2020-2021学年八年级数学第一学期期末复习常考题必刷卷(人教版专用)含解析

合集下载

人教版 2020-2021学年第一学期八年级数学上册期末模拟测试题(含答案)

人教版 2020-2021学年第一学期八年级数学上册期末模拟测试题(含答案)

2020-2021学年第一学期八年级数学上册期末模拟测试题一、选择题(每小题3分,共30分)1.在给出的一组数据0,π,5,3.14,39,227中,无理数的个数有( )A .1B .2C .3D .52.等腰三角形的腰长为10,底边长为12,则其底边上的高为( ) A .13 B .8 C .25 D .643.如图,把“QQ ”笑脸放在直角坐标系中,已知左眼A 的坐标是(-2,3),嘴唇C 点的坐标为(-1,1),则此“QQ ”笑脸右眼B 的坐标是( )A .(0,3)B .(0,1)C .(-1,2)D .(-1,3)4.若方程x -2=0的解也是直线y =(2k -1)x +10与x 轴的交点的横坐标,则k 的值为( )A .2B .0C .-2D .±25.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( )A .a =4,b =0B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定6.某校九年级(1)班全体学生2020年初中毕业体育考试的成绩统计如表:根据表中的信息判断,下列结论中错误的是( ) A .该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分7.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP =20°,∠ACP=50°,则∠A+∠P的度数是( )A.70°B.80°C.90°D.100°8.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③不等式kx+b<x+a的解集为x<3中,正确的个数是( )A.0 B.1 C.2 D.39.下列说法:①如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a,b,c(a>b=c),那么a2∶b2∶c2=2∶1∶1,其中正确的是( )A.①②B.①③C.①④D.②④10.如图所示中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是( )A.y=4n-4 B.y=4n C.y=4n+4 D.y=n2二、填空题(每小题3分,共18分)11.16的平方根是____;-125的立方根是____.12.已知P 1(a -1,5)和P 2(2,b -1)关于x 轴对称,则(a +b)2 020的值为____.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为____.14.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是____.15.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离到达点B 200 m ,结果他在水中实际游了520 m ,则该河流的宽度为____m .16.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +ba -b(a +b >0),如:3*2=3+23-2=5,那么7*(6*3)=3.三、解答题(共72分) 17.计算: (1)1212-(313+2); (2)(5-25)2;(3)23(375-12-27); (4)(3+2-1)(3-2+1).18.解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.19.已知点P(a -1,-b +2)关于x 轴的对称点为M ,关于y 轴的对称点为N ,若点M 与点N 的坐标相等.(1)求a ,b 的值;20.如图,将长方形ABCD 沿直线BD 折叠,使点C 落在点C′处,BC ′交AD 于点E ,AD =8,AB =4,求△BED 的面积.21.某校八年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序是:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试,两个程序的结果统计如下:请你根据以上信息解答下列问题:(1)请分别计算甲、乙、丙的得票数;(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2∶5∶3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.22.在△ABC中,∠BAC=∠BCA,CD平分∠ACB,CE⊥AB,交AB的延长线于点E,∠BCE=48°,求∠CDE的度数.23.如图,在数轴上与3,5对应的点分别是A,B,点C也在数轴上,且AB=AC,设点C表示的数为x.(1)求x的值;(2)计算|x-3|+6x+5.24.某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y1与y2的函数表达式;(2)解释图中表示的两种方案是如何付推销费的;(3)如果你是推销员,应如何选择付费方案?25.如图,一次函数y=-34x+3的图象与x轴和y轴分别交于点A和点B,将△AOB沿直线CD对折,使点A和点B重合,直线CD与x轴交于点C,与直线AB交于点D.(1)求A,B两点的坐标;(2)求OC的长;(3)设P是x轴上一动点,若使△PAB是等腰三角形,写出点P的坐标.参考答案一、选择题(每小题3分,共30分)1.在给出的一组数据0,π,5,3.14,39,227中,无理数的个数有( C )A.1 B.2 C.3 D.52.等腰三角形的腰长为10,底边长为12,则其底边上的高为( B )A.13 B.8 C.25 D.643.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(-2,3),嘴唇C点的坐标为(-1,1),则此“QQ”笑脸右眼B的坐标是( A)A.(0,3) B.(0,1) C.(-1,2) D.(-1,3)4.若方程x -2=0的解也是直线y =(2k -1)x +10与x 轴的交点的横坐标,则k 的值为( C )A .2B .0C .-2D .±25.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( A ) A .a =4,b =0 B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定6.某校九年级(1)班全体学生2020年初中毕业体育考试的成绩统计如表:根据表中的信息判断,下列结论中错误的是( D )A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分7.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP =20°,∠ACP =50°,则∠A +∠P 的度数是( C )A .70°B .80°C .90°D .100°8.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③不等式kx +b <x +a 的解集为x <3中,正确的个数是( B )A .0B .1C .2D .39.下列说法:①如果a ,b ,c 为一组勾股数,那么4a ,4b ,4c 仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a ,b ,c(a >b =c),那么a 2∶b 2∶c 2=2∶1∶1,其中正确的是( C )A .①②B .①③C .①④D .②④10.如图所示中的圆点是有规律地从里到外逐层排列的.设y 为第n 层(n 为正整数)圆点的个数,则下列函数关系中正确的是( B )A .y =4n -4B .y =4nC .y =4n +4D .y =n 2二、填空题(每小题3分,共18分)11.16的平方根是__±2__;-125的立方根是__-5__.12.已知P 1(a -1,5)和P 2(2,b -1)关于x 轴对称,则(a +b)2 020的值为__-1__.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为__152__.14.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是__2.5__.15.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离到达点B 200 m ,结果他在水中实际游了520 m ,则该河流的宽度为__480__m .17.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +ba -b(a +b >0),如:3*2=3+23-2=5,那么7*(6*3)=3.三、解答题(共72分) 17.计算: (1)1212-(313+2); (2)(5-25)2; 解:- 2. 解:95.(3)23(375-12-27); (4)(3+2-1)(3-2+1). 解:60. 解:2 2.18.解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.解:⎩⎨⎧x =2,y =-1. 解:⎩⎨⎧x =9,y =6. 解:⎩⎨⎧x =1,y =1.解:⎩⎨⎧x =1,y =-2,z =-1.19.已知点P(a -1,-b +2)关于x 轴的对称点为M ,关于y 轴的对称点为N ,若点M 与点N 的坐标相等.(1)求a ,b 的值;解:因为点P (a -1,-b +2)关于x 轴的对称点为M ,所以M (a -1,b -2),因为点P (a -1,-b +2)关于y 轴的对称点为N ,所以N (-a +1,-b +2),因为点M 与点N 的坐标相等,所以a -1=-a +1,b -2=-b +2,解得a =1,b =2.(2)猜想点P 的位置并说明理由.解:点P 的位置是原点.理由:因为a =1,b =2,所以点P (a -1,-b +2)的坐标为(0,0),即P 点为原点.20.如图,将长方形ABCD 沿直线BD 折叠,使点C 落在点C′处,BC ′交AD 于点E ,AD =8,AB =4,求△BED 的面积.解:由题意,易知AD ∥BC ,所以∠2=∠3.因为△BC′D 与△BCD 关于直线BD 对称,所以∠1=∠2.所以∠1=∠3.所以EB =ED.设EB =x ,则ED =x ,AE =AD -ED =8-x.在Rt △ABE 中,AB 2+AE 2=BE 2,所以42+(8-x )2=x 2.所以x =5.所以DE =5.所以S △BED =12DE·AB =12×5×4=10.21.某校八年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序是:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试,两个程序的结果统计如下:请你根据以上信息解答下列问题: (1)请分别计算甲、乙、丙的得票数;解:甲的票数是200×34%=68(票),乙的票数是200×30%=60(票),丙的票数是200×28%=56(票).(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2∶5∶3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.解:甲的平均成绩:68×2+92×5+85×32+5+3=85.1(分),乙的平均成绩:60×2+90×5+95×32+5+3=85.5(分),丙的平均成绩:56×2+95×5+80×32+5+3=82.7(分),因为乙的平均成绩最高,所以应该推荐乙.22.在△ABC 中,∠BAC =∠BCA ,CD 平分∠ACB ,CE ⊥AB ,交AB 的延长线于点E ,∠BCE =48°,求∠CDE 的度数.解:∵CE ⊥AB ,∴∠E =90°.在△BEC 中,∠CBE =180°-∠E -∠BCE =42°,∵∠BAC =∠BCA ,∠CBE =∠BAC +∠BCA ,∴∠BAC =∠BCA =12∠CBE =21°,又∵CD平分∠ACB ,∴∠ACD =12∠ACB =10.5°,∴∠CDE =∠ACD +∠BAC =10.5°+21°=31.5°.23.如图,在数轴上与3,5对应的点分别是A ,B ,点C 也在数轴上,且AB =AC ,设点C 表示的数为x.(1)求x 的值;解:因为数轴上A ,B 两点表示的数分别为3和5,且AB =AC ,所以3-x =5-3,解得x =23- 5.(2)计算|x -3|+6x +5.解:原式=|23-5-3|+623-5+5=5-3+3= 5.24.某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数表达式;解:设y 1=k 1x (k 1≠0),将点(30,600)代入,可得k 1=20,所以y 1=20x.设y 2=k 2x +b (k 2≠0),将点(0,300),(30,600)代入,即⎩⎨⎧b =300,30k 2+b =600,解得⎩⎨⎧k 2=10,b =300.所以y 2=10x +300.(2)解释图中表示的两种方案是如何付推销费的;解:y 1是不推销产品没有推销费,每推销10件产品得推销费200元;y 2是保底工资300元,每推销10件产品再提成100元.(3)如果你是推销员,应如何选择付费方案?解:若业务能力强,平均每月推销都为30件时,两种方案都可以;平均每月推销大于30件时,就选择y 1的付费方案;平均每月推销小于30件时,选择y 2的付费方案.25.如图,一次函数y =-34x +3的图象与x 轴和y 轴分别交于点A 和点B ,将△AOB沿直线CD 对折,使点A 和点B 重合,直线CD 与x 轴交于点C ,与直线AB 交于点D.(1)求A ,B 两点的坐标;解:令y =0,则x =4;令x =0,则y =3,故点A 的坐标为(4,0),点B 的坐标为(0,3).(2)求OC 的长;解:设OC =x ,则AC =CB =4-x ,∵∠BOA =90°,∴OB 2+OC 2=CB 2,32+x 2=(4-x )2,解得x =78,∴OC =78.(3)设P 是x 轴上一动点,若使△PAB 是等腰三角形,写出点P 的坐标.解:设P 点坐标为(x ,0),当PA =PB 时,(x -4)2=x 2+9,解得x =78;当PA =AB 时,(x -4)2=42+32,解得x =9或x =-1;当PB =AB 时,x 2+32=42+32,解得x =-4(x =4,舍去).∴P 点坐标为(错误!,0),(-1,0)或(9,0),(-4,0).1、三人行,必有我师。

第11章三角形-2020-2021学年上学期八年级数学期末复习冲刺(人教版)(解析版)

第11章三角形-2020-2021学年上学期八年级数学期末复习冲刺(人教版)(解析版)

第11章三角形学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知正多边形的一个内角是135°,则这个正多边形的边数是()A.3 B.4 C.6 D.8【答案】D【解析】【分析】根据正多边形的一个内角是135°,则知该正多边形的一个外角为45°,再根据多边形的外角之和为360°,即可求出正多边形的边数.【详解】解:∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°,∴边数=3608 45︒=︒,∴这个正多边形的边数是8.故选:D.【点睛】本题考查了正多边形的内角和与外角和的知识,知道正多边形的外角之和为360°是解题关键.2.如图,要使四边形木架(用四根木条钉成)不变形,至少要再钉上的木条的根数为()A.1根B.2根C.3根D.4根【答案】A【解析】【分析】根据三角形具有稳定性可得:沿对角线钉上1根木条即可.【详解】解:根据三角形的稳定性可得,至少要再钉上1根木条.故选A .【点睛】此题主要考查了三角形具有稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性,而四边形不具有稳定性.3.如图,△ABC 中,AE ⊥BC 于点E,AD 为BC 边上的中线,DF 为△ABD 中AB 边上的中线,已知AB=5cm,AC=3cm,△ABC 的面积为12cm 2.求△ABD 与△ACD 的周长的差( )A .3B .4C .2D .1【答案】C【解析】【分析】根据中线的性质得到BD=CD ,根据周长的计算公式计算即可;【详解】∵AD 为BC 边上的中线,∴BD=CD ,∴△ABD 与△ACD 的周长的差=(AB+AD+BD)−(AC+AD+CD)=AB −AC=2cm.故选择C.【点睛】本题考查三角形中线的性质,解题的关键是掌握三角形中线的性质.4.如图,在ABC ∆中,点,D E 分别为,BC AD 的中点,2EF FC =,若ABC ∆的面积为a ,则BEF ∆的面积为( )A .6aB .4aC .3aD .38a 【答案】C【解析】【分析】根据高相同,底成比例的两个三角形的面积也成比例即可得出答案.【详解】∵ABC ∆的面积为a ,D 为BC 的中点 ∴11S S S 22ABD ACD ABC a === ∵E 为AD 的中点 ∴11S S S 24ABE BED ABD a ===同理:11SSS 24ACE CED ACD a === ∴1S S S 2CBE BED CED a =+= ∵EF=2FC∴S2S BEF BFC = 即21S 33BEF BEC S a == 故答案选择C.【点睛】本题考查的是三角形的基本概念.5.下列命题中:①长为5cm 的线段AB 沿某一方向平移10cm 后,平移后线段AB 的长为10cm ;②三角形的高在三角形内部;③六边形的内角和是外角和的两倍;④平行于同一直线的两直线平行;⑤两个角的两边分别平行,则这两个角相等,真命题个数有()A.1B.2C.3D.4【答案】A【解析】【分析】利用平移的性质、三角形高的定义、多边形的外角与内角、平行线的性质分别判断出正确答案的个数,即可得出答案.【详解】①:平移不改变图形的形状和大小,故选项①错误;②:直角三角形的高在三角形的边上,钝角三角形的高在三角形的外面,故选项②错误;③:六边形的外角和360°,六边形的内角和720°,故选项③正确;④:平行于同一条直线的两条直线平行,故选项④正确;⑤:两个角的两边分别平行,则这两个角相等或互补,故选项⑤错误.因此正确的个数有两个,答案选择A.【点睛】本题考查了命题与定理的知识,解题的关键是了解平移的性质、三角形的高的定义、多边形的外角与内角、平行线的性质等知识,难度不大.6.如图,在中,,是的角平分线交于点,于点,下列四个结论中正确的有()①②③④A.个B.个C.个D.个【答案】C【解析】【分析】根据角平分线性质,即可得到DE=DC;根据全等三角形的判定与性质,即可得到BE=BC,△BDE≌△BDC.【详解】解:∵∠ACB=90°,BD是∠ABC的角平分线,DE⊥AB,∴DE=DC,故①正确;又∵∠C=∠BEC=90°,BD=BD,∴Rt△BCD≌Rt△BED(HL),故④正确;∴BE=BC,故②正确;∵Rt△ADE中,AD>DE=CD,∴AD=DC不成立,故③错误;故选C.【点睛】本题主要考查了全等三角形的判定与性质,全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.7.等腰直角三角形的腰长为2,该三角形的重心到斜边的距离为()A.223B.23C.23D.13【答案】D【解析】【分析】作等腰直角三角形底边上的高并根据勾股定理求解,再根据三角形重心三等分中线的性质即可求出.【详解】如图,根据三线合一的性质,底边上的中线CD=2sin45°=1,∵三角形的重心到三角形顶点的距离等于中点距离的2倍,∴重心到AB 的距离=1×13=13. 故选D.【点睛】此题考查等腰直角三角形,三角形的重心,解题关键在于画出图形8.如图,△CEF 中,∠E=70°,∠F=50°,且AB ∥CF ,AD ∥CE ,连接BC ,CD ,则∠A 的度数是( )A .40°B .45°C .50°D .60°【答案】D【解析】【分析】连接AC 并延长交EF 于点M .由平行线的性质得31∠=∠,24∠∠=,再由等量代换得3412BAD FCE ∠=∠+∠=∠+∠=∠,先求出FCE ∠即可求出A ∠.【详解】连接AC 并延长交EF 于点M .∵AB CF ,∴31∠=∠,∵AD CE ,∴24∠∠=,∴3412BAD FCE ∠=∠+∠=∠+∠=∠,∵180180705060FCE E F ∠=︒-∠-∠=︒-︒-︒=︒,∴60BAD FCE ∠=∠=︒,故选D .【点睛】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.9.在△ABC 中,AB =10,BC =12,BC 边上的中线AD =8,则△ABC 边AB 上的高为( )A .8B .9.6C .10D .12【答案】B【解析】【分析】如图,作CE AB ⊥与E,利用勾股定理的逆定理证明AD BC ⊥,再利用面积法求出EC 即可.【详解】如图,作CE AB ⊥与E.AD 是ABC ∆的中线,BC =12,∴BD=6,10,8,6,AB AD BD ===∴ 222AB AD BD =+,90,ADB ∴∠=,AD BC ∴⊥ 11,22ABC S BC AD AB CE ∆== 1289.6.10CE ⨯∴== 故选B.【点睛】本题主要考查勾股定理的逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,学会面积法求三角形的高.10.一个四边形,截一刀后得到的新多边形的内角和将A .增加 180°B .减少 180°C .不变D .不变或增加 180°或减少 180°【答案】D【解析】【分析】根据一个四边形截一刀后得到的多边形的边数即可得出结果.【详解】∵一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,∴内角和为180°或360°或540°.故选D【点睛】本题考查了多边形.能够得出一个四边形截一刀后得到的图形有三种情形,是解决本题的关键. 11.下列说法中不正确的是( )A .内角和是1080°的多边形是八边形B .六边形的对角线一共有8条C .三角形任一边的中线把原三角形分成两个面积相等的三角形D .一个多边形的边数每增加一条,这个多边形的内角和就增加180°【答案】B【解析】【分析】根据各选项逐个判断说法是否正确即可.【详解】A 根据正多边形的内角和计算公式可得:(82)1801080︒︒-⨯=,因此A 说法正确;B 选项说法不正确,六边形的对角线有18条;C 正确,因为每个边上的高是相等的,只要边上的中线则分成的两个三角形的面积相等;D 正确,根据多边形的内角和的计算公式可得每增加一条边,正多边形的内角增加180°.故选B.【点睛】本题主要考查正多边形的性质,这些选项都是基本性质,必须掌握.12.有两条线段长度分别为:2cm ,5cm ,再添加一条线段能构成一个三角形的是( )A .1cmB .2cmC .3cmD .4cm 【答案】D【解析】【分析】先根据三角形的三边关系确定第三边的范围,再判断各选项即可.【详解】解:∵有两条线段长度分别为:2cm ,5cm ,∴设第三条边长为acm ,故5﹣2<a <5+2,则3<a <7,故再添加一条线段长为4cm 时,能构成一个三角形.故选D .【点睛】本题考查了三角形的三边关系,三角形的三边满足:任意两边之和大于第三边,任意两边之差小于第三边.二、填空题13.如图,在ABC 中,AD 是BC 边上的高,且ACB BAD ∠=∠,AE 平分CAD ∠,交BC 于点E ,过点E 作EF AC ,分别交AB 、AD 于点F 、G .则下列结论:①90BAC ∠=︒;②AEF BEF ∠=∠;③BAE BEA ∠=∠;④2B AEF ∠=∠,其中正确的有_____.【答案】①③④【解析】【分析】利用高线和同角的余角相等,三角形内角和定理即可证明①,再利用等量代换即可得到③④均是正确的,②缺少条件无法证明.【详解】由已知可知∠ADC=∠ADB=90°, ∵∠ACB =∠BAD∴90°-∠ACB=90°-∠BAD ,即∠CAD=∠B, ∵三角形ABC 的内角和=∠ACB+∠B+∠BAD+∠CAD=180°,∴∠CAB=90°,①正确,∵AE 平分∠CAD ,EF ∥AC ,∴∠CAE=∠EAD=∠AEF ,∠C=∠FEB=∠BAD ,②错误,∵∠BAE=∠BAD+∠DAE ,∠BEA=∠BEF+∠AEF,∴∠BAE =∠BEA ,③正确,∵∠B=∠DAC=2∠CAE=2∠AEF ,④正确,故答案为:①③④.【点睛】本题考查了三角形的综合性质,高线的性质,平行线的性质,综合性强,难度较大,利用角平分线和平行线的性质得到相等的角,再利用等量代换推导角之间的关系是解题的关键.14.如图,E ∠是六边形ABCDE 的一个内角.若120E ∠=︒,则A B C D F ∠+∠+∠+∠+∠的度数为________.【答案】600︒【解析】【分析】根据多边形的内角和=(n-2)x180求出六边形的内角和,把∠E =120°代入,即可求出答案.【详解】解:∵∠A+∠B+∠C+∠D+∠E+∠F=(6-2)×180=720° ∵∠E=120°∴∠A+∠B+∠C+∠D+∠F=720°-120°=600° 故答案为600°【点睛】本题考查了多边形的内角和外角,能知道多边形的内角和公式是解此题的关键,边数为7的多边形的内角和=(n-2)×180°. 15.如图,直线12l l ,1110∠=︒,2130∠=︒,那么3∠的度数为___________度.【答案】60【解析】【分析】如图利用平行线的性质求出∠4,再根据三角形的外角的性质解决问题即可.【详解】解:∵l 1∥l 2,∴∠1+∠4=180°,∵∠1=110°,∴∠4=70°,∵∠2=∠3+∠4,∠2=130°,∴∠3=130°−70°=60°,故答案为60.【点睛】本题考查平行线的性质和三角形外角的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.,点E是AC中点,若△CDE面积为1,则△ABC的16.如图,△ABC中,点D在BC上,且BD2DC面积为____.【答案】6【解析】【分析】根据等底同高的两个三角形的面积公式得到△ADC的面积,然后根据△ABC与△ADC的底边的数量关系来求△ABC.【详解】∵△CDE面积为1,点E是AC中点,∴S△ADC=2S△CDE=2.又∵BD=2DC,∴S△ABC=3S△ADC=6.故答案是:6.【点睛】考查了三角形的面积,熟记等底同高、同底等高三角形面积间的数量关系即可解答.三、解答题17.(1)如图,△ABC, ∠ABC、∠ACB 的三等分线交于点E、D,若∠1=130°,∠2=110°,求∠A 的度数.(2)如图,△ABC,∠ABC 的三等分线分别与∠ACB 的平分线交于点D,E 若∠1=110°,∠2=130°,求∠A 的度数.【答案】(1)∠A=60°,(2)∠A=60°【解析】【分析】(1)由三角形内角和及三等角平分线的定义可得到方程组,则可求得∠ABC+∠ACB,再利用三角形内角和可求得∠A.(2)由三角形外角可得∠DBC=20°由三等角平分线的定义可得∠ABC=60°,三角形内角和可得∠ECB=30°,角平分线的定义可得∠ACB=60°,由三角形内角和可得∠A=60°.【详解】解:(1)∵∠ABC、∠ACB 的三等分线交于点E、D设∴∠=∠=∠=∠=∠=∠=;ABE EBD DBC x ACE ECD DCB y,, ∠ABC=3x,∠ACB=3y∴∠=∠=22EBC x ECB y∠∠+∠=∠+∠+∠=1+180,2180EBC DCB ECB DBC130+2x+y=180110+2y+x=180⎧∴⎨⎩①②①+②得:240°+3x+3y=360° 即3x+3y=120°∴∠ABC+∠ACB=120°∴∠A=180°-(∠ABC+∠ACB)=180°-120°=60° (2)∵∠ABC 的三等分线分别与∠ACB 的平分线交于点 D,E;ABD DBE EBC x ACE DCB y ∴∠=∠=∠=∠=∠=设32ABC x ACB y ∴∠=∠=,710879=1209÷ 【点睛】掌握三角形内角和和外角和以及角的三等分线及角平分线是解题的关键.18.如图是某厂生产的一块模板,已知该模板的边//AB CF ,//CD AE ,按规定AB ,CD 的延长线相交成70︒角,因交点不在模板上,不便测量,这时师傅规定徒弟只需测一个角,便知道AB ,CD 的延长线的夹角是否合乎规定,你知道需测哪一个角吗?说明理由.【答案】测A ∠或C ∠的度数,只需110A ∠=︒或110C ∠=︒,见解析.【解析】【分析】连接AF ,由AB ∥CF 可证明360BAE E EFC ∠+∠+∠=︒,设AB ,CD 延长线交于点M ,若∠M =70°,则在五边形AEFCM 中,∠C =540°-360°-70°=110°,即当∠C =110°时,可知AB ,CD 的延长线的夹角合乎规定,再按此思路整理写出即可.【详解】解:测A ∠或C ∠的度数,只需110A ∠=︒或110C ∠=︒,即知模板中AB ,CD 的延长线的夹角是否符合规定,理由如下:连接AF .因为//AB CF ,所以180BAF AFC ∠+∠=︒.又因为180EAF E AFE ∠+∠+∠=︒,所以360BAE E EFC ∠+∠+∠=︒.若110C ∠=︒,则AB ,CD 延长线的夹角∠M 54036011070=︒-︒-︒=.即符合规定;同理,若连接CE ,当110A ∠=︒时,也可说明AB ,CD 延长线的夹角为70°,符合规定.【点睛】此题考查了多边形的内角和和平行线的性质的实际应用,解题的关键是通过连接AF 架起已知和所求的桥梁,进而解决问题.19.(1)如图,四边形ABCD 中,30A ∠=︒,60B ∠=︒,20C ∠=︒,则ADC ∠=________. (2)对于任意的凹四边形ABCD ,猜想A ∠,B ,C ∠与ADC ∠的大小关系,并证明.(3)一个零件的形状如图所示,按规定,A ∠应等于40︒,B 与C ∠应分别是70︒和25︒,工人检验140ADC ∠=︒,就断定这个零件不合格,请你运用上述结论,说明零件不合格的理由.【答案】(1)110︒;(2)ADC A B C ∠=∠+∠+∠,见解析;(3)见解析.【解析】【分析】(1)延长AD 交BC 于E ,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠ADC ; (2)连接BD 并延长,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠ADC.(3)延长AD 交BC 于E ,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠ADC ,然后即可判断.【详解】(1)延长AD 交BC 于E ,∵∠A=30°,∠B=60°,∴∠AEC=∠A+∠B=30°+60°=90°,∵∠C=20°,∴∠ADC=∠C+∠AEC=20°+90°=110°. (2)ADC A B C ∠=∠+∠+∠.证明:连接BD 并延长,如图所示.在ABD △中,13∠=∠+∠A ,在BCD 中,24C ∠=∠+∠,1234A C ∴∠+∠=∠+∠+∠+∠,即ADC ABC A C ∠=∠+∠+∠.(3)延长AD 交BC 于E ,∵∠A=40°,∠B=70°,∴∠AEC=∠A+∠B=40°+70°=110°,∵∠C=25°,∴∠ADC=∠C+∠AEC=25°+110°=135°. 又∵∠ADC=140°,∴这个零件不合格.【点睛】此题考查多边形内角与外角了,三角形的外角性质,解题关键在于作辅助线.20.如图,在△ABC中,AD是BC边上的高,将△ABD沿AD折叠得到△AED,点E落在CD上,∠B=50°,∠C=30°.(1)填空:∠BAD= 度;(2)求∠CAE的度数.【答案】(1)40;(2)20°【解析】【分析】(1)直接根据三角形内角和定理求出∠BAD的度数;(2)先根据图形折叠的性质求出∠AED的度数,再由三角形外角的性质即可得出结论.【详解】(1)∵AD是BC边上的高,∠B=50°,∴∠BAD=180°-90°-50°=40°.故答案为40;(2)∵△AED是由△ABD折叠得到,∴∠AED=∠B=50°,∵∠AED是△ACE的外角,∴∠AED=∠CAE+∠C,∴∠CAE=∠AED-∠C=50°-30°=20°.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.21.如图,点D与点E分别是△ABC的边长BC、AC的中点,△ABC的面积是20cm2.(1)求△ABD与△BEC的面积;(2)△AOE与△BOD的面积相等吗?为什么?【答案】(1)10,10;(2)相等,理由,见解析【解析】【分析】(1)要计算△ABE与△BCE的面积,可设点A到边BC的高为h,则S△ABD=12BD·h,S△ACD=12CD·h;再根据中点的定义得BD=CD,然后利用等量代换即可得到S△ABD=S△ACD,同理S△ABE=S△BCE,再结合△ABC的面积即可解决;(2)结合上面的推理可得S△ABE=S△ABD,再根据图形可知S△ABE=S△ABO+S△AOE,S△ABD=S△ABO+S△BOD,【详解】(1)可设点A到边BC的高为h,则S△ABD=12BD·h,S△ACD=12CD·h,∵点D是BC边的中点,∴BD=CD.∴S△ABD=S△ACD,同理S△ABE=S△BCE,∴S△ABD=S△BCE=12S△ABC=12×20=10(cm2).(2)△AOE与△BOD的面积相等,理由如下.根据(1)可得:S△ABE=S△ABD,∵S△ABE=S△ABO+S△AOE,S△ABD=S△ABO+S△BOD,∴S△AOE=S△BOD.【点睛】此题考查中点的定义和三角形面积的计算方法,掌握定义及公式是解题的关键;22.如图为一个正n 边形的一部分,AB 和DC 延长后相交于点P ,若∠BPC=120°,求n .【答案】n=12.【解析】试题分析:因为是正多边形,所以外角相等,根据∠BPC =120°,利用三角形内角和可求出正多边形的外角,再利用多边形外角等于360°,即可求出正多边形的边数. 试题解析:∵PB =PC ,∠BPC =120°, ∴∠PBC =∠PCB =12(180°﹣∠BPC )=30°, 即正n 边形的一个外角为30°, ∴n =36030︒︒=12. 23.已知,在平面直角坐标系中,AB ⊥x 轴于点B ,A(a ,b)满足64a b -+-=0,平移线段AB 使点A 与原点重合,点B 的对应点为点C .OA ∥CB .(1)填空:a =_______,b =_______,点C 的坐标为_______;(2)如图1,点P(x ,y)在线段BC 上,求x ,y 满足的关系式;(3)如图2,点E 是OB 一动点,以OB 为边作∠BOG =∠AOB 交BC 于点G ,连CE 交OG 于点F ,当点E 在OB 上运动时,OFC FCG OEC∠+∠∠的值是否发生变化?若变化,请说明理由;若不变,请求出其值.【答案】(1)()6,4,0,4-;(2)2312x y -=;(3)不变,2OFC FCG OEC∠+∠=∠. 【解析】【分析】(14b -=0,可得,a b 的值,再根据AB=OC ,且C 在y 轴负半轴上,可得C 的坐标; (2)过点P 分别作P M ⊥x 轴于点M ,P N ⊥y 轴于点N ,连接OP ,根据BOC POB POC SS S =+,可得,x y 满足的关系式;(3)由//BC OA ,证明,AOB OBC ∠=∠结合已知条件可得,BOG CBO ∠=∠ 再利用三角形的外角的性质证明∠OGC=2∠OBC ,∠OFC=∠FCG+∠OGC ,得到∠OFC+∠FCG =2∠OEC ,从而可得结论.【详解】解:(1)∵ 40b -=,∴60,40a b -=⎧⎨-=⎩∴6,4a b =⎧⎨=⎩ 4,6,AB OB ∴==由平移得:4,OC =且C 在y 轴负半轴上,()0,4,C ∴-故答案为:()6,4,0,4-;(2)如图,过点P 分别作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,连接OP .∵AB ⊥x 轴于点B ,且点A ,P ,C 三点的坐标分别为:()()()6,4,,,0,4,x y -∴OB=6,OC=4,,,PM y PN x =-= ∴()1111462222BOC POC POB S S S OC PN OB PM x y =+=•+•=⨯+⨯⨯- 23x y =-,而116412,22BOC S OB OC =•=⨯⨯=2312,x y ∴-=∴,x y 满足的关系式为:2312,x y -=(3) OFC FCG OEC∠+∠∠的值不变,值为2. 理由如下:∵线段OC 是由线段AB 平移得到,∴//,OA CB ,∴∠AOB=∠OBC ,又∵∠BOG=∠AOB ,∴∠BOG=∠OBC ,根据三角形外角性质,可得∠OGC=2∠OBC ,∠OFC=∠FCG+∠OGC ,,OEC FCG OBC ∠=∠+∠∴∠OFC+∠FCG=2∠FCG+2∠OBC =2(∠FCG+∠OBC ) =2∠OEC ,∴22OFC FCG OEC OEC OEC∠+∠∠==∠∠; 所以:OFC FCG OEC ∠+∠∠的值不变,值为2.【点睛】本题属于几何变换综合题,主要考查了非负数的性质,坐标与图形,平行线的性质以及平移的性质,三角形的外角的性质,解决问题的关键是作辅助线,运用面积法,角的和差关系以及平行线的性质进行求解. 24.已知a ,b ,c 分别为△ABC 的三条边,且满足23a b c +=-,26a b c -=-,a b >. (1)求c 的取值范围.(2)若ABC ∆的周长为12,求c 的值.【答案】(1)36c <<;(2)5c =.【解析】【分析】(1)根据三角形两边之和大于第三边,两边之差小于第三边即可求解;(2)根据23a b c +=-得三角形的周长为33-c 等于12,即可求出c 的值.【详解】解:(1)∵a ,b ,c 分别为ABC ∆的三条边,且23a b c +=-,26a b c -=-,∴23,26,c c c c ->⎧⎨-<⎩ 解得36c <<.故答案为:36c <<.(2)∵ABC ∆的周长为12,23a b c +=-,∴3312a b c c ++=-=,解得5c =.故答案为:5c =.【点睛】此题考查三角形的三边关系,利用三角形任意两边之和大于第三边,任意两边之差小于第三边,建立不等式解决问题.。

