2016-2017年江苏省徐州市初一上学期期末数学试卷及解析

合集下载

苏科版2016-2017学年七年级数学(上册)期末测试卷和答案

苏科版2016-2017学年七年级数学(上册)期末测试卷和答案

2016-2017学年七年级(上)期末数学试卷一、选择题(24分)1.﹣0.5的相反数是( )A.0.5 B.﹣0.5 C.﹣2 D.22.如列所示的图案分别是奔驰、奥迪、大众、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是( )A.B.C.D.3.下列运算正确的是( )A.﹣a2b+2a2b=a2b B.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab4.已知x=2是关于x的方程2x﹣a=1的解,则a的值是( )A.3 B.﹣3 C.7 D.25.下列图形中,由AB∥CD,能得到∠1=∠2的是( )A.B.C.D.6.下列计算正确的是( )A.a+a2=2a3B.a2•a3=a6C.(2a4)4=16a8D.(﹣a)6÷a3=a37.如图①放置的一个水管三叉接头,若其正视图如图②,则其俯视图是( )A.B.C.D.8.已知a=355,b=444,c=533,则有( )A.a<b<c B.c<b<a C.c<a<b D.a<c<b二、填空题(30分)9.某种细菌的存活时间只有0.000 012秒,若用科学记数法表示此数据应为__________秒.10.如图所示,直线a∥b,则∠A=__________度.11.我们知道:式子|x﹣3|的几何意义是数轴上表示数x的点与表示数3的点之间的距离,则式子|x﹣2|+|x﹣1|的最小值为__________.12.计算:=__________.13.线段PQ被分成3:4:5三部分,若第一和第二两部分的中点间的距离是2.1cm,则线段PQ的长是__________cm.14.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是__________.15.一个等腰三角形的两边长分别是3cm和7cm,则它的周长是__________ cm.16.如图中每个阴影部分是以多边形各顶点为圆心,2为半径的扇形,并且所有多边形的每条边长都大于2,则第n个多边形中,所有扇形面积之和是__________(结果保留π).17.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF﹣S△BEF=__________.18.圆上有五个点,这五个点将圆分成五等份(每一份称为一段弧长),把这五个点按顺时针方向依次编号为1,2,3,4,5,若从某一点开始,沿圆周顺时针方向行走,点的编号是数字几,就走几段弧长,则称这种走法为一次“移位”.如:小明在编号为3的点,那么他应走3段弧长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的点,然后从1→2为第二次“移位”.若小明从编号为4的点开始,第2015次“移位”后,他到达编号为__________的点.三、解答题19.计算:(1)﹣12010﹣(1﹣)÷3×|3﹣(﹣3)2|(2)2(a2)3﹣a2•a4+(2a4)2÷a2.20.解方程:(1)5x+3(2﹣x)=8(2).21.化简后再求值:x﹣2(3y2﹣2x)﹣4(2x﹣y2),其中|x﹣2|+(y+1)2=0.22.如图,已知∠1=52°,∠2=128°,∠C=∠D,探索∠A与∠F的数量关系,并说明理由.23.如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全.(2)若图中的正方形边长为2cm,长方形的长为3cm,宽为2cm,请直接写出修正后所折叠而成的长方体的容积:__________cm3.24.如图,点O为直线AB上一点,将直角三角板OCD的直角顶点放在点O处.已知∠AOC 的度数比∠BOD的度数的3倍多10度.(1)求∠BOD的度数.(2)若OE、OF分别平分∠BOD、∠BOC,求∠EOF的度数.(写出必要的推理过程)25.小明家使用的是分时电表,按平时段(6:00﹣22:00)和谷时段(22:00﹣次日6:00)分别计费,平时段每度电价为0.61元,谷时段每度电价为0.30元,小明将家里2013年1月至5月的平时段和谷时段的用电量分别用折线图表示(如图),同时将前4个月的用电量和相应电费制成表格(如表).根据上述信息,解答下列问题:月用电量(度)电费(元)1月90 51.802月92 50.853月98 49.244月105 48.555月(1)计算5月份的用电量和相应电费,将所得结果填入表中;(2)小明家这5个月的月平均用电量呈__________趋势(选择“上升”或“下降”);这5个月每月电费呈__________趋势(选择“上升”或“下降”);(3)小明预计7月份家中用电量很大,估计7月份用电可达500度,相应电费将达243元,请你根据小明的估计,计算出7月份小明家平时段用电量和谷时段用电量.26.已知:△ABC中,∠C>∠B,AE平分∠BAC.(1)如图①AD⊥BC于D,若∠C=70°,∠B=30°,求出∠DAE的度数;(2)若△ABC中,∠B=α,∠C=β(α<β),探索∠DAE与α、β间的等量关系,不必说明理由;(3)如图②所示,在△ABC中AD⊥BC,AE平分∠BAC,F是AE上的任意一点,过F 作FG⊥BC于G,且∠B=30°,∠C=80°,请你运用(2)中结论求出∠EFG的度数;(4)在(3)的条件下,若F点在AE的延长线上(如图③),其他条件不变,则∠EFG 的度数大小发生改变吗?说明理由.27.已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE和射线AF交于点G.(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=36°,则∠OGA=__________.(2)若∠GOA=∠BOA,∠GAD=∠BAD,∠OBA=36°,则∠OGA=__________.(3)将(2)中“∠OBA=36°”改为“∠OBA=β”,其余条件不变,则∠OGA=__________(用含β的代数式表示).(4)若OE将∠BOA分成1:2两部分,AF平分∠BAD,∠ABO=β(30°<β<90°)求∠OGA 的度数(用含β的代数式表示).28.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.2016-2017学年七年级(上)期末数学试卷一、选择题(24分)1.﹣0.5的相反数是( )A.0.5 B.﹣0.5 C.﹣2 D.2【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣0.5的相反数是0.5,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数相反数.2.如列所示的图案分别是奔驰、奥迪、大众、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是( )A.B.C.D.【考点】生活中的平移现象.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是B.【解答】解:观察图形可知,图案B可以看作由“基本图案”经过平移得到.故选B.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而误选A、C、D.3.下列运算正确的是( )A.﹣a2b+2a2b=a2b B.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab【考点】合并同类项.【专题】计算题.【分析】根据合并同类项的法则,合并时系数相加减,字母与字母的指数不变.【解答】解:A、正确;B、2a﹣a=a;C、3a2+2a2=5a2;D、不能进一步计算.故选:A.【点评】此题考查了同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.还考查了合并同类项的法则,注意准确应用.4.已知x=2是关于x的方程2x﹣a=1的解,则a的值是( )A.3 B.﹣3 C.7 D.2【考点】一元一次方程的解.【分析】把x=2代入已知方程后,列出关于a的新方程,通过解新方程来求a的值.【解答】解:∵x=2是关于x的方程2x﹣a=1的解,∴2×2﹣a=1,解得a=3.故选:A.【点评】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.5.下列图形中,由AB∥CD,能得到∠1=∠2的是( )A.B.C.D.【考点】平行线的判定与性质.【分析】根据平行线的性质求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、∵AB∥CD,∴∠1+∠2=180°,故A错误;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B正确;C、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2;故C错误;D、若梯形ABCD是等腰梯形,可得∠1=∠2,故D错误.故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.此题难度不大,注意掌握数形结合思想的应用.6.下列计算正确的是( )A.a+a2=2a3B.a2•a3=a6C.(2a4)4=16a8D.(﹣a)6÷a3=a3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】利用合并同类项、同底数幂的乘法、积的乘方、幂的乘方以及同底数幂的除法的知识求解即可求得答案.注意排除法在解选择题中的应用.【解答】解:A、a与a2不能合并,故本选项错误;B、a2•a3=a5,故本选项错误;C、(2a4)4=16a16,故本选项错误;D、(﹣a)6÷a3=a6÷a3=a3,故本选项正确.故选D.【点评】此题考查了合并同类项、同底数幂的乘法、积的乘方、幂的乘方以及同底数幂的除法的知识.注意掌握指数的变化是解此题的关键.7.如图①放置的一个水管三叉接头,若其正视图如图②,则其俯视图是( )A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看到的图形即可.【解答】解:从上面看,可得到左边是一个圆,右边是长方形,一组对边与圆相接,故选A.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.8.已知a=355,b=444,c=533,则有( )A.a<b<c B.c<b<a C.c<a<b D.a<c<b【考点】幂的乘方与积的乘方.【专题】计算题.【分析】由a=355=(35)11,b=444=(44)11,c=533=(53)11,比较35,44,53,的大小即可.【解答】解:∵a=355=(35)11,b=444=(44)11,c=533=(53)11,44>35>>53,∴(44)11>(35)11>(53)11,即c<a<b,故选C.【点评】本题考查了幂的乘方的逆运算,以及数的大小比较.二、填空题(30分)9.某种细菌的存活时间只有0.000 012秒,若用科学记数法表示此数据应为1.2×10﹣5秒.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 012秒=1.2×10﹣5秒.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.如图所示,直线a∥b,则∠A=22度.【考点】三角形的外角性质;平行线的性质;三角形内角和定理.【专题】计算题.【分析】依题意由平行线的性质,结合三角形外角及外角性质,可以得到∠A=∠C﹣∠B,易求∠A的度数.【解答】解:∵a∥b,∴∠ADE=50°,∵∠ABE=28°,根据三角形外角及外角性质,∴∠A+∠ABE=∠ADE,∴∠A=∠C﹣∠B=22°.∴∠A=22°.【点评】这类题首先利用平行线的性质(两直线平行,同位角相等),然后根据三角形外角及外角性质将所求角的关系与已知角的关系转化求解.11.我们知道:式子|x﹣3|的几何意义是数轴上表示数x的点与表示数3的点之间的距离,则式子|x﹣2|+|x﹣1|的最小值为3.【考点】绝对值.【分析】根据绝对值的意义,可知|x﹣2|是数轴上表示数x的点与表示数2的点之间的距离,|x+1|是数轴上表示数x的点与表示数﹣1的点之间的距离,由线段的性质,两点之间,线段最短,可知当﹣1≤x≤2时,|x﹣2|+|x+1|有最小值.【解答】解:根据题意,可知当﹣1≤x≤2时,|x﹣2|+|x+1|有最小值.此时|x﹣2|=2﹣x,|x+1|=x+1,∴|x﹣2|+|x+1|=2﹣x+x+1=3.故答案为:3.【点评】本题考查的是绝对值的意义及线段的性质,掌握式子|x﹣a|的几何意义是数轴上表示数x的点与表示数a的点之间的距离是解题的关键.12.计算:=﹣.【考点】幂的乘方与积的乘方;同底数幂的乘法.【专题】计算题.【分析】根据同底数幂的乘法,可得指数相同的幂的乘法,根据积的乘方运算,可得答案案.【解答】解:原式=(﹣)==﹣,故答案为:﹣.【点评】本题考查了积的乘方,先化成指数相同的幂的乘法,再进行积的乘方运算.13.线段PQ被分成3:4:5三部分,若第一和第二两部分的中点间的距离是2.1cm,则线段PQ的长是7.2cm.【考点】两点间的距离.【分析】首先根据线段PQ被分成3:4:5三部分,则可以设第一部分=3x,第二部分=4x,DB=4x.第一和第二两部分的中点间的距离=(3x+4x)÷2,根据第一和第二两部分的中点间的距离是1即可求得x的值,进而求得线段PQ的长.【解答】解:设一份的长是x,依题意有(3x+4x)÷2=2.1,解得x=0.6,0.6×(3+4+5)=0.6×12=7.2(cm).故线段PQ的长是7.2cm.故答案为:7.2.【点评】本题主要考查了线段的计算,正确理解中点的定义,把求线段的长的问题转化为解方程的问题是解题关键.14.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是﹣1.【考点】专题:正方体相对两个面上的文字.【分析】先根据正方体相对两个面的特点,确定出相对的面,然后依据加法法则求解即可.【解答】解:根据题意可知2的对面是﹣2;3的对面是﹣4;0的对面是1.∵2+(﹣2)=0;3+(﹣4)=﹣1,;0+1=1.∴原正方体相对两个面上的数字之和的最小值是﹣1.故答案为:﹣1.【点评】本题主要考查的是正方体对面上的文字,掌握正方体相对两个面的特点是解题的关键.15.一个等腰三角形的两边长分别是3cm和7cm,则它的周长是17 cm.【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17cm.故答案为:17.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.16.如图中每个阴影部分是以多边形各顶点为圆心,2为半径的扇形,并且所有多边形的每条边长都大于2,则第n个多边形中,所有扇形面积之和是2nπ(结果保留π).【考点】多边形内角与外角;三角形内角和定理.【分析】先找圆心角的变化规律,得出第n个多边形中,所有扇形面积之和应为圆心角为n×180°,半径为2的扇形的面积.【解答】解:第n个多边形中,所有扇形面积之和是:=2nπ.故答案是:2nπ.【点评】考查了多边形内角和和扇形面积的计算,根据已知图形,找出规律,掌握扇形面积求法与多边形内角和是关键.17.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF﹣S△BEF=2.【考点】三角形的面积.【分析】S△ADF﹣S△BEF=S△ABD﹣S△ABE,所以求出三角形ABD的面积和三角形ABE的面积即可,因为EC=2BE,点D是AC的中点,且S△ABC=12,就可以求出三角形ABD的面积和三角形ABE的面积.【解答】解:∵点D是AC的中点,∴AD=AC,∵S△ABC=12,∴S△ABD=S△ABC=×12=6.∵EC=2BE,S△ABC=12,∴S△ABE=S△ABC=×12=4,∵S△ABD﹣S△ABE=(S△ADF+S△ABF)﹣(S△ABF+S△BEF)=S△ADF﹣S△BEF,即S△ADF﹣S△BEF=S△ABD﹣S△ABE=6﹣4=2.故答案为:2.【点评】本题考查三角形的面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出差.18.圆上有五个点,这五个点将圆分成五等份(每一份称为一段弧长),把这五个点按顺时针方向依次编号为1,2,3,4,5,若从某一点开始,沿圆周顺时针方向行走,点的编号是数字几,就走几段弧长,则称这种走法为一次“移位”.如:小明在编号为3的点,那么他应走3段弧长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的点,然后从1→2为第二次“移位”.若小明从编号为4的点开始,第2015次“移位”后,他到达编号为2的点.【考点】规律型:图形的变化类.【分析】根据移位的定义,结合图形第一次“移位”走4段弧长,然后依次进行计算即可得到第四次“移位”的位置,再根据规律求出第2015次“移位”的位置.【解答】解:从编号为4的点开始,第一次“移位”到达3,第二次“移位”到达1,第三次“移位”到达2,第四次“移位”到达4;第五次“移位”到达3,…依此类推,每4次为一组“移位”循环,∵2015÷4=503…3,∴第2015次“移位”后与第3次移位到达的数字编号相同为2.故答案为:2.【点评】此题考查图形变化规律,读懂题目信息,根据“移位”的定义,找出其变化循环的规律是解题的关键.三、解答题19.计算:(1)﹣12010﹣(1﹣)÷3×|3﹣(﹣3)2|(2)2(a2)3﹣a2•a4+(2a4)2÷a2.【考点】整式的混合运算;有理数的混合运算.【专题】计算题;整式.【分析】(1)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式利用幂的乘方与积的乘方运算法则,同底数幂的乘法及单项式除以单项式法则计算,合并即可得到结果.【解答】解:(1)原式=﹣1﹣××6=﹣1﹣1=﹣2;(2)原式=2a6﹣a6+4a6=5a6.【点评】此题考查了整式的混合运算,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.20.解方程:(1)5x+3(2﹣x)=8(2).【考点】解一元一次方程.【专题】计算题.【分析】(1)先去括号,再移项、合并同类项,最后化系数为1,从而得到方程的解.(2)这是一个带分母的方程,所以要先去分母、去括号,再移项、合并同类项,最后化系数为1,从而得到方程的解.【解答】解:(1)去括号得:5x+6﹣3x=8,移项合并得:2x=2,系数化为1得:x=1;(2)去分母得:3(2x﹣1)=12﹣4(x+2),去括号得:6x﹣3=12﹣4x﹣8,移项合并得:10x=7,系数化为1得:.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、系数化为1.注意去分母时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.21.化简后再求值:x﹣2(3y2﹣2x)﹣4(2x﹣y2),其中|x﹣2|+(y+1)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】先根据绝对值及完全平方的非负性求出x和y的值,然后对所求的式子去括号、合并同类项得出最简整式,代入x和y的值即可.【解答】解:∵|x﹣2|+(y+1)2=0,∴x=2,y=﹣1,x﹣2(3y2﹣2x)﹣4(2x﹣y2)=x﹣6y2+4x﹣8x+4y2=﹣3x﹣2y2,当x=2,y=﹣1时,原式=﹣6﹣2=﹣8.【点评】本题考查了非负数的性质及整式的化简求值,化简求值是课程标准中所规定的一个基本内容,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材.22.如图,已知∠1=52°,∠2=128°,∠C=∠D,探索∠A与∠F的数量关系,并说明理由.【考点】平行线的判定与性质.【专题】计算题.【分析】结论为∠A=∠F,理由为:由∠1+∠2=180°,利用同旁内角互补两直线平行得到BD与CE平行,利用两直线平行同位角相等得到一对角相等,再由已知角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到AC与DF平行,利用两直线平行内错角相等即可得证.【解答】解:结论:∠A=∠F,理由为:证明:∵∠1=52°,∠2=128°,∴∠1+∠2=180°,∴BD∥CE,∴∠ABD=∠C,∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF,∴∠A=∠F.【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.23.如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全.(2)若图中的正方形边长为2cm,长方形的长为3cm,宽为2cm,请直接写出修正后所折叠而成的长方体的容积:12cm3.【考点】展开图折叠成几何体.【分析】(1)由于长方体有6个面,且相对的两个面全等,所以展开图是6个长方形(包括正方形),而图中所拼图形共有7个面,所以有多余块,应该去掉一个;又所拼图形中有3个全等的正方形,结合平面图形的折叠可知,可将第二行最左边的一个正方形去掉;(2)由题意可知,此长方体的长、宽、高可分别看作3厘米、2厘米和2厘米,将数据代入长方体的体积公式即可求解.【解答】解:(1)拼图存在问题,如图:(2)折叠而成的长方体的容积为:3×2×2=12(cm3).故答案为:12.【点评】本题考查了平面图形的折叠与长方体的展开图及其体积的计算,比较简单.24.如图,点O为直线AB上一点,将直角三角板OCD的直角顶点放在点O处.已知∠AOC 的度数比∠BOD的度数的3倍多10度.(1)求∠BOD的度数.(2)若OE、OF分别平分∠BOD、∠BOC,求∠EOF的度数.(写出必要的推理过程)【考点】角的计算;角平分线的定义.【分析】(1)首先设∠BOD=x°,由∠AOC的度数比∠BOD的度数的3倍多10度,且∠COD=90°,可得方程:x+(3x+10)+90=180,解此方程即可求得答案;(2)由OE、OF分别平分∠BOD、∠BOC,可得∠BOE=∠BOD,∠BOF=∠BOC=(∠BOD+∠COD),又由∠EOF=∠BOF﹣∠BOE=∠COD,即可求得答案.【解答】解:(1)设∠BOD=x°,∵∠AOC的度数比∠BOD的度数的3倍多10度,且∠COD=90°,∴x+(3x+10)+90=180,解得:x=20,∴∠BOD=20°;(2)∵OE、OF分别平分∠BOD、∠BOC,∴∠BOE=∠BOD,∠BOF=∠BOC=(∠BOD+∠COD),∴∠EOF=∠BOF﹣∠BOE=(∠BOC﹣∠BOD)=∠COD=45°.【点评】此题考查了角的计算与角平分线的定义.此题难度适中,注意掌握数形结合思想与方程思想的应用.25.小明家使用的是分时电表,按平时段(6:00﹣22:00)和谷时段(22:00﹣次日6:00)分别计费,平时段每度电价为0.61元,谷时段每度电价为0.30元,小明将家里2013年1月至5月的平时段和谷时段的用电量分别用折线图表示(如图),同时将前4个月的用电量和相应电费制成表格(如表).根据上述信息,解答下列问题:月用电量(度)电费(元)1月90 51.802月92 50.853月98 49.244月105 48.555月(1)计算5月份的用电量和相应电费,将所得结果填入表中;(2)小明家这5个月的月平均用电量呈上升趋势(选择“上升”或“下降”);这5个月每月电费呈下降趋势(选择“上升”或“下降”);(3)小明预计7月份家中用电量很大,估计7月份用电可达500度,相应电费将达243元,请你根据小明的估计,计算出7月份小明家平时段用电量和谷时段用电量.【考点】折线统计图;统计表.【分析】(1)根据有理数的加法,可得5月份的用电量,根据平时段每度电价乘以平时段的用用电量,可得平时段的电费,根据时各段每度电价乘以平时段的用用电量,可得各时段的电费,根据有理数的加法,可得答案;(2)统计表中的信息,可得答案;(3)根据用电量,可得未知数,根据电费,可得方程,根据解方程,可得答案.【解答】解:(1)5月份的用电量为45+65=110度,5月份的电费为65×0.3+45×0.61=19.5+27.45=46.95(元),故答案为:110,46.95;(2)用统计表,得小明家这5个月的月平均用电量呈上升趋势;这5个月每月电费呈下降趋势,故答案为:上升,下降;(3)设7月份平时段的用电量为x度,各时段的用电量为(500﹣x)度,根据题意,得0.61x+0.3(500﹣x)=243.化简,得0.31x=93,解得x=300,500﹣x=200,答:7月份小明家平时段用电量为300度,各时段用电量为200度.【点评】本题考查的是统计表和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.统计表能清楚地表示出每个项目的数据,如粮食产量,折线统计图表示的是事物的变化情况,如增长率,利用一元一次方程解决用电量是解题关键.26.已知:△ABC中,∠C>∠B,AE平分∠BAC.(1)如图①AD⊥BC于D,若∠C=70°,∠B=30°,求出∠DAE的度数;(2)若△ABC中,∠B=α,∠C=β(α<β),探索∠DAE与α、β间的等量关系,不必说明理由;(3)如图②所示,在△ABC中AD⊥BC,AE平分∠BAC,F是AE上的任意一点,过F 作FG⊥BC于G,且∠B=30°,∠C=80°,请你运用(2)中结论求出∠EFG的度数;(4)在(3)的条件下,若F点在AE的延长线上(如图③),其他条件不变,则∠EFG 的度数大小发生改变吗?说明理由.【考点】三角形内角和定理;三角形的角平分线、中线和高;三角形的外角性质.【分析】(1)先根据三角形内角和定理得到∠BAC=180°﹣∠B﹣∠C,再利用角平分线定义得∠DAC=∠BAC=90°﹣(∠B+∠C),接着根据垂直定义得到∠AEC=90°,则∠EAC=90°﹣∠C,所以∠DAE=∠DAC﹣∠EAC=(∠C﹣∠B),再把∠C=70°,∠B=30°代入计算即可;(2)由(1)易得∠DAE=(β﹣α);(3)由于∠DAE=(∠C﹣∠B),则把∠B=30°,∠C=80°代入可计算出∠DAE=25°,然后根据平行线的性质求解;(4)根据平行线的性质易得∠EFG=∠EAD=25°.【解答】解:(1)在△ABC中,∵∠B+∠C+∠BAC=180°,∴∠BAC=180°﹣∠B﹣∠C,∵AD平分∠BAC,∴∠DAC=∠BAC=(180°﹣∠B﹣∠C)=90°﹣(∠B+∠C),∵AE⊥BC于E,∴∠AEC=90°,∴∠EAC=90°﹣∠C,∴∠DAE=∠DAC﹣∠EAC=90°﹣(∠B+∠C)﹣(90°﹣∠C)=(∠C﹣∠B),当∠C=70°,∠B=30°,∴∠DAE=(70°﹣30°)=20°;(2)∵∠DAE=(∠C﹣∠B),∴∠DAE=(β﹣α);(3)∵∠DAE=(∠C﹣∠B),而∠B=30°,∠C=80°,∴∠DAE=(80°﹣30°)=25°,∵AD⊥BC,FG⊥BC,∴FG∥AD,∴∠EFG=∠EAD=25°;(4)∠EFG的度数大小不发生改变.理由如下:∵AD⊥BC,FG⊥BC,∴FG∥AD,∴∠EFG=∠EAD=25°.【点评】本题考查了三角形内角和定理:三角形内角和是180°.准确识别图形,即在哪个三角形中运用内角和定理是解题的关键.27.已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE和射线AF交于点G.(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=36°,则∠OGA=18°.(2)若∠GOA=∠BOA,∠GAD=∠BAD,∠OBA=36°,则∠OGA=12°.(3)将(2)中“∠OBA=36°”改为“∠OBA=β”,其余条件不变,则∠OGA=(用含β的代数式表示).(4)若OE将∠BOA分成1:2两部分,AF平分∠BAD,∠ABO=β(30°<β<90°)求∠OGA 的度数(用含β的代数式表示).【考点】角的计算;角平分线的定义.【分析】(1)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(2)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(3)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(4)讨论:当∠EOD:∠COE=1:2时,利用∠BAD=∠ABO+∠BOA=β+90°,∠FAD=∠EOD+∠OGA得到2×30°+2∠OGA=β+90°,则∠OGA=+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得∠OGA=﹣15°.【解答】解:(1)∵∠BOA=90°,∠OBA=36°,∴∠BAD=∠BOA+∠ABO=126°,∵AF平分∠BAD,OE平分∠BOA,∠BOA=90°,∴∠GAD=∠BAD=63°,∠EOA=∠BOA=45°,∴∠OGA=∠GAD﹣∠EOA=63°﹣45°=18°;故答案为18°;(2)∵∠BOA=90°,∠OBA=36°,∴∠BAD=∠BOA+∠ABO=126°,∵∠BOA=90°,∠GOA=∠BOA,∠GAD=∠BAD∴∠GAD=42°,∠EOA=30°,∴∠OGA=∠GAD﹣∠EOA=42°﹣30°=12°;故答案为12°;(3)∵∠BOA=90°,∠OBA=β,∴∠BAD=∠BOA+∠ABO=90°+β,∵∠BOA=90°,∠GOA=∠BOA,∠GAD=∠BAD∴∠GAD=30°+,∠EOA=30°,∴∠OGA=∠GAD﹣∠EOA=β,故答案为:β;(4)当∠EOD:∠COE=1:2时,则∠EOD=30°,∵∠BAD=∠ABO+∠BOA=β+90°,∵AF平分∠BAD,∴∠FAD=∠BAD,∵∠FAD=∠EOD+∠OGA,∴2×30°+2∠OGA=β+90°,∴∠OGA=β+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得到∠OGA=﹣15°,即∠OGA的度数为+15°或﹣15°.【点评】本题考查了三角形内角和定理:三角形内角和为180°.也考查了三角形外角性质.28.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【考点】平行线的判定与性质.【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°﹣∠3=90°﹣2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.【解答】解:(1)如图1,∵∠1与∠2互补,∴∠1+∠2=180°.又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;。

