答案 B解析 解法一:设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b .∴M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关.故选B .解法二:由题意可知,函数f (x )的二次项系数为固定值,则二次函数图象的形状一定.随着b 的变动,相当于图象上下移动,若b 增大k 个单位,则最大值与最小值分别变为M +k ,m +k ,而(M +k )-(m +k )=M -m ,故与b 无关.随着a 的变动,相当于图象左右移动,则M -m 的值在变化,故与a 有关.故选B .13.(2019·南昌模拟)若x >1时,x a -1<1,则a 的取值范围是________. 答案 (-∞,1)解析 因为x >1,x a -1<1,所以a -1<0,得a <1.14.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则a 的取值范围是________.答案 (3,5)解析 ∵f (x )=x -12=1x(x >0),易知x ∈(0,+∞)时为减函数,又f (a +1)<f (10-2a ),∴⎩⎪⎨⎪⎧a +1>0,10-2a >0,a +1>10-2a ,解得⎩⎪⎨⎪⎧a >-1,a <5,a >3,∴3<a <5.15.(2019·武汉模拟)方程x 2+ax -2=0在区间[1,5]上有根,则实数a 的取值范围为________.答案 ⎣⎢⎡⎦⎥⎤-235,1解析 解法一:由于方程x 2+ax -2=0有解,设它的两个解分别为x 1,x 2,则x 1·x 2=-2<0,故方程x 2+ax -2=0在区间[1,5]上有唯一解. 设f (x )=x 2+ax -2,则f (1)·f (5)≤0, 即(a -1)(5a +23)≤0,解得-235≤a ≤1.解法二:方程x 2+ax -2=0在区间[1,5]上有根,即方程x +a -2x =0,也即方程a =2x -x 在区间[1,5]上有根,而函数y =2x -x 在区间[1,5]上是减函数,所以-235≤y ≤1,则-235≤a ≤1.16.已知函数f (x )=⎩⎪⎨⎪⎧x 12,0≤x ≤c ,x 2+x ,-2≤x <0,其中c >0.那么f (x )的零点是________;若f (x )的值域是⎣⎢⎡⎦⎥⎤-14,2,则c 的取值范围是________.答案 -1和0 (0,4] 解析 当0≤x ≤c 时,由x 12=0得x =0.当-2≤x <0时,由x 2+x =0,得x=-1,所以函数f (x )的零点为-1和0.当0≤x ≤c 时,f (x )=x 12,所以0≤f (x )≤c ;当-2≤x <0时,f (x )=x 2+x =⎝ ⎛⎭⎪⎫x +122-14,所以此时-14≤f (x )≤2.若f (x )的值域是⎣⎢⎡⎦⎥⎤-14,2,则有c ≤2,即0<c ≤4,即c 的取值范围是(0,4].。
第4讲-幂函数、二次函数及基本不等式
幂函数与二次函数学习目标1、了解幂函数的概念及其性质,尤其是几个特殊幂函数的图像、单调性等基本性质2、进一步了解一元二次函数的相关性质3、掌握几个基本不等式及其应用1.幂函数的定义一般地,形如y x α=(R α∈)的函数称为幂函数,其中底数x 是自变量,α为常数. 2.幂函数的图象在同一平面直角坐标系下,幂函数12312,,,,y x y x y x y x y x -=====的图象分别如右图.上面五个函数是学习和研究幂函数性质(图像、单调性、 对称性、奇偶性等)的代表,需熟练掌握。
3.幂函数的性质(1)所有幂函数y x α=的图像均过定点(1,1)(2)如0α>,所有幂函数的图像均过原点,且在[0,)+∞上单调递增 (3)如0α<,所有幂函数在(0,)+∞上都单调递减。
4.一元二次函数及其性质定义:形如2()(0)f x ax bx c a =++≠的函数,叫一元二次函数。
其图像如下xyO xyO2b x a=-2b x a=-一元二次函数的性质(续) 对称轴顶点开口方向及最值2b x a=-24(,)24b ac ba a --0a >时开口向上 2min 44ac by a-=0a <时开口向下2max 44ac b y a-=如0a >,则2b x a >-(对称轴右边)时单调递增,2bx a <-(对称轴左边)时单调递减。