必刷提高练【13.1轴对称】(原卷版)-2021-2022学年八年级数学上册必刷题闯关练(人教版)

必刷提高练【13.1轴对称】(原卷版)-2021-2022学年八年级数学上册必刷题闯关练(人教版)

2021-2022学年八年级数学上册考点必刷练精编讲义(人教版)提高第13章《轴对称》13.1 轴对称知识点1:线段垂直平分线的性质【典型例题1】(2021•越秀区模拟)如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点D,交AB于点E,连接AD,AD将∠CAB分成两个角,且∠CAD:∠BAD=2:5,则∠ADC的度数是()A.70°B.75°C.80°D.85°解:设∠CAD=2x°,∠BAD=5x°,∵AB的垂直平分线是DE,∴BD=AD,∴∠BAD=∠B,即∠B=5x°,∵∠C=90°,∴∠CAB+∠B=90°,∴2x+5x+5x=90,解得:x=,即∠B=∠BAD=()°,∴∠ADC=∠B+∠BAD=()°+()°=75°,故选:B.【变式训练1-1】(2021春•乾县期末)如图,在△ABC中,AB边的中垂线DE,分别与AB、AC边交于点D、E两点,BC边的中垂线FG,分别与BC、AC边交于点F、G两点,连接BE、BG.若△BEG的周长为16,GE=1.则AC的长为()A.13B.14C.15D.16【变式训练1-2】(2021•南安市模拟)如图,在Rt△ABC中,∠C=90°,直线DE垂直平分AB,交AB于点D,交AC于点E,过点D作DH⊥AC于点H,已知BC=3,AC=4,则EH的长为()A.B.C.D.【变式训练1-3】(2020秋•九龙坡区校级期末)如图,AE是∠CAM的角平分线,点B在射线AM上,DE 是线段BC的中垂线交AE于E,过点E作AM的垂线交AM于点F.若∠ACB=28°,∠EBD=25°,则∠AED=°.【变式训练1-4】(2021春•罗湖区校级期末)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ACF=48°,则∠ABC的度数为.【变式训练1-5】(2021秋•天山区校级期中)如图,在△ABC中,DM,EN分别垂直平分边AC和边BC,交边AB于M,N两点,DM与EN相交于点F.(1)若AB=3cm,求△CMN的周长.(2)若∠MFN=70°,求∠MCN的度数.【变式训练1-6】(2021秋•灌南县期中)如图,在△ABC中,边AB、AC的垂直平分线分别交BC于E、F.(1)若BC=10,求△AEF周长.(2)若∠BAC=128°,求∠F AE的度数.知识点2:生活中的轴对称现象【典型例题2】观察下图中各组图形,其中成轴对称的为(只写序号1,2等).解:3中的伞把不对称,故填①②④故填①②④【变式训练2-1】(2020春•偃师市期末)如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(﹣2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为P n,则点P2020的坐标是()A.(0,1)B.(﹣2,4)C.(﹣2,0)D.(0,3)【变式训练2-2】(2007•绍兴)如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格【变式训练2-3】下面四个图形是标出了长宽之比的台球桌的俯视图,一个球从一个角落以45°角击出,在桌子边沿回弹若干次后,最终必将落入角落的一个球囊.图1中回弹次数为1次,图2中回弹次数为2次,图3中回弹次数为3次,图4中回弹次数为5次.若某台球桌长宽之比为5:4,按同样的方式击球,球在边沿回弹的次数为()次.A.6B.7C.8D.9【变式训练2-4】弹子盘为长方形ABCD,四角有洞,弹子从A出发,路线与小正方形的边成45°角,撞到边界即反弹(如图所示).AB=4,AD=3,弹子最后落入B洞.那么,当AB=9,AD=8时,弹子最后落入洞,在落入洞之前,撞击BC边次.【变式训练2-5】如图,长方形台球桌ABCD上有两个球E,F.(保留作图痕迹,工具不限)(1)请你设计一条路径,使得球F撞击台球桌边AB反射后,撞到球E;(2)请你设计一条路径,使得球F连续撞击台球桌边AB、BC反射后,撞到球E.【变式训练2-6】指出下列图形中的轴对称图形,是轴对称图形的指出对称轴.知识点3:轴对称的性质【典型例题3】(2020秋•饶平县校级期末)如图,点P是∠AOB外的一点,点Q是点P关于OA的对称点,点R是点P关于OB的对称点,直线QR分别交∠AOB两边OA,OB于点M,N,连接PM,PN,如果∠PMO=33°,∠PNO=70°,求∠QPN的度数.解:∵点Q和点P关于OA的对称,点R和点P关于OB的对称∴直线OA、OB分别是PQ、PR的中垂线,∴MP=MQ,NP=NR,∴∠PMO=∠QMO,∠PNO=∠RNO,∵∠PMO=3 3°,∠PNO=70°∴∠PMO=∠QMO=33°,∠PNO=∠RNO=70°∴∠PMQ=66°,∠PNR=140°∴∠MQP=57°,∴∠PQN=123°,∠PNQ=40°,∴∠QPN=17°.【变式训练3-1】(2021秋•连江县期中)如图,△ABC与△A1B1C1关于直线l对称,若∠A=60°,∠C1=20°,则∠B1的度数为()A.130°B.120°C.110°D.100°【变式训练3-2】(2021秋•滨湖区期中)如图,点P是∠AOB内一点,OP=m,∠AOB=α,点P关于直线OA的对称点为点Q、关于直线OB的对称点为点T,连接QT,分别交OA、OB于点M、N,连接PM、PN,下列结论:①∠OTQ=90°﹣α;②当α=30°时,△PMN的周长为m;③0<QT<2m;④∠MPN =180°﹣2α,其中正确的是()A.①②B.③④C.①②④D.①②③④【变式训练3-3】(2021•南通一模)如图,在Rt△ACB中,∠BAC=90°,AD⊥BC,垂足为D,△ABD与△ADB′关于直线AD对称,点B的对称点是点B′,若∠B′AC=14°,则∠B的度数为()A.38°B.48°C.50°D.52°【变式训练3-4】(2020秋•金平区校级期中)如图,AD,BE在AB的同侧,AD=4,BE=4,AB=8,点C 为AB的中点,若∠DCE=120°,则DE的最大值是12.【变式训练3-5】已知∠AOB=60°,点P在∠AOB的内部,P1是点P关于OA的对称点,P2是点P关于OB的对称点,若OP=6,则P1P2=【变式训练3-6】(2021•香洲区校级模拟)如图,在△ABC中,∠ABC=45°,点P为边BC上的一点,BC =3BP,且∠P AB=15°,点C关于直线P A的对称点为D,连接BD,又△APC的PC边上的高为AH (1)求∠BPD的大小;(2)判断直线BD,AH是否平行?并说明理由;(3)证明:∠BAP=∠CAH.【变式训练3-7】(2018秋•长寿区校级月考)如图,在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点.求证:AB﹣AC>PB﹣PC.知识点4:轴对称图形【典型例题4】(2020秋•房山区期末)我们将满足等式x2+y2=1+|x|y的每组x,y的值在平面直角坐标系中画出,便会得到如图所示的“心形”图形.下面四个结论中,①“心形”图形是轴对称图形;②“心形”图形所围成的面积小于3;③“心形”图形上任意一点到原点的距离都不超过;④“心形”图形恰好经过6个整点(即横、纵坐标均为整数的点).所有正确结论的序号是①③④.解:如图,由题意,E(﹣1,1),F(1,1),G(﹣1,0),H(1,0),T(0,﹣1).观察图像可知,“心形”图形是轴对称图形,故①正确,∵“心形”图形所围成的面积>五边形EFHTG的面积,∴“心形”图形所围成的面积>3,故②错误,∵当x>0时,x2+y2=1+|x|y≤1+(x2+y2),∴x2+y2≤2,∴“心形”图形上任意一点到原点的距离都不超过,故③正确,∵“心形”图形恰好经过(﹣1,1),(0,1),(1,1),(﹣1,0),(1,0),(0,﹣1),∴“心形”图形恰好经过6个整点,故④正确,故答案为:①③④.【变式训练4-1】(2020秋•仪征市期末)如果一个三角形是轴对称图形,那么这个三角形一定是()A.直角三角形B.等腰三角形C.锐角三角形D.等边三角形【变式训练4-2】(2004•日照)在日常生活中,你经常会看到一些含有特殊数学规律的汽车车牌号码,例、等,这些牌照中的5个数字都是关于中间的一个数字“对称”的,给人以对称美的享受,我们不妨把这样的牌照叫作“数字对称”牌照,如果让你负责制作以8或9开头且有5个数字的“数字对称”牌照,那么最多可制作()A.2000个B.1000个C.200个D.100个【变式训练4-3】(2017秋•襄城区期末)如图,在△ABC中,∠ACB=90°,△ABD是△ABC的轴对称图形,点E在AD上,点F在AC的延长线上.若点B恰好在EF的垂直平分线上,并且AE=5,AF=13,则DE=.【变式训练4-4】(2017秋•句容市月考)如图,在7×4的方格纸上画有如阴影所示的“9”,阴影边缘是线段或圆弧,则阴影面积占纸板面积的.【变式训练4-5】(2010春•滕州市期末)如图,在△ABC中,高线CD将∠ACB分成20°和50°的两个小角.请你判断一下△ABC是轴对称图形吗?并说明你的理由.【变式训练4-6】指出图中各有多少条对称轴.知识点5:镜面对称【典型例题5】(2020春•禅城区期末)室内墙壁上挂一平面镜,小明在平面镜内看到他背后墙上时钟的示数如图所示,则这时的实际时间应是()A.3:20B.3:40C.4:40D.8:20解:根据镜面对称的性质,分析可得题中所显示的时刻与3:40成轴对称,所以此时实际时刻为3:40.故选:B.【变式训练5-1】某人从平面镜里看到对面电子钟示数的像如图所示,这时的实际时刻应该是()A.10:21B.10:51C.21:10D.12:01【变式训练5-2】(2017秋•灌云县期中)若某一个数字在水中的倒影是如图,则这个数字是2.【变式训练5-3】(2017春•定安县期末)小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数为,则电子表的实际时刻是.【变式训练5-4】(2017•隆回县模拟)小明从前面的镜子里看到后面墙上挂钟的时间为2:30,则实际时间是.【变式训练5-5】(2013秋•张家港市校级期末)如图,DA、CB是平面镜前同一发光点S发出的经平面镜反射后的反射光线,请通过画图确定发光点S的位置,并将光路图补充完整.【变式训练5-6】如图所示,一个算式在镜中所成的像构成的算式是正确的,但是在实际中是正确的吗?实际中这个算式是什么?(写出即可)。

2022-2023学年八年级数学上学期期中考前必刷卷含答案解析(人教版)(三)

2022-2023学年八年级数学上学期期中考前必刷卷含答案解析(人教版)(三)