2016-2017学年江苏省徐州市七年级(上)期末数学试题含答案

2016-2017学年江苏省徐州市七年级(上)期末数学试题含答案

2016-2017学年江苏省徐州市七年级(上)期末数学试卷一、选择题(每小题3分,共24分)1.(3分)的相反数是( )A.﹣2B.﹣C.D.22.(3分)下列算式中,运算结果为负数的是( )A.﹣(﹣3)B.|﹣3|C.(﹣3)2D.(﹣3)33.(3分)下列运算正确的是( )A.2a﹣a=2B.2a+b=2abC.﹣a2b+2a2b=a2b D.3a2+2a2=5a44.(3分)如图,若图形A经过平移可以与图形B、C拼成一个长方形,则可能的平移方式是( )A.向右平移4格,再向下平移5格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移2格D.向右平移6格,再向下平移2格5.(3分)将一个无盖正方体纸盒展开,展开图不可能是( )A.B.C.D.6.(3分)如图,BC=AB,D为AC的中点,若DC=3,则AB的长是( )A.3B.4C.5D.67.(3分)已知射线OC在∠AOB的内部,下列关系式①∠AOC=∠BOC;②∠AOC+∠BOC=∠AOB;③∠AOB=2∠AOC;④∠BOC=∠AOB.其中,能说明OC为∠AOB的平分线的有( )A.1个B.2个C.3个D.4个8.(3分)观察下列图形,照此规律,第5个图形中白色三角形的个数是( )A.81B.121C.161D.201二、填空题(本题共8小题,每小题3分,共24分)9.(3分)计算:﹣3﹣1= .10.(3分)多项式3a2+2b3的次数是 .11.(3分)2017年春运期间,徐州铁路两站预计发送旅客2430000人次,该数据用科学记数法可表示为 人次.12.(3分)若m+2n=1,则代数式3﹣m﹣2n的值是 .13.(3分)数学课上,小丽把一副三角板按如图所示的位置摆放(其中一个三角板的直角顶点在另一个三角板的直角边上),如果∠α=28°,那么∠β= °.14.(3分)建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一条线,沿这条线就可以砌出直的墙了,其中的数学道理是 .15.(3分)当x=﹣2时,代数式kx+5的值为﹣1,则k的值为 .16.(3分)若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为 .三、解答题(本题共9小题,共72分)17.(10分)计算(1)|﹣4|+23+3×(﹣5)(2)﹣12016﹣×[4﹣(﹣3)2].18.(6分)先化简,再求值:5(3a2b﹣ab2)﹣4(3a2b﹣ab2),其中a=2,b=﹣3.19.(8分)解下列方程(1)4﹣x=3(2﹣x)(2)=2﹣.20.(6分)如图是由6个棱长都为1cm的小正方体搭成的几何体.(1)该几何体的主视图如图所示,请在下面方格纸中高分别画出它的左视图和俯视图;(2)该几何体的表面积为 cm2.21.(8分)为实施“学讲计划”,某班学生计划分成若干个学习小组,若每组5人,则多出4人,若每组6人,则有一组只有2人,该班共有多少名学生?22.(8分)如图,在方格纸中,点A、B、C是三个格点(网格线的交点叫做格点)(1)过点C画AB的垂线,垂足为D;(2)将点D沿BC翻折,得到点E,作直线CE;(3)直线CE与直线AB的位置关系是 ;(4)判断:∠ACB ∠ACE.(填“>”、“<”或“=”23.(8分)如图,直线AB与CD相交于O,OE是∠AOC的平分线,OF⊥CD,OG⊥OE,∠BOD=52°.(1)求∠AOF的度数;(2)求∠EOF与∠BOG是否相等?请说明理由.。

2016-2017学年七年级上期末数学试卷含答案解析

2016-2017学年七年级上期末数学试卷含答案解析

2016-2017学年七年级(上)期末数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.2.在﹣2,π,15,0,﹣,0.555…六个数中,整数的个数为()A.1 B.2 C.3 D.43.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.4.由四舍五入得到的近似数2.6万,精确到()A.千位B.万位C.个位D.十分位5.下列图形中,∠1和∠2互为余角的是()A.B.C.D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式7.下列方程属于一元一次方程的是()A.﹣1=0 B.6x+1=3y C.3m=2 D.2y2﹣4y+1=08.轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A. +3=﹣3 B.﹣3=+3 C. +3=D.﹣3=二、填空题(本大题共6小题,每小题3分,满分18分)9.实数﹣5,﹣1,0,四个数中,最大的数是.10.若有理数a、b满足|a+5|+(b﹣4)2=0,则(a+b)10的值为.11.某校图书室共藏书34500册,数34500用科学记数法表示为.12.若﹣3x m+2y2017与2x2016y n是同类项,则|m﹣n|的值是.13.56°24′=°.14.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是.三、解答题(本大题共10小题,满分70分)15.计算:﹣12﹣(﹣)÷×[﹣2+(﹣3)2].16.解方程:﹣=﹣1.17.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD 的长度.18.规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.20.一张课桌包括1块桌面和4条桌腿,1m3木料可制作50块桌面或200条桌腿.现有5m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得的桌面和桌腿刚好配套?21.有理数a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣b|+|b+c|﹣|b|.22.已知a、b互为相反数,c、d互为倒数,|e|=5,求e2﹣+(cd)102﹣e 的值.23.入冬以来,某家电销售部以150元/台的价格购进一款烤火器,很快售完,又用相同的货款再次购进这款烤火器,因单价提高了30元,进货量比第一次少了10台.(1)家电销售部两次各购进烤火器多少台?(2)若以250元/台的售价卖完这两批烤火器,家电销售部共获利多少元?24.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102…(1)请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系?(2)利用上述规律,计算:13+23+33+43+ (1003)2016-2017学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选B.2.在﹣2,π,15,0,﹣,0.555…六个数中,整数的个数为()A.1 B.2 C.3 D.4【考点】有理数.【分析】先判断每个数是什么数,最后得到整数的个数.【解答】解:因为﹣2、15、0是整数,π是无理数,﹣、0.555…是分数.所以整数共3个.故选C.3.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【考点】几何体的展开图.【分析】圆锥的侧面展开图是扇形.【解答】解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选:B.4.由四舍五入得到的近似数2.6万,精确到()A.千位B.万位C.个位D.十分位【考点】近似数和有效数字.【分析】近似数2.6万精确到0.1万位.【解答】解:近似数2.6万精确到千位.故选A.5.下列图形中,∠1和∠2互为余角的是()A.B.C.D.【考点】余角和补角.【分析】根据对顶角的定义,邻补角的定义以及互为余角的两个角的和等于90°对各选项分析判断即可得解.【解答】解:A、∠1+∠2>90°,∠1和∠2不是互为余角,故本选项错误;B、∠1和∠2互为邻补角,故本选项错误;C、∠1和∠2是对顶角,不是互为余角,故本选项错误;D、∠1+∠2=180°﹣90°=90°,∠1和∠2互为余角,故本选项正确.故选D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式【考点】同类项;整式;多项式.【分析】分别根据单项式、多项式、整式及同类项的定义判断各选项即可.【解答】解:A、3a2b与ba2是同类项,故本选项错误;B、是整式,故本选项错误;C、单项式﹣x3y2的系数是﹣1,故本选项正确;D、3x2﹣y+5xy2是二次三项式,故本选项错误.故选C.7.下列方程属于一元一次方程的是()A.﹣1=0 B.6x+1=3y C.3m=2 D.2y2﹣4y+1=0【考点】一元一次方程的定义.【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程进行分析即可.【解答】解:A、不是一元一次方程,故此选项错误;B、不是一元一次方程,故此选项错误;C、是一元一次方程,故此选项正确;D、不是一元一次方程,故此选项错误;故选:C.8.轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A. +3=﹣3 B.﹣3=+3 C. +3= D.﹣3=【考点】由实际问题抽象出一元一次方程.【分析】首先理解题意找出题中存在的等量关系,再列出方程即可.【解答】解:设A、B两码头间距离为x,可得:,故选B二、填空题(本大题共6小题,每小题3分,满分18分)9.实数﹣5,﹣1,0,四个数中,最大的数是.【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣5<﹣1<0<,∴实数﹣5,﹣1,0,四个数中,最大的数是.故答案为:.10.若有理数a、b满足|a+5|+(b﹣4)2=0,则(a+b)10的值为1.【考点】代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】利用非负数的性质求出a与b的值,代入原式计算即可得到结果.【解答】解:∵|a+5|+(b﹣4)2=0,∴a+5=0,b﹣4=0,解得:a=﹣5,b=4,则原式=1,故答案为:111.某校图书室共藏书34500册,数34500用科学记数法表示为 3.45×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:34500用科学记数法表示为3.45×104,故答案为:3.45×104.12.若﹣3x m+2y2017与2x2016y n是同类项,则|m﹣n|的值是3.【考点】同类项;绝对值.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得关于m 和n的方程,解出可得出m和n的值,代入可得出代数式的值.【解答】解:∵﹣3x m+2y2017与2x2016y n是同类项,∴m+2=2016,n=2017,解得:m=2014,∴|m﹣n|=3.故答案为:3.13.56°24′=56.4°.【考点】度分秒的换算.【分析】把24′化成度,即可得出答案.【解答】解:24÷60=0.4,即56°24′=56.4°,故答案为:56.4.14.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是两点之间,线段最短.【考点】线段的性质:两点之间线段最短.【分析】根据线段的性质进行解答即可.【解答】解:某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是:两点之间,线段最短.故答案为:两点之间,线段最短.三、解答题(本大题共10小题,满分70分)15.计算:﹣12﹣(﹣)÷×[﹣2+(﹣3)2].【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:﹣12﹣(﹣)÷×[﹣2+(﹣3)2]=﹣1﹣(﹣)÷×[﹣2+9]=﹣1+×7=216.解方程:﹣=﹣1.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:2x﹣2﹣x﹣2=9x﹣3﹣6,移项合并得:﹣8x=﹣5,解得:x=.17.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD 的长度.【考点】比较线段的长短.【分析】根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD的长.【解答】解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.18.规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.【考点】代数式求值;有理数的混合运算.【分析】先根据新运算展开,化简后代入求出即可.【解答】解:(a2b)*(3ab+5a2b﹣4ab)=(a2b)﹣(3ab+5a2b﹣4ab)=a2b﹣3ab﹣5a2b+4ab=﹣4a2b+ab当a=5,b=3时,原式=﹣4×52×3+5×3=﹣285.19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.【考点】角平分线的定义.【分析】利用角平分线的定义得出∠AOD=∠BOD,∠BOE=∠COE,进而求出∠DOE的度数.【解答】解:∵OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,∴∠AOD=∠BOD,∠BOE=∠COE,∴∠DOE=∠AOC=65°.20.一张课桌包括1块桌面和4条桌腿,1m3木料可制作50块桌面或200条桌腿.现有5m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得的桌面和桌腿刚好配套?【考点】一元一次方程的应用.【分析】设用xm3木料制作桌面,则用(5﹣x)m3木料制作桌腿恰好配套,根据条件的数量关系建立方程求出其解即可.【解答】解:设用xm3木料制作桌面,由题意得4×50x=200(5﹣x),解得x=2.5,5﹣x=2.5m3,答:用2.5m3木料制作桌面,2.5m3木料制作桌腿,能使制作得的桌面和桌腿刚好配套.21.有理数a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣b|+|b+c|﹣|b|.【考点】整式的加减;数轴;绝对值.【分析】根据数轴先判断a+c、a﹣b、b+c、b与0的大小关系,然后即可进行化简【解答】解:由图可知:a+c<0,a﹣b>0,b+c<0,b<0,∴原式=﹣(a+c)﹣(a﹣b)﹣(b+c)+b=﹣a﹣c﹣a+b﹣b﹣c+b=﹣2a+b﹣2c22.已知a、b互为相反数,c、d互为倒数,|e|=5,求e2﹣+(cd)102﹣e 的值.【考点】代数式求值.【分析】根据相反数、绝对值、倒数得出a+b=0,cd=1,e=±5,再代入求出即可.【解答】解:∵a、b互为相反数,c、d互为倒数,|e|=5,∴a+b=0,cd=1,e=±5,当e=5时,原式=52﹣+1102﹣5=21;当e=﹣5时,原式=(﹣5)2﹣+1102﹣(﹣5)=31.23.入冬以来,某家电销售部以150元/台的价格购进一款烤火器,很快售完,又用相同的货款再次购进这款烤火器,因单价提高了30元,进货量比第一次少了10台.(1)家电销售部两次各购进烤火器多少台?(2)若以250元/台的售价卖完这两批烤火器,家电销售部共获利多少元?【考点】一元一次方程的应用.【分析】(1)设第一次购进烤火器x台,则第二次购进烤火器(x﹣10)台,根据第二次进货单价比第一次进货单价贵30元即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=销售第一批烤火器的利润+销售第二批烤火器的利润即可求出家电销售部共获利多少元.【解答】解:(1)设第一次购进烤火器x台,则第二次购进烤火器(x﹣10)台,根据题意得:150x=180(x﹣10),解得x=60,x﹣10=50.答:家电销售部第一次购进烤火器60台,第二次购进50台.(2)×60+×50=9500(元).答:以250元/台的售价卖完这两批烤火器,家电销售部共获利9500元.24.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102…(1)请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系?(2)利用上述规律,计算:13+23+33+43+ (1003)【考点】规律型:数字的变化类.【分析】(1)通过观察可知:右边幂的底数等于左边各个幂的底数的和;(2)利用规律即可解决问题.【解答】解:(1)右边幂的底数等于左边各个幂的底数的和;(2)13+23+33+43+…+1003=(1+2+3+…+100)2=[×100]2=50502.。

苏科版2016-2017学年七年级数学(上册)期末册试卷(有答案)

苏科版2016-2017学年七年级数学(上册)期末册试卷(有答案)