如0a <,则2b x a <-(对称轴左边)时单调递增,2bx a>-(对称轴右边)时单调递减。
【注意】求解二次函数2()(0)f x ax bx c a =++≠在闭区间[,]m n 上的最值,要分析对称轴2bx a=-是否经过此区间,然后用函数的单调性解决。
5.一元二次不等式的解集 不妨设0a >,则20ax bx c ++>的解集如下(1)如0∆<,其解集为(,)-∞+∞;(2)如0∆≥,其解集为12(,)(,)x x -∞⋃+∞,其中12,x x 为20ax bx c ++=之二根,且12x x ≤20ax bx c ++<的解集如下(1)如0∆<,则其解集为∅;(2)如0∆≥,则其解集为12(,)x x ,其中12,x x 为20ax bx c ++=之二根,且12x x ≤开口向下的情况可参照上面的解法求解,也可转化为开口向上的情况求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
增增
时,减x∈(-
经 典
∈(-∞,0]
考
∞,0)时,减
题
时,减
课 时
规
定点
(0,0),(1,1)
范
(1,1)
训
练
【基础自测】
基
础
知
1.已知点
33,3
3 在幂函数f(x)的图象上,则f(x)的表达式是
识 梳 理
聚
焦
()
考 向
透
A.f(x)=x3
B.f(x)=x-3
析
感
C.f(x)=x12
D.f(x)=x-12
焦 考
向
(1)求f(x)解析式;
透 析
感
(2)若g(x)与f(x)图象关于原点对称,求g(x)解析式.
悟 经
典
【审题视点】 对于(1),可设二次函数的零点式,再结合最值
考 题
课
求出系数a即得;对于(2),可通过图象上点的对应关系求g(x)解析
时 规
范
式.
训 练
【解】 (1)由于f(x)有两个零点0和-2,
基
础
知
所以可设f(x)=ax(x+2)(a≠0),
识 梳
理
这时f(x)=ax(x+2)=a(x+1)2-a,
聚
焦
考
由于f(x)有最小值-1,
向 透
析
所以必有-a>a=0 -1 ,
感 悟 经 典
考
题
解得a=1.
课
时
因此f(x)的解析式是f(x)=x(x+2)=x2+2x.
规 范
训
练
基
础
知
(2)设点 P(x,y)是函数 g(x)图象上任一点,它关于原点对称的点
典
求解,最值一般在区间的端点或顶点处取得.
考 题
(2)二次函数单调性问题的解法
课 时
规
范
结合二次函数图象的升、降对对称轴进行分析讨
训
练
论求解.
2.(2013·无锡联考)设函数f(x)=mx2-mx-1,若f(x)<0的解集
基
础
为R,则实数m的取值范围是________.
知 识
梳
解析:当m=0时,f(x)=-1<0,适合x∈R.
课 时 规
范
训
练
基
础
知
识
梳
理
对称轴
x=-2ba
聚 焦 考
向
顶点坐标
-
b
,4ac-|b2
透 析
2a 4a
感 悟
经
奇偶性
b=0⇔y=ax2+bx+c(a≠0)是偶函数
典 考
题
课 时 规 范 训 练
基
础
在-∞,-2ba上是减函 在-∞,-2ba上是增函
知 识 梳 理
单调性 数;在-2ba,+∞上是 数;在-2ba,+∞上是减
典 考 题
课 时 规
范
训
答案:C
练
基 础 知 识 梳 理
聚
4.(教材改编)当α∈ -1,12,1,3 时,幂函数y=xa的图象不
焦 考 向 透
析
可能经过第________象限.
感
悟
经
答案:二 四
典 考
题
课 时 规 范 训 练
基
础
5.(教材改编)已知函数y=x2-2x+3在闭区间[0,m]上有最大
基
∴f(x)min=f(1)=-2.2分
础 知
识
(2)当a>0时,f(x)=ax2-2x的图象的开口方向向上,且对称轴
梳 理
感 悟
经
典
∴抛物线对称轴为x=2+2-1=12.
考 题
课
时
∴m=12.
规 范 训 练
基
础
又根据题意函数有最大值为n=8,
知 识
梳
理
∴y=f(x)=ax-122+8.
聚 焦
考
向
∵f(2)=-1,∴a2-122+8=-1,
透 析
感
悟
解之,得a=-4.
经 典
考
题
∴f(x)=-4x-122+8=-4x2+4x+7.
【审题视点】 对于(1)和(2)可根据对称轴与区间的关系直接求
考 题
课
解,对于(3),应先将函数化为分段函数,再求单调区间,注意函数
时 规
范
定义域的限制.