2022-2023学年八年级上学期期中考前必刷卷03数学(考试时间:90分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:八年级上册第11-13章5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的.1.(2022·浙江丽水·八年级期末)在以下中国银行、建设银行、工商银行、农业银行图标中,不是..轴对称图形的是( )A .B .C .D .2.(2022·山东·滨州市滨城区教学研究室八年级期中)下列各线段能构成三角形的是( ) A .7cm 、5cm 、12cm B .6cm 、7cm 、14cm C .9cm 、5cm 、11cmD .4cm 、10cm 、6cm3.(2022·河南·漯河市第二实验中学八年级期末)如图所示,图中的两个三角形全等,则∠α等于( )A .50︒B .55︒C .60︒D .65︒4.(2022·江苏·宜兴市和桥镇第二中学七年级期中)如图,在ABC 中,A m ∠=,ABC ∠和ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠和1ACD ∠的平分线交于点2A ,得22015A A BC ∠∠和2015A CD ∠的平分线交于点2016A ,则2016A ∠为多少度?( )A .20132m B .20142m C .20152m D .20162m5.(2021·重庆·华东师范大学附属中旭科创学校八年级期中)如图,A B C D E F G H I J ∠+∠+∠+∠+∠+∠+∠+∠+∠+∠=( )A .180︒B .360︒C .540︒D .720︒6.(2022·山东威海·七年级期末)已知点P 是直线l 外一点,要求过点P 作直线l 的垂线PQ .下列尺规作图错误的是( )A .B .C .D .7.(2022·山东聊城·八年级期末)已知如图,在∠ABC 中,∠ACB 是钝角,依下列步骤进行尺规作图: (1)以C 为圆心,CA 为半径画弧;(2)以B 为圆心,BA 为半径画弧,交前弧于点D ; (3)连接BD ,交AC 延长线于点E明明同学依据作图,写出了下面四个结论,其中正确的是( )A .∠ABC =∠CBEB .BE =DEC .AC ∠BDD .S △ABC =12AC •BE8.(2020·天津市红桥区教师发展中心八年级期中)如图,△ABC 中,点D 是BC 边上一点,DE ∠AB 于点E ,DF ∠BC ,且BD =FC ,BE =DC ,∠AFD =155°,则∠EDF 的度数是( )A .50°B .55°C .60°D .65°9.(2022·河南郑州·七年级期末)乐乐所在的七年级某班学生到野外活动,为测量一池塘两端A ,B 的距离,乐乐、明明、聪聪三位同学分别设计出如下几种方案:乐乐:如图①,先在平地取一个可直接到达A ,B 的点C ,再连接AC ,BC ,并分别延长AC 至D ,BC 至E ,使DC AC =,EC BC =,最后测出DE 的长即为A ,B 的距离.明明:如图②,先过点B 作AB 的垂线BF ,再在BF 上取C ,D 两点,使BC CD =,接着过点D 作BD 的垂线DE ,交AC 的延长线于点E ,则测出DE 的长即为A ,B 的距离.聪聪:如图③,过点B 作BD AB ⊥,再由点D 观测,在AB 的延长线上取一点C ,使∠=∠BDC BDA ,这时只要测出BC 的长即为A ,B 的距离. 以上三位同学所设计的方案中可行的是( )A .乐乐和明明B .乐乐和聪聪C .明明和聪聪D .三人的方案都可行10.(2022·山东烟台·七年级期末)如图,在ABC 中,CAB ∠和CBA ∠的角平分线相交于点P ,连接PA ,PB ,PC ,若PAB △,PAC △,PBC 的面积分别为1S ,2S ,3S ,则有( )A .123S S S <+B .123S S S =+C .123S S S >+D .1232S S S =+11.(2022·重庆沙坪坝·七年级期末)如图,在Rt∠ABC 中,90ABC ∠=,45C ∠=,点E 在边BC 上,将∠ABE 沿AE 翻折,点B 落在AC 边上的点D 处,连结DE 、BD ,若5BD =.下列结论:①AE 垂直平分BD ;②112.5CEA ∠=︒;③点E 是BC 的中点;④∠CDB 的周长比∠CDE 的周长大5.其中正确的个数是( )A .1B .2C .3D .412.(2022·云南红河·八年级期末)如图,在等边ABC 中,BC 边上的高6AD =,E 是高AD 上的一个动点,F 是边AB 的中点,在点E 运动的过程中,EB EF +存在最小值,则这个最小值是( )A .5B .6C .7D .813.(2021·福建省泉州实验中学八年级期中)如图,在等边三角形ABC 中,点D ,E 分别是BC ,AB 上的点,且BE =CD ,AD 与CE 相交于点F ,连接BF ,延长FE 至G ,使FG =F A ,若∠ABF 的面积为m ,AF :EF =5:3,则∠AEG 的面积是( )A .25mB .13mC .38mD .35m14.(2022·重庆·四川外国语大学附属外国语学校七年级期末)如图,Rt ABC 中,90BAC ∠=︒,AD BC ⊥于点D .过点A 作AF //BC 且AF AD =,点E 是AC 上一点且AE AB =,连接EF ,DE ,连接FD 交BE 于点G .下列结论中正确的有( )个.①FAE DAB ∠=∠;②BD EF =;③FD 平分AFE ∠;④ABDE ADEF S S =四边形四边形;⑤BD GE =A .2B .3C .4D .5第Ⅱ卷二、填空题:本题共4个小题;每个小题3分,共12分,把正确答案填在横线上.15.(2022·河南平顶山·七年级期末)如图,已知∠1=∠2,AC =AE ,不添加任何辅助线,再添加一个合适的条件:______,使∠ABC ∠∠ADE .(只写出一种即可)16.(2022·湖南·澧县教育局张公庙镇中学八年级期末)如图,在Rt ABC ∆中,90C ∠=︒,BE 平分ABC ∠,ED 垂直平分AB 于D .若9AC =,则AE 的值是______.17.(2022·湖北·云梦县实验外国语学校八年级期中)如图,12l l ∥,点D 是BC 的中点,若∠ABC 的面积是10cm 2,则∠BDE 的面积是_______cm 2.18.(2020·浙江·乐清市知临寄宿学校八年级期中)如图所示,∠B 0C = 10°,点A 在OB 上,且OA = 1,按下列要求画图:以点A 为圆心、1为半径向右画弧交OC 于点1A 得到第1条线段1AA ;再以点1A 为圆心、1为半径向右画弧交OB 于点2A ,得到第2条线段12A A ;再以点2A 为圆心、1为半径向右画弧交OC 于点3A ,得到第3条线段23A A …这样画下去,直到得到第n 条线段,之后就不能再画出符合要求的线段了,则n = _________ .三、解答题:本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分.19.(2021·河南·安阳市第五中学八年级期中)如图,AD 是△ABC 的BC 边上的高,AE 平分∠BAC ,若∠B =42°,∠C =72°,求∠AEC 和∠DAE 的度数.20.(2022·四川眉山·七年级期末)点C 为BD 上一点,△ABC ∠△CDE ,AB =1,DE =2,∠B =110°.(1)求BD 的长; (2)求∠ACE 的度数.21.(2022·上海市曹杨第二中学附属学校七年级期末)如图,ABC 中,AB AC =,且D 、E 、F 分别是AB 、BC 、AC 边上的点,BE CF =,DEF B ∠=∠,点G 是DF 的中点,猜想EG 和DF 的位置关系,并说明理由.22.(2021·贵州毕节·八年级期末)如图所示,在ABC 中,8AB =,4AC =,点G 为BC 的中点,DG BC ⊥交BAC ∠的平分线AD 于点D ,DE AB ⊥于点E ,DF AC ⊥交AC 的延长线于点F .(1)求证:BE CF =; (2)求AE 的长.23.(2020·福建龙岩·八年级期末)如图,射线OK 的端点O 是线段AB 的中点,请根据下列要求作答:(1)尺规作图:在射线OK 上作点C D ,,连接AC BD ,,使=AC BD >12AB ;(2)利用(1)中你所作的图,求证:ACO BDO ∠=∠.24.(2020·浙江·乐清市知临寄宿学校八年级期中)如图1,∠ABC 是边长为6cm 的等边三角形,点P ,Q 分别从顶点A ,B 同时出发,沿线段AB ,BC 运动,且它们的速度都为1厘米/秒.当点P 到达点B 时,P 、Q 两点停止运动.设点P 的运动时间为t (秒).(1)当运动时间为t 秒时,BQ 的长为 厘米,BP 的长为 厘米.(用含t 的式子表示) (2)当t 为何值时,∠PBQ 是直角三角形;(3)如图2,连接AQ 、CP ,相交于点M ,则点P ,Q 在运动的过程中,∠CMQ 会变化吗?若变化,则说明理由;若不变,请直接写出它的度数.25.(2022·江苏·扬州市江都区第三中学七年级期中)如图1的图形我们把它称为“8字形”,显然有A B C D ∠+∠=∠+∠;阅读下面的内容,并解决后面的问题:(1)如图2,AP 、CP 分别平分BAD ∠、BCD ∠,若36ABC ∠=︒,16ADC ∠=︒,求P ∠的度数;(2)①在图3中,直线AP 平分BAD ∠的外角FAD ∠,CP 平分BCD ∠的外角BCE ∠,猜想P ∠与B 、D ∠的关系,并说明理由.②在图4中,直线AP 平分BAD ∠的外角FAD ∠,CP 平分BCD ∠的外角BCE ∠,猜想P ∠与B 、D ∠的关系,直接写出结论,无需说明理由.③在图5中,AP 平分BAD ∠,CP 平分BCD ∠的外角BCE ∠,猜想P ∠与B 、D ∠的关系,直接写出结论,无需说明理由.(3)在(2)的条件下,若40GHCS=,CE =15,请直接写出BF 的长.26.(2022·陕西·西安铁一中分校七年级期末)如图①,在Rt ABC △中,90ACB ∠=︒,AC=BC ,l 是过点C 的任意一条直线,过A 作AD ∠l 于D ,过B 作BE ∠l 于E .(1)求证:△ADC ∠△CEB ;(2)如图②延长BE 至F ,连接CF ,以CF 为直角边作等腰Rt FCG ,90FCG ∠=︒,连接AG 交l 于H .试探究BF 与CH 的数量关系.并说明理由;2022-2023学年八年级上学期期中考前必刷卷03(人教版2022)数学·全解全析1 2 3 4 5 6 7 8 9 10 11 12 13 14B C B D B B A D D A C B A D1.B【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】解:选项A、C、D均能找到这样的一条直线折,使一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.选项B不能找到这样的一条直线折,使一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】根据三角形三边关系逐一判断即可【详解】A、7+5=12,不能组成三角形,故本选项不符题意;B、6+7<14,不能组成三角形,故本选项不符题意;C、9+5>11,能组成三角形,故本选项符合题意;D、4+6=10,不能组成三角形,故本选项不符题意故选:C【点睛】本题考查了三角形三边关系,关键是掌握在运用三角形三边关系判定三条线段能否构成三角形时要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判断这三条线段能构成三角形.3.B【分析】由全等三角形的对应角相等,结合三角形内角和定理即可得到答案.【详解】解:根据题意,如图:︒-︒-︒=︒,根据三角形内角和定理,第一个三角形中边长为b的对角为:180606555∠图中的两个三角形是全等三角形,∠第一个三角形中边长为b 的对角等于第二个三角形中的∠α, ∠∠α=55︒. 故选B .【点睛】本题考查了全等三角形的性质以及三角形内角和定理,解题的关键是掌握全等三角形的对应角相等. 4.D【分析】先根据角平分线的定义以及三角形外角的性质证明112A A ∠=∠,同理211124A A A ==∠∠∠,321128A A A ==∠∠∠,4311216A A A ==∠∠∠,由此得出规律11122n n n A A A -==∠∠∠,从而得到答案.【详解】解:∠ABC ∠和ACD ∠的平分线交于点1A ,∠1122ACD ACD ABC A BC ==∠∠,∠∠, ∠111A ABC ACD A A BC ACD +=+=∠∠∠,∠∠∠, ∠1122A A BC ACD +=∠∠∠,111222A A BC ACD ∠+∠=∠, ∠112A A ∠=∠,同理211124A A A ==∠∠∠,321128A A A ==∠∠∠,4311216A A A ==∠∠∠,,∠11122n n n A A A -==∠∠∠,∠201620162016122m A A ==∠∠,故选D .【点睛】本题主要考查了三角形外角的性质,角平分线的定义,图形类的规律探索,熟知三角形外角的性质是解题的关键. 5.B【分析】先根据三角形的外角性质可得1A B ∠∠∠+=,5C D ∠∠∠+=,4E F ∠∠∠+=,3G H ∠∠∠+=,2I J ∠∠∠+=,12345∠+∠+∠+∠+∠正好是五边形的外角和为360︒. 【详解】解:如图:∠1A B ∠∠∠+=,5C D ∠∠∠+=,4E F ∠∠∠+=,3G H ∠∠∠+=,2I J ∠∠∠+=,12345360∠+∠+∠+∠+∠=︒,∠360A B C D E F G H I J ∠+∠+∠+∠+∠+∠+∠+∠+∠+∠=︒. 故选:B .【点睛】本题考查了三角形的外角性质以及多边形的外角和,解题的关键是得出1A B ∠∠∠+=,5C D ∠∠∠+=,4E F ∠∠∠+=,3G H ∠∠∠+=,2I J ∠∠∠+=.6.B【分析】根据线段垂直平分线的逆定理及两点确定一条直线一一判断即可. 【详解】A 、如图,连接AP 、AQ 、BP 、BQ ,∠AP =BP ,AQ =BQ ,∠点P 在线段AB 的垂直平分线上,点Q 在线段AB 的垂直平分线上, ∠ 直线PQ 垂直平分线线段AB ,即直线l 垂直平分线线段PQ , 本选项不符合题意;B 、B 选项无法判定直线PQ 垂直直线l ,本选项符合题意;C 、如图,连接AP 、AQ 、BP 、BQ ,∠AP = AQ ,BP =BQ ,∠点A 在线段PQ 的垂直平分线上,点B 在线段PQ 的垂直平分线上, ∠ 直线AB 垂直平分线线段PQ ,即直线l 垂直平分线线段PQ , 本选项不符合题意;D、如图,连接AC、BC、DP、PQ,∠AC=BC,AD=BD,∠点C在线段AB的垂直平分线上,点D在线段AB的垂直平分线上,∠ 直线CD垂直平分线线段AB,∠390∠=︒由作图痕迹可知:12∠=∠,∠CD PQ,∠4390∠=∠=︒∠PQ∠AB,本选项不符合题意;故选:B.【点睛】本题考查作图-复杂作图,线段垂直平分线的逆定理及两点确定一条直线等知识,读懂图像信息是解题的关键.7.A【分析】根据作图得到AC=CD,AB=BD,证明∠ABC∠∠DBC,从而得到结论.【详解】解:由作图可知:AC=CD,AB=BD,∠BC=BC,∠∠ABC∠∠DBC(SSS),∠∠ABC=∠CBE,无法证明其余三个选项的结论,故选A.【点睛】本题考查作图-基本作图,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题. 8.D【分析】证明Rt △FDC ∠Rt △DEB (HL ),由全等三角形的性质得出∠DFC =∠EDB =25°,即可得出答案.【详解】解:∠∠AFD =155°, ∠∠DFC =25°, ∠DF ∠BC ,DE ∠AB , ∠∠FDC =∠DEB =90°,在Rt △FDC 和Rt △DEB 中,CF BD CD BE =⎧⎨=⎩,∠Rt △FDC ∠Rt △DEB (HL ), ∠∠DFC =∠EDB =25°,∠∠EDF =180°−∠BDE −∠FDC =180°−25°−90°=65°. 故选:D .【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理和性质定理是解题的关键. 9.D【分析】在三个图中分别证明三角形全等,再根据全等三角形的性质即可得证. 【详解】解:在∠ABC 和∠DEC 中,DC ACDCE ACB EC BC =⎧⎪∠=∠⎨⎪=⎩, ∠∠ABC ∠∠DEC (SAS ), ∠AB =DE ,故乐乐的方案可行; ∠AB ∠BF , ∠∠ABC =90°, ∠DE ∠BF , ∠∠EDC =90°, 在∠ABC 和∠EDC 中,ABC EDC BC CDACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠ABC ∠∠EDC (ASA ), ∠AB =ED ,故明明的方案可行; ∠BD ∠AB , ∠∠ABD =∠CBD , 在∠ABD 和∠CBD 中,ABD CBD BD BDBDC BDA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠ABD ∠∠CBD (ASA ), ∠AB =BC ,故聪聪的方案可行, 综上可知,三人方案都可行, 故选:D .【点睛】本题考查了全等三角形的应用,熟练掌握全等三角形的判定方法是解题的关键. 10.A【分析】过P 点作PD AB ⊥于D PE BC ⊥,于E PF AC ⊥,于F ,先根据角平分线的性质得到PD PE PF ==,再利用三角形面积公式得到123111222S AB PD S AC PF S BC PE =⋅=⋅=⋅,,,然后根据三角形三边的关系对各选项进行判断.【详解】解:过P 点作PD AB ⊥于D PE BC ⊥,于E PF AC ⊥,于F ,如图,CAB ∠和CBA ∠的角平分线相交于点P ,PD PF PD PE ∴==,,PD PE PF ∴==,123111222S AB PD S AC PF S BC PE =⋅=⋅=⋅,,, AB AC BC <+,123S S S ∴<+.故选:A .【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了三角形面积公式.11.C【分析】根据翻折后图形大小不变,三角形的外角和,三角形周长,即可判断出正确.【详解】∠ADE 是ABE △翻折而得的∠AB AD =,BAE DAE ∠=∠∠AE 垂直平分BD故①正确;∠Rt ABC 中,90ABC ∠=︒,45C ∠=︒∠45BAC ∠=︒ ∠122.52CAE BAE BAC ∠=∠=∠=︒ ∠BAE ABC CEA ∠+∠=∠∠22.590112.5CEA ∠=︒+︒=︒故②正确;∠ADE 是ABE △翻折而得的∠BE DE =,90ADE ∠=︒∠90EDC ∠=︒∠45C ∠=︒∠45CED ∠=︒∠DE DC =∠DC DE BE ==,但BE CE ≠∠E 不是BC 的中点故③错误;∠55CDB C DC BC BD DC BE EC DC DE EC =++=+++=+++CDE C DC DE EC =++∠5CDB CDE C C -=故④正确.故正确的结论的是:①②④.故选:C .【点睛】本题考查翻折的性质和三角形的知识,解题的关键是掌握翻折的性质,三角形外角和定理,三角形周长等.12.B【分析】先连接CE ,再根据EB =EC ,将FE +EB 转化为FE +CE ,最后根据两点之间线段最短,求得CF 的长,即为FE +EB 的最小值.【详解】解:如图,连接CE ,∠等边∠ABC 中,AD 是BC 边上的中线,∠AD 是BC 边上的高线,即AD 垂直平分BC ,∠EB =EC ,∠BE +EF =CE +EF ,∠当C 、F 、E 三点共线时,EF +EC =EF +BE =CF ,∠等边∠ABC 中,F 是AB 边的中点,∠AD =CF =6,即EF +BE 的最小值为6.故选:B【点睛】本题主要考查了等边三角形的性质,轴对称性质等知识,熟练掌握和运用等边三角形的性质以及轴对称的性质是解决本题的关键.解题时注意,最小值问题一般需要考虑两点之间线段最短或垂线段最短等结论.13.A【分析】先根据SAS 定理证出ACD CBE ≅,从而可得60AFG =︒∠,根据等边三角形的判定可得AFG 是等边三角形,再根据SAS 定理证出ACF ABG ≅,从而可得60BGC BAC AFG ∠=∠=︒=∠,根据平行线的判定可得AF BG ∥,从而可得AFG ABF S S m ==,然后根据:5:3AF EF =可得:2:5EG FG =,最后根据三角形的面积公式即可得.【详解】解:∠ABC 是等边三角形,∠,60BC AC AB ACB CBA BAC ==∠=∠=∠=︒,在ACD △和CBE △中,BC AC ACD CBE CD BE =⎧⎪∠=∠⎨⎪=⎩,∠()SAS ACD CBE ≅,∠CAD BCE ∠=∠,∠60BCE ACE ACB ∠+∠=∠=︒,∠60AFG CAD ACE BCE ACE ∠=∠+∠=∠+∠=︒,∠FG FA =,∠AFG 是等边三角形,,60AF AG FAG ∴=∠=︒,BAC BAD FAG BAD ∴∠-∠=∠-∠,即CAF BAG ∠=∠,在ACF 和ABG 中,AC AB CAF BAG AF AG =⎧⎪∠=∠⎨⎪=⎩,()SAS ACF ABG ∴≅,ACF ABG ∴∠=∠,又AEC BEG ∠=∠,60BGC BAC ∴∠=∠=︒,BGC AFG ∴∠=∠,AF BG ∴∥,AFG ABF S S m ∴==(同底等高),∠:5:3AF EF =,FG FA =,∠:5:3FG EF =,∠:2:5EG FG =,∠:2:5AEG AFG SS =, ∠2255AEG AFG S S m ==, 即AEG △的面积为25m , 故选:A .【点睛】本题考查了等边三角形的判定与性质、三角形全等的判定与性质等知识点,正确找出两组全等三角形是解题关键.14.D【分析】由“SAS ”可证∠ABD ∠∠AEF ,利用全等三角形的性质判断可求解.【详解】解:∠AD ∠BC ,AF ∠BC ,∠AF ∠AD ,∠∠F AD =∠BAC =90°,∠∠F AE =∠BAD ,故①正确;在∠ABD 和∠AEF 中,AB BE BAD EAF AD AF =⎧⎪∠=∠⎨⎪=⎩,∠∠ABD ∠∠AEF (SAS ),∠BD =EF ,∠ADB =∠AFE =90°,故②正确;∠AF =AD ,∠DAF =90°,∠∠AFD =45°=∠EFD ,∠FD 平分∠AFE ,故③正确;∠∠ABD ∠∠AEF ,∠S △ABD =S △AEF ,∠S 四边形ABDE =S 四边形ADEF ,故④正确;如图,过点E 作EN ∠EF ,交DF 于N ,∠∠FEN =90°,∠∠EFN =∠ENF =45°,∠EF =EN =BD ,∠END =∠BDF =135°,在∠BGD 和∠EGN 中,BDG ENG BGD EGN BD NE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠BDG ∠∠ENG (AAS ),∠BG =GE ,故⑤正确,故选:D .【点睛】本题考查了全等三角形的判定和性质,平行线的性质,添加恰当辅助线构造全等三角形是解题的关键.15.∠B =∠D (或∠C =∠E 或AB =AD )【分析】根据等式的性质可得∠BAC =∠DAE ,然后利用全等三角形的判定方法,即可解答.【详解】解:∠∠1=∠2,∠∠1+∠DAC =∠2+∠DAC ,∠∠BAC =∠DAE ,∠AE =AC ,∠再添加AB =AD ,利用“SAS”可以证明∠ABC ∠∠ADE ;添加∠B =∠D ,利用“AAS” 可以证明∠ABC ∠∠ADE ;添加∠C =∠E ,利用“ASA” 可以证明∠ABC ∠∠ADE .故答案为:∠B =∠D (或∠C =∠E 或AB =AD ).【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法,是解题的关键. 16.6【分析】先根据角平分线的定义、线段垂直平分线的性质、等腰三角形的性质可得,AE BE ABE CBE A =∠=∠=∠,再根据三角形的内角和定理可得30CBE ∠=︒,设AE BE x ==,则9CE x =-,在Rt BCE 中,根据含30度角的直角三角形的性质即可得.【详解】解:BE 平分ABC ∠,ABE CBE ∴∠=∠, ED 垂直平分AB ,AE BE ∴=,ABE A ∴∠=∠,ABE CBE A ∴∠=∠=∠,又90C ∠=︒,90ABE CBE A ∴∠+∠+∠=︒,解得30CBE ∠=︒,设AE BE x ==,则9CE AC AE x =-=-,在Rt BCE 中,90C ∠=︒,30CBE ∠=︒,2BE CE ∴=,即()29x x =-,解得6x =,即6AE =,故答案为:6.【点睛】本题考查了线段垂直平分线的性质、等腰三角形的性质、含30度角的直角三角形的性质等知识点,熟练掌握含30度角的直角三角形的性质是解题关键.17.5【分析】利用平行线之间的距离相等可得∠ABC 和∠BDE 的高相等,再根据点D 是BC 中点可得∠ABC 的面积是∠BDE 面积的2倍,从而可得结果.【详解】解:∠12l l ∥,∠∠ABC 和∠BDE 的高相等,∠点D 为BC 中点,10ABC S =△cm 2,∠S △ABC=2S △BDE =10cm 2,∠S △BDE =5cm 2,故答案为:5.【点睛】本题主要考查了平行线的性质,利用平行线之间的距离处处相等得出∠ABC 和∠BDE 的高相等是解题的关键.18.8【分析】根据等腰三角形的性质和三角形外角的性质依次可得1A AB ∠的度数,21A AC ∠的度数,32A A B ∠的度数,43A A C ∠的度数,依此得到规律,再根据三角形外角需要小于90°即可求解.【详解】解:由题意可知:1121,AO A A A A A A ==,…;则111212AOA OA A A AA A A A ∠=∠∠=∠,,…; ∠∠BOC =10°,∠12 20A AB BOC ∠=∠=︒,同理可得21324354 30 40 50 60A AC A A B A A C A A B ∠=︒∠=︒∠=︒∠=︒,,,, 65768770 8090A A C A A B A A C ∠=︒∠=︒∠=︒,,,∠第9个三角形将有两个底角等于90°,不符合三角形的内角和定理,∠最多能画8条线段;故答案为:8.【点睛】本题考查了等腰三角形的性质:等腰三角形的两个底角相等:三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角的和;准确地找到规律是解决本题的关键.19.∠AEC =75°,∠DAE =15°.【分析】根据三角形内角和定理求出∠BAC ,根据角平分线的定义得到∠BAE =∠CAE =12∠BAC =33°,根据三角形的外角性质求出∠AEC ,根据直角三角形的性质求出∠DAE .【详解】解:∠∠BAC +∠B +∠C =180°,∠B =42°,∠C =72°,∠∠BAC =66°,∠AE 平分∠BAC ,∠∠BAE =∠CAE =12∠BAC =33°, ∠∠AEC =∠B +∠BAE =75°,∠AD ∠BC ,∠∠ADE =90°,∠∠DAE =90°-∠AEC =15°.【点睛】本题考查的是三角形内角和定理、三角形的高和角平分线,掌握三角形内角和等于180°是解题的关键.20.(1)BD 的长为3;(2)∠ACE 的度数为110°.【分析】(1)利用全等三角形的性质得到CD =AB =1,BC =DE =2,据此即可求得BD 的长;(2)利用全等三角形的性质得到∠ECD =∠A ,再利用三角形的外角性质即可求解.(1)解:∠△ABC ∠△CDE ,AB =1,DE =2,∠CD =AB =1,BC =DE =2,∠BD =BC +CD =2+1=3;(2)解:∠△ABC ∠△CDE ,∠∠ECD =∠A ,∠∠ACD =∠ACE +∠ECD =∠A +∠B ,∠∠ACE =∠B =110°.【点睛】本题考查了全等三角形的性质.全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等.21.EG 垂直平分DF ,理由见解析【分析】根据题意,证明BDE ∠CEF △可得ED EF =,根据等腰三角形三线合一,结合G 是DF 的中点,即可得证.【详解】EG 垂直平分DF ,理由如下:AB AC =,B C ∴∠=∠,DEC B BDE DEF FEC ∠=∠+∠=∠+∠,DEF B ∠=∠,BDE CEF ∴∠=∠,在BDE 和CEF △中,B C BDE CEF BE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,BDE ∴∠()CEF AAS ,ED EF ∴=, 又点G 是DF 的中点,EG ∴垂直平分DF .【点睛】本题考查了等腰三角形的性质,全等三角形的性质与判定,证明BDE ∠CEF △是解题的关键.22.(1)证明见解析(2)6【分析】(1)如图所示,连接BD ,CD ,先利用SAS 证明∠BGD ∠∠CGD 得到BD =CD ,再由角平分线的性质得到DE =DF ,即可利用HL 证明Rt ∠DEB ∠Rt ∠DFC 则BE =CF ;(2)证明Rt ∠ADE ∠Rt ∠ADF (HL ),得到AF =AE ,由(1)得BE =CF ,则AE =AF =AC +CF ,据此求出BE 的长,即可求出AE 的长.(1)解:如图所示,连接BD ,CD ,∠G 是BC 的中点,DG ∠BC ,∠BG =CG ,∠BGD =∠CGD =90°,又∠DG =DG ,∠∠BGD ∠∠CGD (SAS ),∠BD =CD ,∠AD 平分∠BAC ,DE ∠AB ,DF ∠AC ,∠DE =DF ,∠DEB =∠DFC =90°,又∠DB =DC ,∠Rt ∠DEB ∠Rt ∠DFC (HL ),∠BE =CF ;(2)解:在Rt ∠ADE 和Rt ∠ADF 中,AD AD DE DF =⎧⎨=⎩, ∠Rt ∠ADE ∠Rt ∠ADF (HL ),∠AF =AE ,由(1)得BE =CF ,∠AE =AF =AC +CF ,∠AB =AE +BE =AC +CF +BE =AC +2BE ,∠AB =8,AC =4,∠BE =2,∠AE =AB -BE =6.【点睛】本题主要考查了全等三角形的性质与判定,角平分线的性质,熟知全等三角形的性质与判定条件是解题的关键.23.(1)见解析;(2)见解析【分析】(1)根据尺规作图的步骤作图即可;(2)延长CO 至点E 使得OE OC =,连接BE ,先证明AOC BOE ∆≅∆,再证明∠DBE 是等腰三角形即可.【详解】(1)如图1,AC BD 、即为所求.(2)如图2,延长CO 至点E 使得OE OC =,连接BE∠O AB 点为线段的中点,=OA OB ∴,AOC BOE ∆∆在和中,∠=OC OE AOC EOB OA OB =⎧⎪∠∠⎨⎪=⎩,AOC BOE ∴∆≅∆,,AC BE ACO OEB ∴=∠=∠,AC BD =又,BE BD ∴=,BDO OEB ∴∠=∠,ACO BDO ∴∠=∠.【点睛】本题考查了尺规作图和全等三角形,解题的关键是做辅助线把所证的角或线段放到两个全等的三角形中.24.(1)t ,(6﹣t );(2)2或4;(3)∠CMQ不会变化,始终是60°,理由见解析【分析】(1)根据点P、Q的速度都为1厘米/秒.得到BQ=t厘米,AP=t厘米,则BP=AB-AP=(6-t)厘米;(2)分当∠PQB=90°时和当∠BPQ=90°时,两种情况讨论求解即可;(3)只需要证明△ABQ∠△CAP得到∠BAQ=∠ACP,则∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM =∠BAC=60°,即∠CMQ不会变化.(1)解:∠点P、Q的速度都为1厘米/秒.∠BQ=t厘米,AP=t厘米,∠BP=AB-AP=(6-t)厘米,故答案为:t,(6﹣t);(2)解:由题意得:AP=BQ=t厘米,BP=AB-AP=(6-t)厘米,①如图1,当∠PQB=90°时,∠△ABC是等边三角形,∠∠B=60°,∠∠BPQ=30°,∠PB=2BQ,得6﹣t=2t,解得,t=2,②如图2,当∠BPQ=90°时,∠∠B=60°,∠∠BQP=30°,∠BQ=2BP,得t=2(6﹣t),解得,t=4,∠当第2秒或第4秒时,△PBQ 为直角三角形;(3)解:∠CMQ 不变,理由如下:∠△ABC 是等边三角形,∠AB =AC ,∠ABC =∠CAB =60°,在△ABQ 与△CAP 中,60AB CA B CAP AP BQ t =⎧⎪∠=∠=︒⎨⎪==⎩,∠△ABQ ∠△CAP (SAS ),∠∠BAQ =∠ACP ,∠∠CMQ =∠ACP +∠CAM =∠BAQ +∠CAM =∠BAC =60°,∠∠CMQ 不会变化.【点睛】本题主要考查了等边三角形的性质,含30度角的直角三角形的性质,全等三角形的性质与判定等等,熟知等边三角形的性质是解题的关键.24.(1)26P ∠=︒ (2)①12P B D ∠=∠+∠(),理由见解析; ②1180()2P B D ∠=︒-∠+∠; ③190+()2P B D ∠=︒∠+∠【分析】(1)根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠P +∠3=∠1+∠ABC ,∠P +∠2=∠4+∠ADC ,相加得到2∠P +∠2+∠3=∠1+∠4+∠ABC +∠ADC ,继而得到2∠P =∠ABC +∠ADC ,代入数据得∠P 的值;(2)①按解析图标记好∠1,∠2,∠3,∠4,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠P AD +∠P =∠PCD +∠D ,∠P AB +∠P =∠4+∠B ,分别用∠2,∠3表示出∠P AD 和∠PCD ,再整理即可得解;②按解析图标记好∠1,∠2,∠3,∠4,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠BAP +∠P +∠4+∠B =360°,∠2+∠P +∠PCD +∠D =360°,分别用∠2,∠3表示出∠BAP 和∠PCD ,再整理即可得解;③按解析图标记好∠1,∠2,∠3,∠4,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠BAD +∠B =∠BCD +∠D ,∠2+∠P =∠PCD +∠D ,分别用∠2,∠3表示出∠BAD 、∠BCD 和∠PCD ,再整理即可得解;(1)解:∠AP 、CP 分别平分∠BAD 、∠BCD,∠∠1=∠2,∠3=∠4,∠∠2+∠3=∠1+∠4,由(1)的结论得:∠P +∠3=∠1+∠ABC ①,∠P +∠2=∠4+∠ADC ②,①+②,得2∠P +∠2+∠3=∠1+∠4+∠ABC +∠ADC,∠2∠P =∠ABC +∠ADC,∠∠P =12(∠ABC +∠ADC )=12(36°+16°)=26°.(2)12P B D ∠=∠+∠(),理由如下: ①∠AP 平分∠BAD 的外角∠F AD ,CP 平分∠BCD 的外角∠BCE ,∠∠1=∠2,∠3=∠4.由(1)的结论得:∠P AD +∠P =∠PCD +∠D ③,∠P AB +∠P =∠4+∠B ④,∠∠P AB =∠1,∠1=∠2,∠∠P AB =∠2,∠∠P AD=∠P AB+∠BAD=∠2+180°-2∠2=180°-∠2,∠∠2+∠P =∠3+∠B ⑤,③+⑤得∠2+∠P +∠P AD +∠P =∠3+∠B +∠PCD +∠D ,∠∠2+∠P+180°-∠2+∠P=∠3+∠B+180°-∠3+∠D 即2∠P+180°=∠B+∠D+180°,∠12P B D∠=∠+∠().②11802P B D∠=︒-∠+∠(),理由如下:如图4,∠AP平分∠BAD的外角∠F AD,CP平分∠BCD的外角∠BCE,∠∠1=∠2,∠3=∠4,∠BAD=180°﹣2∠1,∠BCD=180°﹣2∠3,由题干可知:∠BAD+∠B=∠BCD+∠D,∠(180°﹣2∠1)+∠B=(180°﹣2∠3)+∠D,在四边形APCB中,∠BAP+∠P+∠3+∠B=360°,即(180°﹣∠2)+∠P+∠3+∠B=360°,⑥在四边形APCD中,∠2+∠P+∠PCD+∠D=360°,即∠2+∠P+(180°﹣∠3)+∠D=360°,⑦⑥+⑦得:2∠P+∠B+∠D+∠2﹣∠2+∠3﹣∠3=360°∠2∠P+∠B+∠D=360°,∠11802P B D∠=︒-∠+∠();③1902P B D∠=︒+∠+∠(),理由如下:如图5,∠AP平分∠BAD,CP平分∠BCD的外角∠BCE,∠∠1=∠2,∠3=∠4,由题干结论得:∠BAD+∠B=∠BCD+∠D,即2∠2+∠B=(180°﹣2∠3)+∠D⑧,∠2+∠P=∠PCD+∠D,即∠2+∠P=(180°﹣∠3)+∠D⑨,⑨×2﹣⑧得:2∠P ﹣∠B =180°+∠D, ∠1902P B D ∠=︒+∠+∠().【点睛】本题考查了三角形的内角和定理,角平分线的定义,准确识图并运用好“8”字形的结论,然后列出两个等式是解题的关键,用阿拉伯数字加弧线表示角更形象直观.26.(1)证明见解析(2)2BF CH =,理由见解析(3)323【分析】(1)先根据垂直的定义可得90ADC CEB ∠=∠=︒,从而可得90DAC DCA ∠+∠=︒,再根据90ACB ∠=︒可得DAC ECB ∠=∠,然后根据AAS 定理即可得证;(2)作AM CG ∥交直线l 于点M ,连接GM ,先根据ASA 定理证出ACM CBF ≅△△,根据全等三角形的性质可得,CM BF AM CF ==,从而可得AM GC =,再根据ASA 定理证出AMH GCH ≅△△,根据全等三角形的性质可得MH CH =,由此即可得出结论; (3)先根据ADC CEB ≅可得15AD CE ==,再根据AMH GCH ≅△△可得40G AMH HC S S ==△,利用三角形的面积公式可得163MH =,然后根据MH CH =,2BF CH =即可得出答案.(1)证明:,AD DE BE DE ⊥⊥,90ADC CEB ∴∠=∠=︒,90DAC DCA ∴∠+∠=︒,90ACB ∠=︒,90ECB DCA ∴∠+∠=︒,DAC ECB ∴∠=∠,在ADC 和CEB △中,ADC CEB DAC ECB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ADC CEB ∴≅△△.(2)解:2BF CH =,理由如下:如图,作AM CG ∥交直线l 于点M ,连接GM ,180MAC ACG ∴∠+∠=︒,3603609090180ACG BCF ACB FCG ∠+∠=︒-∠-∠=︒-︒-︒=︒,MAC BCF ∠=∠∴,90ACM BCE ∠+∠=︒,90BCE CBF ∠+∠=︒,ACM CBF =∠∴∠,在ACM △和CBF 中,MAC FCB AC CB ACM CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA ACM CBF ∴≅△△,,CM BF AM CF ∴==,Rt FCG 是等腰直角三角形,CF GC ∴=,AM GC ∴=,又AM CG ∥,MAH CGH ∴∠=∠,AMH GCH ∠=∠,在AMH 和GCH △中,MAH CGH AM GC AMH GCH ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA AMH GCH ≅△△,MH CH ∴=,2BF CM CH ∴==.(3)解:如图,作AM CG ∥交直线l 于点M ,连接GM ,ADC CEB ≅△△,15CE =,15AD CE ∴==,AMH GCH ≅△△,40GHC S =, 40G AMH HC S S ∴==△,0124AD MH ∴⋅=,即420115MH =⨯, 解得163MH =, 又MH CH =,2BF CH =,3223BF MH ∴==. 【点睛】本题主要考查了三角形全等的判定与性质、等腰三角形的定义,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.。