2016-2017学年七年级(上)期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2的相反数是()A.B.2 C.﹣D.﹣22.下列运算中,正确的是()A.3x+2x2=5x3B.2a2b﹣a2b=1 C.﹣ab﹣ab=﹣2ab D.7x+5x=12x23.下面是一个被墨水污染过的方程:2x﹣=3x+,答案显示此方程的解是x=﹣1,被墨水遮盖的是一个常数,则这个常数是()A.1 B.﹣1 C.﹣D.4.将矩形ABCD沿AE折叠,得到如图所示的图形,已知∠CED′=60°,则∠AED的大小是()A.60°B.50°C.75°D.55°5.下列说法中正确的有()①过两点有且只有一条直线.②连接两点的线段叫做两点间的距离.③两点之间,线段最短.④若AB=BC,则点B是AC的中点.⑤射线AC和射线CA是同一条射线.A.1个B.2个C.3个D.4个6.有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减价20%以96元出售,很快就卖掉了.则这次生意的盈亏情况为()A.赚6元B.不亏不赚C.亏4元D.亏24元7.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为()A.5个B.4个C.3个D.2个8.图(1)是一个正方体的侧面展开图,正方体从图(2)的位置依次翻到第1格、第2格、第3格,这时正方体朝上一面的字是()A.中B.国C.江D.苏二、填空题:(本大题共10小题,每小题3分,共30分)9.如图是我市十二月份某一天的天气预报,该天最高气温比最低气温高℃.10.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,500亿用科学记数法表示为.11.写出一个满组下列条件的一元一次方程:①某个未知数的系数是;②方程的解为3,则这样的方程可写为:.12.已知A、B、C三点在一条直线上,且线段AB=15cm,BC=5cm,则线段AC=.13.已知a﹣2b2=3,则2015﹣a+2b2的值是.14.如图,A,O,B三点在一条直线上,OM是∠AOC的平分线,ON是∠BOC的平分线.若∠1:∠2=1:2,则∠1=°.15.如图是一个运算程序的示意图,若开始输入x的值为81,则第2016次输出的结果为.16.如图,在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=3,且AO=2BO,则a+b的值为.17.如图,甲、乙两个长方形有一部分重叠在一起,甲长方形不重叠的部分是甲长方形面积的,乙长方形不重叠的部分是乙长方形面积的,且甲、乙两个长方形面积之和为100cm2,则重叠部分面积是cm2.18.生活中有人喜欢把请人传送的便条折成了如图丁形状,折叠过程如图所示(阴影部分表示纸条反面):假设折成图丁形状纸条宽xcm,并且一端超出P点2cm,另一端超出P 点3cm,请用含x的代数式表示信纸折成的长方形纸条长.三、解答题:(共96分)19.计算:(1)﹣(﹣3)+7﹣|﹣8|(2)﹣22+(﹣)×30﹣5÷(﹣).20.化简:(1)(﹣3x+y)+(4x﹣3y);(2).21.解下列方程:(1)4﹣3(2﹣x)=5x;(2)﹣1=.22.先化简,后求值.(1)化简:2(a2b+ab2)﹣(2ab2﹣1+a2b)﹣2;(2)当(2b﹣1)2+3|a+2|=0时,求上式的值.23.如图,是由一些棱长都为1的小正方体组合成的简单几何体.(1)该几何体的表面积(含下底面)为;(2)请画出这个几何体的三视图并用阴影表示出来;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加个小正方体.24.材料1:一般地,n个相同因数a相乘:记为a n.如23=8,此时,3叫做以2为底的8的对数,记为log28(即log28=3).那么,log39=,(log216)2+log381=.材料2:新规定一种运算法则:自然数1到n的连乘积用n!表示,例如:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…在这种规定下,请你解决下列问题:(1)计算5!=(2)已知x为整数,求出满足该等式的x:=1.25.古运河是扬州的母亲河,为打造古运河风光带,现有一段河道整治任务由A、B两工程队完成.A工程队单独整治该河道要16天才能完成;B工程队单独整治该河道要24天才能完成.现在A工程队单独做6天后,B工程队加入合做完成剩下的工程,问A工程队一共做了多少天?(1)根据题意,万颖、刘寅两名同学分别列出尚不完整的方程如下:万颖:=刘寅:=1根据万颖、刘寅两名同学所列的方程,请你分别指出未知数x、y表示的意义,然后在,然后在方框中补全万颖同学所列的方程:万颖:x表示,刘寅:y表示,万颖同学所列不完整的方程中的方框内该填.(2)求A工程队一共做了多少天.(写出完整的解答过程)26.如图,直线AB,CD相交于点O,OE平分∠AOD,OF⊥OC,(1)图中∠AOF的余角是(把符合条件的角都填出来);(2)如果∠AOC=160°,那么根据可得∠BOD=度;(3)如果∠1=32°,求∠2和∠3的度数.27.某人去水果批发市场采购苹果,他看中了A、B两家苹果、这两家苹果品质一样,零售价都为6元/千克,批发价各不相同.A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.B家的规定如下表:数量范围(千克)0~500 500以上~1500 1500以上~2500 2500以上价格(元)零售价的95% 零售价的85% 零售价的75% 零售价的70% (1)如果他批发600千克苹果,则他在A、B两家批发分别需要多少元?(2)如果他批发x千克苹果(1500<x<2000),请你分别用含x的代数式表示他在A、B 两家批发所需的费用;(3)现在他要批发1800千克苹果,你能帮助他选择在哪家批发更优惠吗?请说明理由.28.如图,已知数轴上有A、B、C三个点,它们表示的数分别是18,8,﹣10.(1)填空:AB=,BC=;(2)若点A以每秒1个单位长度的速度向右运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向左运动.试探索:BC﹣AB的值是否随着时间t的变化而改变?请说明理由;(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向左移动,且当点P到达C点时,点Q就停止移动.设点P移动的时间为t秒,试用含t的代数式表示P、Q 两点间的距离.参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2的相反数是()A.B.2 C.﹣D.﹣2【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣2的相反数是2,故选:B.【点评】本体考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.下列运算中,正确的是()A.3x+2x2=5x3B.2a2b﹣a2b=1 C.﹣ab﹣ab=﹣2ab D.7x+5x=12x2【考点】合并同类项.【专题】计算题.【分析】原式各项合并得到结果,即可做出判断.【解答】解:A、原式不能合并,错误;B、原式=a2b,错误;C、原式=﹣2ab,正确;D、原式=12x,错误.故选C.【点评】此题考查了合并同类项,熟练掌握合并同类项法则是解本题的关键.3.下面是一个被墨水污染过的方程:2x﹣=3x+,答案显示此方程的解是x=﹣1,被墨水遮盖的是一个常数,则这个常数是()A.1 B.﹣1 C.﹣D.【考点】一元一次方程的解.【分析】把方程的解x=﹣1代入方程进行计算即可求解.【解答】解:∵x=﹣1是方程的解,∴2×(﹣1)﹣=3×(﹣1)+,﹣2﹣=﹣3+,解得=.故选:D.【点评】本题考查了一元一次方程的解,方程的解就是使方程成立的未知数的值,代入进行计算即可求解,比较简单.4.将矩形ABCD沿AE折叠,得到如图所示的图形,已知∠CED′=60°,则∠AED的大小是()A.60°B.50°C.75°D.55°【考点】矩形的性质.【专题】计算题.【分析】根据折叠前后对应部分相等得∠AED′=∠AED,再由已知求解.【解答】解:∵∠AED′是△AED沿AE折叠而得,∴∠AED′=∠AED.又∵∠DEC=180°,即∠AED′+∠AED+∠CED′=180°,又∠CED′=60°,∴∠AED==60°.故选A.【点评】图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.5.下列说法中正确的有()①过两点有且只有一条直线.②连接两点的线段叫做两点间的距离.③两点之间,线段最短.④若AB=BC,则点B是AC的中点.⑤射线AC和射线CA是同一条射线.A.1个B.2个C.3个D.4个【考点】直线、射线、线段;线段的性质:两点之间线段最短;两点间的距离.【分析】利用直线的定义、以及线段的性质和两点之间距离意义,分别分析得出答案.【解答】解:①过两点有且只有一条直线,正确.②连接两点的线段长度叫做两点间的距离,故此选项错误.③两点之间,线段最短,正确.④若AB=BC,则点B是AC的中点,错误,A,B,C不一定在一条直线上.⑤射线AC和射线CA是同一条射线,错误.故选:B.【点评】此题主要考查了直线的定义、以及线段的性质和两点之间距离意义等知识,正确把握相关定义是解题关键.6.有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减价20%以96元出售,很快就卖掉了.则这次生意的盈亏情况为()A.赚6元B.不亏不赚C.亏4元D.亏24元【考点】一元一次方程的应用.【专题】销售问题.【分析】此题只要根据题意列式即可.“有一个商店把某件商品按进价加20%作为定价”中可设未知进价为x,即可得:定价=x(1+20%).“后来老板按定价减价20%以96元出售,”中又可得根据题意可得关于x的方程式,求解可得现价,比较可得答案.【解答】根据题意:设未知进价为x,可得:x(1+20%)(1﹣20%)=96解得:x=100;有96﹣100=﹣4,即亏了4元.故选C.【点评】此题关键是读懂题意,找出等量关系.7.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为()A.5个B.4个C.3个D.2个【考点】一元一次方程的应用.【专题】数形结合.【分析】设“●”“■”“▲”分别为x、y、z,由图列出方程组解答即可解决问题.【解答】解:设“●”“■”“▲”分别为x、y、z,由图可知,,解得x=2y,z=3y,所以x+z=2y+3y=5y,即“■”的个数为5,故选A.【点评】解决此题的关键列出方程组,求解时用其中的一个数表示其他两个数,从而使问题解决.8.图(1)是一个正方体的侧面展开图,正方体从图(2)的位置依次翻到第1格、第2格、第3格,这时正方体朝上一面的字是()A.中B.国C.江D.苏【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“中”与“苏”是相对面,“国”与“扬”是相对面,“江”与“州”是相对面,∵翻到第3格时,扬在下面,∴正方体朝上一面的字是国.故选B.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题:(本大题共10小题,每小题3分,共30分)9.如图是我市十二月份某一天的天气预报,该天最高气温比最低气温高7℃.【考点】有理数的减法.【专题】图表型.【分析】用最高气温减去最低气温列出算式,然后在依据有理数的减法法则计算即可.【解答】解:5﹣(﹣2)=5+2=7℃.故答案为:7.【点评】本题主要考查的是有理数的减法,掌握减法法则是解题的关键.10.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,500亿用科学记数法表示为5×1010.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:500亿=5×1010.故答案为:5×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.写出一个满组下列条件的一元一次方程:①某个未知数的系数是;②方程的解为3,则这样的方程可写为:x﹣=0.【考点】一元一次方程的解.【专题】开放型.【分析】一元一次方程的一般形式为ax+b=0,再由条件确定答案即可.【解答】解:根据题意得,符合条件的一元一次方程为x﹣=0.故答案为:x﹣=0.【点评】本题是一道开放性的题目,考查了一元一次方程的解,是基础知识要熟练掌握.12.已知A、B、C三点在一条直线上,且线段AB=15cm,BC=5cm,则线段AC=20cm 或10cm.【考点】两点间的距离.【分析】分点C在线段AB的延长线上和点C在线段AB上两种情况,结合图形计算即可.【解答】解:当点C在线段AB的延长线上时,AC=AB+BC=20cm,当点C在线段AB上时,AC=AB﹣BC=10cm,故答案为:20cm或10cm.【点评】本题考查的是两点间的距离的计算,正确画出图形、灵活运用数形结合思想是解题的关键.13.已知a﹣2b2=3,则2015﹣a+2b2的值是2012.【考点】代数式求值.【分析】原式可变形为2015﹣(a﹣2b2),将a﹣2b2=3代入其中,即可得出结论.【解答】解:∵a﹣2b2=3,∴2015﹣a+2b2=2015﹣(a﹣2b2)=2015﹣3=2012.故答案为:2012.【点评】本题考查了代数式求值,解题的关键是将原式变形为2015﹣(a﹣2b2).14.如图,A,O,B三点在一条直线上,OM是∠AOC的平分线,ON是∠BOC的平分线.若∠1:∠2=1:2,则∠1=30°.【考点】角平分线的定义.【分析】根据角平分线定义求出∠1+∠2=90°,根据∠1:∠2=1:2即可求出答案.【解答】解:∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠1=∠BOC,∠2=∠AOC,∵∠AOC+∠BOC=180°,∴∠1+∠2=90°,∵∠1:∠2=1:2,∴∠1=30°,故答案为:30.【点评】本题考查了角平分线定义和角的有关计算的应用,解此题的关键是求出∠1+∠2=90°,难度不是很大.15.如图是一个运算程序的示意图,若开始输入x的值为81,则第2016次输出的结果为1.【考点】代数式求值.【专题】图表型;规律型.【分析】由81=34可知,第4次输出结果为1,根据运算程序可知,第5次输出结果为3,第6次输出结果为1,后面两次输出结果一循环,从而可得知2016次输出结果为1.【解答】解:∵81=34,∴第四次输出结果为1,根据运算程序可知,第5次输出为3,第6次输出为1,结果两次一循环.∵(2016﹣4)÷2=2012÷2=1006,∴第1006次输出的结果为1.故答案为:1.【点评】本题考查了代数式求值以及数的变化规律,解题的关键是找到从第4次开始,输出结果两次一循环.16.如图,在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=3,且AO=2BO,则a+b的值为﹣1.【考点】两点间的距离;数轴.【分析】根据已知条件可以得到a<0<b.然后通过取绝对值,根据两点间的距离定义知b ﹣a=3,a=﹣2b,则易求b=1.所以a+b=﹣2b+b=﹣b=﹣1.【解答】解:如图,a<0<b.∵|a﹣b|=3,且AO=2BO,∴b﹣a=3,①a=﹣2b,②由②代入①得,b﹣(﹣2b)=3,解得b=1,∴a+b=﹣2b+b=﹣b=﹣1.故答案是:﹣1.【点评】本题考查了数轴、绝对值以及两点间的距离.根据已知条件得出a<0<b是解题的关键.17.如图,甲、乙两个长方形有一部分重叠在一起,甲长方形不重叠的部分是甲长方形面积的,乙长方形不重叠的部分是乙长方形面积的,且甲、乙两个长方形面积之和为100cm2,则重叠部分面积是10cm2.【考点】一元一次方程的应用.【专题】几何图形问题.【分析】设甲长方形的面积为xcm2,乙长方形的面积为(100﹣x)cm2,根据甲、乙两个长方形重合面积相等建立方程求出其解即可.【解答】解:设甲长方形的面积为xcm2,乙长方形的面积为(100﹣x)cm2,由题意,得(1﹣)x=(1﹣)(100﹣x),解得:x=40.∴重叠部分面积是:40×(1﹣)=10cm2.故答案为:10【点评】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时根据甲、乙两个长方形重合面积相等建立方程是关键.18.生活中有人喜欢把请人传送的便条折成了如图丁形状,折叠过程如图所示(阴影部分表示纸条反面):假设折成图丁形状纸条宽xcm,并且一端超出P点2cm,另一端超出P 点3cm,请用含x的代数式表示信纸折成的长方形纸条长(5x+5)cm.【考点】翻折变换(折叠问题).【分析】根据折叠知,纸条长至少是宽的5倍,进一步求得纸条长.【解答】解:根据翻折变换规律得出:设折成图丁形状纸条宽xcm,根据题意得出:长方形纸条长为:(5x+5)cm.故答案为:(5x+5)cm.【点评】此题主要考查了翻折变换的性质,此题是一道动手操作题,要通过实际动手操作了解纸条的长和宽之间的关系.三、解答题:(共96分)19.计算:(1)﹣(﹣3)+7﹣|﹣8|(2)﹣22+(﹣)×30﹣5÷(﹣).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=3+7﹣8=2;(2)原式=﹣4+5﹣12+15=14.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.化简:(1)(﹣3x+y)+(4x﹣3y);(2).【考点】整式的加减.【分析】(1)先去括号,然后合并同类项求解;(2)直接合并同类项求解.【解答】解:(1)原式=﹣3x+y+4x﹣3y=x﹣2y;(2)原式=﹣mn2+m2n.【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.21.解下列方程:(1)4﹣3(2﹣x)=5x;(2)﹣1=.【考点】解一元一次方程.【专题】计算题.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:4﹣6+3x=5x,移项合并得:2x=2,解得:x=1;(2)去分母得:3x+3﹣6=4﹣6x,移项合并得:9x=7,解得:x=.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.22.先化简,后求值.(1)化简:2(a2b+ab2)﹣(2ab2﹣1+a2b)﹣2;(2)当(2b﹣1)2+3|a+2|=0时,求上式的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】(1)本题应对整式进行去括号,合并同类项,将整式化为最简式.(2)根据非负数的性质,可求出a、b的值,再将a、b的值代入上式的最简式进行求值即可.【解答】解:(1)原式=2a2b+2ab2﹣2ab2+1﹣a2b﹣2=a2b﹣1;(2)∵(2b﹣1)2+3|a+2|=0,又(2b﹣1)2≥0,3|a+2|≥0,∴(2b﹣1)2=0,|a+2|=0,∴b=,a=﹣2,将b=,a=﹣2代入a2b﹣1,得(﹣2)2×﹣1=1.【点评】本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.23.如图,是由一些棱长都为1的小正方体组合成的简单几何体.(1)该几何体的表面积(含下底面)为28;(2)请画出这个几何体的三视图并用阴影表示出来;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加2个小正方体.【考点】作图-三视图;几何体的表面积.【分析】(1)有顺序的计算上下面,左右面,前后面的表面积之和即可;(2)从正面看得到从左往右3列正方形的个数依次为1,3,2;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;(3)根据保持这个几何体的主视图和俯视图不变,可知添加小正方体是中间1列前面的2个,依此即可求解.【解答】解:(1)(4×2+6×2+4×2)×(1×1)=(8+12+8)×1=28×1=28故该几何体的表面积(含下底面)为2.(2)如图所示:(3)由分析可知,最多可以再添加2个小正方体.故答案为:28;2.【点评】考查了作图﹣三视图,用到的知识点为:计算几何体的表面积应有顺序的分为相对的面进行计算不易出差错;三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.24.材料1:一般地,n个相同因数a相乘:记为a n.如23=8,此时,3叫做以2为底的8的对数,记为log28(即log28=3).那么,log39=2,(log216)2+log381=17.材料2:新规定一种运算法则:自然数1到n的连乘积用n!表示,例如:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…在这种规定下,请你解决下列问题:(1)计算5!=120(2)已知x为整数,求出满足该等式的x:=1.【考点】有理数的混合运算.【专题】计算题;新定义.【分析】材料1:各式利用题中的新定义计算即可得到结果;材料2:(1)原式利用新定义计算即可得到结果;(2)已知等式利用题中的新定义化简,求出解即可得到x的值.【解答】解:材料1:log39=log332=2;(log216)2+log381=16+=17;材料2:(1)5!=5×4×3×2×1=120;(2)已知等式化简得:=1,即|x﹣1|=6,解得:x=7或﹣5.故答案为:2;17;(1)120【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.古运河是扬州的母亲河,为打造古运河风光带,现有一段河道整治任务由A、B两工程队完成.A工程队单独整治该河道要16天才能完成;B工程队单独整治该河道要24天才能完成.现在A工程队单独做6天后,B工程队加入合做完成剩下的工程,问A工程队一共做了多少天?(1)根据题意,万颖、刘寅两名同学分别列出尚不完整的方程如下:万颖:=1刘寅:=1根据万颖、刘寅两名同学所列的方程,请你分别指出未知数x、y表示的意义,然后在,然后在方框中补全万颖同学所列的方程:万颖:x表示A、B合做的天数,刘寅:y表示A工程队一共做的天数,万颖同学所列不完整的方程中的方框内该填1.(2)求A工程队一共做了多少天.根据所列方程,可得x表示的是:A、B合做的天数;y 表示的是:A工程队一共做的天数,工作总量为“1”;(2)按照两位同学的思路求解即可.【解答】解:(1)x表示A、B合做的天数(或者B完成的天数);y表示A工程队一共做的天数;万颖同学所列不完整的方程中的方框内该填:1;(2)设A工程队一共做的天数为y天,由题意得:=1,解得:y=12答:A工程队一共做的天数为12天.【点评】本题考查了一元一次方程的应用,解答本题的关键是表示出两工程队的工作效率,根据工作总量为单位1,建立方程.26.如图,直线AB,CD相交于点O,OE平分∠AOD,OF⊥OC,(1)图中∠AOF的余角是∠BOC、∠AOD(把符合条件的角都填出来);(2)如果∠AOC=160°,那么根据对顶角相等可得∠BOD=160度;(3)如果∠1=32°,求∠2和∠3的度数.【考点】对顶角、邻补角;余角和补角.【分析】(1)由垂线的定义和角的互余关系即可得出结果;(2)由对顶角相等即可得出结果;(3)由角平分线的定义求出∠AOD,由对顶角相等得出∠2的度数,再由角的互余关系即可求出∠3的度数.【解答】解:(1)∵OF⊥OC,∴∠COF=∠DOF=90°,∴∠AOF+∠BOC=90°,∠AOF+∠AOD=90°,∴∠AOF的余角是∠BOC、∠AOD;故答案为:∠BOC、∠AOD;(2)∵∠AOC=160°,∴∠BOD=∠AOC=160°;故答案为:对顶角相等;160;(3)∵OE平分∠AOD,∴∠AOD=2∠1=64°,∴∠2=∠AOD=64°,∠3=90°﹣64°=26°.【点评】本题考查了角平分线的定义、对顶角相等的性质、互为余角关系;熟练掌握对顶角相等得性质和角平分线的定义是解决问题的关键.27.某人去水果批发市场采购苹果,他看中了A、B两家苹果、这两家苹果品质一样,零售价都为6元/千克,批发价各不相同.A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.B家的规定如下表:数量范围(千克)0~500 500以上~1500 1500以上~2500 2500以上价格(元)零售价的95% 零售价的85% 零售价的75% 零售价的70% (1)如果他批发600千克苹果,则他在A、B两家批发分别需要多少元?(2)如果他批发x千克苹果(1500<x<2000),请你分别用含x的代数式表示他在A、B 两家批发所需的费用;(3)现在他要批发1800千克苹果,你能帮助他选择在哪家批发更优惠吗?请说明理由.【考点】列代数式;代数式求值.【专题】阅读型.【分析】由题意列出他到两家批发苹果所用钱数与批发量的关系式,把600千克代入公式即可计算,把1800千克代入即可比较哪家便宜.【解答】解:(1)A家:600×6×92%=3312元,B家:500×6×95%+100×6×85%=3360元;各(1分),共(2分)(2)A家:6x×90%=,B家:500×6×95%+100×6×85%+(x﹣1500)×6×75%=;各(2分),共(4分)(3)A:=9720元,B:==9300元.故选择B家更优惠.各(3分),共(6分)【点评】解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.28.如图,已知数轴上有A、B、C三个点,它们表示的数分别是18,8,﹣10.(1)填空:AB=10,BC=18;(2)若点A以每秒1个单位长度的速度向右运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向左运动.试探索:BC﹣AB的值是否随着时间t的变化而改变?请说明理由;(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向左移动,且当点P到达C点时,点Q就停止移动.设点P移动的时间为t秒,试用含t的代数式表示P、Q 两点间的距离.【考点】两点间的距离;数轴.【专题】几何动点问题.【分析】(1)根据数轴上点的坐标求出线段的长;(2)用t表示出AB、BC,计算即可;(3)分0<t≤10、10<t≤15和15<t≤28三种情况,结合数轴计算即可.【解答】解:(1)AB=18﹣8=10,BC=8﹣(﹣10)=18,故答案为:10;18;(2)不变,由题意得,AB=10+t+2t=10+3t,BC=18﹣2t+5t=18+3t,BC﹣AB=8,故BC﹣AB的值不随着时间t的变化而改变;(3)当0<t≤10时,PQ=t,当10<t≤15时,PQ=t﹣3(t﹣10)=30﹣2t,当15<t≤28时,PQ=3(t﹣10)﹣t=2t﹣30,故P、Q两点间的距离为t或30﹣2t或2t﹣30.【点评】本题考查的是两点间的距离的计算、数轴的认识以及几何动点问题,正确认识数轴、根据点的坐标求出数轴上两点间的距离是解题的关键,注意数形结合思想在解题中的应用.。