训 练
【解】 (1)当a=-2时,f(x)=x2-4x+3=(x-2)2-1,由于x
基 础
知
识
∈[-4,6],
梳 理
∴f(x)在[-4,2]上单调递减,在[2,6]上单调递增,
悟 经 典 考
题
答案:B
课 时
规
范
训
练
2.函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件
基 础
知
是( )
识 梳
理
A.m=-2 C.m=-1
B.m=2
聚 焦
考
D.m=1
向 透
析
解析:函数f(x)=x2+mx+1的图象的对称轴为x=-m2 ,且只有
感 悟 经 典
考
一条对称轴,所以-m2 =1,即m=-2.
题
课 时
规
范
答案:A
训 练
3.已知函数f(x)=x2-2x+2的定义域和值域均为[1,b],则b 基
础
=( )
知 识
梳
理
A.3
B.2或3
聚
焦
C.2
D.1或2
考 向
透
析
解析:函数f(x)=x2-2x+2在[1,b]上递增,
感
悟
经
f1=1 由已知条件fb=b
b>1
,即bb2>-13b+2=0 ,解得b=2.
梳 理
下降,反之也成立.
聚 焦
考
向
(2)曲线在第一象限的凹凸性:α>1时,曲线下凸;
透 析
0<α<1时,曲线上凸;α<0时,曲线下凸.
感 悟
经
典
(3)幂函数的图象最多只能出现在两个象限内;
考 题
(4)如果幂函数的图象与坐标轴相交,则交点一定是原点.
课 时
规
范
训
练
3.幂函数y=x-1及直线y=x,y=1,x=1将平面直角坐标系的
焦
考
的位置,两点不应忽视.
向
透
析
2.幂函数的图象一定会出现在第一象限,一定不会出现在第 感 悟 经
四象限,至于是否出现在第二、三象限,要看函数的奇偶性;幂函 典 考 题
数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标 课
时
规
轴相交,则交点一定是原点.
范
训
练
基 础 知 识 梳 理
3.幂函数y=xα(α∈R),其中α为常数,其本质特征是以幂的底
(3)当a=1时,f(x)=x2+2x+3,
聚
焦
考
∴f(|x|)=x2+2|x|+3,此时定义域为x∈[-6,6],
向 透
析
且f(x)=xx22-+22xx++33,,xx∈∈[-0,6,6] 0] ,
感 悟 经 典 考
题
∴f(|x|)的单调递增区间是(0,6],单调递减区间是[-6,0].
课
时
规
范
理
聚
焦
当m≠0时,f(x)=mx2-mx-1的图象开口向下,且与x轴无交
考 向
透
点.
析
感
悟
∴m-<m02+4m<0 ,∴0>m>-4.
经 典 考 题
课
综上,-4<m≤0.
时 规
范
训
答案:(-4,0]
练
基
考向三 幂函数图象性质及应用
础 知
识
梳
(1)(2013·山西太原模拟)当0<x<1时,f(x)=x2,g(x)=x
当m=1时,m2-2m-3=1-2-3=-4(舍去).
课 时
规
范
当m=2时,m2-2m-3=22-2×2-3=-3,∴m=2.
训 练
【答案】 (1)h(x)>g(x)>f(x) (2)2
【方法总结】 (1)α的正负:α>0时,图象过原点和(1,1),在
基 础
知
识
第一象限的图象上升;α<0时,图象不过原点,在第一象限的图象
课 时 规
范
训
练
考向二 二次函数图象与性质的应用
基
已知函数f(x)=x2+2ax+3,x∈[-4,6].
础 知
识
(1)当a=-2时,求f(x)的最值;
梳 理
聚
(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函
焦 考
向
数;
透 析
感
(3)当a=1时,求f(|x|)的单调区间.
悟 经
典
课 时
规
范
训
练
【解析】 (1)分别作出f(x),g(x),h(x)的图象,如图所示.
可知h(x)>g(x)>f(x). 基 础 知 识 梳 理
聚 焦 考 向 透 析
(2)由题意知m2-2m-3为奇数且m2-2m-3<0,由m2-2m-3
感 悟
经
典
<0得-1<m<3,又m∈N*,故m=1,2.
考 题
聚 焦 考
向
x为自变量,指数α为常数,这是判断一个函数是否是幂函数的重要
透 析
感
依据和唯一标准.应当注意并不是任意的一次函数、二次函数都是 悟
经