初中数学人教新版八年级期末必刷常考题之二次根式的乘除(含答案)

初中数学人教新版八年级期末必刷常考题之二次根式的乘除(含答案)

初中数学人教新版八年级期末必刷常考题之二次根式的乘除一.选择题(共6小题)1.(2022秋•南关区期末)二次根式在实数范围内有意义,则x的取值范围是()A.x≤﹣3B.x>﹣3C.x≥﹣3D.x≥32.(2022秋•南安市期末)当a>0时,=()A.±a B.a C.﹣a D.03.(2022秋•香坊区期末)下列二次根式中属于最简二次根式的是()A.B.C.D.4.(2022秋•海口期末)若二次根式在实数范围内有意义,则x的取值范围是()A.x≤3B.x≥3C.x<3D.x≠35.(2022秋•开福区校级期末)下列式子一定是二次根式的是()A.B.C.D.6.(2022秋•临淄区期末)下列计算正确的是()A.B.C.D.二.填空题(共6小题)7.(2023春•拱墅区期末)若二次根式在实数范围内有意义,则x的取值范围是.8.(2022秋•宁德期末)已知a是正整数,是整数,则a的最小值是2.那么若b是正整数,是大于1的整数,则b的最大值与最小值的差是.9.(2022秋•射洪市期末)若代数式有意义,则实数x的取值范围是.10.(2022秋•汉寿县期末)化简二次根式的结果为.11.(2022秋•思明区校级期末)计算下列各题:化简:①50=;②3﹣2=;③(﹣2a)2=;④=;⑤=;⑥=;⑦=;⑧(x﹣1)(x+2)=.12.(2022秋•南关区期末)将化为最简二次根式的结果是.三.解答题(共3小题)13.(2022秋•东平县期末)计算与求值:(1)(x﹣1)2=25;(2)(x+3)3=﹣27;(3)已知x、y都是实数,且,求y x的值.14.(2022秋•鲤城区校级期末)定义:若两个二次根式a,b满足ab=c,且c是有理数,则称a与b是关于c的共轭(è)二次根式.问题解决:(1)若a与2是关于6的共轭二次根式,则a=;(2)若4+与8﹣m是关于26的共轭二次根式,求m的值.15.(2022秋•丰城市校级期末)若x,y是实数,且y=++3,求3的值.2022-2023学年下学期初中数学人教新版八年级期末必刷常考题之二次根式的乘除参考答案与试题解析一.选择题(共6小题)1.(2022秋•南关区期末)二次根式在实数范围内有意义,则x的取值范围是()A.x≤﹣3B.x>﹣3C.x≥﹣3D.x≥3【考点】二次根式有意义的条件.【专题】二次根式;运算能力.【答案】C【分析】直接利用二次根式的定义得出x+3≥0,进而得出答案.【解答】解:∵二次根式在实数范围内有意义,∴x+3≥0,解得:x≥﹣3.故选:C.【点评】此题主要考查了二次根式有意义的条件,正确掌握二次根式的定义是解题关键.2.(2022秋•南安市期末)当a>0时,=()A.±a B.a C.﹣a D.0【考点】二次根式的性质与化简.【专题】二次根式;运算能力.【答案】B【分析】根据即可求解.【解答】解:当a>0时,.故选:B.【点评】本题考查二次根式的性质,掌握是解题的关键3.(2022秋•香坊区期末)下列二次根式中属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【答案】C【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A.=2,被开方数含有开方开得尽的因式,故不符合题意;B.=4,被开方数是完全平方数,故不符合题意;C.是最简二次根式,故符合题意;D.=,被开方数是小数,故不符合题意.故选:C.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4.(2022秋•海口期末)若二次根式在实数范围内有意义,则x的取值范围是()A.x≤3B.x≥3C.x<3D.x≠3【考点】二次根式有意义的条件.【专题】二次根式;运算能力.【答案】B【分析】根据二次根式有意义的条件可得2x﹣6≥0,再解不等式即可.【解答】解:由题意得:2x﹣6≥0,解得:x≥3,故选:B.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.5.(2022秋•开福区校级期末)下列式子一定是二次根式的是()A.B.C.D.【考点】二次根式的定义.【专题】二次根式;运算能力.【答案】C【分析】直接利用二次根式的定义,一般地,形如的代数式叫做二次根式进行判断即可.【解答】解:∵x2≥0,∴x2+2≥2,∴一定是二次根式,而、和中的被开方数均不能保证大于等于0,故不一定是二次根式,故选:C.【点评】此题主要考查了二次根式的定义,正确把握定义是解题关键.6.(2022秋•临淄区期末)下列计算正确的是()A.B.C.D.【考点】二次根式的性质与化简;立方根.【专题】二次根式;运算能力.【答案】C【分析】根据算术平方根的非负性、二次根式的性质、立方根逐项判断即可.【解答】解:A、,原式计算错误,不符合题意;B、,原式计算错误,不符合题意;C、,原式计算正确,符合题意;D、,原式计算错误,不符合题意.故选:C.【点评】本题主要考查了二次根式的性质、算术平方根的非负性、立方根等知识,掌握二次根式的性质、算术平方根的非负性是解本题的关键.二.填空题(共6小题)7.(2023春•拱墅区期末)若二次根式在实数范围内有意义,则x的取值范围是x <5.【考点】二次根式有意义的条件.【专题】二次根式;运算能力.【答案】x<5.【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得:5﹣x>0,解得:x<5,故答案为:x<5.【点评】本题考查的是二次根式有意义的条件,熟记二次根式的被开方数是非负数、分母不为0是解题的关键.8.(2022秋•宁德期末)已知a是正整数,是整数,则a的最小值是2.那么若b是正整数,是大于1的整数,则b的最大值与最小值的差是45.【考点】二次根式的定义.【专题】二次根式;运算能力.【答案】45.【分析】由,结合b是正整数,是大于1的整数,可得b是15的倍数,从而可得答案.【解答】解:∵,又∵b是正整数且是大于1的整数,∴当b=15时,的整数值最大为4,此时b的值最小,当b=60时,的整数值最小为2,此时b的值最大,∴b的最大值与最小值的差是60﹣15=45.故答案为:45.【点评】本题考查的是算术平方根的含义与估算,理解题意是解本题的关键.9.(2022秋•射洪市期末)若代数式有意义,则实数x的取值范围是x≥﹣3且x ≠0.【考点】二次根式有意义的条件;分式有意义的条件.【专题】分式;二次根式;运算能力.【答案】x≥﹣3且x≠0.【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式即可.【解答】解:由题意得:x+3≥0且x≠0,解得:x≥﹣3且x≠0,故答案为:x≥﹣3且x≠0.【点评】本题考查的是二次根式有意义的条件、分式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.10.(2022秋•汉寿县期末)化简二次根式的结果为.【考点】二次根式的性质与化简.【专题】二次根式;运算能力.【答案】.【分析】根据二次根式的分母有理化计算即可.【解答】解:.故答案为:.【点评】本题考查了二次根式的化简,熟记分母有理化方法是解题关键.11.(2022秋•思明区校级期末)计算下列各题:化简:①50=1;②3﹣2=;③(﹣2a)2=4a2;④=﹣1;⑤=;⑥=2;⑦=;⑧(x﹣1)(x+2)=x2+x﹣2.【考点】二次根式的性质与化简;幂的乘方与积的乘方;多项式乘多项式;分式的混合运算;零指数幂;负整数指数幂.【专题】实数;整式;分式;二次根式;运算能力.【答案】①1.②.③4a2.④﹣1.⑤.⑥2.⑦.⑧x2+x﹣2.【分析】①根据零指数幂的意义即可求出答案.②根据负整数指数幂的意义即可求出答案.③根据积的乘方运算即可求出答案.④根据分式的加减运算法则即可求出答案.⑤根据积的乘方运算即可求出答案.⑥根据二次根式的性质即可求出答案.⑦根据二次根式的性质即可求出答案.⑧根据多项式乘多项式法则即可求出答案.【解答】解:①原式=1.②原式=.③原式=4a2.④原式==﹣1.⑤原式=.⑥原式=2.⑦原式=.⑧原式=x2+2x﹣x﹣2=x2+x﹣2.故答案为:①1.②.③4a2.④﹣1.⑤.⑥2.⑦.⑧x2+x﹣2.【点评】本题考查零指数幂的意义、负整数指数幂的意义、积的乘方运算、二次根式的性质、多项式乘多项式法则,本题属于基础题型.12.(2022秋•南关区期末)将化为最简二次根式的结果是.【考点】最简二次根式.【专题】二次根式;运算能力.【答案】.【分析】被开方数的分子分母乘以2,然后再开方即可.【解答】解:==,故答案为:.【点评】此题主要考查了最简二次根式,关键是掌握最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.把满足上述两个条件的二次根式,叫做最简二次根式.三.解答题(共3小题)13.(2022秋•东平县期末)计算与求值:(1)(x﹣1)2=25;(2)(x+3)3=﹣27;(3)已知x、y都是实数,且,求y x的值.【考点】二次根式有意义的条件;平方根;立方根;实数的运算.【专题】实数;运算能力.【答案】(1)x=﹣4或x=6;(2)x=﹣6;(3)9.【分析】(1)根据平方根的概念计算;(2)根据立方根的概念计算;(3)根据二次根式有意义的条件求出x,进而求出y,根据有理数的乘方法则计算即可.【解答】解:(1)∵(x﹣1)2=25,∴x﹣1=±5,∴x=﹣4或x=6;(2)∵(x+3)3=﹣27,∴x+3=﹣3,∴x=﹣6;(3)由题意得:x﹣2≥0,x﹣2≤0,∴x=2,∴y=3,∴y x=32=9.【点评】本题考查的是二次根式有意义的条件、平方根、立方根的概念,掌握二次根式的被开方数是非负数是解题的关键.14.(2022秋•鲤城区校级期末)定义:若两个二次根式a,b满足ab=c,且c是有理数,则称a与b是关于c的共轭(è)二次根式.问题解决:(1)若a与2是关于6的共轭二次根式,则a=;(2)若4+与8﹣m是关于26的共轭二次根式,求m的值.【考点】二次根式的定义.【专题】二次根式;运算能力.【答案】(1);(2)2.【分析】(1)根据共轭二次根式的定义列等式可得a的值;(2)根据共轭二次根式的定义列等式可得m的值.【解答】解:(1)∵a与2是关于6的共轭二次根式,∴2a=6,∴a==,故答案为:;(2)∵4+与8﹣m是关于26的共轭二次根式,∴(4+)(8﹣m)=26,∴8﹣m===8﹣2,∴m=2.【点评】本题考查了新定义共轭二次根式的理解和应用,并会用二次根据的性质进行计算.15.(2022秋•丰城市校级期末)若x,y是实数,且y=++3,求3的值.【考点】二次根式有意义的条件.【答案】见试题解答内容【分析】根据二次根式有意义的条件列出不等式,解不等式求出x、y的值,根据二次根式的性质计算即可.【解答】解:由题意得,4x﹣1≥0,1﹣4x≥0,解得,x=,则y=3,则3=3×=.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.考点卡片1.平方根(1)定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)求一个数a的平方根的运算,叫做开平方.一个正数a的正的平方根表示为“”,负的平方根表示为“﹣”.正数a的正的平方根,叫做a的算术平方根,记作.零的算术平方根仍旧是零.平方根和立方根的性质1.平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.立方根的性质:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.2.立方根(1)定义:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.记作:.(2)正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.(3)求一个数a的立方根的运算叫开立方,其中a叫做被开方数.注意:符号中的根指数“3”不能省略;对于立方根,被开方数没有限制,正数、零、负数都有唯一一个立方根.【规律方法】平方根和立方根的性质1.平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.立方根的性质:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.3.实数的运算(1)实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.(2)在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.【规律方法】实数运算的“三个关键”1.运算法则:乘方和开方运算、幂的运算、指数(特别是负整数指数,0指数)运算、根式运算、特殊三角函数值的计算以及绝对值的化简等.2.运算顺序:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.3.运算律的使用:使用运算律可以简化运算,提高运算速度和准确度.4.幂的乘方与积的乘方(1)幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘”指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加”的区别.(2)积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.(ab)n=a n b n(n是正整数)注意:①因式是三个或三个以上积的乘方,法则仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果.5.多项式乘多项式(1)多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.(2)运用法则时应注意以下两点:①相乘时,按一定的顺序进行,必须做到不重不漏;②多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.6.分式有意义的条件(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.(3)分式的值为正数的条件是分子、分母同号.(4)分式的值为负数的条件是分子、分母异号.7.分式的混合运算(1)分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.(2)最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.(3)分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律进行灵活运算.【规律方法】分式的混合运算顺序及注意问题1.注意运算顺序:分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.2.注意化简结果:运算的结果要化成最简分式或整式.分子、分母中有公因式的要进行约分化为最简分式或整式.3.注意运算律的应用:分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律运算,会简化运算过程.8.零指数幂零指数幂:a0=1(a≠0)由a m÷a m=1,a m÷a m=a m﹣m=a0可推出a0=1(a≠0)注意:00≠1.9.负整数指数幂负整数指数幂:a﹣p=(a≠0,p为正整数)注意:①a≠0;②计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(﹣3)﹣2=(﹣3)×(﹣2)的错误.③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.④在混合运算中,始终要注意运算的顺序.10.二次根式的定义二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式.①“”称为二次根号②a(a≥0)是一个非负数;学习要求:理解被开方数是非负数,给出一个式子能准确的判断其是否为二次根式,并能根据二次根式的定义确定被开方数中的字母取值范围.11.二次根式有意义的条件判断二次根式有意义的条件:(1)二次根式的概念.形如(a≥0)的式子叫做二次根式.(2)二次根式中被开方数的取值范围.二次根式中的被开方数是非负数.(3)二次根式具有非负性.(a≥0)是一个非负数.学习要求:能根据二次根式中的被开方数是非负数来确定二次根式被开方数中字母的取值范围,并能利用二次根式的非负性解决相关问题.【规律方法】二次根式有无意义的条件1.如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数.2.如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.12.二次根式的性质与化简(1)二次根式的基本性质:①≥0;a≥0(双重非负性).②()2=a(a≥0)(任何一个非负数都可以写成一个数的平方的形式).③=|a|=(算术平方根的意义)(2)二次根式的化简:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.=•(a≥0,b≥0)=(a≥0,b>0)(3)化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.【规律方法】二次根式的化简求值的常见题型及方法1.常见题型:与分式的化简求值相结合.2.解题方法:(1)化简分式:按照分式的运算法则,将所给的分式进行化简.(2)代入求值:将含有二次根式的值代入,求出结果.(3)检验结果:所得结果为最简二次根式或整式.13.最简二次根式最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.如:不含有可化为平方数或平方式的因数或因式的有2、3、a(a≥0)、x+y等;含有可化为平方数或平方式的因数或因式的有4、9、a2、(x+y)2、x2+2xy+y2等.。

2020-2021学年辽宁省沈阳七中八年级上学期期末数学复习卷 (含答案解析)

2020-2021学年辽宁省沈阳七中八年级上学期期末数学复习卷 (含答案解析)