苏科版2016-2017学年度上学期七年级数学初一上册期末考试模拟试题 含答案

苏科版2016-2017学年度上学期七年级数学初一上册期末考试模拟试题 含答案

2016-2017学年第一学期期末模拟考试考试七年级数学试卷考试时间:100分钟卷面总分:100分一.选择题(每题3分,共24分)1.-的相反数是()A.B.﹣ C.3 D.﹣32.有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是()A.a+b<0 B.a﹣b<0 C.a•b>0 D.>03.下列计算正确的是()A.a3+a3=a6 B.2x+3y=5xy C.a3•a=a4D.(2a2)3=6a54.若代数式4x﹣5与的值相等,则x的值是()A.1 B.C.D.25.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价20%,现售价为a元,则原售价为()A.(a-20%)元B.(a+20%)元C.a元D.a元6.下列四个图形中是正方体的平面展开图的是()A.B.C. D.7.如图,点B,O,D在同一直线上,若∠1=15°,∠2=105°,则∠AOC的度数是()A.75°B.90°C.105°D.125°8.如图三角形的顶点落在折叠后的四边形内部,则∠γ与∠α+∠β之间的关系是()A.∠γ=∠α+∠β B.2∠γ=∠α+∠βC.3∠γ=2∠α+∠β D.3∠γ=2(∠α+∠β)第 7 题第 8 题二.填空题(每题2分,共20分)9.某种零件,标明要求是φ20±0.02 mm(φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm,该零件(填“合格”或“不合格”).10.写出一个在三视图中俯视图与主视图完全相同的几何体.11.若a﹣2b=3,则9﹣2a+4b的值为.12.若a x=2,a y=5,则a x+y= .13.一个角的余角比它的补角的一半少20°,则这个角为.14.某程序如图,当输入x=5时,输出的值为15.如图,点O是直线AB上一点,OD平分∠AOC,OE平分∠BOC,若∠COE等于64°,则∠AOD等于度.16.对于实数a,b,c,d,规定一种数的运算:=ad﹣bc,那么当=10时,x= .17.已知A、B、C三点在同一条直线上,M、N分别为线段AB、BC的中点,且AB=60,BC=40,则MN的长为.18.在同一平面内有2002条直线a1,a2,…,a2002,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,那么a1与a2002的位置关系是.三.解答题(8题,共56分)19.(4分)计算:|﹣9|÷3+(﹣)×12﹣(﹣2)2.20.(每题4分,共8分)解方程:(1)3(20﹣y)=6y﹣4(y﹣11);(2).21.(5分)先化简再求值:7a2b+(﹣4a2b+5ab2)﹣2(2a2b﹣3ab2),其中(a+2)2+|b ﹣|=0.22.(7分)如图,是由一些棱长都为1的小正方体组合成的简单几何体.(1)该几何体的表面积(含下底面)为;(2)请画出这个几何体的三视图并用阴影表示出来;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加个小正方体.23.(6分)已知,n为正整数,且x2n=7,求(3x3n)2﹣4(x2)2n的值.24.(6分)如图,已知M是线段AB的中点,N在AB上,MN=AM,若MN=2m,求AB的长.25.(10分)【背景资料】一棉花种植区的农民研制出采摘棉花的单人便携式采棉机(如图),采摘效率高,能耗低,绿色环保.经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元.雇人采摘棉花,按每采摘1公斤棉花a元的标准支付雇工工资,雇工每天工作8小时.【问题解决】(1)一个雇工手工采摘棉花,一天能采摘多少公斤?(2)一个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求a的值;(3)在(2)的前提下,种植棉花的专业户张家和王家均雇人采摘棉花,王家雇用的人数是张家的2倍.张家雇人手工采摘,王家所雇的人中有的人自带采棉机采摘,的人手工采摘.两家采摘完毕,采摘的天数刚好都是8天,张家付给雇工工钱总额为14400元.王家这次采摘棉花的总重量是多少?26.(10分)已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当∠AOC=40°,点C、E、F在直线AB的同侧(如图1所示)时,求∠BOE和∠COF 的度数.(2)当∠AOC=40°,点C与点E、F在直线AB的两旁(如图2所示)时,求∠BOE和∠COF的度数.(3)当∠AOC=n°,请选择图(1)或图(2)一种情况计算,∠BOE=∠COF= (用含n的式子表示)(4)根据以上计算猜想∠BOE与∠COF的数量关系(直接写出结果).答案一.选择题1-5 ABCBC 6-8 BBB 二.填空题(9).不合格 (10).正方形或球 (11).3 (12).10 (13).40° (14).-10 (15).26 (16) .-1 (17).10或50 (18).垂直 三.解答题(19). -3 (20)①y=516 ②x=221(21).-a 2b+11ab 2 -215(22).①28 ②③ 2 (24).AB=10 cm (25)①80公斤 ②a=1.5③设张家雇人x 人,则王家雇人2x 人,其中机械采摘的有人,手工采摘的有人,∵张家付给雇工工钱总额为14400元∴80×1.5×x×8=14400解得x=15王家这次采摘棉花的总重量是:8×35××8+8×10××8=35200(公斤).(26).①∠BOE=50°∠COF=25°②∠BOE=130°∠COF=65°1n°③图1 ∠BOE=90°- n°∠COF=45°-21n°(选一图2 ∠BOE= 90°+ n°∠COF=45°+2种即可)1∠BOE④∠COF=2。

(2021年整理)2016-2017苏教版七年级数学上册期末试卷

(2021年整理)2016-2017苏教版七年级数学上册期末试卷

(完整)2016-2017苏教版七年级数学上册期末试卷编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2016-2017苏教版七年级数学上册期末试卷)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2016-2017苏教版七年级数学上册期末试卷的全部内容。

2016年秋学期期末考试试卷初一数学2017。

1(考试时间:100分钟,试卷满分:110分)一、选择题(每题3分,共30分.)1.-6的相反数是( )A.6 B.-6 C.错误!D.-错误!2.计算错误!b的正确结果是()A.ab2B.-a错误!C.错误!b D.-错误!b3.单项式错误!b的系数和次数分别是()A.2,2 B.2,3 C.3,2 D.4,24.已知x=2是方程2x-5=x+m的解,则m的值是( )A.1 B.-1 C.3 D.-35.下列去括号正确的是( )A.a+(b-c)=a+b+c B.a-(b-c)=a-b-cC.a-(b-c)=a-b+c D.a+(b-c)=a-b+c6.下列叙述,其中不正确...的是( )A.两点确定一条直线(第7题图)B.同角(或等角)的余角相等C.过一点有且只有一条直线与已知直线平行D.两点之间的所有连线中,线段最短7.如图,射线OC在∠AOB的内部,下列给出的条件中不能..得出OC是∠AOB的平分线的是( )A.∠AOC=∠BOC B.∠AOC+∠BOC=∠AOBC.∠AOB=2∠AOC D.错误!∠AOB8.如图,小明用6个相同的小正方体搭成的立体图形研究几何(第8题图)体的三视图的变化情况,若由图1变到图2,不改变的是( )A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图9.在同一平面内,已知线段AB的长为10厘米,点A、B到直线l的距离分别为6厘米和4厘米,则符合条件的直线l的条数为( )A.2条B.3条C.4条D.无数条10.把所有正偶数从小到大排列,并按如下规律分组:(2),(4,6),(8,10,12),(14,16,18,20),…,现有等式错误!=(i,j)表示正偶数m是第i组第j个数(从左往右数).如错误!=(1,1),错误!=(3,2),错误!=(4,3),则错误!可表示为()A.(45,19)B.(45,20)C.(44,19)D.(44,20)二、填空题(每空2分,共16分.)11.-3的倒数是.12.多项式2a3+b2-ab3的次数是.13.2017无锡马拉松赛将于2017年3月19日上午7:30发枪,本次比赛设全程马拉松、半程马拉松和迷你马拉松三个项目,其中迷你马拉松需跑3500米,3500用科学记数法表示为.14.某楼盘为促销打算降价销售,原价a元/平方米的套房,按八五折销售,人们购买该楼房每平方米可节省元.15.已知∠α=34°,则∠α的补角为°.16.用一张长方形纸条折成如图所示图形,如果∠1=130°,那么∠2=°.(第16题图) (第17题图)17.如图,一个长方体的表面展开图中四边形ABCD是正方形,则根据图中数据可得原长方体的体积是cm3.18.小明、小华、小敏三人分别拿出相同数量的钱,合伙订购某种笔记本若干本,笔记本买来后,小明、小华分别比小敏多拿了5本和7本,最后结算时,三人要求按所得笔记本的实际数量付钱,多退少补,结果小明要付给小敏3元,那么,小华应付给小敏元.三、解答题(共64分.)19.(本题满分8分)计算:(1)(-2)2-3×(-13)-|-5|;错误!×[2-(-3)].20.(本题满分8分)解方程:(1)2(x+8)=3x-3;错误!.21.(本题满分6分)先化简,再求值:错误!,其中a=-2,b=3.22.(本题满分8分)如图,已知数轴上A、B两点所表示的数分别为-2和8.(1)求线段AB的长;(2)已知点P为数轴上点A左侧的一点,且M为PA的中点,N为PB的中点.请你画出图形,观察MN的长度是否发生改变?若不变,求出线段MN的长;若改变,请说明理由.23.(本题满分8分)如图,直线AB、CD相交于点O,∠BOD=45°,按下列要求画图并回答问题:(1)利用三角尺,在直线AB上方画射线OE,使OE⊥AB;(2)利用圆规,分别在射线OA、OE上截取线段OM、ON,使OM=ON,连接MN;(3)利用量角器,画∠AOD的平分线OF交MN于点F;(4)直接写出∠COF = °.(第23题图)24.(本题满分8分)如图所示,直线AB 、CD 相交于点O ,OM ⊥AB .(1)若∠1=∠2,判断ON 与CD 的位置关系,并说明理由;(2)若∠1=14∠BOC ,求∠MOD 的度数.(第24题图) AB CM N DO 12 A BO DC25.(本题满分8分)2017年元旦期间,某商场打出促销广告,如下表所示.小欣妈妈两次购物分别用了134元和490元.(1)小欣妈妈这两次购物时,所购物品的原价分别为多少?(2)若小欣妈妈将两次购买的物品一次全部买清,则她是更节省还是更浪费?说说你的理由.26.(本题满分10分)已知数轴上有A ,B ,C 三点,分别代表-30,-10,10,两只电子蚂蚁甲,乙分别从A ,C 两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.(1)甲,乙在数轴上的哪个点相遇? (2)多少秒后,甲到A ,B ,C 的距离和为48个单位?(3)在甲到A 、B 、C 的距离和为48个单位时,若甲调头并保持速度不变,则甲,乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.备用图 -30 C B A -10 0 10甲 乙 -30C B A -10 0 10 甲 乙初一数学期末考试参考答案2017.1.(考试时间:100分钟,试卷满分:110分)一、选择题(每题3分,共30分.)1.A2.D3.B4.D5.C6.C7.B8.D9.10.A二、填空题(每空2分,共16分.)11.-错误! 12.413.3.5×103 14.0。

2016-2017年七年级上学期期末考试数学试题及答案

2016-2017年七年级上学期期末考试数学试题及答案

2015-2016学年第一学期七年级期末测试数学试题(本试题共4页,满分为120分,考试时间为90分钟)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的绝对值是()1A.6B.﹣6C.±6D.62.新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为()A.0.109×105B.1.09×104C.1.09×103D.109×1023.计算23-的结果是()A.9B.9-C.6D.6-4.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“生”相对应的面上的汉字是()A.数B.学C.活D.的5.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是()A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况6.下面合并同类项正确的是( )A .32523x x x =+B .1222=-b a b aC .0=--ab ab D.022=+-xy xy7.如图,已知点O 在直线AB 上,CO ⊥DO 于点O ,若∠1=145°,则∠3的度数为( )A .35°B .45°C .55°D .65°8. 下列说法中错误的是( )A .y x 232-的系数是32- B .0是单项式 C .xy 32的次数是1 D .x -是一次单项式 9. 方程x =+-32▲,▲处被墨水盖住了,已知方程的解x=2,那么▲处的数字是( ) A .2 B .3 C .4 D .610. 如果A 、B 、C 三点在同一直线上,且线段AB=6cm ,BC=4cm ,若M,N 分别为AB ,BC 的中点,那么M,N 两点之间的距离为( )A .5cmB .1cmC .5或1cmD .无法确定11.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(x ﹣1)+3x=13B .2(x+1)+3x=13C .2x+3(x+1)=13D .2x+3(x ﹣1)=1312.从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形.则m 、n 的值分别为( )7题图A .4,3B .3,3C .3,4D .4,413.钟表在8:25时,时针与分针的夹角是( )度.A .101.5B .102.5C .120D .12514.某商品的标价为132元,若以9折出售仍可获利10%,则此商品的进价为( )A .88元B .98元C .108元D .118元15.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n (n 是正整数)的结果为( )1+8=? 1+8+16=? 1+8+16+24=?A.(2n+1)2B.(2n-1)2C.(n+2)2D.n 2二、填空题(本大题共6个小题,每小题3分,共18分.只要求填写最后结果,把答案填在题中的横线上.)16.比较大小:30.15° 30°15′(用>、=、<填空)17.若代数式123--x a 和243+x a 是同类项,则x=_______. 18.若()521||=--m x m 是一元一次方程,则m= .19.如图,将一副三角尺的直角顶点重合,摆放在桌面上,若∠BOC=35°, 则∠AOD= °.20.已知3x+1和2x+4互为相反数,则x= .21.小明与小刚规定了一种新运算△:,则a△b = b a 23-.小明计算出2△5= -4,请你帮小刚计算2△(-5)=________________.19题图三、解答题:(本大题共7小题,共57分.解答要写出必要的文字说明、证明过程或演算步骤。

江苏省徐州市七年级上学期数学期末考试试卷

江苏省徐州市七年级上学期数学期末考试试卷

江苏省徐州市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)与原点距离是2.5个单位长度的点所表示的有理数是()A . 2.5B . -2.5C . ±2.5D . 这个数无法确定2. (2分)下列叙述,其中不正确的是()A . 两点确定一条直线B . 过一点有且只有一条直线与已知直线平行C . 同角(或等角)的余角相等D . 两点之间的所有连线中,线段最短3. (2分) (2020七上·浦北期末) 已知,则的值是()A .B .C .D .4. (2分)下列各式中去括号正确的是()A . a2-(2a-b+c)=a2-2a-b+cB . -(x-y)+(xy-1)=-x-y+xy-1C . a-(3b-2c)=a-3b-2cD . 9y2-[x-(5z+4)]=9y2-x+5z+45. (2分)检查4个篮球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如表:则质量较好的篮球的编号是()篮球的编号1234与标准质量的差(克)+4+5﹣5﹣3A . 1号B . 2号C . 3号D . 4号6. (2分)下列运用等式的性质对等式进行变形,正确的是()A . 由=0,得x=4B . 由2x+1=4,得x=5C . 由﹣2x=6,得x=3D . 由8x=5x+3,得x=17. (2分)某商店经销一批衬衣,进价为每件m元,零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,那么调价后每件衬衣的零售价是()A . m(1+a%)(1-b%)元B . m•a%(1-b%)元C . m(1+a%b%)元D . m(1+a%)b%元8. (2分)﹣3的绝对值是()A . 3B . -3C .D .9. (2分)如图,∠AOB=120°,OC是∠AOB内部任意一条射线,OD、OE分别是∠AOC、∠B0C的角平分线,下列叙述正确的是()A . ∠DOE的度数不能确定B . ∠AOD=∠EOCC . ∠AOD+∠BOE=60°D . ∠BOE=2∠COD10. (2分)某校随机抽取200名学生,对他们喜欢的图书类型进行问卷调查,统计结果如图.根据图中信息,估计该校2000名学生中喜欢文学类书籍的人数是()A . 800B . 600C . 400D . 20011. (2分)关于两点之间的距离,下列说法中不正确的是()A . 连接两点的线段就是两点之间的距离B . 如果线段AB=AC,那么点A与点B的距离等于点A与点C的距离C . 连接两点的线段的长度,是两点间的距离D . 两点之间的距离是连接两点的所有线的长度中,长度最短的12. (2分)古尔邦节,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm,每人离圆桌的距离均为10cm,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x,根据题意,可列方程()A . =B . =C . 2π(60+10)×6=2π(60+π)×8D . 2π(60-x)×8=2π(60+x)×6二、填空题 (共6题;共7分)13. (1分) (2019七上·施秉月考) 计算-9+6=________.14. (2分) (2019七上·海港期中) 上午十点半,时针与分针夹角的度数________°15. (1分)改革开放以来,由于各阶段发展重心不同,北京的需求结构经历了消费投资交替主导、投资消费双轮驱动到消费主导的变化.到2007年,北京消费率超过投资率,标志着北京经济增长由投资消费双轮驱动向消费趋于主导过渡.如图是北京1978﹣2017年投资率与消费率统计图.根据统计图回答:________年,北京消费率与投资率相同;从2000年以后,北京消费率逐年上升的时间段是________.16. (1分) (2019八上·锦州期末) 在一次爱心捐款中,某班有40名学生拿出自己的零花钱,有捐5元、10元、20元、50元的.右图反映了不同捐款的人数比例,那么这个班的学生平均每人捐款________元.17. (1分)(2017·吴中模拟) 若2a﹣3b2=5,则6﹣2a+3b2=________.18. (1分)妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否适合,于是妈妈取了一点品尝,这应该属于________ .(填普查或抽样调查)三、解答题 (共8题;共52分)19. (10分) (2017七·南通期末) 先化简,再求值:已知,其中,.20. (5分)(2017七上·拱墅期中)(1);(2).21. (2分) (2016七上·大悟期中) 若a,b互为相反数,c,d互为倒数,|m|=2,求a﹣(﹣b)﹣的值.22. (15分)(2019·合肥模拟) 为了丰富学生的校园文化生活,学校开设了书法、体育、美术音乐共四门选修课程.为了合理的分配教室,教务处问卷调查了部分学生,并将了解的情况绘制成如下不完整的统计图:(1)参与问卷调查的共有________人,其中选修美术的有________人,选修体育的学生人数对应扇形统计图中圆心角的度数为________.(2)补全条形统计图;(3)若每人必须选修一门课程,且只能选一门,已知小红没有选体育,小刚没有选修书法和美术,则他们选修同一门课程的概率是多少,列树状图或列表法求解.23. (5分) 3个工程队合修一条公路,第一工程队修全路的,第二工程队修剩下的,第三工程队修了20千米把这条公路修完.这条公路共有多少千米?24. (2分) (2019七上·绍兴月考) 先阅读下列材料,再解决问题:学习数轴之后,有同学发现在数轴上到两点之间距离相等的点,可以用表示这两点表示的数来确定.如:(1)到表示数4和数10距离相等的点表示的数是7,有这样的关系7= (4+10); (2)到表示数和数距离相等的点表示的数是,有这样的关系 = .解决问题:根据上述规律完成下列各题:(1)到表示数50和数150距离相等的点表示的数是________(2)到表示数和数距离相等的点表示的数是________;(3)到表示数 12和数 26距离相等的点表示的数是________;(4)到表示数a和数b距离相等的点表示的数是________25. (2分) (2019七上·江津期中) 数轴上两点之间的距离等于相应两数差的绝对值,即:点A、B表示的数分别为a、b,这两点之间的距离为AB= ,如:表示数1与5的两点之间的距离可表示为,表示数-2与3的两点之间的距离可表示为 .(借助数轴,画出图形,写出过程)(1)数轴上表示2和7的两点之间的距离是________,数轴上表示3和-6的两点之间的距离是________;(2)数轴上表示x和-2的两点M和N之间的距离是________,如果 |MN|,则x为________;(3)当式子: |x+2|+|x-3|+|x-4| 取最小值时,x的值为________,最小值为________.26. (11分) (2018七下·韶关期末) 在平面直角坐标系中,A(﹣2,0),C(2,2),过C作CB⊥x轴于B.(1)如图1,△ABC的面积是________;(2)如图1,在y轴上找一点P,使得△ABP的面积与△ABC的面积相等,请直接写出P点坐标:________;(3)如图2,若过B作BD∥AC交y轴于D,则∠BAC+∠ODB的度数为________度;(4)如图3,BD∥AC,若AE、DE分别平分∠CAB,∠ODB,求∠AED的度数.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共52分)19-1、20-1、20-2、21-1、22-1、22-2、22-3、23-1、24-1、24-2、24-3、24-4、25-1、25-2、25-3、26-1、26-2、26-3、26-4、。

江苏省徐州市七年级上学期期末数学试卷

江苏省徐州市七年级上学期期末数学试卷

江苏省徐州市七年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019七上·松滋期中) ﹣6的相反数是()A . 6B . 1C . 0D . ﹣62. (2分)如图,由几个小正方体组成的立体图形的左视图是()A .B .C .D .3. (2分)据宜宾市旅游局公布的数据,今年“五一”小长假期间,全市实现旅游总收入330000000元.将330000000用科学记数法表示为()A . 3.3×108B . 3.3×109C . 3.3×107D . 0.33×10104. (2分)(2018·泰安) 如图,的半径为2,圆心的坐标为,点是上的任意一点,,且,与轴分别交于,两点,若点,点关于原点对称,则的最小值为()A . 3B . 4C . 6D . 85. (2分)如图由于8个大小一样的小长方形组成的大长方形的周长为46cm,则大长方形的面积是()A . 120cmB . 160cmC . 180cmD . 200cm6. (2分) (2019七下·宜昌期末) 下列调查中,调查方法选择正确的是()A . 为了解北京电视台“法治进行时”栏目的收视率,选择全面调查B . 为了解某景区全年的游客流量,选择抽样调查C . 为了解一批灯泡的使用寿命,选择全面调查D . 为保证“神舟六号”载人飞船成功发射,对重要零部件的检查选择抽样调查7. (2分)下列四个图形中,能用∠1、∠AOB、∠O三种方法表示同一个角的图形是()A .B .C .D .8. (2分)下列方程中,变形正确的是()A . 由4+x=8,得x=8+4B . 由6x+5=5x得6x-5x=5C . 由4x-2=3x+8得4x-3x=8+2D . 由-1+2x=3x得2x+1=3x9. (2分)(2017·惠山模拟) 某区新教师招聘中,七位评委独立给出分数,得到一列数.若去掉一个最高分和一个最低分,得到一列新数,那么这两列数的相关统计量中,一定相等的是()A . 中位数B . 众数C . 方差D . 平均数10. (2分) (2019七下·莘县期中) 若ax=3,b2x=2,则(a2)x-(b3x)2的值为()A . 0B . 1C . 3D . 511. (2分)(2017·合肥模拟) 下列说法正确的是()A . 没有最小的正数B . ﹣a表示负数C . 符号相反两个数互为相反数D . 一个数的绝对值一定是正数12. (2分) (2020八下·长沙期中) 如图,在□ABCD中, BE平分∠ABC,若∠D=64°,则∠AEB等于()A . 64°B . 32°C . 116°D . 30°二、填空题 (共4题;共4分)13. (1分) (2018七上·蔡甸月考) 一种零件的直径尺寸在图纸上是30±0.03(单位:mm),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过________mm.14. (1分) (2020七上·庐阳期中) 已知在数轴上的对应点如图所示,则________15. (1分)如图,一个正方体,6个面上分别写着6个连续的整数,且每个相对面上的两个数之和相等,如图所示,你能看到的数为9、12、13,则六个整数之和为________.16. (1分)如图,在R t△ABC中,∠C=90°,BC=a0 ,∠A=θ(其中a0 ,θ为常数),把边长依次为a1 , a2 , a3 ,…,a10的10个正方形依次放入Rt△ABC中,第一个正方形CM1P1N1的顶点分别放在Rt△ABC 的各边上;第二个正方形M1M2P2N2的顶点分别放在Rt△AP1M1的各边上,…,其他正方形依次放入,则第10个正方形的边长a10=________.(用a0 ,θ表示)三、解答题 (共5题;共58分)17. (11分) (2019七上·吉林月考) 已知、为有理数,现规定一种新运算,满足.(1) ________;(2)求的值.(3)新运算是否满足加法交换律,若满足请说明理由:若不满足,请举出一个反例.18. (11分)下图是2014年10月份的日历,像图中那样,用一个圈竖着圈住3个数.(1)若被圈住的三个数的和为42,则这三个数分别为:________;(2)小军说:“任意圈出一竖列上相邻的三个数中,最大数的5倍与最小数的3倍的差是奇数”你认为他说的正确吗?为什么?(3)在任意圈出一竖列上相邻的三个数中,若d为最大数减去其他两数的和,则d与这三个数中的中间那个数的和是否与所圈的数值无关?为什么?19. (10分) (2016七下·藁城开学考) 解下列方程:(1) 10﹣4(x+3)=2(x﹣1)(2) + =1.20. (11分)(2012·镇江) 某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是________;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.21. (15分) (2018七上·延边期末) 如图,平面上有四个点A,B,C,D,根据下列语句画图:(1)画线段AC、BD交于E点;(2)作射线BC;(3)取一点P,使点P既在直线AB上又在直线CD上.四、列方程解应用题 (共3题;共20分)22. (5分)超市销售一种饮料,平均每天可售出100箱,每箱利润120元.为了扩大销售,增加利润,超市准备适当降价.据测算,若每箱降价1元,每天可多售出2箱.如果要使每天销售饮料获利14000元,问每箱应降价多少元?同时为了减少库存,那应降价多少?23. (5分)列方程解应用题:甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等。

2016-2017学年江苏省徐州市七年级上学期数学期末试卷带答案

2016-2017学年江苏省徐州市七年级上学期数学期末试卷带答案

2016-2017学年江苏省徐州市七年级(上)期末数学试卷一、选择题(每小题3分,共24分)1.(3分)的相反数是()A.﹣2 B.﹣ C.D.22.(3分)下列算式中,运算结果为负数的是()A.﹣(﹣3)B.|﹣3|C.(﹣3)2D.(﹣3)33.(3分)下列运算正确的是()A.2a﹣a=2 B.2a+b=2abC.﹣a2b+2a2b=a2b D.3a2+2a2=5a44.(3分)如图,若图形A经过平移可以与图形B、C拼成一个长方形,则可能的平移方式是()A.向右平移4格,再向下平移5格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移2格D.向右平移6格,再向下平移2格5.(3分)将一个无盖正方体纸盒展开,展开图不可能是()A.B.C.D.6.(3分)如图,BC=AB,D为AC的中点,若DC=3,则AB的长是()A.3 B.4 C.5 D.67.(3分)已知射线OC在∠AOB的内部,下列关系式①∠AOC=∠BOC;②∠AOC+∠BOC=∠AOB;③∠AOB=2∠AOC;④∠BOC=∠AOB.其中,能说明OC为∠AOB的平分线的有()A.1个 B.2个 C.3个 D.4个8.(3分)观察下列图形,照此规律,第5个图形中白色三角形的个数是()A.81 B.121 C.161 D.201二、填空题(本题共8小题,每小题3分,共24分)9.(3分)计算:﹣3﹣1=.10.(3分)多项式3a2+2b3的次数是.11.(3分)2017年春运期间,徐州铁路两站预计发送旅客2430000人次,该数据用科学记数法可表示为人次.12.(3分)若m+2n=1,则代数式3﹣m﹣2n的值是.13.(3分)数学课上,小丽把一副三角板按如图所示的位置摆放(其中一个三角板的直角顶点在另一个三角板的直角边上),如果∠α=28°,那么∠β=°.14.(3分)建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一条线,沿这条线就可以砌出直的墙了,其中的数学道理是.15.(3分)当x=﹣2时,代数式kx+5的值为﹣1,则k的值为.16.(3分)若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为.三、解答题(本题共9小题,共72分)17.(10分)计算(1)|﹣4|+23+3×(﹣5)(2)﹣12016﹣×[4﹣(﹣3)2].18.(6分)先化简,再求值:5(3a2b﹣ab2)﹣4(3a2b﹣ab2),其中a=2,b=﹣3.19.(8分)解下列方程(1)4﹣x=3(2﹣x)(2)=2﹣.20.(6分)如图是由6个棱长都为1cm的小正方体搭成的几何体.(1)该几何体的主视图如图所示,请在下面方格纸中高分别画出它的左视图和俯视图;(2)该几何体的表面积为cm2.21.(8分)为实施“学讲计划”,某班学生计划分成若干个学习小组,若每组5人,则多出4人,若每组6人,则有一组只有2人,该班共有多少名学生?22.(8分)如图,在方格纸中,点A、B、C是三个格点(网格线的交点叫做格点)(1)过点C画AB的垂线,垂足为D;(2)将点D沿BC翻折,得到点E,作直线CE;(3)直线CE与直线AB的位置关系是;(4)判断:∠ACB∠ACE.(填“>”、“<”或“=”23.(8分)如图,直线AB与CD相交于O,OE是∠AOC的平分线,OF⊥CD,OG⊥OE,∠BOD=52°.(1)求∠AOF的度数;(2)求∠EOF与∠BOG是否相等?请说明理由.24.(8分)某市出租车收费标准如下表所示,根据此收费标准,解决下列问题:.行驶里程收费标准不超出3km的部分起步价7元,燃油附加费1元超出3km不超出6km的部分 1.6元/km超出6km的部分 2.4元/km(1)若行驶路程为5km,则打车费用为元;(2)若行驶路程为x(km)(x>6),则打车费用为元;(用含x的代数式表示)(3)当打车费用为27.2元时,行驶路程为多少千米?25.(10分)点A、B、C、D在数轴上的位置如图1所示,已知AB=3,BC=2,CD=4.(1)若点C为原点,则点A表示的数是;(2)若点A、B、C、D分别表示有理数a,b,c,d,则|a﹣c|+|d﹣b|﹣|a﹣d|=;(3)如图2,点P、Q分别从A、D两点同时出发,点P沿线段AB以每秒1个单位长度的速度向右运动,到达B点后立即按原速折返;点Q沿线段CD以每秒2个单位长度的速度向左运动,到达C点后立即按原速折返.当P、Q中的某点回到出发点时,两点同时停止运动.①当点停止运动时,求点P、Q之间的距离;②设运动时间为t(单位:秒),则t为何值时,PQ=5?2016-2017学年江苏省徐州市七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)的相反数是()A.﹣2 B.﹣ C.D.2【解答】解:的相反数是﹣.故选:B.2.(3分)下列算式中,运算结果为负数的是()A.﹣(﹣3)B.|﹣3|C.(﹣3)2D.(﹣3)3【解答】解:由于﹣(﹣3)=3,故选项A不为负数;由于|﹣3|=3,故选项B不为负数;由于(﹣3)2=9,故选项C不为负数;由于(﹣3)3=﹣27,故选项D为负数;故选:D.3.(3分)下列运算正确的是()A.2a﹣a=2 B.2a+b=2abC.﹣a2b+2a2b=a2b D.3a2+2a2=5a4【解答】解:A.2a﹣a=a,所以此选项错误;B.2a+b不能合并,所以此选项错误;C.﹣a2b+2a2b=a2b,所以此选项正确;D.3a2+2a2=5a2,所以此选项错误,故选:C.4.(3分)如图,若图形A经过平移可以与图形B、C拼成一个长方形,则可能的平移方式是()A.向右平移4格,再向下平移5格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移2格D.向右平移6格,再向下平移2格【解答】解:图形A经过平移可以与图形B、C拼成一个长方形,需将A向右平移4格,再向下平移5格,故选:A.5.(3分)将一个无盖正方体纸盒展开,展开图不可能是()A.B.C.D.【解答】解:由正方体的展开图的特征可知,将一个无盖正方体纸盒展开,展开图不可能是.故选:D.6.(3分)如图,BC=AB,D为AC的中点,若DC=3,则AB的长是()A.3 B.4 C.5 D.6【解答】解:∵D为AC的中点,DC=3,∴AC=2DC=2×3=6,∵BC=AB,∴AB=AC=×6=4,故选:B.7.(3分)已知射线OC在∠AOB的内部,下列关系式①∠AOC=∠BOC;②∠AOC+∠BOC=∠AOB;③∠AOB=2∠AOC;④∠BOC=∠AOB.其中,能说明OC为∠AOB的平分线的有()A.1个 B.2个 C.3个 D.4个【解答】解:①∵∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确;②∵∠AOC+∠BOC=∠AOB,∴假如∠AOC=30°,∠BOC=40°,∠AOB=70°,符合上式,但是OC不是∠AOB的角平分线,错误;③∵∠AOB=2∠BOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确;④∵∠AOC=∠AOB,∴∠AOB=2∠AOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确.故选:C.8.(3分)观察下列图形,照此规律,第5个图形中白色三角形的个数是()A.81 B.121 C.161 D.201【解答】解:∵第一个图形中白色三角形的个数是1,第二个图形中白色三角形的个数是1+1×3=4,第三个图形中白色三角形的个数是1+4×3=13,∴第四个图形中白色三角形的个数是1+13×3=40,第五个图形中白色三角形的个数是1+40×3=121,故选:B.二、填空题(本题共8小题,每小题3分,共24分)9.(3分)计算:﹣3﹣1=﹣4.【解答】解:﹣3﹣1=﹣3+(﹣1)=﹣(3+1)=﹣4.故答案为:﹣4.10.(3分)多项式3a2+2b3的次数是3.【解答】解:多项式3a2+2b3的次数是3,故答案为3.11.(3分)2017年春运期间,徐州铁路两站预计发送旅客2430000人次,该数据用科学记数法可表示为 2.43×106人次.【解答】解:2430000=2.43×106.故答案为:2.43×106.12.(3分)若m+2n=1,则代数式3﹣m﹣2n的值是2.【解答】解:∵m+2n=1,∴3﹣m﹣2n=3﹣(m+2n)=3﹣1=2.故答案为:2.13.(3分)数学课上,小丽把一副三角板按如图所示的位置摆放(其中一个三角板的直角顶点在另一个三角板的直角边上),如果∠α=28°,那么∠β=62°.【解答】解:∵平角=180°,直角=90°,∴α+β=180°﹣90°=90°,∵∠a=28°,∴∠β=90°﹣28°=62°,故答案为:62.14.(3分)建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一条线,沿这条线就可以砌出直的墙了,其中的数学道理是两点确定一条直线.【解答】解:建筑工人在砌墙时,经常在两个墙角的位置分别立一根标志杆,在两根标志杆之间拉一根线,沿着这条线就可以砌出直的墙.则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.15.(3分)当x=﹣2时,代数式kx+5的值为﹣1,则k的值为3.【解答】解:当x=﹣2时,∴﹣2k+5=﹣1∴k=3故答案为:316.(3分)若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为0或±1.【解答】解:依题意得:a2≤1且a是整数,解得a=0或a=±1.故答案是:0或±1.三、解答题(本题共9小题,共72分)17.(10分)计算(1)|﹣4|+23+3×(﹣5)(2)﹣12016﹣×[4﹣(﹣3)2].【解答】解:(1)|﹣4|+23+3×(﹣5)=4+8﹣15=﹣3(2)﹣12016﹣×[4﹣(﹣3)2]=﹣1﹣×[4﹣9]=﹣1+1=018.(6分)先化简,再求值:5(3a2b﹣ab2)﹣4(3a2b﹣ab2),其中a=2,b=﹣3.【解答】解:原式=15a2b﹣5ab2﹣12a2b+4ab2=3a2b﹣ab2,当a=2,b=﹣3时,原式=﹣36﹣18=﹣54.19.(8分)解下列方程(1)4﹣x=3(2﹣x)(2)=2﹣.【解答】解:(1)去括号得:4﹣x=6﹣3x,移项合并得:2x=2,解得:x=1;(2)去分母得:5x﹣5=20﹣2x﹣4,移项合并得:7x=21,解得:x=3.20.(6分)如图是由6个棱长都为1cm的小正方体搭成的几何体.(1)该几何体的主视图如图所示,请在下面方格纸中高分别画出它的左视图和俯视图;(2)该几何体的表面积为26cm2.【解答】解:(1)如图所示:(2)4×2+4×2+5×2=26(cm2).故该几何体的表面积为26cm2.故答案为:26.21.(8分)为实施“学讲计划”,某班学生计划分成若干个学习小组,若每组5人,则多出4人,若每组6人,则有一组只有2人,该班共有多少名学生?【解答】解:设该班共有x名学生,根据题意得:=,解得:x=44.答:该班共有44名学生.22.(8分)如图,在方格纸中,点A、B、C是三个格点(网格线的交点叫做格点)(1)过点C画AB的垂线,垂足为D;(2)将点D沿BC翻折,得到点E,作直线CE;(3)直线CE与直线AB的位置关系是平行;(4)判断:∠ACB>∠ACE.(填“>”、“<”或“=”【解答】解:(1)如图所示:点D即为所求;(2)如图所示:直线EC,即为所求;(3)直线CE与直线AB的位置关系是:平行;故答案为:平行;(4)如图所示:∵∠ECA=∠A,AB>BC,∴∠ACB>∠A,∴∠ACB>∠ACE.故答案为:>.23.(8分)如图,直线AB与CD相交于O,OE是∠AOC的平分线,OF⊥CD,OG⊥OE,∠BOD=52°.(1)求∠AOF的度数;(2)求∠EOF与∠BOG是否相等?请说明理由.【解答】解:(1)∵OF⊥CD,∴∠COF=90°,又∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD=52°,∴∠AOF=∠COF﹣∠AOC=90°﹣52°=38°;(2)相等,理由:∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD=52°,∵OE是∠AOC的平分线,∴∠AOE=∠AOC=26°,又∵OG⊥OE,∴∠EOG=90°,∴∠BOG=180°﹣∠AOE﹣∠EOG=64°,而∠EOF=∠AOF+∠AOE=38°+26°=64°,∴∠EOF=∠BOG.24.(8分)某市出租车收费标准如下表所示,根据此收费标准,解决下列问题:.行驶里程收费标准不超出3km的部分起步价7元,燃油附加费1元超出3km不超出6km的部分 1.6元/km超出6km的部分 2.4元/km(1)若行驶路程为5km,则打车费用为11.2元;(2)若行驶路程为x(km)(x>6),则打车费用为(2.4x﹣1.6)元;(用含x的代数式表示)(3)当打车费用为27.2元时,行驶路程为多少千米?【解答】解:(1)支付:车费:7+1+(5﹣3)×1.6=11.2(元);(2)7+1+1.6×3+2.4(x﹣6)=8+4.8+2.4x﹣14.4=2.4x﹣1.6(元).答:打车费用为(2.4x﹣1.6)元他应该支付62元;(3)由题意得2.4x﹣1.6=27.2,解得:x=12.答:行驶路程为12千米.故答案为:11.2;(2.4x﹣1.6).25.(10分)点A、B、C、D在数轴上的位置如图1所示,已知AB=3,BC=2,CD=4.(1)若点C为原点,则点A表示的数是﹣5;(2)若点A、B、C、D分别表示有理数a,b,c,d,则|a﹣c|+|d﹣b|﹣|a﹣d|= 2;(3)如图2,点P、Q分别从A、D两点同时出发,点P沿线段AB以每秒1个单位长度的速度向右运动,到达B点后立即按原速折返;点Q沿线段CD以每秒2个单位长度的速度向左运动,到达C点后立即按原速折返.当P、Q中的某点回到出发点时,两点同时停止运动.①当点停止运动时,求点P、Q之间的距离;②设运动时间为t(单位:秒),则t为何值时,PQ=5?【解答】解:(1)若点C为原点,则点B表示﹣2,点A表示﹣5,故答案为:﹣5;(2)由题意知a<c,d>b,a<d,则|a﹣c|+|d﹣b|﹣|a﹣d|=c﹣a+d﹣b﹣(d﹣a)=c﹣a+d﹣b﹣d+a=c﹣b,∵BC=2,即c﹣b=2,故答案为:2;(3)①由题意知点P回到起点需要6秒,点Q回到起点需要4秒,∴当t=4时,运动停止,此时BP=1,BC=2,CQ=4,∴PQ=7;②、分以下两种情况:1、当点Q未到达点C时,可得方程:t+2t+5=3+2+4,解得t=;2、当点P由点B折返时,可得方程(t﹣3)+2(t﹣2)+2=5,解得:t=;综上,当t=或t=时,PQ=5.附赠:数学考试技巧一、心理准备细心+认真=成功!1、知己知彼,百战百胜。

江苏省徐州市七年级上学期数学期末考试试卷

江苏省徐州市七年级上学期数学期末考试试卷

江苏省徐州市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(共10小题) (共10题;共20分)1. (2分)正方体的截面不可能是()A . 四边形B . 五边形C . 六边形D . 七边形2. (2分)如图1是一个小正方体的侧面展开图,小正方体从如图2所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上面的字是()A . 和B . 谐C . 社D . 会3. (2分) (2016七下·玉州期末) 下列调查中,适合用全面调查的是()A . 调査某批次汽车的抗撞击能力B . 鞋厂检测生产鞋底能承受的弯折次数C . 了解某班学生的身髙情况D . 调査市场上某种贪品的色素含量是否符备国家标准4. (2分) (2016七上·武清期中) 下列计算正确的是()A . ﹣2(x+3y)=﹣2x+3yB . ﹣2(x+3y)=﹣2x﹣3yC . ﹣2(x+3y)=﹣2x+6yD . ﹣2(x+3y)=﹣2x﹣6y5. (2分) (2020七上·慈利期末) 下列说法正确的个数是()①延长射线AB到C;②两点确定一条直线;③两点之间,线段最短;④同角的余角相等;A . 1个B . 2个C . 3个D . 4个6. (2分) (2019七下·襄汾期末) 下列方程的解法中,错误的个数是()①方程2x-1=x+1移项,得3x=0②方程 =1去分母,得x-1=3=x=4③方程1- 去分母,得4-x-2=2(x-1)④方程去分母,得2x-2+10-5x=1A . 1B . 2C . 3D . 47. (2分)(2020·玉林) 如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个()A . 等腰直角三角形B . 等腰三角形C . 直角三角形D . 等边三角形8. (2分)在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A . 1.94×1010B . 0.194×1010C . 19.4×109D . 1.94×1099. (2分) (2019七上·巴东期中) 某商店举办促销活动,促销的方法是将原价x元的衣服以元出售,则下列说法中,能正确表达该商店促销方法的是()A . 原价降价10元后再打8折B . 原价打8折后再降价10元C . 原价降价10元后再打4折D . 原价打4折后再降价10元10. (2分)要配制浓度为5%的盐水溶液,需在浓度为30%的50kg盐水中加水()A . 250kgB . 200kgC . 150kgD . 100kg二、填空题(共4小题) (共4题;共4分)11. (1分) (2016七上·嵊州期末) 若a2﹣3b=6,则4(a2﹣3b)2﹣2a2+6b+4=________.12. (1分) (2017七上·深圳期末) 线段AB=8㎝,M 是 AB 的中点,点 C 在AM 上,AC=3㎝,N 为 BC 的中点,则 MN= ________㎝.13. (1分) (2020七下·南昌期末) 一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第36秒时跳蚤所在位置的坐标是________.14. (1分)某品牌电脑进价为5 000元,按照定价的9折销售时,获利760元,则此电脑的定价为________元.三、解答题(共9小题) (共9题;共79分)15. (10分) (2017七上·潮阳月考) 计算:16. (11分)(1)解方程:﹣1=(2)若关于x的方程3x﹣7=2x+a的解与方程 x+5=6的解相同,求a的值.17. (5分) (2017七上·弥勒期末) 如图,平面上有四个点A、B、C、D,根据下列语句画图①画直线AB、CD交于E点;②②画线段AC、BD交于点F;③③连接AD,并将其反向延长;④作射线BC.18. (10分) (2018七上·辛集期末) 在课间活动中,小英、小丽和小敏在操场上画出A,B两个区域,一起玩投包游戏,沙包落在A区域所得分值与落在B区域所得分值不同,当每人各投沙包四次时,其落点和四次总分如图所示.(1)沙包落在A区域和B区域所得分值分别是多少?(2)求出小敏的四次总分.19. (5分)一次远足,小明与小聪分别从A,B两个景点出发,沿同一条公路相向而行.他们出发的时间是上午8:00,小聪行走的速度是小明的, A,B两个景点之间的路程是9千米.设小明行走的速度为x千米/小时.(1)经过t小时,在小明和小聪相遇前,他们相距多少千米?(2)如果小聪行走的速度是4千米/小时,那么到几时几分,小明与小聪相距3千米?20. (8分)(2020·梁子湖模拟) 九年级复学复课后,某校为了了解学生的疫情防控意识情况,在全校九年级随机抽取部分学生进行问卷调查.根据调查结果,把学生的防控意识分成“A.很强”、“B.较强”、“C.一般”、“D.淡薄”四个层次,将调查的结果绘制如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)本次共调查了________名学生,并将条形统计图补充完整;(2)如果把疫情防控意识“很强或较强”视为合格,该校九年级共有600名学生,请你估计合格的学生约有多少名?(3)在“A.很强”的3人中,有2名女生,1名男生,老师想从这3人中任选两人做宣传员,请用列表或画树状图法求出被选中的两人恰好是一男生一女生的概率.21. (10分) (2016七上·连城期末) 如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)求∠BOD的度数;(2)试判断∠BOE和∠COE有怎样的数量关系,说说你的理由.22. (15分) (2019七上·湖北月考) 有理数x , y在数轴上对应点如图所示:(1)在数轴上表示﹣x , |y|;(2)试把x , y , 0,﹣x , |y|这五个数从小到大用“<”号连接,(3)化简:|x+y|﹣|y﹣x|+|y|.23. (5分)(2018·龙湖模拟) 某镇枇杷园的枇杷除了运往市区销售外,还可以让市民亲自去园内采摘购买,已知今年3月份该枇杷在市区、园内的销售价格分别为6元/千克、4元/千克,一共销售了3000千克,总销售额为16000元,3月份该枇杷在市区、园内各销售了多少千克?参考答案一、选择题(共10小题) (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题(共4小题) (共4题;共4分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:三、解答题(共9小题) (共9题;共79分)答案:15-1、考点:解析:答案:16-1、答案:16-2、考点:解析:答案:17-1、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、考点:解析:。