2020-2021学年辽宁省沈阳七中八年级上学期期末数学复习卷一、选择题(本大题共10小题,共30.0分)1.观察下列图形,是轴对称图形的是()A. B. C. D.2.下列计算正确的是()A. (3x)2=6x2B. 3a2⋅2a3=6a6C. (a2)6=(a4)3D. (−a)3÷(−a)2=a3.如果将分式2x中的字母x与y的值分别扩大为原来的10倍,那么这个分式的值() x+yA. 扩大为原来的10倍B. 扩大为原来的20倍D. 不改变C. 缩小为原来的1104.某种感冒病毒的直径为0.0000000031米,用科学记数法表示为()A. 3.1×10−10米B. 3.1×10−9米C. −3.1×109米D. 0.31×10−8米5.分式1有意义,则x的取值范围是()x−1A. x>1B. x≠1C. x<1D. 一切实数6.在平面直角坐标系中,已知O为坐标原点,点P的坐标为(5,12),则OP的长为().A. 5B. 12C. 13D. 147.如图所示,AC和BD交于点O,若OA=OD,用“SAS”证明△AOB≌△DOC还需().A. AB=DCB. OB=OCC. ∠C=∠DD. ∠AOB=∠DOC8.下列各式由左边到右边的变形中,是分解因式的为A. a(x+y)=ax+ayB. x2−4x+4=x(x−4)+4C. x2−16+3x=(x+4)(x−4)+3xD. 10x2−5x=5x(2x−1)9. 如图,△ABC 中,AB =5,AC =6,BC =4,边AB 的垂直平分线交AC 于点D ,则△BDC 的周长是( )A. 8B. 9C. 10D. 11 10. 已知13m −12n =1,则4n+3mn−6m 9m+6mn−6n 的值是( )A. −53B. −54C. 58D. 53 二、填空题(本大题共6小题,共18.0分)11. 当x ______ 时,分式x 2−4x+2无意义;当x ______ 时,分式x 2−4x+2值为零.12. 因式分解:4m 2−n 2= .13. 木工做一个长方形桌面,量得桌面的长为45cm ,宽为28cm ,对角线为53cm ,这个桌面______.(填“合格”或“不合格”).14. 分解因式:x 2−2x +1=______.15. 如图,已知边长为a ,b 的长方形,若它的周长为24,面积为32,则a 2b +ab 2的值为________.16. 如图,在△ABC 中,∠B =45°,∠BAC =30°,AB =2√3+2,AD 是∠BAC 的平分线,若E 、F分别是AD 、AC 上的动点,则EC +EF 的最小值是_____________________.三、计算题(本大题共2小题,共12.0分)17.学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.(1)王师傅单独整理这批实验器材需要多少分钟?(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?18.(本题10分)等腰Rt△ABC中,CA=CB,∠CAB=90°,∠ABC=∠ACB=45°,点A、点B分别是x轴、y轴两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E;(1)如图(1),若A(0,1),B(2,0),求C 点的坐标;(2)如图(2),当等腰Rt △ABC 运动到使点D 恰为AC 中点时,连接DE ,求证:∠ADB =∠CDE .四、解答题(本大题共8小题,共64.0分)19. 先化简,再求值:(2x +3y)2−(2x +3y)(2x −3y),其中x =13,y =−12.20. 计算:(1)m 2m−2+42−m (2)2b 2a−b −a −b .21.解下列方程:(1)2x =3x+1(2)xx−2+22−x=222.如图,已知AD=AE,AB=AC,求证:△ABE≌△ACD.23.如图,∠AOB=90∘,线段OA=18m,OB=6m,一机器人Q在点B处.(1)若BC=AC,求线段BC的长.(2)在(1)的条件下,若机器人Q从点B出发,以3m/min 的速度沿着▵OBC的三条边逆时针走一圈回到点B,设行走的时间为tmin,则t为何值时,▵OBQ是以Q点为直角顶点的直角三角形?24.如图,四边形ABCD的对角线AC,BD相交于点E,BE=DE,∠BAD+∠BCA=180°,∠BAC=2∠ACD.(1)求证:EC=EA+AB;(2)若AB=x,EA=y,试探究x与y之间的数量关系(列出等式即可),并说明理由.25.如图1,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D为边AB的中点,DE⊥AB交边AC于点E,(1)AE______ EB(填“>”、“=”、“<”)(2)求AE的长;(3)如图2,点P从点B出发以每秒1个单位长度向点C运动;同时点Q从点C出发以每秒2个单位长度向点A运动,设运动时间为t秒.①在点P、Q运动过程中,四边形CPDQ的面积是否发生变化,并说明理由;②当t为何值时,△DEQ为等腰三角形.26.五边形ABCDE中,BC=DE,AE=DC,∠C=∠E,DM⊥AB于M,试说明M是AB中点.-------- 答案与解析 --------1.答案:A解析:本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.根据轴对称图形的概念求解.解:A.是轴对称图形,故本选项正确;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项错误.故选A.2.答案:C解析:解:A、(3x)2=9x2,故此选项错误;B、3a2⋅2a3=6a5,故此选项错误;C、(a2)6=(a4)3,正确;D、(−a)3÷(−a)2=−a,故此选项错误;故选:C.分别利用积的乘方运算法则以及单项式乘以单项式和幂的乘方运算法则以及同底数幂的除法运算法则化简进而判断即可.此题主要考查了积的乘方运算以及单项式乘以单项式和幂的乘方运算以及同底数幂的除法运算等知识,正确掌握运算法则是解题关键.3.答案:D解析:解:原式=20x10x+10y =2xx+y故选D.根据分式的基本性质即可求出答案.本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4.答案:B解析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000000031=3.1×10−9,故选:B.5.答案:B解析:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.分母为零,分式无意义;分母不为零,分式有意义.解:由分式1有意义,得x−1x−1≠0.解得x≠1,故选B.6.答案:C解析:本题考查的是勾股定理及坐标与图形性质.根据题意画出图形,利用勾股定理即可求解.解:如图所示:∵P(5,12),∴OP=√52+122=13.故选C.7.答案:B解析:此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键,由OA =OD ,加上对顶角相等,再加上OB =OC ,即可利用SAS 得证.解:在△AOB 和△DOC 中,{OA =OD ∠AOB =∠DOC OB =OC, ∴△AOB≌△DOC(SAS),则还需添加的添加是OB =OC ,故选B .8.答案:D解析:本题主要考查因式分解的定义.根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.这类问题的关键在于能否正确应用分解因式的定义来判断.解:A.是多项式乘法,故选项错误;B .右边不是积的形式,x 2−4x +4=(x −2)2,故选项错误;C .右边不是积的形式,故选项错误;D .提公因式法,故D 选项正确.故选D.9.答案:C解析:本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.由线段垂直平分线的性质,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.解:∵边AB的垂直平分线交AC于点D,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故选C.10.答案:B解析:本题考查分式的运算,解题的关键是熟练运用整体的思想以及分式的运算法则,本题属于基础题型.根据分式的运算法则即可求出答案.解:当13m −12n=1时,∴2n−3m=6mn∴原式=2(2n−3m)+3mn−3(2n−3m)+6mn=12mn+3mn −18mn+6mn=−5 4故选:B.11.答案:=−2;=2解析:解:(1)若分式无意义,则x+2=0,故x=−2,(2)分式的值为0,即x2−4=0且x+2≠0,故x=2.分式无意义的条件是分母等于0.分式值是0的条件是分子等于0,分母不等于0.本题考查的是分式有意义的条件,值是0的条件,是一个比较简单的问题.12.答案:(2m+n)(2m−n)解析:此题考查了平方差公式进行因式分解,熟练掌握平方差公式是解本题的关键.原式利用平方差公式分解即可.解:原式=(2m+n)(2m−n).故答案为:(2m+n)(2m−n).13.答案:合格解析:解:∵长都为45cm,宽都为28cm,∴此四边形是平行四边形,∵桌面的长为45cm,宽为28cm,对角线为53cm,且452+282=532,∴此四边形的一个角为90°,∴此四边形是矩形.∴这个桌面合格.故答案为:合格.由桌面的长为45cm,宽为28cm,对角线为53cm,利用勾股定理的逆定理即可判定90°的角,继而求得答案.此题考查了矩形的判定以及勾股定理的逆定理.注意掌握勾股定理的逆定理的应用是解此题的关键.14.答案:(x−1)2解析:本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.直接利用完全平方公式分解因式即可.解:x2−2x+1=(x−1)2.故答案为(x−1)2.15.答案:384解析:本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了数学整体思想和正确运算的能力.先把所给式子提取公因式ab,再整理为与题意相关的式子,代入求值即可.解:由题意易得a+b=12,ab=32,∴a2b+ab2=ab(a+b)=384.故答案为384.16.答案:2解析:本题考查的是轴对称−最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.作CP⊥AB,垂足为P,交AD于E点,过E点作EF⊥AC,垂足为F.则CE+EF为所求的最小值,根据AD是∠BAC的平分线可知EF=EP,再由含30°角的直角三角形的性质即可得出结论.解:如图,作CP⊥AB,垂足为P,交AD于E点,过E点作EF⊥AC,垂足为F.∵AD是∠BAC的平分线,∴EF=EP,∴EF+CE=EP+CE=CP,∴CP是点C到直线AB的最短距离(垂线段最短),∴CP 就是CE +EF 的最小值,∵∠B =45°,∠BAC =30°,∴CP =BP ,AP =√3CP ,∵AB =2√3+2,∴BP +AP =CP +√3CP =2√3+2,∴CP =2,∴EC +EF 的最小值为2.故答案为2.17.答案:解:(1)设王师傅单独整理这批实验器材需要x 分钟,则王师傅的工作效率为1x , 由题意,得:20(140+1x )+20×1x =1,解得:x =80,经检验得:x =80是原方程的根.答:王师傅单独整理这批实验器材需要80分钟.(2)设李老师要工作y 分钟,由题意,得:(1−y 40)÷180≤30,解得:y ≥25.答:李老师至少要工作25分钟.解析:(1)设王师傅单独整理这批实验器材需要x 分钟,则王师傅的工作效率为1x ,根据李老师与工人王师傅共同整理20分钟的工作量+王师傅再单独整理了20分钟的工作量=1,可得方程,解出即可;(2)根据王师傅的工作时间不能超过30分钟,列出不等式求解.本题考查了分式方程的应用及一元一次不等式的应用,解答本题的关键是仔细审题,找到不等关系及等量关系. 18.答案:(1)解:作CH ⊥y 轴于H ,如图1,∵A(0,1),B(2,0),∴OA=1,OB=2,∵∠CAB=90°,即∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,在△ACH和△BAO中,∴△ACH≌△BAO(AAS),∴CH=OA=1,AH=OB=2,∴OA+OH=2,∴OH=1,∴C点坐标为(−1,−1);(2)证明:作CF⊥AC交y轴于F,如图2,由(1)可得∠1=∠2,在△ACF和△BAD中,∴△ACF≌△BAD(SAS),∴AD=CF,∠AFC=∠ADB,∵点D为AC中点,∴AD=CD,∴CD=CF,∵∠ACB=45°,∴∠FCE=45°,在△CDE和△CFFE中,∴△CDE≌△CFE(SAS),∴∠CDE=∠CFE,∴∠ADB=∠CDE。

2020-2021学年北京海淀区人教版八年级(上)期末数学试卷(含答案)

2020-2021学年北京海淀区人教版八年级(上)期末数学试卷(含答案)

2020-2021学年北京市海淀区八年级(上)期末数学试卷一、选择题(本大题共24分,每小题3分)第1~8题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.(2020秋•海淀区期末)冬季奥林匹克运动会是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在北京和张家口举办.下列四个图分别是四届冬奥会图标中的一部分,其中是轴对称图形的为()A.B.C.D.2.(2021•朝阳区校级模拟)KN95型口罩可以保护在颗粒物浓度很高的空间中工作的人不被颗粒物侵害,也可以帮助人们预防传染病.“KN95”表示此类型的口罩能过滤空气中95%的粒径约为0.0000003m的非油性颗粒.其中,0.0000003用科学记数法表示为()A.3×10﹣6B.3×10﹣7C.0.3×10﹣6D.0.3×10﹣73.(2020秋•海淀区期末)下列计算正确的是()A.a2•a3=a6B.(a2)3=a6C.(2a)3=2a3D.a10÷a2=a54.(2020秋•海淀区期末)下列等式中,从左到右的变形是因式分解的是()A.x(x﹣2)=x2﹣2x B.(x+1)2=x2+2x+1C.x2﹣4=(x+2)(x﹣2)D.x+2=x(1+)5.(2021•绿园区一模)如图,菊花1角硬币为外圆内正九边形的边缘异形币,则该正九边形的一个内角大小为()A.135°B.140°C.144°D.150°6.(2021•柳南区校级模拟)小聪在用直尺和圆规作一个角等于已知角时,具体过程是这样的:已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)如图,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C'为圆心,CD长为半径画弧,与第(2)步中所画的弧相交于点D′;(4)过点D'画射线O′B′,则∠A′O′B′=∠AOB.小聪作法正确的理由是()A.由SSS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBB.由SAS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBC.由ASA可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBD.由“等边对等角”可得∠A′O′B′=∠AOB7.(2021•沂南县模拟)如果a﹣b=2,那么代数式(﹣2b)•的值是()A.2B.﹣2C.D.8.(2020秋•海淀区期末)在△ABC中,AB≠AC,线段AD,AE,AF分别是△ABC的高,中线,角平分线,则点D,E,F的位置关系为()A.点D总在点E,F之间B.点E总在点D,F之间C.点F总在点D,E之间D.三者的位置关系不确定二、填空题(本大题共24分,每小题3分)9.(2020•北京一模)使式子有意义的x取值范围是.10.(2020秋•海淀区期末)计算:(3a2+2a)÷a=.11.(2020秋•海淀区期末)如图,在△ABC中,∠ABC=90°,∠ACB=60°,BD⊥AC,垂足为D.若AB=6,则BD的长为.12.(2020秋•海淀区期末)如图,AB⊥BC,AD⊥DC,垂足分别为B,D.只需添加一个条件即可证明△ABC≌△ADC,这个条件可以是.(写出一个即可)13.(2020秋•海淀区期末)某中学要举行校庆活动,现计划在教学楼之间的广场上搭建舞台.已知广场中心有一座边长为b的正方形的花坛.学生会提出两个方案:方案一:如图1,围绕花坛搭建外围为正方形的“回”字形舞台(阴影部分),舞台的面积记为S1;方案二:如图2,在花坛的三面搭建“凹”字形舞台(阴影部分),舞台的面积记为S2;具体数据如图所示,则S1S2.(填“>”,“<”或“=”)14.(2020秋•海淀区期末)如图,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D.则∠DBC 的大小为.15.(2020秋•海淀区期末)在平面直角坐标系xOy中,点A的坐标为(0,3),点B与点A关于x轴对称,点C在x轴上,若△ABC为等腰直角三角形,则点C的坐标为.16.(2020秋•海淀区期末)图1是小明骑自行车的某个瞬间的侧面示意图,将小明右侧髋关节和车座看作一个整体抽象为A点,将膝盖抽象为B点,将脚跟、脚掌、踏板看作一个整体抽象为C点,将自行车中轴位置记为D点(注:自行车中轴是连接左右两个踏板,使两个踏板绕其旋转的部件),在骑行过程中,点A,D的位置不变,B,C为动点.图2是抽象出来的点和线.若AB=BC=40cm,CD=16cm,小明在骑车前,需调整车座高度,保证在骑行过程中脚总可以踩到踏板,则AD最长为cm.三、解答题(本大题共52分,第17题8分,第18~21题每题5分,第22题6分,第23题5分,第24题6分,第25题7分)17.(2020秋•海淀区期末)(1)计算:(﹣)2+2﹣2﹣(2﹣π)0;(2)分解因式:3x2﹣6xy+3y2.18.(2021•朝阳区校级模拟)已知3x2﹣x﹣1=0,求代数式(2x+5)(2x﹣5)+2x(x﹣1)的值.19.(2020秋•海淀区期末)如图,C是AB的中点,CD∥BE,CD=BE,连接AD,CE.求证:AD=CE.20.(2020秋•海淀区期末)《几何原本》是一部集前人思想和欧几里得个人创造性于一体的不朽之作,把人们公认的一些事实列成定义、公理和公设,用它们来研究各种几何图形的性质,从而建立了一套从定义、公理和公设出发,论证命题得到定理的几何学论证方法.在其第一卷中记载了这样一个命题:“在任意三角形中,大边对大角.”请补全上述命题的证明.已知:如图,在△ABC中,AC>AB.求证:.证明:如图,由于AC>AB,故在AC边上截取AD=AB,连接BD.(在图中补全图形)∵AD=AB,∴∠ABD=∠.()(填推理的依据)∵∠ADB是△BCD的外角,∴∠ADB=∠C+∠DBC.()(填推理的依据)∴∠ADB>∠C.∴∠ABD>∠C.∵∠ABC=∠ABD+∠DBC,∴∠ABC>∠ABD.∴∠ABC>∠C.21.(2020秋•海淀区期末)列方程解应用题开展“光盘行动”,拒绝“舌尖上的浪费”,已成为一种时尚.某学校食堂为了激励同学们做到光盘不浪费,提出如果学生每餐做到光盘不浪费,那么餐后奖励香蕉或橘子一份.近日,学校食堂花了2800元和2500元分别采购了香蕉和橘子,采购的香蕉比橘子多150千克,香蕉每千克的价格比橘子每千克的价格低30%,求橘子每千克的价格.22.(2020秋•海淀区期末)如图,在△ABC中,∠BAC=90°,AB=AC,D是AC边上一点,连接BD,EC⊥AC,且AE=BD,AE与BC交于点F.(1)求证:CE=AD;(2)当AD=CF时,求证:BD平分∠ABC.23.(2020秋•海淀区期末)小明在学习有关整式的知识时,发现一个有趣的现象:对于关于x的多项式x2﹣2x+3,由于x2﹣2x+3=(x﹣1)2+2,所以当x﹣1取任意一对互为相反数的数时,多项式x2﹣2x+3的值是相等的.例如,当x﹣1=±1,即x=2或0时,x2﹣2x+3的值均为3;当x﹣1=±2,即x=3或﹣1时,x2﹣2x+3的值均为6.于是小明给出一个定义:对于关于x的多项式,若当x﹣t取任意一对互为相反数的数时,该多项式的值相等,就称该多项式关于x=t对称.例如x2﹣2x+3关于x=1对称.请结合小明的思考过程,运用此定义解决下列问题:(1)多项式x2﹣4x+6关于x=对称;(2)若关于x的多项式x2+2bx+3关于x=3对称,求b的值;(3)整式(x2+8x+16)(x2﹣4x+4)关于x=对称.24.(6分)(2020秋•海淀区期末)已知△ABC是等边三角形,点D在射线BC上(与点B,C不重合),点D关于直线AC的对称点为点E,连接AD,AE,CE,DE.(1)如图1,当点D为线段BC的中点时,求证:△ADE是等边三角形;(2)当点D在线段BC的延长线上时,连接BE,F为线段BE的中点,连接CF.根据题意在图2中补全图形,用等式表示线段AD与CF的数量关系,并证明.25.(7分)(2020秋•海淀区期末)在平面直角坐标系xOy中,直线l为过点M(m,0)且与x轴垂直的直线.对某图形上的点P(a,b)作如下变换:当b≥|m|时,作出点P关于直线l的对称点P1,称为Ⅰ(m)变换;当b<|m|时,作出点P关于x轴的对称点P2,称为Ⅱ(m)变换.若某个图形上既有点作了Ⅰ(m)变换,又有点作了Ⅱ(m)变换,我们就称该图形为m﹣双变换图形.例如,已知A(1,3),B(2,﹣1),如图1所示,当m=2时,点A应作Ⅰ(2)变换,变换后A1的坐标是(3,3);点B作Ⅱ(2)变换,变换后B1的坐标是(2,1).请解决下面的问题:(1)当m=0时,①已知点P的坐标是(﹣1,1),则点P作相应变换后的点的坐标是;②若点P(a,b)作相应变换后的点的坐标为(﹣1,2),求点P的坐标;(2)已知点C(﹣1,5),D(﹣4,2),①若线段CD是m﹣双变换图形,则m的取值范围是;②已知点E(m,m)在第一象限,若△CDE及其内部(点E除外)组成的图形是m﹣双变换图形,且变换后所得图形记为G,直接写出所有图形G所覆盖的区域的面积.2020-2021学年北京市海淀区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共24分,每小题3分)第1~8题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.(2020秋•海淀区期末)冬季奥林匹克运动会是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在北京和张家口举办.下列四个图分别是四届冬奥会图标中的一部分,其中是轴对称图形的为()A.B.C.D.【考点】轴对称图形.【专题】平移、旋转与对称;几何直观.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(2021•朝阳区校级模拟)KN95型口罩可以保护在颗粒物浓度很高的空间中工作的人不被颗粒物侵害,也可以帮助人们预防传染病.“KN95”表示此类型的口罩能过滤空气中95%的粒径约为0.0000003m的非油性颗粒.其中,0.0000003用科学记数法表示为()A.3×10﹣6B.3×10﹣7C.0.3×10﹣6D.0.3×10﹣7【考点】科学记数法—表示较小的数.【专题】实数;数感.【分析】用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000003用科学记数法表示为:3×10﹣7.故选:B.【点评】本题考查了科学记数法,用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(2020秋•海淀区期末)下列计算正确的是()A.a2•a3=a6B.(a2)3=a6C.(2a)3=2a3D.a10÷a2=a5【考点】同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【专题】整式;运算能力.【分析】分别根据同底数幂的乘法法则,幂的乘方运算法则,积的乘方运算法则以及同底数幂的除法法则逐一判断即可.【解答】解:A、a2•a3=a5,故本选项不合题意;B、(a2)3=a6,故本选项符合题意;C、(2a)3=8a3,故本选项不合题意;D、a10÷a2=a8,故本选项不合题意;故选:B.【点评】本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.4.(2020秋•海淀区期末)下列等式中,从左到右的变形是因式分解的是()A.x(x﹣2)=x2﹣2x B.(x+1)2=x2+2x+1C.x2﹣4=(x+2)(x﹣2)D.x+2=x(1+)【考点】因式分解的意义.【专题】整式;运算能力.【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【解答】解:A、是整式的乘法,不是因式分解,故此选项不符合题意;B、是整式的乘法,不是因式分解,故此选项不符合题意;C、把一个多项式转化成几个整式乘积的形式,是因式分解,故此选项符合题意;D、没把一个多项式转化成几个整式乘积的形式,不是因式分解,故此选项不符合题意.故选:C.【点评】本题考查了因式分解的意义.严格按照因式分解的定义去验证每个选项是正确解答本题的关键.5.(2021•绿园区一模)如图,菊花1角硬币为外圆内正九边形的边缘异形币,则该正九边形的一个内角大小为()A.135°B.140°C.144°D.150°【考点】多边形内角与外角.【专题】多边形与平行四边形;几何直观.【分析】先根据多边形内角和定理:180°•(n﹣2)求出该多边形的内角和,再求出每一个内角的度数.【解答】解:该正九边形内角和=180°×(9﹣2)=1260°,则每个内角的度数=1260°÷9=140°.故选:B.【点评】本题主要考查了多边形的内角和定理:180°•(n﹣2),比较简单,解答本题的关键是直接根据内角和公式计算可得内角和.6.(2021•柳南区校级模拟)小聪在用直尺和圆规作一个角等于已知角时,具体过程是这样的:已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)如图,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C'为圆心,CD长为半径画弧,与第(2)步中所画的弧相交于点D′;(4)过点D'画射线O′B′,则∠A′O′B′=∠AOB.小聪作法正确的理由是()A.由SSS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBB.由SAS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBC.由ASA可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBD.由“等边对等角”可得∠A′O′B′=∠AOB【考点】全等三角形的判定;等腰三角形的性质;作图—基本作图.【专题】作图题;应用意识.【分析】先利用作法得到OD=OC=OD′=OC′,CD=C′D′,然后根据全等三角形的判定方法对各选项进行判断.【解答】解:由作图得OD=OC=OD′=OC′,CD=C′D′,则根据“SSS”可判断△C′O′D′≌△COD.故选:A.【点评】本题考查了作图﹣基本作图:基本作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.也考查了全等三角形的判定.7.(2021•沂南县模拟)如果a﹣b=2,那么代数式(﹣2b)•的值是()A.2B.﹣2C.D.【考点】分式的化简求值.【专题】分式;运算能力.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=•=•=a﹣b,当a﹣b=2时,原式=2.故选:A.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.8.(2020秋•海淀区期末)在△ABC中,AB≠AC,线段AD,AE,AF分别是△ABC的高,中线,角平分线,则点D,E,F的位置关系为()A.点D总在点E,F之间B.点E总在点D,F之间C.点F总在点D,E之间D.三者的位置关系不确定【考点】三角形的角平分线、中线和高;全等三角形的判定与性质.【专题】三角形;推理能力.【分析】延长AE至点H,使EH=AE,连接CH,证明△AEB≌△HEC,根据全等三角形的性质得到AB=CH,∠BAE=∠H,根据三角形的高、中线、角平分线的定义解答即可.【解答】解:假设AB<AC,如图所示,延长AE至点H,使EH=AE,连接CH,在△AEB和△HEC中,,∴△AEB≌△HEC(SAS),∴AB=CH,∠BAE=∠H,∵AB<AC,∴CH<AC,∴∠CAH<∠H,∴∠CAH<∠BAE,∴点F总在点D,E之间,故选:C.【点评】本题考查的是全等三角形的判定和性质、三角形的中线、高、角平分线的定义,掌握全等三角形的判定定理和性质定理是解题的关键.二、填空题(本大题共24分,每小题3分)9.(2020•北京一模)使式子有意义的x取值范围是x≠2.【考点】分式有意义的条件.【分析】根据分式的分母不等于零分式有意义,可得答案.【解答】解:要使式子有意义,得x﹣2≠0.解得x≠2,故答案为:x≠2.【点评】本题考查了分式有意义的条件,利用了分式的分母为零分式无意义.10.(2020秋•海淀区期末)计算:(3a2+2a)÷a=3a+2.【考点】整式的除法.【专题】整式;运算能力.【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:(3a2+2a)÷a=3a2÷a+2a÷a=3a+2.故答案为:3a+2.【点评】此题主要考查了整式的除法,正确掌握相关运算法则是解题关键.11.(2020秋•海淀区期末)如图,在△ABC中,∠ABC=90°,∠ACB=60°,BD⊥AC,垂足为D.若AB=6,则BD的长为3.【考点】含30度角的直角三角形.【专题】等腰三角形与直角三角形;几何直观.【分析】利用含30°的直角三角形的性质解答即可.【解答】解:在△ABC中,∠ABC=90°,∠ACB=60°,∴∠BAC=90°﹣∠ACB=90°﹣60°=30°,∵BD⊥AC,∴∠ADB=90°,∵AB=6,∴BD=AB=,故答案为:3.【点评】此题考查含30°的直角三角形的性质,关键是根据在直角三角形中,30°角所对的直角边等于斜边的一半解答.12.(2020秋•海淀区期末)如图,AB⊥BC,AD⊥DC,垂足分别为B,D.只需添加一个条件即可证明△ABC≌△ADC,这个条件可以是AB=AD或BC=CD或∠BAC=∠DAC或∠ACB=∠ACD(答案不唯一).(写出一个即可)【考点】全等三角形的判定.【专题】图形的全等;推理能力.【分析】由全等三角形的判定定理可求解.【解答】解:若添加AB=AD,且AC=AC,由“HL”可证Rt△ABC≌Rt△ADC;若添加BC=CD,且AC=AC,由“HL”可证Rt△ABC≌Rt△ADC;若添加∠BAC=∠DAC,且AC=AC,由“AAS”可证Rt△ABC≌Rt△ADC;若添加∠BCA=∠DCA,且AC=AC,由“AAS”可证Rt△ABC≌Rt△ADC;故答案为:AB=AD或BC=CD或∠BAC=∠DAC或∠ACB=∠ACD(答案不唯一).【点评】本题考查了全等三角形的判定,掌握全等三角形的判定定理是本题的关键.13.(2020秋•海淀区期末)某中学要举行校庆活动,现计划在教学楼之间的广场上搭建舞台.已知广场中心有一座边长为b的正方形的花坛.学生会提出两个方案:方案一:如图1,围绕花坛搭建外围为正方形的“回”字形舞台(阴影部分),舞台的面积记为S1;方案二:如图2,在花坛的三面搭建“凹”字形舞台(阴影部分),舞台的面积记为S2;具体数据如图所示,则S1>S2.(填“>”,“<”或“=”)【考点】正方形的性质.【专题】矩形菱形正方形;运算能力.【分析】根据正方形和矩形的面积公式即可得到结论.【解答】解:方案一:如图1,S1=a2﹣b2,方案二:如图2,S2=(a﹣b)(+b+)﹣b2=(a﹣b)(a﹣b)﹣b2=a2﹣b2﹣b2=a2﹣2b2,∵S1﹣S2=a2﹣b2﹣(a2﹣2b2)=a2﹣b2﹣a2+2b2=b2>0,∴S1>S2.故答案为:>.【点评】本题考查了正方形的性质,正方形和矩形的面积的计算,正确识别图形是解题的关键.14.(2020秋•海淀区期末)如图,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D.则∠DBC 的大小为30°.【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】等腰三角形与直角三角形;推理能力.【分析】先根据等腰三角形的性质及三角形内角和定理求出∠ABC及∠ACB的度数,再根据线段垂直平分线的性质求出∠ABD的度数即可进行解答.【解答】解:∵AB=AC,∴∠ABC=∠ACB=70°,∵MN的垂直平分AB,∴DA=DB,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故答案为:30°.【点评】本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.15.(2020秋•海淀区期末)在平面直角坐标系xOy中,点A的坐标为(0,3),点B与点A关于x轴对称,点C在x轴上,若△ABC为等腰直角三角形,则点C的坐标为(﹣3,0)或(3,0).【考点】等腰直角三角形;关于x轴、y轴对称的点的坐标.【专题】等腰三角形与直角三角形;平移、旋转与对称;推理能力.【分析】由轴对称的性质可求点B坐标,由等腰直角三角形的性质可求OC=OA=3,即可求解.【解答】解:∵点A的坐标为(0,3),点B与点A关于x轴对称,∴点B(0,﹣3),∴OA=OB=3,又∵∠ACB=90°,AC=BC,∴OC=OA=OB=3,∴点C(3,0)或(﹣3,0),故答案为:(3,0)或(﹣3,0).【点评】本题考查了轴对称的性质,等腰直角三角形的性质,掌握等腰直角三角形的性质是本题的关键.16.(2020秋•海淀区期末)图1是小明骑自行车的某个瞬间的侧面示意图,将小明右侧髋关节和车座看作一个整体抽象为A点,将膝盖抽象为B点,将脚跟、脚掌、踏板看作一个整体抽象为C点,将自行车中轴位置记为D点(注:自行车中轴是连接左右两个踏板,使两个踏板绕其旋转的部件),在骑行过程中,点A,D的位置不变,B,C为动点.图2是抽象出来的点和线.若AB=BC=40cm,CD=16cm,小明在骑车前,需调整车座高度,保证在骑行过程中脚总可以踩到踏板,则AD最长为64cm.【考点】旋转的性质.【专题】平移、旋转与对称;运算能力;推理能力.【分析】根据已知条件得到当AB+BC=AD+CD时,AD最长,根据线段的和差即可得到结论.【解答】解:∵在骑行过程中脚总可以踩到踏板,∴当AB+BC=AD+CD时,AD最长,则,AD最长为AB+BC﹣CD=40+40﹣16=64(cm),故答案为:64.【点评】本题考查了旋转的性质,知道当AB+BC=AD+CD时,AD最长是解题的关键.三、解答题(本大题共52分,第17题8分,第18~21题每题5分,第22题6分,第23题5分,第24题6分,第25题7分)17.(8分)(2020秋•海淀区期末)(1)计算:(﹣)2+2﹣2﹣(2﹣π)0;(2)分解因式:3x2﹣6xy+3y2.【考点】实数的运算;提公因式法与公式法的综合运用;零指数幂;负整数指数幂.【专题】因式分解;实数;运算能力.【分析】(1)原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=+﹣1=﹣1=﹣;(2)原式=3(x2﹣2xy+y2)=3(x﹣y)2.【点评】此题考查了提公因式法与公式法的综合运用,以及实数的运算,熟练掌握因式分解的方法是解本题的关键.18.(5分)(2021•朝阳区校级模拟)已知3x2﹣x﹣1=0,求代数式(2x+5)(2x﹣5)+2x(x﹣1)的值.【考点】整式的混合运算—化简求值.【专题】整式;运算能力.【分析】首先利用多项式乘以多项式、多项式乘以单项式进行计算,然后再合并同类项,化简后,再代入求值即可.【解答】解:原式=4x2﹣25+2x2﹣2x=6x2﹣2x﹣25,∵3x2﹣x﹣1=0,∴3x2﹣x=1.∴原式=2(3x2﹣x)﹣25=2×1﹣25=﹣23.【点评】此题主要考查了整式的混合运算,关键是掌握有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.19.(5分)(2020秋•海淀区期末)如图,C是AB的中点,CD∥BE,CD=BE,连接AD,CE.求证:AD =CE.【考点】全等三角形的判定与性质.【专题】图形的全等;几何直观;推理能力.【分析】根据平行线的性质和中点的定义以及全等三角形的判定和性质解答即可.【解答】证明:∵C是AB的中点,∴AC=CB,∵CD∥BE,∴∠ACD=∠B.在△ACD和△CBE中,,∴△ACD≌△CBE(SAS),∴AD=CE.【点评】该题主要考查了全等三角形的判定、平行线的性质及其应用等几何知识点问题;应牢固掌握全等三角形的判定.20.(5分)(2020秋•海淀区期末)《几何原本》是一部集前人思想和欧几里得个人创造性于一体的不朽之作,把人们公认的一些事实列成定义、公理和公设,用它们来研究各种几何图形的性质,从而建立了一套从定义、公理和公设出发,论证命题得到定理的几何学论证方法.在其第一卷中记载了这样一个命题:“在任意三角形中,大边对大角.”请补全上述命题的证明.已知:如图,在△ABC中,AC>AB.求证:∠ABC>∠C.证明:如图,由于AC>AB,故在AC边上截取AD=AB,连接BD.(在图中补全图形)∵AD=AB,∴∠ABD=∠ADB.(等边对等角)(填推理的依据)∵∠ADB是△BCD的外角,∴∠ADB=∠C+∠DBC.(三角形的外角等于与它不相邻的两个内角的和)(填推理的依据)∴∠ADB>∠C.∴∠ABD>∠C.∵∠ABC=∠ABD+∠DBC,∴∠ABC>∠ABD.∴∠ABC>∠C.【考点】作图—应用与设计作图.【专题】作图题;推理能力.【分析】根据文字题目的要求写出已知,求证,利用等腰三角形的性质以及三角形的我觉得性质解决问题即可.【解答】已知:如图,在△ABC中,AC>AB.求证:∠ABC>∠C.证明:如图,由于AC>AB,故在AC边上截取AD=AB,连接BD.(在图中补全图形).∵AD=AB,∴∠ABD=∠ADB(等边对等角),∵∠ADB是△BCD的外角,∴∠ADB=∠C+∠DBC.(三角形的外角等于与它不相邻的两个内角的和),∴∠ADB>∠C,∴∠ABD>∠C,∵∠ABC=∠ABD+∠DBC,∴∠ABC>∠ABD,∴∠ABC>∠C.故答案为:∠ABC>∠C,ADB,等边对等角,三角形的外角等于与它不相邻的两个内角的和.【点评】本题考查作图﹣应用与设计,等腰三角形的性质,三角形的外角的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.(5分)(2020秋•海淀区期末)列方程解应用题开展“光盘行动”,拒绝“舌尖上的浪费”,已成为一种时尚.某学校食堂为了激励同学们做到光盘不浪费,提出如果学生每餐做到光盘不浪费,那么餐后奖励香蕉或橘子一份.近日,学校食堂花了2800元和2500元分别采购了香蕉和橘子,采购的香蕉比橘子多150千克,香蕉每千克的价格比橘子每千克的价格低30%,求橘子每千克的价格.【考点】分式方程的应用.【专题】一元二次方程及应用;应用意识.【分析】设橘子每千克的价格为x元,则香蕉每千克的价格为70%x元,根据题意可得等量关系:2800元所购买的香蕉的重量﹣2500元所购买的橘子的重量=150,再列出方程,解出x的值即可.【解答】解:设橘子每千克的价格为x元,则香蕉每千克的价格为70%x元.根据题意,得﹣=150,解得x=10,检验:当x=10时,70%x≠0.所以原分式方程的解为x=10且符合题意.答:橘子每千克的价格为10元.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.22.(6分)(2020秋•海淀区期末)如图,在△ABC中,∠BAC=90°,AB=AC,D是AC边上一点,连接BD,EC⊥AC,且AE=BD,AE与BC交于点F.(1)求证:CE=AD;(2)当AD=CF时,求证:BD平分∠ABC.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】图形的全等;几何直观;推理能力.【分析】(1)根据HL证明Rt△CAE与Rt△ABD全等,进而解答即可;(2)根据全等三角形的性质和角之间的关系解答即可.【解答】证明:(1)∵EC⊥AC,∠BAC=90°,∴∠ACE=∠BAC=90°,在Rt△CAE与Rt△ABD中,,∴Rt△CAE≌Rt△ABD(HL),∴CE=AD.(2)由(1)得Rt△CAE≌Rt△ABD,∴∠EAC=∠ABD,∠E=∠ADB.由(1)得CE=AD,∵AD=CF,∴CE=CF.∴∠CFE=∠E,∵∠CFE=∠AFB,∴∠AFB=∠E.∵∠E=∠ADB,∴∠AFB=∠ADB,∵∠AGB=∠EAC+∠ADB,∠AGB=∠DBC+∠AFB,∴∠EAC=∠DBC.∵∠EAC=∠BAD,∴∠BAD=∠DBC,∴BD平分∠ABC.【点评】此题考查全等三角形问题,关键是根据HL证明三角形全等,再利用全等三角形的性质解答.23.(5分)(2020秋•海淀区期末)小明在学习有关整式的知识时,发现一个有趣的现象:对于关于x的多项式x2﹣2x+3,由于x2﹣2x+3=(x﹣1)2+2,所以当x﹣1取任意一对互为相反数的数时,多项式x2﹣2x+3的值是相等的.例如,当x﹣1=±1,即x=2或0时,x2﹣2x+3的值均为3;当x﹣1=±2,即x=3或﹣1时,x2﹣2x+3的值均为6.于是小明给出一个定义:对于关于x的多项式,若当x﹣t取任意一对互为相反数的数时,该多项式的值相等,就称该多项式关于x=t对称.例如x2﹣2x+3关于x=1对称.请结合小明的思考过程,运用此定义解决下列问题:(1)多项式x2﹣4x+6关于x=2对称;(2)若关于x的多项式x2+2bx+3关于x=3对称,求b的值;(3)整式(x2+8x+16)(x2﹣4x+4)关于x=﹣1对称.【考点】配方法的应用.【专题】一元二次方程及应用;运算能力.【分析】(1)对多项式进行配方,根据新定义判断即可;(2)求出x2+2bx+3的对称轴,令对称轴=3即可;(3)对多项式进行配方,根据新定义判定即可.【解答】解:(1)x2﹣4x+6=(x﹣2)2+2,则多项式关于x=2对称,故答案为:2;(2)∵x2+2bx+3=(x+b)2+3﹣b2,∴关于x的多项式x2+2bx+3关于x=﹣b对称,∴﹣b=3,∴b=﹣3;(3)原式=(x+4)2(x﹣2)2=[(x+4)(x﹣2)]2=(x2+2x﹣8)2=[(x+1)2﹣9]2=[(x+1+3)(x+1﹣3)]2=(x+4)2(x﹣2)2,当x=﹣4和2时,原式=0,∴关于x=﹣1对称,故答案为:﹣1.【点评】本题考查了配方法的应用,能够对多项式进行配方,根据新定义判断出对称轴是解题的关键.24.(6分)(2020秋•海淀区期末)已知△ABC是等边三角形,点D在射线BC上(与点B,C不重合),点D关于直线AC的对称点为点E,连接AD,AE,CE,DE.(1)如图1,当点D为线段BC的中点时,求证:△ADE是等边三角形;(2)当点D在线段BC的延长线上时,连接BE,F为线段BE的中点,连接CF.根据题意在图2中补全图形,用等式表示线段AD与CF的数量关系,并证明.。