2016年江苏省七年级上学期数学期末试卷(附答案)

2016年江苏省七年级上学期数学期末试卷(附答案)

2016年江苏省七年级上学期数学期末试卷一、选择题:(本题共10小题,每小题3分,共30分)1.一个数的相反数是2,这个数是……………………………………………………( ) A.21 B.—21C.2D.—22.数轴上一点从原点正方向移动3个单位,再向负方向移动5个单位,此时这点表示的数为……( )A. 8B. -2C. -5D. 23.一条船在灯塔的北偏东30°方向,那么灯塔在船的什么方向…………………( )A .南偏西30°B .西偏南40°C .南偏西60°D .北偏东30°4.若2357x x ++=,则代数式23911x x +-的值为……………………………………( )A .5B .-6C .7D .-55.(2013•梧州一模)如图,E 点是AD 延长线上一点,下列条件中,不能判定直线BC ∥AD 的是……( )A . ∠3=∠4 ;B . ∠C=∠CDE ;C . ∠1=∠2 ;D . ∠C+∠ADC=180°;6.(2014•绥化)如图是一个由多个相同小正方体搭成的几何体的俯视图,图中所标数字为该位置小正方体的个数,则这个几何体的左视图是………………………………( )7.若3x a b -与12y ab -的和是一个单项式,则2008x y -的值为………………( ) A.1 B.-3 C.-1 D.08.(2014•济宁)把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是……( ) A . 两点确定一条直线; B .垂线段最短;C . 两点之间线段最短;D .三角形两边之和大于第三边;9.(2013•济宁)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多……………………………………( )A .60元 ;B .80元;C .120元;D .180元;10.在数轴上,点A (表示整数a )在原点O 的左侧,点B (表示整数b )在原点O 的右侧,若a b -=2013,且AO =2BO ,则a +b 的值为 ……………………………………( )第5题 第15题A .-1242;B .1242 ;C .671 ;D .-671;二、填空题:(本题共8小题,每小题3分,共24分)11.绝对值大于1而小于10的所有整数的和是 。

徐州市初一上学期数学期末试卷带答案

徐州市初一上学期数学期末试卷带答案

徐州市初一上学期数学期末试卷带答案一、选择题1.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .2.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .123.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .34.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+=D .6352x x --=5.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( ) A .1601603045x x-= B .1601601452x x -= C .1601601542x x -= D .1601603045x x+= 6.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( )A .(-1)n -1x 2n -1B .(-1)n x 2n -1C .(-1)n -1x 2n +1D .(-1)n x 2n +17.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .6cm B .3cm C .3cm 或6cm D .4cm 8.若-4x 2y 和-23x m y n 是同类项,则m ,n 的值分别是( ) A .m=2,n=1 B .m=2,n=0 C .m=4,n=1 D .m=4,n=0 9.单项式﹣6ab 的系数与次数分别为( ) A .6,1B .﹣6,1C .6,2D .﹣6,210.下列各组数中,互为相反数的是( ) A .2与12B .2(1)-与1C .2与-2D .-1与21-11.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( ) A .0mB .0.8mC .0.8m -D .0.5m -12.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .A .2B .3C .4D .6二、填空题13.已知x =3是方程(1)21343x m x -++=的解,则m 的值为_____. 14.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.15.36.35︒=__________.(用度、分、秒表示)16.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.17.因式分解:32x xy -= ▲ .18.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____.19.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.20.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____.21.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).22.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.23.单项式()26a bc -的系数为______,次数为______.24.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)三、压轴题25.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ? 26.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a =①______(用含m 、n 的代数式表示); ②当n a 6188=时,求123n1111a a a a +++⋯⋯+的值.27.已知多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b .(1)设a 与b 分别对应数轴上的点A 、点B ,请直接写出a = ,b = ,并在数轴上确定点A 、点B 的位置;(2)在(1)的条件下,点P 以每秒2个单位长度的速度从点A 向B 运动,运动时间为t 秒:①若PA ﹣PB =6,求t 的值,并写出此时点P 所表示的数;②若点P 从点A 出发,到达点B 后再以相同的速度返回点A ,在返回过程中,求当OP =3时,t 为何值?28.如图,己知数轴上点A 表示的数为8,B 是数轴上一点,且AB=22.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒. (1)写出数轴上点B 表示的数____,点P 表示的数____(用含t 的代数式表示); (2)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问 秒时P 、Q 之间的距离恰好等于2(直接写出答案)(4)思考在点P 的运动过程中,若M 为AP 的中点,N 为PB 的中点.线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.29.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。

江苏省徐州市七年级上学期期末数学试卷

江苏省徐州市七年级上学期期末数学试卷

江苏省徐州市七年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择題 (共10题;共20分)1. (2分) (2017七上·平邑期末) 下列说法:①如果两个数的和为1,则这两个数互为倒数;②如果两个数积为0,则至少有一个数为0;③绝对值是本身的有理数只有0;④倒数是本身的数是-1,0,1。

其中错误的个数是()A . 0个B . 1个C . 2个D . 3个2. (2分)(2017·恩施) 中国讲究五谷丰登,六畜兴旺,如图是一个正方体展开图,图中的六个正方形内分别标有六畜:“猪”、“牛”、“羊”、“马”、“鸡”、“狗”.将其围成一个正方体后,则与“牛”相对的是()A . 羊B . 马C . 鸡D . 狗3. (2分) (2015七上·东城期末) 近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.预计到2015年底,中国高速铁路营运里程将达到18000公里.将18000用科学记数法表示应为()A . 18×103B . 1.8×103C . 1.8×104D . 1.8×1054. (2分) (2018七上·阜宁期末) 如果一个角的度数为13°14',那么它的余角的度数为()A . 76°46'B . 76°86'C . 86°56'D . 166°46'5. (2分)(2019·盐城) 如图是由6个小正方体搭成的物体,该所示物体的主视图是()A .B .C .D .6. (2分)下列各式中运算正确的是()A . 3x+2x2=5x3B . 2a2b﹣a2b=1C . ﹣ab﹣ab=0D . ﹣x2y+yx2=07. (2分)平面内三条两两相交的直线()A . 有一个交点B . 有三个交点C . 不能有两个交点D . 以上答案都不对8. (2分)下列说法错误的是()A . 若,则B . 若,则C . 若,则D . 若,则9. (2分)差是-7.2,被减数是0.8,减数是()A . -8B . 8C . 6.4D . -6.410. (2分)甲、乙、丙三辆卡车运货的吨数比是6:7:4.5,已知甲车比丙车多运货物12吨,则三辆卡车共运货物()A . 120吨B . 130吨C . 140吨D . 150吨二、填空题 (共5题;共6分)11. (1分) (2017七上·孝南期中) 单项式﹣3πx3yzn是六次单项式,则n=________.12. (1分) (2018七上·崆峒期末) 如果实数a,b满足(a-3)2+|b+1|=0,那么 =________。

徐州市初一上学期数学期末试卷带答案

徐州市初一上学期数学期末试卷带答案

徐州市初一上学期数学期末试卷带答案一、选择题1.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q 2.如果一个角的补角是130°,那么这个角的余角的度数是( )A .30°B .40°C .50°D .90°3.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .124.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103B .3.84×104C .3.84×105D .3.84×1065.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是( ) A .2B .8C .6D .06.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( ) A .①④ B .②③ C .③D .④7.方程3x ﹣1=0的解是( )A .x =﹣3B .x =3C .x =﹣13D .x =138.若-4x 2y 和-23x m y n 是同类项,则m ,n 的值分别是( )A .m=2,n=1B .m=2,n=0C .m=4,n=1D .m=4,n=09.下列式子中,是一元一次方程的是( ) A .3x+1=4x B .x+2>1 C .x 2-9=0 D .2x -3y=0 10.点()5,3M 在第( )象限. A .第一象限 B .第二象限C .第三象限D .第四象限11.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨. A .415010⨯B .51510⨯C .70.1510⨯D .61.510⨯12.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( ) A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b ==二、填空题13.若|x |=3,|y |=2,则|x +y |=_____.14.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____. 15.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.16.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______.17.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.18.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.19.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________; 20.数字9 600 000用科学记数法表示为 . 21.4是_____的算术平方根.22.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____.23.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___. 24.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .三、解答题25.计算:()1()20230---+ ()2()()2242314-÷--⨯-+26.(1)先化简,再求值:当(x ﹣2)2+|y+1|=0时,求代数式4(12x 2﹣3xy ﹣y 2)﹣3(x 2﹣7xy ﹣2y 2)的值;(2)关于x 的代数式(x 2+2x )﹣[kx 2﹣(3x 2﹣2x+1)]的值与x 无关,求k 的值. 27.解方程(1)3x-1=3-x, (2)3y 23y123+--= 28.计算:|﹣2|+(﹣1)2019+19×(﹣3)229.已知线段m、n.(1)尺规作图:作线段AB,满足AB=m+n(保留作图痕迹,不用写作法);(2)在(1)的条件下,点O是AB的中点,点C在线段AB上,且满足AC=m,当m=5,n=3时,求线段OC的长.30.计算:(1)(﹣16+34﹣512)×36(2)(﹣3)2124÷×(﹣23)+4+22×8()3-四、压轴题31.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.32.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A,B在数轴上分别对应的数为a,b(a<b),则AB的长度可以表示为AB=b-a.请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A点,再向右移动3个单位长度到达B点,然后向右移动5个单位长度到达C点.(1)请你在图②的数轴上表示出A,B,C三点的位置.(2)若点A以每秒1个单位长度的速度向左移动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t秒.①当t=2时,求AB和AC的长度;②试探究:在移动过程中,3AC-4AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.33.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点P与N之间,∴这四个数中绝对值最小的数对应的点是点N.故选B.2.B解析:B【解析】【分析】直接利用互补的定义得出这个角的度数,进而利用互余的定义得出答案.【详解】解:∵一个角的补角是130︒,∴这个角为:50︒,∴这个角的余角的度数是:40︒.【点睛】此题主要考查了余角和补角,正确把握相关定义是解题关键.3.C解析:C 【解析】 【分析】利用max}2,x x 的定义分情况讨论即可求解.【详解】解:当max }21,2x x =时,x ≥012,解得:x =14>x >x 2,符合题意;②x 2=12,解得:x x >x 2,不合题意;③x =12x >x 2,不合题意;故只有x =14时,max }21,2x x =. 故选:C . 【点睛】此题主要考查了新定义,正确理解题意分类讨论是解题关键.4.C解析:C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】试题分析:384 000=3.84×105. 故选C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.B解析:B 【解析】由31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…得出末尾数字以2,8,6,0四个数字不断循环出现,由此用2018除以4看得出的余数确定个位数字即可.【详解】∵2018÷4=504…2,∴32018﹣1的个位数字是8,故选B.【点睛】本题考查了尾数的特征,关键是能根据题意得出个位数字循环的规律是解决问题的关键.6.A解析:A【解析】【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确;②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误;③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确.故选A.【点睛】本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.7.D解析:D【解析】【分析】方程移项,把x系数化为1,即可求出解.【详解】解:方程3x﹣1=0,移项得:3x=1,解得:x=13,故选:D.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.8.A解析:A【解析】根据同类项的相同字母的指数相同可直接得出答案. 解:由题意得: m=2,n=1. 故选A .9.A解析:A【解析】A. 3x+1=4x 是一元一次方程,故本选项正确; B. x+2>1是一元一次不等式,故本选项错误; C. x 2−9=0是一元二次方程,故本选项错误; D. 2x −3y=0是二元一次方程,故本选项错误。

2016-2017学年度七年级(上)期末数学试卷含答案解析

2016-2017学年度七年级(上)期末数学试卷含答案解析

2016-2017学年度七年级(上)期末数学试卷一、选择题1.如果水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作()A.﹣3m B.3m C.﹣4m D.10m2.在2016年11月3日举行的第九届中国四部投资说明会上,现场签约116个项目,投资金额达130 944 000 000元,将130 944 000 000用科学记数法表示为()A.1.30944×1012B.1.30944×1011C.1.30944×1010D.1.30944×109 3.下列调查中,最适宜用普查方式的是()A.对一批节能灯使用寿命的调查B.对我国初中学生视力状况的调查C.对最强大脑节目收视率的调查D.对量子科卫星上某种零部件的调查4.若﹣4x m+2y4与2x3y n﹣1为同类项,则m﹣n()A.﹣4 B.﹣3 C.﹣2 D.﹣25.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是()A.B.C.D.6.已知x=3是关于x的方程5(x﹣1)﹣3a=﹣2的解,则a的值是()A.﹣4 B.4 C.6 D.﹣67.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm8.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x﹣2y+z的值是()A.1 B.4 C.7 D.99.某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是()A.200元B.240元C.320元D.360元10.下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第1001个图形中基本图形的个数为()A.2998 B.3001 C.3002 D.3005二、填空题(共4小题,每小题3分,共12分)11.计算:18°36′=°.12.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是.13.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,则计算3※(﹣5)=.14.如图是一个运算程序,若输入x的值为8,输出的结果是m,若输入x的值为3,输出的结果是n,则m﹣2n=.三、解答题(共78分)15.(5分)计算:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)16.(5分)解方程:=1+.17.(5分)如图,已知线段a、b,求作线段AB,使AB=2a+b.18.(5分)先化简,再求值:2(3xy2﹣2x2y)﹣3(2xy2﹣x2y)+4(xy2﹣2x2y),其中x=﹣2,y=﹣1.19.(7分)一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.20.(7分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.21.(7分)如图所示,已知数轴上两点A、B对应的数分别为﹣2、4,点P为数轴上一动点.(1)写出点A对应的数的倒数和绝对值;(2)若点P到点A,点B的距离相等,求点P在数轴上对应的数;(3)将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,在数轴上画出点C,并写出点C表示的是数.22.(7分)某企业已收购毛竹90吨,根据市场信息,如果对毛竹进行粗加工,每天可加工8吨,每吨可获利60元;如果进行精加工,每天可加工0.5吨,每吨可获利1200元.由于条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售,现将部分毛竹精加工,其余毛竹粗加工,并且恰好用30天完成.(1)求精加工和粗加工的天数;(2)该企业总共获得的利润是多少元?23.(8分)某市对市民看展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A:绿化造林B:汽车限行C:拆除燃煤小锅炉D:使用清洁能源.调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有多少人?(2)请你将统计图1补充完整;(3)求图2中D项目对应的扇形的圆心角的度数.24.(10分)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣14,+4,﹣2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,且最后返回岗亭,摩托车共耗油多少升?25.(12分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?2016-2017学年度七年级(上)期末数学试卷参考答案与试题解析一、选择题1.如果水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作()A.﹣3m B.3m C.﹣4m D.10m【考点】正数和负数.【分析】水位升高7m记作﹢7m,升高和下降是互为相反意义的量,所以水位下降几m就记作负几m.【解答】解:上升和下降是互为相反意义的量,若上升记作正,那么下降就记作负.水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作﹣4m.故选C.【点评】本题考查了正负数在生活中的应用.理解互为相反意义的量是关键.2.在2016年11月3日举行的第九届中国四部投资说明会上,现场签约116个项目,投资金额达130 944 000 000元,将130 944 000 000用科学记数法表示为()A.1.30944×1012B.1.30944×1011C.1.30944×1010D.1.30944×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将130 944 000 000用科学记数法表示为:1.30944×1011.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列调查中,最适宜用普查方式的是()A.对一批节能灯使用寿命的调查B.对我国初中学生视力状况的调查C.对最强大脑节目收视率的调查D.对量子科卫星上某种零部件的调查【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、对一批节能灯使用寿命的调查,调查具有破坏性,适合抽样调查,故A错误;B、对我国初中学生视力状况的调查,调查范围广适合抽样调查,故B错误;C、对最强大脑节目收视率的调查,调查范围广适合抽样调查,故C错误;D、对量子科卫星上某种零部件的调查,要求精确度高的调查,适合普查,故D 正确;故选:D.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.若﹣4x m+2y4与2x3y n﹣1为同类项,则m﹣n()A.﹣4 B.﹣3 C.﹣2 D.﹣2【考点】同类项.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得关于m 和n的方程,解出可得出m和n的值,代入可得出代数式的值.【解答】解:∵﹣4x m+2y4与2x3y n﹣1是同类项,∴m+2=3,n﹣1=4,解得:m=1,n=5,∴m ﹣n=﹣4.故选A .【点评】此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项:所含字母相同,并且相同字母的指数也相同,难度一般.5.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是( )A .B .C .D .【考点】点、线、面、体.【分析】如图本题是一个平面图形围绕一条边为中心对称轴旋转一周根据面动成体的原理即可解.【解答】解:由长方形绕着它的一边所在直线旋转一周可得到圆柱体,如图立体图形是两个圆柱的组合体,则需要两个一边对齐的长方形,绕对齐边所在直线旋转一周即可得到, 故选:A .【点评】本题考查面动成体,需注意可把较复杂的体分解来进行分析.6.已知x=3是关于x 的方程5(x ﹣1)﹣3a=﹣2的解,则a 的值是( ) A .﹣4 B .4 C .6 D .﹣6【考点】一元一次方程的解.【分析】把x=3代入方程得出关于a 的方程,求出方程的解即可.【解答】解:把x=3代入方程5(x ﹣1)﹣3a=﹣2得:10﹣3a=﹣2,解得:a=4,故选B .【点评】本题考查了一元一次方程的解,解一元一次方程等知识点,能得出关于a的一元一次方程是解此题的关键.7.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm【考点】两点间的距离.【分析】根据线段中点的性质,可得DA与CD的关系,根据线段的和差,可得关于BC的方程,根据解方程,可得答案.【解答】解:由CB=CD,得CD=BC.由D是AC的中点,得AD=CD=BC.由线段的和差,得AD+CD+BC=AB,即BC+BC+BC=10.5.解得BC=4.5cm,故选:C.【点评】本题考查了两点间的距离,利用线段的和差得出关于BC的方程是解题关键.8.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x﹣2y+z的值是()A.1 B.4 C.7 D.9【考点】专题:正方体相对两个面上的文字;相反数.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再求出x、y、z的值,然后代入代数式计算即可得解.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“﹣8”是相对面,“y”与“﹣2”是相对面,“z”与“3”是相对面,∵相对面上所标的两个数互为相反数,∴x=8,y=2,z=﹣3,∴x﹣2y+z=8﹣2×2﹣3=1.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是()A.200元B.240元C.320元D.360元【考点】一元一次方程的应用.【分析】如果设这种商品的原价是x元,本题中唯一不变的是商品的成本,根据利润=售价﹣成本,即可列出方程求解.【解答】解:设这种商品的原价是x元,根据题意得:75%x+10=90%x﹣38,解得x=320.故选C.【点评】本题考查了一元一次方程的应用.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.10.下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第1001个图形中基本图形的个数为()A.2998 B.3001 C.3002 D.3005【考点】规律型:图形的变化类.【分析】将原图形中基本图形划分为中间部分和两边部分,中间基本图形个数等于序数,两边基本图形的个数和等于序数加1的两倍,据此规律可得答案.【解答】解:∵第①个图形中基本图形的个数5=1+2×2,第②个图形中基本图形的个数8=2+2×3,第③个图形中基本图形的个数11=3+2×4,第④个图形中基本图形的个数14=4+2×5,…∴第n个图形中基本图形的个数为n+2(n+1)=3n+2当n=1001时,3n+2=3×1001+2=3005,故选:D.【点评】本题考查了图形的变化类,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,解决本题的关键在于将原图形划分得出基本图形的数字规律.二、填空题(共4小题,每小题3分,共12分)11.计算:18°36′=18.6°.【考点】度分秒的换算.【分析】根据小单位华大单位除以进率,可得答案.【解答】解:18°36′=18°+(36÷60)°=18.6°,故答案为:18.6.【点评】本题考查了度分秒的换算,利用小单位华大单位除以进率是解题关键.12.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是92%.【考点】频数(率)分布直方图.【分析】利用合格的人数即50﹣4=46人,除以总人数即可求得.【解答】解:该班此次成绩达到合格的同学占全班人数的百分比是×100%=92%.故答案是:92%.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.13.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,则计算3※(﹣5)=﹣7.【考点】有理数的混合运算.【分析】根据※的含义,以及有理数的混合运算的运算方法,求出3※(﹣5)的值是多少即可.【解答】解:3※(﹣5)=3×(﹣5)+3﹣(﹣5)=﹣15+3+5=﹣7故答案为:﹣7.【点评】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.14.如图是一个运算程序,若输入x的值为8,输出的结果是m,若输入x的值为3,输出的结果是n,则m﹣2n=16.【考点】代数式求值.【分析】先求出m、n的值,再代入求出即可.【解答】解:∵x=8是偶数,∴代入﹣x+6得:m=﹣x+6=﹣×8+6=2,∵x=3是奇数,∴代入﹣4x+5得:n=﹣4x+5=﹣7,∴m﹣2n=2﹣2×(﹣7)=16,故答案为:16.【点评】本题考查了求代数式的值,能根据程序求出m、n的值是解此题的关键.三、解答题(共78分)15.计算:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)=3﹣24÷(﹣8)+4×(﹣2)=3+3﹣8=﹣2【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.16.解方程:=1+.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:3x+6=12+8x+4,移项合并得:﹣5x=10,解得:x=﹣2.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.17.如图,已知线段a、b,求作线段AB,使AB=2a+b.【考点】作图—复杂作图.【分析】在射线AM上延长截取AC=CD=a,DB=b,则线段AB满足条件.【解答】解:如图,线段AB为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.18.先化简,再求值:2(3xy2﹣2x2y)﹣3(2xy2﹣x2y)+4(xy2﹣2x2y),其中x=﹣2,y=﹣1.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=6xy2﹣4x2y﹣6xy2+3x2y+4xy2﹣8x2y=4xy2﹣9x2y,当x=﹣2,y=﹣1时,原式=﹣8+36=28.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.【考点】作图-三视图;由三视图判断几何体.【分析】主视图有3列,每列小正方形数目分别为3,4,2,左视图有2列,每列小正方数形数目分别为4,2,据此可画出图形.【解答】解:如图所示:.【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.20.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.【考点】角平分线的定义.【分析】先根据角平分线,求得∠BOE的度数,再根据角的和差关系,求得∠BOF 的度数,最后根据角平分线,求得∠BOC、∠AOC的度数.【解答】解:∵∠AOB=90°,OE平分∠AOB∴∠BOE=45°又∵∠EOF=60°∴∠FOB=60°﹣45°=15°∵OF平分∠BOC∴∠COB=2×15°=30°∴∠AOC=∠BOC+∠AOB=30°+90°=120°【点评】本题主要考查了角平分线的定义,根据角的和差关系进行计算是解题的关键.注意:也可以根据∠AOC的度数是∠EOF度数的2倍进行求解.21.如图所示,已知数轴上两点A、B对应的数分别为﹣2、4,点P为数轴上一动点.(1)写出点A对应的数的倒数和绝对值;(2)若点P到点A,点B的距离相等,求点P在数轴上对应的数;(3)将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,在数轴上画出点C,并写出点C表示的是数.【考点】数轴;绝对值;倒数.【分析】(1)根据倒数的定义和绝对值的性质可得点A对应的数的倒数和绝对值;(2)根据中点坐标公式可得点P在数轴上对应的数;(3)根据将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,可以得到点C表示的数,从而可以在数轴上表示出点C,并得到点C表示的数.【解答】解:(1)点A对应的数的倒数是﹣,点A对应的数的绝对值是2;(2)(﹣2+4)÷2=2÷2=1.故点P在数轴上对应的数是1;(3)如图所示:点C表示的数是﹣1.【点评】本题考查数轴、倒数、绝对值,解题的关键是明确数轴的含义,利用数形结合的思想解答问题.22.某企业已收购毛竹90吨,根据市场信息,如果对毛竹进行粗加工,每天可加工8吨,每吨可获利60元;如果进行精加工,每天可加工0.5吨,每吨可获利1200元.由于条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售,现将部分毛竹精加工,其余毛竹粗加工,并且恰好用30天完成.(1)求精加工和粗加工的天数;(2)该企业总共获得的利润是多少元?【考点】一元一次方程的应用.【分析】(1)设粗加工的天数为x天,则精加工的天数为(30﹣x)天,根据总质量=粗加工质量+精加工质量即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=粗加工的利润+精加工的利润代入数据即可得出结论.【解答】解:(1)设粗加工的天数为x天,则精加工的天数为(30﹣x)天,根据题意得:8x+0.5(30﹣x)=90,解得:x=10,30﹣x=20.答:粗加工的天数为10天,精加工的天数为20天.(2)10×8×60+20×0.5×1200=16800(元).答:该企业总共获得的利润是16800元.【点评】本题考查了一元一次方程的应用,根据数量关系列出一元一次方程(或列式计算)是解题的关键.23.某市对市民看展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A:绿化造林B:汽车限行C:拆除燃煤小锅炉D:使用清洁能源.调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有多少人?(2)请你将统计图1补充完整;(3)求图2中D项目对应的扇形的圆心角的度数.【考点】条形统计图;扇形统计图.【分析】(1)根据A组有20人,所占的百分比是10%,据此即可求得总人数;(2)用(1)中求得的总人数减去其它三种的人数可得认同拆除燃煤小锅炉的人数,再补充统计图1即可;(3)用D项目对应的人数除以总人数,再乘以360度即可得对应的扇形的圆心角.【解答】解:(1)20÷10%=200(人).答:这次被调查的市民总人数是200人;(2)C组的人数是:200﹣20﹣80﹣40=60(人),统计图1补充如下:;(3)×360°=72°.答:图2中D项目对应的扇形的圆心角的度数是72°.【点评】本题主要考查了条形统计图的应用和利用统计图获取信息的能力,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.(10分)(2016秋•榆林期末)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣14,+4,﹣2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,且最后返回岗亭,摩托车共耗油多少升?【考点】正数和负数.【分析】(1)将各数相加,得数若为负,则A在岗亭南方,若为正,则A在岗亭北方;(2)将各数的绝对值相加,求得摩托车共行驶的路程,即可解答.【解答】解:(1)+10﹣9+7﹣15+6﹣14+4﹣2=10+7+6+4﹣9﹣15﹣14﹣2=﹣13(千米),答:A在岗亭南方,距离岗亭13千米处.(2))|+10|+|﹣9|+|+7|+|﹣15|+|+6|+|﹣14|+|+4|+|﹣2|=10+9+7+15+6+14+4+2+13=80(千米),0.12×80=9.6(升),答:摩托车共耗油9.6升.【点评】本题主要考查正数和负数的应用,解决此类问题时,要特别注意第(2)小题,无论向南行驶还是向北行驶,都是要耗油的.25.(12分)(2016秋•榆林期末)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【考点】一元一次方程的应用;列代数式.【分析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)把a=60代入(2)中所列的代数式,分别求得在两个商场购买所需要的费用,然后通过比较得到结论:在乙商场购买比较合算.【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.【点评】本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。

苏科版2016~2017学年度初一数学七年级上学期期末测试卷和答案

苏科版2016~2017学年度初一数学七年级上学期期末测试卷和答案

2016~2017学年度七年级上学期期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格)1.﹣5的相反数是()A.B.C.﹣5 D.52.下列为同类项的一组是()A.x3与23B.﹣xy2与yx2C.7与﹣D.ab与7a3.下列四个平面图形中,不能折叠成无盖的长方体盒子的是()A.B.C.D.4.下列关于单项式一的说法中,正确的是()A.系数是﹣,次数是4 B.系数是﹣,次数是3C.系数是﹣5,次数是4 D.系数是﹣5,次数是35.如果0<x<1,则下列不等式成立的()A.B.C.D.6.如图,从A地到B地有多条道路,一般地,人们会走中间的直路,而不会走其他的曲折的路,这是因为()A.两点之间线段最短 B.两直线相交只有一个交点C.两点确定一条直线 D.垂线段最短7.下列语句中:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等;其中错误的有()A.1个B.2个C.3个D.4个8.观察下列各式:,,,…计算:3×(1×2+2×3+3×4+…+99×100)=()A.97×98×99 B.98×99×100 C.99×100×101 D.100×101×102二、填空题:(本大题共10小题,每小题3分,共30分)9.比较大小:(填“<”、“=”、“>”)10.“x的2倍与3的差不小于0”,用不等式表示为.11.地球与太阳之间的距离约为149 600 000千米,科学记数法表示为千米.12.若x﹣3y=﹣2,那么3+2x﹣6y的值是.13.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值等于.14.如果一个角的余角是60°,那么这个角的补角是.15.如图,已知AC⊥BC,CD⊥AB于点D,AC=5cm,BC=12cm,AB=13cm,那么点B到AC的距离是cm.16.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=35°则∠DBC为度.17.如图所示,将图沿虚线折起来得到一个正方体,那么“5”的对面是(填编号).18.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t时后两车相距50千米,则t的值为.三、解答题:1919.计算:(1)﹣1.5+1.4﹣(﹣3.6)﹣1.4+(﹣5.2)(2)﹣22×7﹣(﹣3)×6﹣5÷(﹣).20.合并同类项:(1)3a2+2a﹣2﹣a2﹣5a+7(2)(7y﹣3z)﹣(8y﹣5z)21.解方程:(1)2(x﹣1)+1=0(2)4(2x﹣1)﹣3(5x+1)=14(3)(4).22.解不等式组,并把解集在数轴上表示出来,同时写出解集中的所有整数解.23.如图,延长线段AB到C,使BC=3AB,点D是线段BC的中点,如果CD=3cm,那么线段AC 的长度是多少?24.某中学为了绿化校园,计划购买A、B两种树,经过市场调查,A树的单价比B树少20元,购买4棵A树和购买3棵B树的费用相等.(1)求两种树的单价各是多少?(2)根据学校的实际情况,需购买两种树共150棵,总费用不超过10840元,且购买B树的棵数不少于A树的1.5倍.请你算算,该校本次购买这两种树共有哪几种方案.25.由大小相同的小立方块搭成的几何体,请在方格中画出该几何体的三视图.26.定义一种新运算:a*b=2a﹣b(1)直接写出b*a的结果为;(用含a,b的式子表示)(2)化简:[(x﹣2y)*(x+y)]*3y;(3)解方程:2*(1*x)=*x.27.如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角是、、(把符合条件的角都填出来)(2)图中除直角相等外,还有相等的角,请写出三对:①;②;③.(3)①如果∠AOD=160°.那么根据可得∠BOC=度.②如果∠AOD=4∠EOF,求∠EOF的度数.28.已知数轴上有A,B,C三点,分别表示数﹣24,﹣10,10.两只电子蚂蚁甲、乙分别从A,C 两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.(1)问甲、乙在数轴上的哪个点相遇?(2)问多少秒后甲到A,B,C三点的距离之和为40个单位?若此时甲调头往回走,问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.(3)若甲、乙两只电子蚂蚁(用P表示甲蚂蚁、Q表示乙蚂蚁)分别从A,C两点同时相向而行,甲的速度变为原来的3倍,乙的速度不变,直接写出多少时间后,原点O、甲蚂蚁P与乙蚂蚁Q三点中,有一点恰好是另两点所连线段的中点.2016~2017学年度七年级上学期期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格)1.﹣5的相反数是()A.B.C.﹣5 D.5【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣5的相反数是5.故选:D.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.下列为同类项的一组是()A.x3与23B.﹣xy2与yx2C.7与﹣D.ab与7a【考点】同类项.【分析】根据同类项的定义回答即可.【解答】解:A、x3与23,不是同类项,故A错误;B、相同字母的指数不相同,不是同类项,故B错误;C、几个常数项也是同类项,故C正确;D、所含字母不同,不是同类项,故D错误.故选:C.【点评】本题主要考查的是同类项的定义,掌握同类项的定义是解题的关键.3.下列四个平面图形中,不能折叠成无盖的长方体盒子的是()A.B.C.D.【考点】展开图折叠成几何体.【分析】利用长方体及其表面展开图的特点解题.【解答】解:选项B,C,D都能折叠成无盖的长方体盒子,选项A中,上下两底的长与侧面的边长不符,所以不能折叠成无盖的长方体盒子.故选A.【点评】解决这类问题时,不妨动手实际操作一下,即可解决问题.4.下列关于单项式一的说法中,正确的是()A.系数是﹣,次数是4 B.系数是﹣,次数是3C.系数是﹣5,次数是4 D.系数是﹣5,次数是3【考点】单项式.【专题】推理填空题.【分析】根据单项式系数及次数的定义进行解答即可.【解答】解:∵单项式﹣中的数字因数是﹣,所以其系数是﹣;∵未知数x、y的系数分别是1,3,所以其次数是1+3=4.故选A.【点评】本题考查的是单项式系数及次数的定义,即单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.5.如果0<x<1,则下列不等式成立的()A.B.C.D.【考点】不等式的性质.【分析】利用不等式的基本性质,分别求得x、x2及的取值范围,然后比较,即可做出选择.【解答】解:∵0<x<1,∴0<x2<x(不等式两边同时乘以同一个大于0的数x,不等号方向不变);0<1<(不等式两边同时除以同一个大于0的数x,不等号方向不变);∴x2.故答案选B.【点评】解答此题的关键是熟知不等式的基本性质:基本性质1:不等式两边同时加或减去同一个数或式子,不等号方向不变;基本性质2:不等式两边同时乘以(或除以)同一个大于0的数或式子,不等号方向不变;基本性质3:不等式两边同时乘以(或除以)同一个小于0的数或式子,不等号方向改变.6.如图,从A地到B地有多条道路,一般地,人们会走中间的直路,而不会走其他的曲折的路,这是因为()A.两点之间线段最短 B.两直线相交只有一个交点C.两点确定一条直线 D.垂线段最短【考点】线段的性质:两点之间线段最短.【专题】应用题.【分析】此题为数学知识的应用,由题意从A地到B地有多条道路,肯定要尽量选择两地之间最短的路程,就用到两点间线段最短定理.【解答】解:图中A和B处在同一条直线上,根据两点之间线段最短,知其路程最短.故选A.【点评】此题为数学知识的应用,考查知识点两点之间线段最短.7.下列语句中:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等;其中错误的有()A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】根据垂线的概念、对顶角的性质、平行线的性质解答即可.【解答】解:一条直线有无数条垂线,①错误;不相等的两个角一定不是对顶角,②正确;在同一平面内,两条不相交的直线叫做平行线,③错误;若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等或互补,④错误,故选:C.【点评】本题考查的是命题的真假判断,熟悉课本中的性质定理是解题的关键.8.观察下列各式:,,,…计算:3×(1×2+2×3+3×4+…+99×100)=()A.97×98×99 B.98×99×100 C.99×100×101 D.100×101×102【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】先根据题中所给的规律,把式子中的1×2,2×3,…99×100,分别展开,整理后即可求解.注意:1×2=×(1×2×3).【解答】解:根据题意可知3×(1×2+2×3+3×4+…+99×100)=3×[×(1×2×3﹣0×1×2)+(2×3×4﹣1×2×3)+(3×4×5﹣2×3×4)+…+(99×100×101﹣98×99×100)] =1×2×3﹣0×1×2+2×3×4﹣1×2×3+3×4×5﹣2×3×4+…+99×100×101﹣98×99×100=99×100×101.故选:C.【点评】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.二、填空题:(本大题共10小题,每小题3分,共30分)9.比较大小:>(填“<”、“=”、“>”)【考点】有理数大小比较.【分析】先将绝对值去掉,再比较大小即可.【解答】解:∵=﹣=﹣,=﹣,∴>.【点评】同号有理数比较大小的方法:都是负有理数,绝对值大的反而小.10.“x的2倍与3的差不小于0”,用不等式表示为2x﹣3≥0.【考点】由实际问题抽象出一元一次不等式.【分析】“不小于0”应表示为大于或等于0.【解答】解:“x的2倍与3的差不小于0”,用不等式表示为2x﹣3≥0.【点评】解决本题的关键是理解“不小于0”用数学符号应表示为:“≥0”.11.地球与太阳之间的距离约为149 600 000千米,科学记数法表示为 1.496×108千米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:149 600 000=1.496×108,故答案为:1.496×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.若x﹣3y=﹣2,那么3+2x﹣6y的值是﹣1.【考点】代数式求值.【分析】等式x﹣3y=﹣2两边同时乘以2得到2x﹣6y=﹣4,然后代入计算即可.【解答】解:∵x﹣3y=﹣2,∴2x﹣6y=﹣4.∴原式=3+(﹣4)=﹣1.故答案为:﹣1.【点评】本题主要考查的是求代数式的值,利用等式的性质求得2x﹣6y=﹣4是解题的关键.13.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值等于﹣1.【考点】方程的解.【专题】计算题.【分析】使方程左右两边的值相等的未知数的值是该方程的解.将方程的解代入方程可得关于m的一元一次方程,从而可求出m的值.【解答】解:根据题意得:4+3m﹣1=0解得:m=﹣1,故答案为:﹣1.【点评】已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于m字母系数的方程进行求解,注意细心.14.如果一个角的余角是60°,那么这个角的补角是150°.【考点】余角和补角.【分析】首先根据余角的度数计算出这个角的度数,再算出它的补角即可.【解答】解:90°﹣60°=30°,180°﹣30°=150°.答:这个角的补角是150°.故答案为:150°.【点评】此题主要考查了余角和补角,关键是掌握:(1)余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.(2)补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.15.如图,已知AC⊥BC,CD⊥AB于点D,AC=5cm,BC=12cm,AB=13cm,那么点B到AC的距离是12cm.【考点】点到直线的距离;三角形的面积.【分析】由题意即可推出点B到AC的距离即为点B到AC的垂线段的长度即为BC的长度.【解答】解:∵AC⊥BC,BC=12cm,∴点B到AC的距离为12cm.故答案为:12.【点评】本题主要考查点到直线的距离,关键在于推出点B到AC的距离为BC的长度.16.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=35°则∠DBC为55°度.【考点】翻折变换(折叠问题);角平分线的定义;角的计算;对顶角、邻补角.【专题】计算题.【分析】根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∠ABE=35°,继而即可求出答案.【解答】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°,又∵∠ABE=35°,∴∠DBC=55°.故答案为:55.【点评】此题考查翻折变换的性质,三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键,难度一般.17.如图所示,将图沿虚线折起来得到一个正方体,那么“5”的对面是1(填编号).【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“1”与“5”是相对面,“2”与“4”是相对面,“3”与“6”是相对面.故答案为:1.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.18.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t时后两车相距50千米,则t的值为2小时或2.5小时.【考点】一元一次方程的应用.【分析】设t时后两车相距50千米,分为两种情况,两人在相遇前相距50km和两人在相遇后相距50千米,分别建立方程求出其解即可.【解答】解:设t时后两车相距50千米,由题意,得450﹣120t﹣80t=50或10t+80t﹣450=50,解得:t=2或2.5.故答案为:2小时或2.5小时.【点评】本题考查了列一元一次方程解实际问题的运用,分类讨论思想的运用,由行程问题的数量关系建立方程是关键.三、解答题:1919.计算:(1)﹣1.5+1.4﹣(﹣3.6)﹣1.4+(﹣5.2)(2)﹣22×7﹣(﹣3)×6﹣5÷(﹣).【考点】有理数的混合运算.【分析】(1)先去括号,再从左到右依次计算即可;(2)先算乘方,再算乘除,最后算加减即可.【解答】解:(1)原式=﹣1.5+1.4+3.6﹣1.4﹣5.2=﹣0.1+3.6﹣1.4﹣5.2=3.5﹣1.4﹣5.2=2.1﹣5.2=﹣3.1;(2)原式=﹣4×7+3×6﹣5×(﹣5)=﹣28+18+25=﹣10+25=15.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解答此题的关键.20.合并同类项:(1)3a2+2a﹣2﹣a2﹣5a+7(2)(7y﹣3z)﹣(8y﹣5z)【考点】合并同类项.【分析】(1)首先找出同类项,进而合并同类项得出答案;(2)首先去括号,进而合并同类项得出答案.【解答】解:(1)3a2+2a﹣2﹣a2﹣5a+7=(3a2﹣a2)+(2a﹣5a)+(7﹣2)=2a2﹣3a+5;(2)(7y﹣3z)﹣(8y﹣5z)=7y﹣8y﹣3z+5z=2z﹣y.【点评】此题主要考查了合并同类项,正确找出同类项是解题关键.21.解方程:(1)2(x﹣1)+1=0(2)4(2x﹣1)﹣3(5x+1)=14(3)(4).【考点】解一元一次方程.【分析】(1)去括号,移项,合并同类项,将x系数化为1,即可求出解;(2)去括号,移项,合并同类项,将x系数化为1,即可求出解;(3)去分母,移项,合并同类项,将x系数化为1,即可求出解;(2)去分母,移项,合并同类项,将x系数化为1,即可求出解.【解答】解:(1)2(x﹣1)+1=0去括号得:2x﹣2+1=0,移项、合并同类项得:2x=1,系数化为1得:x=;(2)4(2x﹣1)﹣3(5x+1)=14去括号得:8x﹣4﹣15x﹣3=14移项、合并同类项得:﹣7x=21,系数化为1得:x=﹣3;(3)5﹣=x去分母得:25﹣x﹣1=5x移项、合并同类项得:6x=24,系数化为1得:x=4;(4)﹣=1去分母得:3x+3﹣4+6x=6,移项、合并同类项得:9x=7,系数化为1得:x=.【点评】此题考查了解一元一次方程的解法;其步骤为:去分母,去括号,移项,合并同类项,将未知数系数化为1,求出解.22.解不等式组,并把解集在数轴上表示出来,同时写出解集中的所有整数解.【考点】解一元一次不等式组;在数轴上表示不等式的解集;一元一次不等式组的整数解.【分析】先根据一元一次不等式组解出x的取值,根据x是正整数解得出x的可能取值.【解答】解:不等式可化为:即,在数轴上可表示为:故不等式的解集为:﹣≤x<3故不等式所有整数解为﹣1,0,1,2.【点评】本题主要考查了等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.23.如图,延长线段AB到C,使BC=3AB,点D是线段BC的中点,如果CD=3cm,那么线段AC 的长度是多少?【考点】比较线段的长短.【专题】计算题.【分析】已知CD的长度,CD是线段BC的一半,则BC长度可求出,根据3AB=BC,即可求出AB的长度,进而可求出AC的长度.【解答】解:∵点D是线段BC的中点,CD=3cm,∴BC=6cm,∵BC=3AB,∴AB=2cm,AC=AB+BC=6+2=8cm.【点评】本题考点:线段中点的性质.结合图形根据题干中的信息得出各线段之间的关系,然后结合已知条件即可求出AC的长度.24.某中学为了绿化校园,计划购买A、B两种树,经过市场调查,A树的单价比B树少20元,购买4棵A树和购买3棵B树的费用相等.(1)求两种树的单价各是多少?(2)根据学校的实际情况,需购买两种树共150棵,总费用不超过10840元,且购买B树的棵数不少于A树的1.5倍.请你算算,该校本次购买这两种树共有哪几种方案.【考点】一元一次方程的应用.【分析】(1)设A树的单价是x元,则B树的单价为(x+20)元,根据购买4棵A树和购买3棵B 树的费用相等可列方程求解.(2)设购买A树m棵,则购买B树(150﹣m)棵,根据总费用不超过10840元,且购买B树的棵数不少于A树的1.5倍,可列不等式组求解.【解答】解:(1)设A树的单价是x元,则B树的单价为(x+20)元,根据题意得4x=3(x+20),解得x=60,则x+20=80.答:A树的单价是60元,B树的单价为80元;(2)设购买A树m棵,则购买B树(150﹣m)棵,根据题意得,解得58≤m≤60,∵m为整数,∴m为58或59或60.答:该校本次购买这两种树共有3种方案:①购买A树58棵,购买B树92棵;②购买A树59棵,购买B树91棵;③购买A树60棵,购买B树90棵.【点评】本题考查一元一次方程的应用,一元一次不等式组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的关系列出方程或不等式组,再求解.25.由大小相同的小立方块搭成的几何体,请在方格中画出该几何体的三视图.【考点】作图-三视图.【分析】根据主视图、俯视图以及左视图观察的角度分别得出图形即可.【解答】解:根据题意画图如下:【点评】此题考查了作图﹣三视图,从不同方向观察问题和几何体,锻炼了学生的空间想象力和抽象思维能力.26.定义一种新运算:a*b=2a﹣b(1)直接写出b*a的结果为2b﹣a;(用含a,b的式子表示)(2)化简:[(x﹣2y)*(x+y)]*3y;(3)解方程:2*(1*x)=*x.【考点】整式的加减—化简求值;解一元一次方程.【专题】新定义.【分析】(1)根据新运算得出即可;(2)根据新运算先展开括号里面的,求出后再展开,即可得出答案;(3)先根据新运算展开括号内的,再展开括号外的,最后解方程即可.