人教版2020---2021学年度八年级数学(上)期末考试卷及答案(含两套题)

人教版2020---2021学年度八年级数学(上)期末考试卷及答案(含两套题)

密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.若代数式4xx -有意义,则实数x 的取值范围是( ) A .x =0 B .x =4C .x ≠0D .x ≠42.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007平方毫米,将数字0.0000007用科学记数法可以表示为( ) A .6710-⨯ B .60.710-⨯C .7710-⨯D .87010-⨯3.下列式子,成立的是( ) A .a 2·a 3=a 6 B .(a 2)3=a 5C .a –1=–aD .(–a +b )(–a –b )=a 2–b 24.如果把分式xyx y+中的x 和y 都扩大2倍,那么分式的值( )A .扩大4倍B .扩大2倍C .不变D .缩小2倍5.若等腰三角形中有两边长分别为3和7,则这个三角形的周长为( ) A .13 B .13或17C .10D .176.在平面直角坐标系中,将点A (–1,2)向右平移4个单位长度得到点B ,则点B 关于y 轴的对称点B ′的坐标为( ) A .(–3,2) B .(3,–2) C .(3,2)D .(2,–3)7.如图,在△ABC 和△BDE 中,点C在边BD 上,边AC 交边BE 于点F ,若AC =BD ,AB =ED ,BC =BE ,则∠ACB 等于( )A .∠DB .∠EC .∠EBDD .∠ABF8.点O 在ABC △(非等边三角形)内,且OA OB OC ==,则点O为( )A .ABC △的三条角平分线的交点题号一 二 三 总分 得分B .ABC △的三条高线的交点C .ABC △的三条边的垂直平分线的交点D .ABC △的三条边上的中线的交点9.如图,AE ∥DF ,AE =DF ,则添加下列条件还不能使△EAC≌△FDB 的为( )A .AB =CD B .CE ∥BFC .∠E =∠FD .CE =BF10.如图,AD 是△ABC 的角平分线,DE ⊥AB 于E ,△ABC 的面积为10,AB =6,DE =2,则AC 的长是( )A .4B .4.5C .4.8D .5 11.从3-,2-,1-,32-,1,3这六个数中,随机抽取一个数,记为a .关于x 的方程211x ax +=-的解是正数,那么这6个数中所有满足条件的a 的值有( ) A .3个B .2个C .1个D .4个12.如图,在等边三角形ABC 中,BC 边上的中线AD =6,是AD 上的一个动点,F 是边AB 上的一个动点,在点F 运动的过程中,EB +EF 的最小值是A .5B .6C .7D .8第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.若23a b =,则a b b -=__________.14.若3a b +=,1ab =,则22ab +=__________.15.若一个多边形的内角和是900º,则这个多边形是__________边形.16.如图,依据尺规作图的痕迹,计算α∠=__________°.17.已知ABC ∆中,它的三边长a 、b 、c 都是正整数,其中a 是最长边,且满足22106340a b a b +--+=,则符合条件的c密线学校 班级 姓名 学号密 封 线 内 不 得 答 题值为__________.18.如图,∠ABC =∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF .以下结论:①AD∥BC ;②∠ACB =2∠ADB ;③∠ADC =90°−12∠ABC ;④BD 平分∠ADC ;⑤∠BDC =12∠BAC .其中正确的结论有__________(填序号)三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分) (1)解方程:22+11x x x x+=+;(2)解方程:2227361x x x x x -=+--. 20.(本小题满分6分)(1)因式分解22(2)(22)1a ab b a b -++-++;(2)先化简,再求值24512(1)(),11a a a a a a-+-÷----其中1a =-. 21.(本小题满分6分)如图,点B 、C 、D 、E 在同一条直线上,已知AB =FC ,AD =FE ,BC =DE . (1)求证:△ABD ≌△FCE .(2)AB 与FC 的位置关系是_________(请直接写出结论)22.(本小题满分8分)如图,在△ABC 中,AB =AC ,∠A =36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC . (1)求∠ECD 的度数; (2)若CE =5,求BC 的长.23.(本小题满分8分)超市用2500元购进某品牌苹果,以每千克8元的单价试销.销售良好,超市又安排4500元补货.补货进价比上次每千克少0.5元,数量是上次的2倍.(1)求两次进货的单价分别是多少元.(2)当售出大部分后,余下200千克按7.5折售完,求两次销售苹果的毛利.24.(本小题满分10分)如图,△ABC 中,∠BAC =90°,AD⊥BC ,垂足为D .(1)求作∠ABC 的平分线,分别交AD ,AC 于E ,F 两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)证明:AE=AF.25.(本小题满分10分)如图,网格中有格点△ABC与△DEF.(1)△ABC与△DEF是否全等?(不说理由.)(2)△ABC与△DEF是否成轴对称?(不说理由)(3)若△ABC与△DEF成轴对称,请画出它的对称轴l.并在直线l上画出点P,使PA+PC最小.26.(本小题满分12分)探究下面的问题:(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是________(用式子表示),即乘法公式中的___________公式.(2)运用你所得到的公式计算:①10.7×9.3;②(23)(23)x y z x y z+---.27.(本小题满分12分)在△ABC中,∠BAC=100°,∠∠ACB,点D在直线BC上运动(不与点B、C点E在射线AC上运动,且∠ADE=∠AED,设∠DAC=(1)如图①,当点D在边BC上时,且n=36°BAD=__________,∠CDE=__________;(2)如图②,当点D运动到点B变,请猜想∠BAD和∠CDE(3)当点D运动到点C的右侧时,其他条件不变,∠和∠CDE还满足(2)中的数量关系吗?请画出图形,明理由.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一1 2 3 4 5 6 7 8 9 10 11 12 DCDBDACCDABB二、13.【答案】3-【解析】∵23a b =,∴设a =2k ,b =3k (k ≠0),则23133a b k k b k --==-, 故答案为:13-.14.【答案】7【解析】∵a +b =3,ab =1,∴22a b +=(a +b )2–2ab =9–2=7;故答案为7. 15.【答案】七【解析】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为:7. 16.【答案】56【解析】如图,∵四边形ABCD 是长方形,∴AD ∥BC ,∴∠DAC =∠ACB =68°, ∵由作法可知,AF 是∠DAC 的平分线,∴∠EAF =12∠DAC =34°,∵由作法可知,EF 是线段AC 的垂直平分线,∴∠AEF =90°, ∴∠AFE =90°−34°=56°,∴∠α=56°.故答案为:56.17.【答案】6或7【解析】a 2+b 2–10a –6b +34=0, a 2–10a +25+b 2–6b +9=0,(a –5)2+(b –3)2=0, 则a –5=0,b –3=0,解得,a =5,b =3, 则5–3<c <3+5,即2<c <8,∴△ABC 的最大边c 的值为6或7, 故答案为:6或7. 18.【答案】①②③⑤【解析】∵AD 平分∠EAC ,∴∠EAC =2∠EAD , ∵∠EAC =∠ABC +∠ACB ,∠ABC =∠ACB ,∴∠EAD =∠ABC ,∴AD ∥BC ,∴①正确; ∵AD ∥BC ,∴∠ADB =∠DBC ,∵BD 平分∠ABC ,∠ABC =∠ACB ,∴∠ABC =∠ACB =2∠DBC ,∴∠ACB =2∠ADB ,∴②正确;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=12∠EAC,∠DCA=12∠ACF,∵∠EAC=∠ABC+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°−(∠DAC+∠ACD)=180°−12(∠EAC+∠ACF)=180°−12(∠ABC+∠ACB+∠ABC+∠BAC)=180°−12(180°+∠ABC)=90°−12∠ABC,∴③正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°−12∠ABC,∴∠ADB不一定等于∠CDB,∴④错误;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴∠BDC=12∠BAC,∴⑤正确;故答案为:①②③⑤.三、19.【解析】(1)方程两边都乘x(x+1),得x2+x2+x=2(x+1)2,解得:x=−23,检验:当x=−23时,x(x+1)≠0,∴x=−23是原方程的解.(3分)(2)去分母得:7x−7+3x+3=6x,解得:x=1,经检验x=1是增根,分式方程无解.(6分)20.【解析】(1)原式=(a2–2ab+b2)–(2a–2b)+1=(a–b)2–2(a–b)+1=(a–b–1)2.(3分)(2)原式()()()211452(2)111a a a a aa a a a+--+--=÷=---•()12a aa-=-a(a–2当a=–1时,原式=–1×(–1–2)=3.(6分)21.【解析】(1)∵BC=DE,∴BC+CD=DE+CD,即BD=CE.在△ABD和△FCE中,AB FCAD FEBD CE=⎧⎪=⎨⎪=⎩,∴△ABD≌△FCE(SSS).(4分)(2)AB∥FC.(6分)由(1)可知△ABD≌△FCE,∴∠B=∠FCE(全等三角形的对应角相等),∴AB∥FC(同位角相等,两直线平行).22.【解析】(1)∵DE垂直平分AC,∠A=36°,∴CE=AE,∴∠ECD=∠A=36°;(4分)(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠BEC =∠A +∠ECD =72°,∴∠BEC =∠B ,∴BC =EC =5.(8分)23.【解析】(1)设第一次进货的单价是x 元,则第二次进货的单价是(0.5)x -元,根据题意,得2500450020.5x x ⨯=-,解得5x =. 经检验:5x =是原方程的解.第二次进货的单价是:50.5 4.5()-=元.答:第一次进货的单价是5元,第二次进货的单价是4.5元.(4分)(2)两次销售苹果的毛利:25004500200820080.752500450046005 4.5⎛⎫+-⨯+⨯⨯--=⎪⎝⎭(元). 答:两次销售苹果的毛利为4600元.(8分) 24.【解析】(1)如图所示,射线BF 即为所求:(4分)(2)证明:∵AD ⊥BC ,∴∠ADB =90°,∴∠BED +∠EBD =90°,∵∠BAC =90°,∴∠AFE +∠ABF =90°,(7分) ∵∠EBD =∠ABF ,∴∠AFE =∠BED ,∵∠AEF =∠BED ,∴∠AEF =∠AFE ,∴AE =AF .(10分) 25.【解析】(1)全等.(3分)根据坐标系可以看出AB DEBC EFAC DF =⎧⎪=⎨⎪=⎩,∴△ABC ≅△DEF ;(2)成轴对称.(6分)根据坐标系可以看出△ABC 与△DEF 关于直线l 成轴对称; (3)如图所示:点P 即为所求.(10分)26.【解析】(1)a 2–b 2=(a +b )(a −b );平方差.(6分)由图知:大正方形减小正方形剩下的部分面积为a 2–b 2; 拼成的长方形的面积:(a +b )×(a −b ),所以得出:a 2–b 2=(a +b )(a −b );故答案为:a 2–b 2=(a +b )(a −b );平方差. (2)①原式=(10+0.7)×(10–0.7) =102–0.72 =100–0.49 =99.51.(9分)②原式=(x –3z +2y )(x –3z –2y ) =(x –3z )2–(2y )2 =x 2–6xz +9z 2–4y 2.(12分)27.【解析】(1)∠BAD =∠BAC –∠DAC =100°–36°=64°.∵在△ABC 中,∠BAC =100°,∠ABC =∠ACB , ∴∠ABC =∠ACB =40°,∴∠ADC =∠ABC +∠BAD =40°+64°=104°. ∵∠DAC =36°,∠ADE =∠AED , ∴∠ADE =∠AED =72°,∴∠CDE =∠ADC –∠ADE =104°–72°=32°. 故答案为64°,32°;(4分)(2)∠BAD =2∠CDE ,理由如下:(5分) 如图②,在△ABC 中,∠BAC =100°, ∴∠ABC =∠ACB =40°. 在△ADE 中,∠DAC =n ,∴∠ADE =∠AED =1802n︒-.(6分)∵∠ACB =∠CDE +∠AED ,∴∠CDE =∠ACB –∠AED =40°–1802n ︒-=1002n -︒. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =n –100°,∴∠BAD =2∠CDE ;(8分) (3)∠BAD =2∠CDE ,理由如下: 如图③,在△ABC 中,∠BAC =100°,∴∠ABC =∠ACB =40°,∴∠ACD =140°.(9分) 在△ADE 中,∠DAC =n , ∴∠ADE =∠AED =1802n︒-.(10分)∵∠ACD =∠CDE +∠AED , ∴∠CDE =∠ACD –∠AED =140°–1802n ︒-=1002n︒+. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =100°+n , ∴∠BAD =2∠CDE .(12分)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.下列图形中,是轴对称图形的是( )A .B .C .D .2.下列分式中,属于最简分式的是( )A .1113xB .221xx +C .211x x +-D .11x x --3.以下列各组线段为边,能组成三角形的是( ) A .2cm ,5cm ,8cm B .3cm ,3cm ,6cm C .3cm ,4cm ,5cmD .1cm ,2cm ,3cm4.如果一个多边形的每一个内角都是108°,那么这个多边形是( ) A .五边形 B .六边形C .七边形D .八边形5.下列运算正确的是( ) A .236a a a ⋅= B .220a a ÷=C .2353()a b a b =D .752a a a ÷=6.下列各式分解因式正确的是( ) A .()()2919191x x x -=+- B .()()422111a a a -=+- C .()()228199a b a b a b --=--+D .()()()32a ab a a b a b -+=-+-7.已知ab ≠0,则坐标平面内四个点A (a ,b ),B (a ,–b ),C (–a ,b ),D (–a ,–b )中关于y 轴对称的是( ) A .A 与B ,C 与DB .A 与D ,B 与C C .A 与C ,B 与DD .A 与B ,B 与C8.如图,△ABC ≌△ADE ,若∠E =70°,∠D =30°,∠CAD =35°,则∠BAD 的度数为( )A .40°B .45°C .50°D .55°9.光明家具厂生产一批学生课椅,计划在30天内完成并交付题号一 二 三 总分 得分不得答题使用.若每天多生产100把,则23天完成且还多生产200把.设原计划每天生产x把,根据题意,可列分式方程为( )A.3020023100xx+=+B.3020023100xx-=+C.3020023100xx+=-D.3020023100xx-=-10.解关于x的方程6155x mx x-+=--(其中m为常数)产生增根,则常数m的值等于( )A.–2 B.2C.–1 D.111.如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是( )A.6cm B.7cmC.8cm D.9cm12.如图,BP平分ABC∠交CD于点F,DP平分ADC∠交AB于点E,若40A∠=︒,38P∠=︒,则C∠的度数为( )A.36︒B.39︒C.38︒D.40︒第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.一种细菌的半径是0.00003厘米,数据0.00003数法表示为_________.14.计算:2232aa a a---=_________.15.若分式33xx--的值为零,则x=_________.16.如图,ABC∆中,90C∠=︒,30A∠=︒,AB的垂直平分线交于D,交AB于E,2CD=,则AC=_________.17.在等腰ABC∆中,一腰上的高与另一腰的夹角为26︒角的度数为__________.18.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC线与AB的垂直平分线交于点O,将∠C沿EF(E在上,F在AC上)折叠,点C与点O恰好重合,则∠为________度.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分)计算:(1)()()22x y x y x ---;(2)2344(1)11x x x x x ++-+÷++.20.(本小题满分6分)因式分解:(1)4x 2–16;(2)(x +y )2–10(x +y )+25.21.(本小题满分6分)如图,AD 与BC 交于E ,∠1=∠2=∠3,∠4=∠5.求证:BD =E C .22.(本小题满分8分)如图,五边形ABCDE 的内角都相等,EF 平分∠AED .求证:EF ⊥BC .23.(本小题满分8分)如图,△ABC 的顶点均在格点上.(1)分别写出点A ,点B ,点C 的坐标.(2)若△A 'B 'C '与△ABC 关于y 轴对称,在图中画出△A 'B 'C ',并写出相应顶点的坐标.24.(本小题满分10分)如图,ABC ∆与DCB ∆中,AC 与BD 交于点E ,且A D ∠=∠,AB DC =.(1)求证:ABC DCB ∆≅∆;(2)当50AEB ∠=︒,求EBC ∠的度数.25.(本小题满分10分)嘉嘉同学动手剪了如图①所示的正方形与长方形卡片若干张.(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是________. (2)如果要拼成一个长为(a +2b ),宽为(a +b )的大长方形,则需要1号卡片________张,2号卡片________张,3号卡片________张.26.(本小题满分12分)市区某中学美化校园招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要30天;若由甲队先做10天,剩下的工程由甲、乙合做12天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元,若该工程计划在35天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲乙两队全程合作完成该工程省钱?27.(本小题满分12分)如图,在ABC ∆中,已知45ABC ∠=,过点C 作CD AB ⊥于点D ,过点B 作BM AC ⊥于点M ,连接MD ,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题故答案为:11a --.15.【答案】–3【解析】依题意,得|x |–3=0且x –3≠0,解得x =–3.故答案是:–3.16.【答案】6【解析】连接BD ,∵在△ABC 中,∠C =90°,∠A =30°,∴∠ABC =60°, ∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴AD =BD ,DE ⊥AB ,∴∠ABD =∠A =30°,∴∠DBC =30°, ∵CD =2,∴BD =2CD =4,∴AD =4,∴AC =6.17.【答案】58°或32°【解析】①如图①,∵AB =AC ,∠ABD =26°,BD ⊥AC ,∴∠A =64°,∴∠ABC =∠C =(180°–64°)÷2=58°;②如图②,∵AB =AC ,∠ABD =26°,BD ⊥AC , ∴∠BAC =26°+90°=116°,∴∠ABC =∠C =(180°–116°)÷2=32°,故答案为:58°或32°.18.【答案】50°【解析】如图,连接OB ,OC ,∵∠BAC =50°,AO 为∠BAC 的平分线,∴∠BAO =12∠BAC =12×50°=25°.又∵AB =AC ,∴∠ABC =∠ACB =65°.∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =25°,∴∠OBC =∠ABC –∠ABO =65°–25°=40°.∵AO 为∠BAC 的平分线,AB =AC ,∴直线AO 垂直平分BC ,∴OB =OC ,∴∠OCB =∠OBC =40°,∵将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,题∴OE =CE .∴∠COE =∠OCB =40°;在△OCE 中,∠OEC =180°–∠COE –∠OCB =180°–40°–40°=100°,∴∠CEF =12∠CEO =50°.故答案为:50°. 三、19.【解析】(1)原式=22222x xy y xy x -+-+=2233x xy y -+;(3分)(2)原式=231x+11(2)x x x x --+⨯++()(1)=223111(2)x x x x -++⨯++=2(2)(2)11(2)x x x x x -++⨯++=22xx -+.(6分)20.【解析】(1)4x 2–16=4(x 2–4)=4(x +2)(x –2);(3分) (2)(x +y )2–10(x +y )+25 =(x +y –5)2.(6分) 21.【解析】1=2314,43AEC ABD ∠∠=∠∠=∠+∠∠=∠+∠,,∴AEC ABD ∠=∠.(2分)45∠=∠,AB AE =∴.在ABD △和AEC 中1=2AB AE ABD AEC ∠∠⎧⎪=⎨⎪∠=∠⎩,(4分)∴ABD AEC ≅.∴BD =EC .(6分)22.【解析】∵五边形ABCDE 的内角都相等,∴∠C =∠D =∠AED =180°×(5–2)÷5=108°,(2分)又EF 平分∠AED , ∴°1542FED AED ∠=∠=,(4分)∴在四边形DEFC 中360EFC D C FED ︒∠=-∠-∠-∠=90°,∴EF ⊥BC .(8分)23.【解析】(1)点A (3,4),B (1,2),C (5,1(3分)(2)如图所示,△A 'B 'C '即为所求,(5分)点A ′(﹣3,4),B ′(﹣1,2),C ′(﹣5,1).(8密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.【解析】(1)在△ABE 和△DCE中,A D AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (AAS ),∴BE =EC ,∠ABE =∠DCE ,(4分)∴∠EBC =∠ECB ,∵∠EBC +∠ABE =∠ECB +∠DCE ,∴∠ABC =∠DBC ,(6分)在△ABC 和△DCB中,A DAB DC ABC DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DCB (ASA );(8分) (2)∵∠AEB =50°,∴∠EBC +∠ECB =50°, ∵∠EBC =∠ECB ,∴∠EBC =25°.(10分)25.【解析】(1)这个乘法公式是(a +b )2=a 2+2ab +b 2,故答案为:(a +b )2=a 2+2ab +b 2;(4分)(2)要拼成一个长为(a +2b ),宽为(a +b )的大长方形,根据(a +2b )(a +b )=a 2+3ab +2b 2,则需要1号卡片1张,2号卡片2张,3号卡片3张.故答案为:1;2;3.(10分)26.【解析】(1)设乙队单独完成这项工程需要x 天,依题意,得:101212130x ++=,解得x =45,经检验,x =45是所列分式方程的解,且符合题意. 答:乙队单独完成这项工程需要45天.(6分) (2)甲乙两队全程合作需要1÷(11+3045)=18(天),甲队单独完成该工程所需费用为3.5×30=105(万元); ∵乙队单独完成该工程需要45天,超过35天的工期, ∴不能由乙队单独完成该项工程;甲、乙两队全程合作完成该工程所需费用为(3.5+2)×18=99(万元).∵105>99,∴在不超过计划天数的前提下,由甲、乙两队全程合作完成该工程省钱.(12分) 27.【解析】(1)∵45ABC ∠=,CD AB ⊥,∴45ABC DCB ∠=∠=,∴BD DC =,∵90BDC MDN ∠=∠=,∴BDN CDM ∠=∠,(3分) ∵CD AB ⊥,BM AC ⊥, ∴90ABM A ACD ∠=-∠=∠,在DBN ∆和DCM ∆中,BDN CDM BD DCDBN DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴DBN ∆≌DCM ∆;(6分) (2)结论:NEME CM ,证明:由(1)DBN ∆≌DCM ∆可得DM DN =. 作DF MN ⊥于点F , 又ND MD ⊥,∴DF FN =,在DEF ∆和CEM ∆中,DEF CEM DFE CMEDE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DEF ∆≌CEM ∆,∴EF EM =,DF CM =,∴CM DF FN NE FE NE ME ===-=-.(12分)。