【解答】解:(1)b*a=2b﹣a.故答案为:2b﹣a;(2)[(x﹣2y)*(x+y)]*3y=[2(x﹣2y)﹣(x+y)]*3y=[x﹣5y]*3y=2(x﹣5y)﹣3y=2x﹣13y;(3)2*(1*x)=*x,2*(2﹣x)=*x,4﹣(2﹣x)=1﹣x,4﹣2+x=1﹣x,2x=﹣1,x=﹣.【点评】本题考查了整式的加减和求值,解一元一次方程的应用,解此题的关键是能根据新运算展开,难度不是很大.27.如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角是∠EOF、∠BOD、∠AOC(把符合条件的角都填出来)(2)图中除直角相等外,还有相等的角,请写出三对:①∠AOC=∠EOF;②∠AOC=∠BOD;③∠DOE=∠AOF.(3)①如果∠AOD=160°.那么根据对顶角相等可得∠BOC=160度.②如果∠AOD=4∠EOF,求∠EOF的度数.【考点】垂线.【分析】(1)余角即与令一个角的和为90°的角;(2)相等的角可以是与同一个角互余的角,也可以是对顶角等;(3)①是对顶角相等,②是利用平角为180°求解.【解答】解:(1)∠EOF、∠BOD、∠AOC;(2)∠AOC=∠EOF,∠AOC=∠BOD,∠DOE=∠AOF,答案不唯一;(3)①:对顶角相等,160°;36°.②:∵∠AOC=∠EOF,∠AOC+∠AOD=180°,即5∠AOC=180°,则∠EOF=∠AOC=36°.【点评】本题主要考查了垂线的一些性质问题,能够掌握并利用其性质求解一些简单的计算问题.28.已知数轴上有A,B,C三点,分别表示数﹣24,﹣10,10.两只电子蚂蚁甲、乙分别从A,C 两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.(1)问甲、乙在数轴上的哪个点相遇?(2)问多少秒后甲到A,B,C三点的距离之和为40个单位?若此时甲调头往回走,问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.(3)若甲、乙两只电子蚂蚁(用P表示甲蚂蚁、Q表示乙蚂蚁)分别从A,C两点同时相向而行,甲的速度变为原来的3倍,乙的速度不变,直接写出多少时间后,原点O、甲蚂蚁P与乙蚂蚁Q三点中,有一点恰好是另两点所连线段的中点.【考点】一元一次方程的应用;数轴.【分析】(1)可设x秒后甲与乙相遇,根据甲与乙的路程差为34,可列出方程求解即可;(2)设y秒后甲到A,B,C三点的距离之和为40个单位,分甲应为于AB或BC之间两种情况讨论即可求解;(3)分①原点O是甲蚂蚁P与乙蚂蚁Q两点的中点;②乙蚂蚁Q是甲蚂蚁P与原点O两点的中点;③甲蚂蚁P是乙蚂蚁Q与原点O两点的中点,三种情况讨论即可求解.【解答】解:(1)设x秒后甲与乙相遇,则4x+6x=34,解得x=3.4,4×3.4=13.6,﹣24+13.6=﹣10.4.故甲、乙在数轴上的﹣10.4相遇;(2)设y秒后甲到A,B,C三点的距离之和为40个单位,B点距A,C两点的距离为14+20=34<40,A点距B、C两点的距离为14+34=48>40,C点距A、B的距离为34+20=54>40,故甲应为于AB或BC之间.①AB之间时:4y+(14﹣4y)+(14﹣4y+20)=40解得y=2;②BC之间时:4y+(4y﹣14)+(34﹣4y)=40,解得y=5.①甲从A向右运动2秒时返回,设y秒后与乙相遇.此时甲、乙表示在数轴上为同一点,所表示的数相同.甲表示的数为:﹣24+4×2﹣4y;乙表示的数为:10﹣6×2﹣6y,依据题意得:﹣24+4×2﹣4y=10﹣6×2﹣6y,解得:y=7,相遇点表示的数为:﹣24+4×2﹣4y=﹣44(或:10﹣6×2﹣6y=﹣44),②甲从A向右运动5秒时返回,设y秒后与乙相遇.甲表示的数为:﹣24+4×5﹣4y;乙表示的数为:10﹣6×5﹣6y,依据题意得:﹣24+4×5﹣4y=10﹣6×5﹣6y,解得:y=﹣8(不合题意舍去),即甲从A向右运动2秒时返回,能在数轴上与乙相遇,相遇点表示的数为﹣44.(3)①设x秒后原点O是甲蚂蚁P与乙蚂蚁Q两点的中点,则24﹣12x=10﹣6x,解得x=(舍去);②设x秒后乙蚂蚁Q是甲蚂蚁P与原点O两点的中点,则24﹣12x=2(6x﹣10),解得x=;③设x秒后甲蚂蚁P是乙蚂蚁Q与原点O两点的中点,则2(24﹣12x)=6x﹣10,解得x=;综上所述,秒或秒后,原点O、甲蚂蚁P与乙蚂蚁Q三点中,有一点恰好是另两点所连线段的中点.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.本题在解答第二问注意分类思想的运用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年江苏省徐州市初一上学期期末数学试卷一、选择题(每小题3分,共24分)1.(3分)的相反数是()A.﹣2 B.﹣ C.D.22.(3分)下列算式中,运算结果为负数的是()A.﹣(﹣3)B.|﹣3|C.(﹣3)2D.(﹣3)33.(3分)下列运算正确的是()A.2a﹣a=2 B.2a+b=2abC.﹣a2b+2a2b=a2b D.3a2+2a2=5a44.(3分)如图,若图形A经过平移可以与图形B、C拼成一个长方形,则可能的平移方式是()A.向右平移4格,再向下平移5格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移2格D.向右平移6格,再向下平移2格5.(3分)将一个无盖正方体纸盒展开,展开图不可能是()A.B.C.D.6.(3分)如图,BC=AB,D为AC的中点,若DC=3,则AB的长是()A.3 B.4 C.5 D.67.(3分)已知射线OC在∠AOB的内部,下列关系式①∠AOC=∠BOC;②∠AOC+∠BOC=∠AOB;③∠AOB=2∠AOC;④∠BOC=∠AOB.其中,能说明OC为∠AOB的平分线的有()A.1个 B.2个 C.3个 D.4个8.(3分)观察下列图形,照此规律,第5个图形中白色三角形的个数是()A.81 B.121 C.161 D.201二、填空题(本题共8小题,每小题3分,共24分)9.(3分)计算:﹣3﹣1=.10.(3分)多项式3a2+2b3的次数是.11.(3分)2017年春运期间,徐州铁路两站预计发送旅客2430000人次,该数据用科学记数法可表示为人次.12.(3分)若m+2n=1,则代数式3﹣m﹣2n的值是.13.(3分)数学课上,小丽把一副三角板按如图所示的位置摆放(其中一个三角板的直角顶点在另一个三角板的直角边上),如果∠α=28°,那么∠β=°.14.(3分)建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一条线,沿这条线就可以砌出直的墙了,其中的数学道理是.15.(3分)当x=﹣2时,代数式kx+5的值为﹣1,则k的值为.16.(3分)若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为.三、解答题(本题共9小题,共72分)17.(10分)计算(1)|﹣4|+23+3×(﹣5)(2)﹣12016﹣×[4﹣(﹣3)2].18.(6分)先化简,再求值:5(3a2b﹣ab2)﹣4(3a2b﹣ab2),其中a=2,b=﹣3.19.(8分)解下列方程(1)4﹣x=3(2﹣x)(2)=2﹣.20.(6分)如图是由6个棱长都为1cm的小正方体搭成的几何体.(1)该几何体的主视图如图所示,请在下面方格纸中高分别画出它的左视图和俯视图;(2)该几何体的表面积为cm2.21.(8分)为实施“学讲计划”,某班学生计划分成若干个学习小组,若每组5人,则多出4人,若每组6人,则有一组只有2人,该班共有多少名学生?22.(8分)如图,在方格纸中,点A、B、C是三个格点(网格线的交点叫做格点)(1)过点C画AB的垂线,垂足为D;(2)将点D沿BC翻折,得到点E,作直线CE;(3)直线CE与直线AB的位置关系是;(4)判断:∠ACB∠ACE.(填“>”、“<”或“=”23.(8分)如图,直线AB与CD相交于O,OE是∠AOC的平分线,OF⊥CD,OG⊥OE,∠BOD=52°.(1)求∠AOF的度数;(2)求∠EOF与∠BOG是否相等?请说明理由.24.(8分)某市出租车收费标准如下表所示,根据此收费标准,解决下列问题:.(1)若行驶路程为5km,则打车费用为元;(2)若行驶路程为x(km)(x>6),则打车费用为元;(用含x的代数式表示)(3)当打车费用为27.2元时,行驶路程为多少千米?25.(10分)点A、B、C、D在数轴上的位置如图1所示,已知AB=3,BC=2,CD=4.(1)若点C为原点,则点A表示的数是;(2)若点A、B、C、D分别表示有理数a,b,c,d,则|a﹣c|+|d﹣b|﹣|a﹣d|=;(3)如图2,点P、Q分别从A、D两点同时出发,点P沿线段AB以每秒1个单位长度的速度向右运动,到达B点后立即按原速折返;点Q沿线段CD以每秒2个单位长度的速度向左运动,到达C点后立即按原速折返.当P、Q中的某点回到出发点时,两点同时停止运动.①当点停止运动时,求点P、Q之间的距离;②设运动时间为t(单位:秒),则t为何值时,PQ=5?2016-2017学年江苏省徐州市初一上学期期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)的相反数是()A.﹣2 B.﹣ C.D.2【解答】解:的相反数是﹣.故选:B.2.(3分)下列算式中,运算结果为负数的是()A.﹣(﹣3)B.|﹣3|C.(﹣3)2D.(﹣3)3【解答】解:由于﹣(﹣3)=3,故选项A不为负数;由于|﹣3|=3,故选项B不为负数;由于(﹣3)2=9,故选项C不为负数;由于(﹣3)3=﹣27,故选项D为负数;故选:D.3.(3分)下列运算正确的是()A.2a﹣a=2 B.2a+b=2abC.﹣a2b+2a2b=a2b D.3a2+2a2=5a4【解答】解:A.2a﹣a=a,所以此选项错误;B.2a+b不能合并,所以此选项错误;C.﹣a2b+2a2b=a2b,所以此选项正确;D.3a2+2a2=5a2,所以此选项错误,故选:C.4.(3分)如图,若图形A经过平移可以与图形B、C拼成一个长方形,则可能的平移方式是()A.向右平移4格,再向下平移5格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移2格D.向右平移6格,再向下平移2格【解答】解:图形A经过平移可以与图形B、C拼成一个长方形,需将A向右平移4格,再向下平移5格,故选:A.5.(3分)将一个无盖正方体纸盒展开,展开图不可能是()A.B.C.D.【解答】解:由正方体的展开图的特征可知,将一个无盖正方体纸盒展开,展开图不可能是.故选:D.6.(3分)如图,BC=AB,D为AC的中点,若DC=3,则AB的长是()A.3 B.4 C.5 D.6【解答】解:∵D为AC的中点,DC=3,∴AC=2DC=2×3=6,∵BC=AB,∴AB=AC=×6=4,故选:B.7.(3分)已知射线OC在∠AOB的内部,下列关系式①∠AOC=∠BOC;②∠AOC+∠BOC=∠AOB;③∠AOB=2∠AOC;④∠BOC=∠AOB.其中,能说明OC为∠AOB的平分线的有()A.1个 B.2个 C.3个 D.4个【解答】解:①∵∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确;②∵∠AOC+∠BOC=∠AOB,∴假如∠AOC=30°,∠BOC=40°,∠AOB=70°,符合上式,但是OC不是∠AOB的角平分线,错误;③∵∠AOB=2∠BOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确;④∵∠AOC=∠AOB,∴∠AOB=2∠AOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确.故选:C.8.(3分)观察下列图形,照此规律,第5个图形中白色三角形的个数是()A.81 B.121 C.161 D.201【解答】解:∵第一个图形中白色三角形的个数是1,第二个图形中白色三角形的个数是1+1×3=4,第三个图形中白色三角形的个数是1+4×3=13,∴第四个图形中白色三角形的个数是1+13×3=40,第五个图形中白色三角形的个数是1+40×3=121,故选:B.二、填空题(本题共8小题,每小题3分,共24分)9.(3分)计算:﹣3﹣1=﹣4.【解答】解:﹣3﹣1=﹣3+(﹣1)=﹣(3+1)=﹣4.故答案为:﹣4.10.(3分)多项式3a2+2b3的次数是3.【解答】解:多项式3a2+2b3的次数是3,故答案为3.11.(3分)2017年春运期间,徐州铁路两站预计发送旅客2430000人次,该数据用科学记数法可表示为 2.43×106人次.【解答】解:2430000=2.43×106.故答案为:2.43×106.12.(3分)若m+2n=1,则代数式3﹣m﹣2n的值是2.【解答】解:∵m+2n=1,∴3﹣m﹣2n=3﹣(m+2n)=3﹣1=2.故答案为:2.13.(3分)数学课上,小丽把一副三角板按如图所示的位置摆放(其中一个三角板的直角顶点在另一个三角板的直角边上),如果∠α=28°,那么∠β=62°.【解答】解:∵平角=180°,直角=90°,∴α+β=180°﹣90°=90°,∵∠a=28°,∴∠β=90°﹣28°=62°,故答案为:62.14.(3分)建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一条线,沿这条线就可以砌出直的墙了,其中的数学道理是两点确定一条直线.【解答】解:建筑工人在砌墙时,经常在两个墙角的位置分别立一根标志杆,在两根标志杆之间拉一根线,沿着这条线就可以砌出直的墙.则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.15.(3分)当x=﹣2时,代数式kx+5的值为﹣1,则k的值为3.【解答】解:当x=﹣2时,∴﹣2k+5=﹣1∴k=3故答案为:316.(3分)若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为0或±1.【解答】解:依题意得:a2≤1且a是整数,解得a=0或a=±1.故答案是:0或±1.三、解答题(本题共9小题,共72分)17.(10分)计算(1)|﹣4|+23+3×(﹣5)(2)﹣12016﹣×[4﹣(﹣3)2].【解答】解:(1)|﹣4|+23+3×(﹣5)=4+8﹣15=﹣3(2)﹣12016﹣×[4﹣(﹣3)2]=﹣1﹣×[4﹣9]=﹣1+1=018.(6分)先化简,再求值:5(3a2b﹣ab2)﹣4(3a2b﹣ab2),其中a=2,b=﹣3.【解答】解:原式=15a2b﹣5ab2﹣12a2b+4ab2=3a2b﹣ab2,当a=2,b=﹣3时,原式=﹣36﹣18=﹣54.19.(8分)解下列方程(1)4﹣x=3(2﹣x)(2)=2﹣.【解答】解:(1)去括号得:4﹣x=6﹣3x,移项合并得:2x=2,解得:x=1;(2)去分母得:5x﹣5=20﹣2x﹣4,移项合并得:7x=21,解得:x=3.20.(6分)如图是由6个棱长都为1cm的小正方体搭成的几何体.(1)该几何体的主视图如图所示,请在下面方格纸中高分别画出它的左视图和俯视图;(2)该几何体的表面积为26cm2.【解答】解:(1)如图所示:(2)4×2+4×2+5×2=26(cm2).故该几何体的表面积为26cm2.故答案为:26.21.(8分)为实施“学讲计划”,某班学生计划分成若干个学习小组,若每组5人,则多出4人,若每组6人,则有一组只有2人,该班共有多少名学生?【解答】解:设该班共有x名学生,根据题意得:=,解得:x=44.答:该班共有44名学生.22.(8分)如图,在方格纸中,点A、B、C是三个格点(网格线的交点叫做格点)(1)过点C画AB的垂线,垂足为D;(2)将点D沿BC翻折,得到点E,作直线CE;(3)直线CE与直线AB的位置关系是平行;(4)判断:∠ACB>∠ACE.(填“>”、“<”或“=”【解答】解:(1)如图所示:点D即为所求;(2)如图所示:直线EC,即为所求;(3)直线CE与直线AB的位置关系是:平行;故答案为:平行;(4)如图所示:∵∠ECA=∠A,AB>BC,∴∠ACB>∠A,∴∠ACB>∠ACE.故答案为:>.23.(8分)如图,直线AB与CD相交于O,OE是∠AOC的平分线,OF⊥CD,OG⊥OE,∠BOD=52°.(1)求∠AOF的度数;(2)求∠EOF与∠BOG是否相等?请说明理由.【解答】解:(1)∵OF⊥CD,∴∠COF=90°,又∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD=52°,∴∠AOF=∠COF﹣∠AOC=90°﹣52°=38°;(2)相等,理由:∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD=52°,∵OE是∠AOC的平分线,∴∠AOE=∠AOC=26°,又∵OG⊥OE,∴∠EOG=90°,∴∠BOG=180°﹣∠AOE﹣∠EOG=64°,而∠EOF=∠AOF+∠AOE=38°+26°=64°,∴∠EOF=∠BOG.24.(8分)某市出租车收费标准如下表所示,根据此收费标准,解决下列问题:.标准价7元,燃油附加费1元超出3km不超出6km的部分 1.6元/km超出6km的部分 2.4元/km (1)若行驶路程为5km,则打车费用为11.2元;(2)若行驶路程为x(km)(x>6),则打车费用为(2.4x﹣1.6)元;(用含x的代数式表示)(3)当打车费用为27.2元时,行驶路程为多少千米?【解答】解:(1)支付:车费:7+1+(5﹣3)×1.6=11.2(元);(2)7+1+1.6×3+2.4(x﹣6)=8+4.8+2.4x﹣14.4=2.4x﹣1.6(元).答:打车费用为(2.4x﹣1.6)元他应该支付62元;(3)由题意得2.4x﹣1.6=27.2,解得:x=12.答:行驶路程为12千米.故答案为:11.2;(2.4x﹣1.6).25.(10分)点A、B、C、D在数轴上的位置如图1所示,已知AB=3,BC=2,CD=4.(1)若点C为原点,则点A表示的数是﹣5;(2)若点A、B、C、D分别表示有理数a,b,c,d,则|a﹣c|+|d﹣b|﹣|a﹣d|= 2;(3)如图2,点P、Q分别从A、D两点同时出发,点P沿线段AB以每秒1个单位长度的速度向右运动,到达B点后立即按原速折返;点Q沿线段CD以每秒2个单位长度的速度向左运动,到达C点后立即按原速折返.当P、Q中的某点回到出发点时,两点同时停止运动.①当点停止运动时,求点P、Q之间的距离;②设运动时间为t(单位:秒),则t为何值时,PQ=5?【解答】解:(1)若点C为原点,则点B表示﹣2,点A表示﹣5,故答案为:﹣5;(2)由题意知a<c,d>b,a<d,则|a﹣c|+|d﹣b|﹣|a﹣d|=c﹣a+d﹣b﹣(d﹣a)=c﹣a+d﹣b﹣d+a=c﹣b,∵BC=2,即c﹣b=2,故答案为:2;(3)①由题意知点P回到起点需要6秒,点Q回到起点需要4秒,∴当t=4时,运动停止,此时BP=1,BC=2,CQ=4,∴PQ=7;②、分以下两种情况:1、当点Q未到达点C时,可得方程:t+2t+5=3+2+4,解得t=;2、当点P由点B折返时,可得方程(t﹣3)+2(t﹣2)+2=5,解得:t=;综上,当t=或t=时,PQ=5.----<<本文为word格式,下载后方便编辑修改,也可以直接使用>>---------<<本文为word格式,下载后方便编辑修改,也可以直接使用>>---------<<本文为word格式,下载后方便编辑修改,也可以直接使用>>-----免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容.声明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删除免责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容.声明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删除百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文库百度文免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.。

相关文档
最新文档