必刷提高练【14.2乘法公式】(原卷版)-2021-2022学年八年级数学上册必刷题闯关练(人教版)

必刷提高练【14.2乘法公式】(原卷版)-2021-2022学年八年级数学上册必刷题闯关练(人教版)

2021-2022学年八年级数学上册考点必刷练精编讲义(人教版)提高第14章《整式的乘法与因式分解》14.2 乘法公式知识点1:完全平方公式【典型例题1】(2020春•槐荫区期中)若a+b=10,ab=11,则代数式a2﹣ab+b2的值是()A.89B.﹣89C.67D.﹣67解:把a+b=10两边平方得:(a+b)2=a2+b2+2ab=100,把ab=11代入得:a2+b2=78,∴原式=78﹣11=67,故选:C【变式训练1-1】(2020•浙江自主招生)若x2﹣3x+1=0,则的值是()A.8B.7C.D.【变式训练1-2】(2021春•肥东县期末)若x﹣y=3,xy=1,则x2+y2=.【变式训练1-3】(2021春•西安期末)已知(a+b)2=9,ab=﹣,则a2+b2的值等于.【变式训练1-4】(2021春•荷塘区期末)已知(a+b)2=7,(a﹣b)2=3,则ab=.【变式训练1-5】(2021秋•朝阳区校级期中)阅读理解:①32+42>2×3×4②32+32=2×3×3;③(﹣2)2+42>2×(﹣2)×4;④(﹣5)2+(﹣5)2=2×(﹣5)×5(1)观察以上各式,你发现它们有什么规律吗?请用含有a、b的式子表示上述规律;(2)运用你所学的知识证明你发现的规律;(3)已知a+b=4,求ab的最大值.【变式训练1-6】(2020秋•盐池县期末)回答下列问题(1)填空:x2+=(x+)2﹣=(x﹣)2+(2)若a+=5,则a2+=;(3)若a2﹣3a+1=0,求a2+的值.知识点2:完全平方公式的几何背景【典型例题2】(2020•丰台区三模)如图,一个正方形被分成两个正方形和两个一模一样的矩形,请根据图形,写出一个含有a,b的正确的等式.解:由面积相等,得(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2.【变式训练2-1】(2021春•浦江县期末)如图是将正方形ABCD和正方形CEFG拼在一起的图形,点B,C,E在同一条直线上,连结BD,BF.若阴影部分△BDF的面积为8,则正方形ABCD的边长为()A.2B.3C.4D.6【变式训练2-2】(2021春•济南期末)如图有两张正方形纸片A和B,图1将B放置在A内部,测得阴影部分面积为2,图2将正方形AB并列放置后构造新正方形,测得阴影部分面积为20,若将3个正方形A和2个正方形B并列放置后构造新正方形如图3,(图2,图3中正方形AB纸片均无重叠部分)则图3阴影部分面积()A.22B.24C.42D.44【变式训练2-3】(2021•饶平县校级模拟)如图,矩形ABCD的周长是10cm,以AB,AD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和为17cm2,那么矩形ABCD的面积是()A.3cm2B.4cm2C.5cm2D.6cm2【变式训练2-4】(2019秋•海伦市期末)有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的边长之和为.【变式训练2-5】(2018秋•路北区期末)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),把剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则拼得的长方形的周长为cm.(用含a的代数式表示)【变式训练2-6】(2021春•姑苏区期中)学习整式乘法时,老师拿出三种型号的卡片,如图1:A型卡片是边长为a的正方形,B型卡片是边长为b的正方形,C型卡片是长和宽分别为a,b的长方形.(1)选取1张A型卡片,2张C型卡片,1张B型卡片,在纸上按照图2的方式拼成一个为(a+b)的大正方形,通过不同方式表示大正方形的面积,可得到乘法公式;(2)请用这3种卡片拼出一个面积为a2+5ab+6b2的长方形(数量不限),在图3的虚线框中画出示意图,并在示意图上按照图2的方式标注好长方形的长与宽;(3)选取1张A型卡片,4张C型卡片按图4的方式不重叠地放在长方形DEFG框架内,图中两阴影部分(长方形)为没有放置卡片的部分.已知GF的长度固定不变,DG的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1,S2.若S=S2﹣S1,则当a与b满足时,S为定值,且定值为.(用含a或b的代数式表示)【变式训练2-7】(2021春•新邵县期末)如图,它是一个长为2m,宽为2n的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形.(1)你认为图(2)中的阴影部分的正方形边长为(2)请用两种不同的方法表示图(2)阴影部分的面积;方法一:方法二:(3)观察图(2),写出三个代数式:(m+n)2,(m﹣n)2,mn之间的等量关系.(4)根据(3)题中的等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2的值.【变式训练2-8】(2021春•赫山区期末)两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a、b的代数式分别表示S1、S2;(2)若a+b=10,ab=23,求S1+S2的值;(3)当S1+S2=29时,求出图3中阴影部分的面积S3.知识点3:完全平方式【典型例题3】(2016秋•宛城区期中)所谓完全平方式,就是对于一个整式A,如果存在另一个整式B,使A=B2,则称A是完全平方式,例如:a4=(a2)2、4a2﹣4a+1=(2a﹣1)2.(1)下列各式中完全平方式的编号有;①a6;②a2﹣ab+b2;③4a2+2ab+b2;④x2+4xy+4y2;⑤a2+a+;⑥x2﹣6x﹣9.(2)若x2+4xy+my2和x2﹣nxy+y2都是完全平方式,求(m﹣)2的值;(3)多项式9x2+1加上一个单项式后,能成为一个完全平方式,那么加上的单项式可以是哪些?(请直接写出所有可能的单项式)解:(1)①a6=(a3)2;③4a2+2ab+b2=(2a+b)2;④x2+4xy+4y2=(x+2y)2;⑤a2+a+=(a+)2,是完全平方式;②a2﹣ab+b2,⑥x2﹣6x﹣9,不是完全平方式各式中完全平方式的编号有①③④⑤;故答案为:①③④⑤;(2)∵x2+4xy+my2和x2﹣nxy+y2都是完全平方式,∴x2+4xy+my2=(x+y)2,x2﹣nxy+y2=(x±y)2,∴m=4,n=±1,当n=1时,原式=9;当n=﹣1时,原式=25;(3)单项式可以为﹣1,﹣9x2,6x,﹣6x或x4.【变式训练3-1】(2019春•石台县期末)如图所示,有三种卡片,其中边长为a的正方形1张,边长为a、b的矩形卡片4张,边长为b的正方形4张用这9张卡片刚好能拼成一个正方形,则这个正方形的面积为()A.a2+4ab+4b2B.4a2+8ab+4b2C.4a2+4ab+b2D.a2+2ab+b2【变式训练3-2】(2013春•武侯区月考)若要使4x2+mx+成为一个两数差的完全平方式,则m的值应为()A.B.C.D.【变式训练3-3】若二项式x2+4加上一个单项式后成为一个完全平方式,则这样的单项式共有()A.1个B.2个C.3个D.5个【变式训练3-4】(2020春•武侯区校级期中)若多项式x2+x+k是关于x的完全平方式,则k=.【变式训练3-5】+a+=()2.【变式训练3-6】(2021春•宽城县期末)若我们规定三角“”表示为:abc;方框“”表示为:(x m+y n).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算:=;(2)代数式为完全平方式,则k=;(3)解方程:=6x2+7.知识点4:平方差公式【典型例题4】(2021春•成都期末)下列运算正确的是()A.(x+y)(y﹣x)=x2﹣y2B.(﹣x+y)2=﹣x2+2xy+y2C.(﹣x﹣y)2=﹣x2﹣2xy﹣y2D.(x+y)(﹣y+x)=x2﹣y2解:A、结果是y2﹣x2,故本选项不符合题意;B、结果是x2﹣2xy+y2,故本选项不符合题意;C、结果是x2+2xy+y2,故本选项不符合题意;D、结果是x2﹣y2,故本选项符合题意;故选:D.【变式训练4-1】(2020秋•饶平县校级期末)在下列计算中,不能用平方差公式计算的是()A.(m﹣n)(﹣m+n)B.(x3﹣y3)(x3+y3)C.(﹣a﹣b)(a﹣b)D.(c2﹣d2)(d2+c2)【变式训练4-2】(2020秋•九龙坡区校级期中)若a2﹣b2=16,(a+b)2=8,则ab的值为()A.﹣B.C.﹣6D.6【变式训练4-3】(2021春•锦江区校级期中)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”.例如,16=52﹣32,16就是一个智慧数.在正整数中,从1开始,第2021个智慧数是.【变式训练4-4】已知a﹣b=3,a2﹣b2=9,则a=,b=.【变式训练4-5】(2021春•鼓楼区期中)有些同学会想当然地认为(x﹣y)3=x3﹣y3.(1)举出反例说明该式不一定成立;(2)计算(x﹣y)3;(3)直接写出当x、y满足什么条件时,该式成立.【变式训练4-6】(2019秋•平山县期末)用简便方法计算:(1)1002﹣200×99+992(2)2018×2020﹣20192【变式训练4-7】(2018秋•沙坪坝区期末)一个个位不为零的四位自然数n,如果千位与十位上的数字之和等于百位与个位上的数字之和,则称n为“隐等数”,将这个“隐等数“反序排列(即千位与个位对调,百位与十位对调)得到一个新数m,记D(n)=.(1)请任意写出一个“隐等数”n,并计算D(n)的值;(2)若某个“隐等数“n的千位与十位上的数字之和为6,D(n)为正数,且D(n)能表示为两个连续偶数的平方差,求满足条件的所有“隐等数”n.知识点5:平方差公式的几何背景【典型例题5】(2017春•张掖月考)乘法公式的探究及应用.小题1:如图1,可以求出阴影部分的面积是(写成两数平方差的形式);小题2:如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是,长是,面积是(写成多项式乘法的形式)小题3:比较图1,图2的阴影部分面积,可以得到乘法公式(a+b)(a﹣b)=a2﹣b2(用式子表达)小题4:应用所得的公式计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣)解:小题1:利用正方形的面积公式可知:阴影部分的面积=a2﹣b2;故答案为:a2﹣b2;小题2:由图可知矩形的宽是a﹣b,长是a+b,所以面积是(a+b)(a﹣b);故答案为:a﹣b,a+b,(a+b)(a﹣b);小题3:(a+b)(a﹣b)=a2﹣b2(等式两边交换位置也可);故答案为:(a+b)(a﹣b)=a2﹣b2;小题4:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣)=(1﹣)×(1+)(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)(1﹣)(1+)=××××××…××××==.【变式训练5-1】(2021秋•台江区期中)能够用如图中已有图形的面积说明的等式是()A.a(a+4)=a2+4a B.(a+4)(a﹣4)=a2﹣16C.(a+2)(a﹣2)=a2﹣4D.(a+2)2=a2+4a+4【变式训练5-2】(2018秋•大同期末)如图1,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下部分沿图1中的虚线剪开后重新拼成一个梯形(如图2),利用这两幅图形面积,可以验证的乘法公式是()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a(a+b)=a2+ab D.(a+b)(a﹣b)=a2﹣b2【变式训练5-3】(2018春•青羊区期末)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,再将剩下的阴影部分剪开,拼成右边的长方形.根据图形的变化过程可以验证下列哪一个等式成立()A.(a﹣b)2=a2﹣2ab+b2B.a(a+b)=a2+abC.(a+b)2=a2+2ab+b2D.(a﹣b)(a+b)=a2﹣b2【变式训练5-4】如图,小刚家有一块“L”形的菜地,要把这块菜地按图示那样分成面积相等的梯形,种上不同的蔬菜,这两个梯形的上底都是xm,下底都是ym,高都是(y﹣x)m,请你帮小刚家算一算菜地的面积是平方米.当x=20m,y=30m时,面积是平方米.【变式训练5-5】(2021春•婺城区校级期末)乘法公式的探究与应用:(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是(写成两数平方差的形式)(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是,宽是,面积是(写成多项式乘法的形式).(3)比较甲乙两图阴影部分的面积,可以得到公式(两个)公式1:公式2:(4)运用你所得到的公式计算:10.3×9.7.【变式训练5-6】(2021春•淮北期末)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).。

期末检测卷02(解析版) -2020-2021学年八年级数学上册期末综合复习专题提优训练(人教版)

期末检测卷02(解析版) -2020-2021学年八年级数学上册期末综合复习专题提优训练(人教版)

2020-2021学年八年级数学上册期末综合复习专题提优训练(人教版)期末检测卷02一、选择题(本题共计6小题,每题3分,共计18分)1.(2020·大庆市万宝学校八年级期中)下列哪组数据能构成三角形的三边( )A .1cm 、2cm 、3cmB .2cm 、3cm 、4cmC .14cm 、4cm 、9cmD .7cm 、2cm 、4cm【答案】B2.(2020·营山县化育初级中学校八年级期中)下列图形中一定是轴对称图形的是( )A .B .C .D .【答案】A3.(2020·河北唐山市·八年级月考)下列计算错误的是( )A .32a b ⋅=5abB .2a a -⋅=3a -C .()()936-x -x =x÷ D .()2362a 4a -=【答案】A4.(2020·浙江杭州市·七年级其他模拟)若24(1)9xm x --+是完全平方式,则m 的值为( )A .13B .12±C .11或13-D .11-或13.【答案】D5.(2020·营山县化育初级中学校八年级期中)如图所示,在△ABC 中,∠C =90°,BC =40,AD 是∠BAC 的平分线,交BC 于点D .若DC ∶DB =3∶5,则点D 到AB 的距离是( )A .40B .15C .25D .20【答案】B6.(2020·广东广州市·执信中学八年级期中)如图,已知长方形ABCD 的边长AB =20cm ,BC =16cm ,点E 在边AB 上,AE =6cm ,如果点P 从点B 出发在线段BC 上以2cm /s 的速度向点C 向运动,同时,点Q 在线段CD 上从点C 到点D 运动.则当时间t 为( )s 时,能够使BPE 与CQP 全等.A .1B .1或4C .1或2D .2或4【答案】B二、填空题(本题共计6小题,每题3分,共计18分)7.(2020·上海市建平中学西校七年级期中)分解因式:32327-=xxy ______.【答案】()()333+-xx y x y8.(2019·江西赣州市·八年级期末)为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x 元,根据题意列方程为____.【答案】12000120001001.2x x=+ 9.(2020·昌乐县白塔镇第一中学八年级期中)若关于x 的分式方程4333x ax x --=--有增根,则a 的值是______. 【答案】-110.(2020·重庆市南川道南中学校八年级期中)如图,△ABC 的外角∠MBC 和∠NCB 的平分线BP 、CP 相交于点P ,PE ⊥BC 于E 且PE =3cm ,若△ABC 的周长为14cm ,S △BPC =7.5,则△ABC 的面积为______cm 2.【答案】611.(2020·宁津县育新中学八年级期中)如图,在△ABC 中,∠A =64°,∠ABC 与∠ACD 的平分线交于点A 1,∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;…;∠A n -1BC 与∠A n -1CD 的平分线相交于点A n ,要使∠A n 的度数为整数,则n 的值最大为______.【答案】612.(2020·南昌市心远中学八年级期中)如图:一条船从A 处出发向正北航行,从A 望灯塔C 测得30NAC ∠=︒,当点B在射线AN 上,且BAC 为等腰三角形,则NBC ∠的度数是__________.【答案】105°或60°或150°三、(本题共计5小题,每小题6分,共计30分)13.(2020·福建泉州市·泉州七中八年级期中)分解因式:(1)2x x 30--(2)222ax8axy 8ay -+【答案】解:(1)230x x --()()65x x =-+(2)22288axaxy ay -+()22244a x xy y =-+()222a x y =-【点睛】本题考查的是利用十字乘法,提公因式,完全平方公式分解因式,掌握以上因式分解的方法是解题的关键.14.(2020·剑阁县公兴初级中学校九年级月考)先化简(21x x +-x +1)÷22121x x x -++,再从-1,0,1中选择合适的x 值代入求值.【答案】2221(21)11x x x x x x -+÷++-+ 222121(1)1111x x x x x x x x x x ⎡⎤++=-+⨯⎢⎥++++⎣⎦-+ 222(1)1(1)(1)1x x x x x x x x ⎡⎤-+=⨯⎢⎥+-⎣+++-⎦2(1)()1(1)(1)1x x x x +=⨯+-+ 11x =- 11x x x ≠-≠∴=,0当0x=时,原式11==1101x =--- 【点睛】本题考查分式的化简求值,其中涉及分式有意义的条件、完全平方公式、平方差公式等知识,是重要考点,难度较易,掌握相关知识是解题关键.15.(2020·马鞍山二中实验学校八年级期中)如图,已知:点P 是ABC ∆内一点.(1)求证:BPC A ∠>∠;(2)若PB 平分ABC ∠,PC 平分ACB ∠,40A ︒∠=,求P ∠的度数. 【答案】(1)延长BP 交AC 于D ,如图所示:∵∠BPC 是△CDP 的一个外角,∠1是△ABD 的一个外角,∴∠BPC >∠1,∠1>∠A ,∴∠BPC >∠A ;(2)在△ABC 中,∵∠A =40°,∴∠ABC +∠ACB =180°﹣∠A =180°﹣40°=140°,∵PB 平分∠ABC ,PC 平分∠ACB ,∴∠PBC =12∠ABC ,∠PCB =12∠ACB , 在△PBC 中,∠P =180°﹣(∠PBC +∠PCB )=180°﹣(12∠ABC +12∠ACB )=180°﹣12(∠ABC+∠ACB)=180°﹣12×140°=110°.【点睛】此题主要考查了三角形的外角性质、三角形内角和定理、三角形的角平分线定义;熟练掌握三角形的外角性质和三角形内角和定理是解决问题的关键.16.(2020·江苏淮安市·八年级期中)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(请用直尺保留作图痕迹).(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)△ABC的面积是;(3)在DE上画出点Q,使△QAB的周长最小.【答案】解:(1)如图所示,△A1B1C1即为所求;(2)S△ABC=2×3−12×1×3−12×1×2−12×1×2=52.故答案为:5 2.(3)如图所示,点Q即为所求;【点睛】本题主要考查了利用轴对称作图,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.17.(2020·武威第十九中学八年级月考)下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y原式=(y+2)(y+6)+4 (第一步)= y2+8y+16 (第二步)=(y+4)2(第三步)=(x2-4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的_______.A.提取公因式B.平方差公式C.完全平方公式(2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”),若不彻底,请直接写出因式分解的最后结果_________.(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.【答案】解:(1)该同学第二步到第三步运用了因式分解的完全平方公式,故选:C;(2)∵x2-4x+4=(x-2)2 ,∴该同学因式分解的结果不彻底,最后结果为(x-2)4 ,故答案为:不彻底,(x-2)4 ;(3)设x2-2x=y,则:原式=y(y+2)+1=y2+2y+1=(y+1)2=( x2-2x+1)2=(x﹣1)4.【点睛】本题考查利用换元法和公式法进行因式分解,熟记完全平方公式,熟练掌握因式分解的各种方法是解答的关键.四、(本题共计3小题,每小题8分,共计24分)18.(2020·全国八年级期中)如图所示,△ABC中,AB=BC.DE⊥AB于点E.DF⊥BC于点D,交AC于F..若∠AFD=155°,求∠EDF的度数;.若点F是AC的中点,求证:∠CFD=12∠B.【答案】. ∵∠AFD=155°.∴∠DFC=25°.∵DF⊥BC.DE⊥AB.∴∠FDC =∠AED =90°.在Rt △EDC 中,∴∠C =90°.25°=65°.∵AB =BC .∴∠C =∠A =65°.∴∠EDF =360°.65°.155°.90°=50°.. 连接BF .∵AB =BC ,且点F 是AC 的中点,∴BF ⊥AC .12ABFCBF ABC ∠=∠=∠.∴∠CFD +∠BFD =90°.∠CBF +∠BFD =90°.∴∠CFD =∠CBF .∴12CFDABC ∠=∠. 19.(2020·重庆西南大学银翔实验中学八年级月考)西南大学银翔实验中学初2022级举行“迎篮而上,求进不止”的篮球比赛,在某商场购买甲、乙两种不同篮球,购买甲种篮球共花费3000元,购买乙种篮球共花费2100元,购买甲种篮球数量是购买乙种篮球数量的2倍.且购买一个乙种篮球比购买一个甲种篮球多花60元;(1)求购买一个甲种篮球、一个乙种篮球各需多少元?(2)活动结束以后,学校决定再次购买甲、乙两种篮球共50个.恰逢该商场对两种篮球的售价进行调整,甲种篮球售价比第一次购买时提高了10%,乙种篮球售价比第一次购买时降低了10%.如果此次购买甲、乙两种篮球的总费用不超过8730元,那么这所学校最多可购买多少个乙种篮球?【答案】解:(1)设购买一个甲种篮球需x 元,则购买一个乙种篮球需()60x +元,根据题意可得:30002100260x x =⨯+, 解得:150x =,经检验得150x =是分式方程的解,∴60210x +=,答:购买一个甲种篮球需150元,则购买一个乙种篮球需210元;(2)调整之后的价格为:甲种篮球()150110165⨯+%=(元),乙种篮球()210110189⨯-%=(元),设购买m 个乙种篮球,则购买()50m -个甲种篮球,根据题意可得:()165501898730m m -+≤,解得:20m ≤,∴这所学校最多可购买20个乙种篮球.【点睛】本题考查分式方程的应用、不等式的实际应用,理解题意并列出方程和不等式是解题的关键.20.(2020·昌乐县白塔镇第一中学八年级期中)如图1,在△ABC 中,90ACB ∠=︒,AC =BC ,直线MN 经过点C ,AD MN ⊥,垂足为点D ,BE MN ⊥,垂足为点E .(1)请说明:①ADC CEB △≌△,②DE AD BE =+;(2)当直线MN 绕着点C 旋转到如图2所示的位置时,猜想线段DE ,AD ,BE 之间有怎样的数量关系?并说明理由.【答案】解:(1)①AD MN ⊥,BE MN ⊥,∴∠=∠=︒,ADC CEB90∴∠+∠=︒,DAC ACD90∠=︒,ACB90∴∠+∠=︒-︒=︒,ACD BCE1809090∴∠=∠;DAC ECB△中,在ADC和CEB=,∠=∠,AC CBADC CEB∠=∠,DAC ECB()∴△≌△;ADC CEBAAS△≌△,②由①得ADC CEB=,DC EB∴=,AD CE=+,DE CD CE∴=+;DE AD BE=-,(2)DE AD BE△≌△,由(1)同理可得:ADC CEB∴=,CD BE=,AD CEDE CE CD,∴=-.DE AD BE【点睛】本题考查了全等三角形的判定和性质,涉及到补角和余角的性质,熟练掌握全等三角形的判定方法是解题的关键.五、(本题共计2小题,每小题9分,共计18分)21.(2020·张家口市宣化区教学研究中心八年级期末)阅读理解 (发现)如果记22()1x f x x =+,并且f (1)表示当x =1时的值,则f (1)=______;()2f 表示当2x =时的值,则()2f =______;12f ⎛⎫ ⎪⎝⎭表示当12x =时的值,则12f ⎛⎫ ⎪⎝⎭=______; ()3f 表示当3x =时的值,则()3f =______;13f ⎛⎫ ⎪⎝⎭表示当13x =时的值,则13f ⎛⎫= ⎪⎝⎭______; (拓展)试计算111(2013)(2012)(2)(1)220122013f f f f f f f ⎛⎫⎛⎫⎛⎫++⋯++++⋯++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值. 【答案】解:【发现】2211(1)=211=+f ; 2224(2)=512=+f ;221112()=25112⎛⎫ ⎪⎝⎭=⎛⎫+ ⎪⎝⎭f ; 2239(3)=1013=+f ;221113()=310113⎛⎫ ⎪⎝⎭=⎛⎫+ ⎪⎝⎭f 【拓展】∵22()1x f x x =+ ∴2221()11(),111()x f x x x∴1()()1,f x f x += ∴111(2013)(2012)(2)(1)220122013f f f f f f f ⎛⎫⎛⎫⎛⎫++⋯++++⋯++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()111=2012+=201222=2012+f 【点睛】本题考查了函数值,数字变化规律,读懂题目信息,理解变化规律f 的方法并确定出1()()1f x f x+=是解题的关键. 22.(2020·广州市白云区明德中学七年级期中)如图1是一个长为2a ,宽为2b 的长方形()a b >,沿图中虚线用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形(1)你认为图2中大正方形的边长为______;小正方形(阴影部分)的边长为______.(用含a 、b 代数式表示)(2)仔细观察图2,利用图2中存在的面积关系,直接写出下列三个代数式.2()a b -,2()a b +,4ab 之间的等量关系.(3)利用(2)中得出的结论解决下面的问题.已知7a b +=,6ab =,求代数式()a b -的值.【答案】解:(1)图2中大正方形的边长为(a +b );小正方形(阴影部分)的边长为(a −b ),故填:()a b +,()a b -;(2)三个代数式之间的等量关系是:(a +b )2=(a −b )2+4ab ;(3)(a −b )2=(a +b )2−4ab =72-4×6=25,∴a −b =5.【点睛】本题主要考查公式变形能力,如何准确地确定三个代数式之间的等量关系是解题的关键.六、(本题共计1小题,每小题12分,共计12分)23.(2020·阳泉市第三中学校八年级期中)问题情境:在自习课上,小雪拿来了如下一道题目(原问题)和合作学习小组的同学们交流,如图①,△ACB 和△∠CDE 均为等腰三角形.CA =CB ,CD =CE ,∠ACB =∠DCE .点A 、D 、E 在同一条直线上,连接BE .求证:∠CDE =∠BCE +∠CBE . 问题发现:小华说:我做过一道类似的题目:如图②,△ACB 和△CDE 均为等边三角形,其他条件不变,求∠AEB 的度数. (1)请聪明的你完成小雪的题目要求并直接写出小华的题目要求.拓展研究:(2)如图③,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A 、D 、E 在同一条直线上,CF 为△DCE 中DE 边上的高,连接BE .请求∠AEB 的度数及线段CF 、AE 、BE 之间的数量关系,并说明理由.【答案】(1)小雪的题目:证明:ACB DCE ∠=∠ACD BCE ∠∠∴=在ADC 和DCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()ADC BEC SAS ∴≅△△CAD CBE ∴∠=∠又ACD BCE ∠=∠,CDE CAD ACD ∠=∠+∠CDE CBE BCE ∴∠=∠+∠;小华的题目:解:ACB DCE ∠=∠ACD BCE ∠∠∴=在ADC 和DCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()ADC BEC SAS ∴≅△△ADC BEC ∠∠∴= CDE 为等边三角形60CDE CED ∴∠=∠=︒ 又点A 、D 、E 在同一条直线上120ADC BEC ∴∠=∠=︒60AEB BEC CED ∴∠=∠-∠=︒(2)∠AEB =90︒;2AE BE CF =+;理由如下:△ACB 和△DCE 均为等腰直角三角形,,,9045AC BC CD CE ACB DCE CDE CED ∴==∠=∠=︒∠=∠=︒,,ACB DCB DCE DCB ∴∠-∠=∠-∠即ACD BCE ∠=∠在ADC 和DCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()ADC BEC SAS ∴≅△△,BE AD BEC ADC ∴=∠=∠,点A 、D 、E 在同一直线上∴∠=︒-︒=︒ADC18045135∴∠=︒BEC135∴∠=∠-∠=︒-︒=︒AEB BEC CED1354590,∠=︒=⊥DCE CD CE CF DE90,∴==CF DF EF∴=+=DE DF EF CF2∴=+=+.AE AD DE BE CF2【点睛】本题考查了全等三角形的判定及性质、等腰三角形的性质、等边三角形的性质,熟练掌握性质定理是解题的关键.。

2020-2021学年八年级上册数学(人教版)期末考试复习:第14章《整式的乘法与因式分解》解答题

2020-2021学年八年级上册数学(人教版)期末考试复习:第14章《整式的乘法与因式分解》解答题

第14章《整式的乘法与因式分解》解答题一.解答题(共35小题)1.(2019秋•武穴市校级期末)如图①,是一个长为2m、宽为2n的长方形,用剪刀沿图中的虚线(对称轴)剪开,把它分成四个形状和大小都相同的小长方形,然后按图①那样拼成一个正方形(中间是空的).(1)图①中画有阴影的小正方形的边长等于多少?(2)观察图①,写出代数式(m+n)2,(m﹣n)2与mn之间的等量关系;(3)根据(2)中的等量关系解决下面的问题:若a+b=7,ab=5,求(a﹣b)2的值.2.(2019秋•宜城市期末)先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、十字相乘法等等,其中十字相乘法在高中应用较多.十字相乘法:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如图).如:将式子x2+3x+2和2x2+x﹣3分解因式,如图:x2+3x+2=(x+1)(x+2);2x2+x﹣3=(x﹣1)(2x+3)请你仿照以上方法,探索解决下列问题:(1)分解因式:y2﹣7y+12;(2)分解因式:3x2﹣2x﹣1.3.(2019秋•丹江口市期末)分解因式:(1)9a2﹣4(2)ax2+2a2x+a3(3)x2+2x﹣34.(2019秋•江夏区期末)网购是现在人们常用的购物方式,通常网购的商品为防止损坏会采用盒子进行包装,A,B均是容积为V立方分米无盖的长方体盒子(如图).(1)图中A盒子底面是正方形,B盒子底面是长方形,A盒子比B盒子高6分米,A和B两个盒子都选用相同的材料制作成侧面和底面,制作底面的材料1.5元/平方分米,其中B盒子底面制作费用是A盒子底面制作费用的3倍,当V=576立方分米时,求B盒子的高.(温馨提示:要求用列分式方程求解)(2)在(1)的条件下,已知A盒子侧面制作材料的费用是0.5元/平方分米,求制作一个A盒子的制作费用是多少元?(3)设a的值为(2)中所求的一个A盒子的制作费用,请分解因式:x2﹣31x+a=.5.(2019秋•江夏区期末)按要求完成下列各题(1)计算:(2y)2•(﹣xy2)(2)分解因式:ax2+2a2x+a36.(2019秋•麻城市期末)因式分解:(1)y3﹣6xy2+9x2y(2)(2a﹣b)2+8ab7.(2019秋•荆州区期末)如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是;(2)根据(1)中的结论,若x+y=5,x•y=94,则x﹣y=;(3)拓展应用:若(2019﹣m)2+(m﹣2020)2=7,求(2019﹣m)(m﹣2020)的值.8.(2019秋•汉阳区期末)(1)计算:a3•a4•a+(a2)4+(﹣2a4)2(2)因式分解:9x2y+6xy+y9.(2019秋•巴东县期末)x2+(p+q)x+pq型式子是数学学习中常见的一类多项式,如何将这种类型的式子因式分解呢?因为(x+p)(x+q)=x2+(p+q)x+pq,所以,根据因式分解是与整式乘法方向相反的变形,利用这种关系可得:x2+(p+q)x+pq=(x+p)(x+q).如:x2+3x+2=x2+(1+2)x+1×2=(x+1)(x+2)上述过程还可以形象的用十字相乘的形式表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项的系数,如图.这样,我们可以得到:x2+3x+2=(x+1)(x+2)利用这种方法,将下列多项式分解因式:(1)x2+7x+10(2)﹣2x2﹣6x+3610.(2019秋•江岸区期末)(1)计算:(x+2)(x+3);(2)分解因式:3x2+6xy+3y2.11.(2019秋•汉阳区期末)我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式例如由图1可以得到a2+3ab+2b2=(a+2b)(a+b)请回答下列问题.(1)写出图2中所表示的数学等式是;(2)如图3,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x,y的式子表示).(3)通过上述的等量关系,我们可知当两个正数的和一定时,它们的差的绝对值越小,则积越(填“大“或“小“);当两个正数的积一定时,它们的差的绝对值越小,则和越 (填“大”或“小”).12.(2019秋•武汉期末)因式分解(1)x 3﹣16x ;(2)4xy 2﹣4x 2y ﹣y 313.(2019秋•青山区期末)分解因式:(1)16﹣b 2;(2)3ax 2﹣6axy +3ay 2.14.(2019秋•青山区期末)计算:(1)(4a ﹣b 2)(﹣2b );(2)(15x 2y ﹣10xy 2)÷5xy .15.(2019秋•鄂城区期末)观察下面的分解因式过程,说说你发现了什么.例:把多项式am +an +bm +bn 分解因式解法1:am +an +bm +bn =(am +an )+(bm +bn )=a (m +n )+b (m +n )=(m +n )(a +b )解法2:am +an +bm +bn =(am +bm )+(an +bn )=m (a +b )+n (a +b )=(a +b )(m +n )根据你的发现,把下面的多项式分解因式:(1)mx ﹣my +nx ﹣ny ;(2)2a +4b ﹣3ma ﹣6mb .16.(2019秋•黄冈期末)分解因式:(1)2x 2﹣18;(2)a 2﹣4ab +4b 2﹣9.17.(2019秋•武昌区期末)(1)计算:(x +3)(x ﹣1).(2)因式分解:2x 2y +4xy 2+2y 3.18.(2019秋•咸安区期末)(1)分解因式:(a ﹣b )2+4ab ;(2)用简便方法计算:20192﹣2018×2020.19.(2019秋•江汉区期末)因式分解:(1)ax 2+2ax +a ;(2)a 4﹣16.20.(2019秋•安陆市期末)(1)计算:(x ﹣y )(x 2+xy +y 2)(2)已知:a m =2,a n =4,a k =32(a ≠0)①求a 3m +2n ﹣k 的值;①求k ﹣3m ﹣n 的值.21.(2019秋•安陆市期末)仔细阅读下面的例题,并解答问题:例题:已知二次三项式x 2﹣4x +m 有一个因式是x +3,求另一个因式以及m 的值.解法一:设另一个因式为x +n ,得x 2﹣4x +m =(x +3)(x +n )则x 2﹣4x +m =x 2+(n +3)x +3n ,∴{n +3=−4n =3n 解得n =﹣7,m =﹣21. ∴另一个因式为x ﹣7,m 的值为﹣21.解法二:设另一个因式为x +n ,得x 2﹣4x +m =(x +3)(x +n )∴当x =﹣3时,x 2﹣4x +m =(x +3)(x +n )=0即(﹣3)2﹣4×(﹣3)+m =0,解得m =﹣21∴x 2﹣4x +m =x 2﹣4x ﹣21=(x +3)(x ﹣7)∴另一个因式为x ﹣7,m 的值为﹣21.问题:仿照以上一种方法解答下面问题.(1)若多项式x 2﹣px ﹣6分解因式的结果中有因式x ﹣3,则实数p = .(2)已知二次三项式2x 2+3x ﹣k 有一个因式是2x +5,求另一个因式及k 的值.22.(2019秋•松滋市期末)长方形的长为a 厘米,宽为b 厘米,其中a >b ,如果将原长方形的长和宽各增加3厘米,得到的新长方形面积记为S 1,如果将原长方形的长和宽分别减少2厘米,得到的新长方形面积记为S 2.(1)若a 、b 为正整数,请说明:S 1与S 2的差一定是5的倍数;(2)如果S1=2S2,求将原长方形的长和宽分别减少7厘米后得到的新长方形面积;(3)如果用一个面积为S1的长方形和两个面积为S2的长方形恰好能没有缝隙没有重叠地拼成一个正方形,求a,b的值.23.(2019秋•松滋市期末)观察下列各式发现规律,完成后面的问题:2×4=32﹣1,3×5=42﹣1,4×6=52﹣1,5×7=62﹣1.(1)12×14=,99×101=;(2)n(n+2)=()2﹣1(n为整数).(3)童威家现有一个用篱笆围成的长方形菜园,其长比宽多4米(长、宽均为整数),为了扩大菜园面积,童威用原来的篱笆围成一个正方形,童威的做法对吗?面积是否扩大了?如果扩大了,扩大了多少?试说明理由.24.(2019秋•恩施市期末)如图(1),有A、B、C三种不同型号的卡片若干张,其中A型是边长为a(a >b)的正方形,B型是长为a、宽为b的长方形,C型是边长为b的正方形.(1)若用A型卡片1张,B型卡片2张,C型卡片1张拼成了一个正方形(如图(2)),此正方形的边长为,根据该图形请写出一条属于因式分解的等式:.(2)若要拼一个长为2a+b,宽为a+2b的长方形,设需要A类卡片x张,B类卡片y张,C类卡片z张,则x+y+z=.(3)现有A型卡片1张,B型卡片6张,C型卡片11张,从这18张卡片中拿掉两张卡片,余下的卡片全用上,你能拼出一个长方形或正方形吗?有几种拼法?请你通过运算说明理由.25.(2019秋•襄州区期末)已知a、b、c分别是△ABC的三边.(1)分别将多项式ac﹣bc,﹣a2+2ab﹣b2进行因式分解;(2)若ac﹣bc=﹣a2+2ab﹣b2,试判断△ABC的形状,并说明理由.26.(2019秋•潜江期末)阅读:材料1:只含有一个未知数,并且未知数的最高次数是2次,最高次项的系数不为零,这样的整式方程叫做一元二次方程.一元二次方程有一种解法是利用因式分解来解的.如解方程:x2﹣3x+2=0,左边分解因式得(x﹣1)(x﹣2)=0,所以x﹣1=0或x﹣2=0,所以原方程的解是x=1或x=2.材料2:立方和公式用字母表示为:x3+y3=(x+y)(x2﹣xy+y2),(1)请利用材料1的方法解方程:x2﹣4x+3=0;(2)请根据材料2类比写出立方差公式:x3﹣y3=;(提示:可以用换元方法)(3)结合材料1和2,请你写出方程x6﹣7x3﹣8=0所有根中的两个根.27.(2019秋•樊城区期末)(1)分解下列因式,将结果直接写在横线上:x2+4x+4=;16x2+8x+1=;9x2﹣12x+4=;(2)观察以上三个多项式的系数,有42=4×1×4,82=4×16×1,(﹣12)2=4×9×4,于是小明猜测:若多项式ax2+bx+c(a>0)是完全平方式,则实数系数a、b、c一定存在某种关系:①请你用数学式子表示a、b、c之间的关系:;①解决问题:若多项式x2﹣2(m﹣3)x+(10﹣6m)是一个完全平方式,求m的值.28.(2019秋•孝南区期末)先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请解答下列问题:(1)因式分解:1+2(2x﹣3y)+(2x﹣3y)2.(2)因式分解:(a+b)(a+b﹣4)+4;29.(2019秋•梁子湖区期末)观察下面分解因式的过程,并完成后面的习题分解因式:am +an +bm +bn解法一:原式=(am +an )+(bm +bn )=a (m +n )+b (m +n )=(m +n )(a +b )解法二:原式=(am +bm )+(an +bn )=m (a +b )+n (a +b )=(a +b )(m +n )根据你发现的方法,分解因式:(1)mx ﹣my +nx ﹣ny(2)2a +4b ﹣3ma ﹣6mb .30.(2019秋•孝昌县期末)如图a 是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均匀分成四块小长方形,然后按图b 形状拼成一个正方形.(1)你认为图b 中的阴影部分的正方形的边长等于多少?(2)观察图b 你能写出下列三个代数式之间的等量关系吗?代数式:(m +n )2,(m ﹣n )2,mn(3)已知m +n =7,mn =6,求(m ﹣n )2的值.31.(2018秋•武汉期末)利用乘法公式计算:(1)(2a ﹣1)(1+2a )﹣2(a ﹣2)2(2)(2a ﹣3b ﹣1)(2a +3b ﹣1)﹣(2a ﹣3b +1)232.(2018秋•宜城市期末)已知关于x ,y 的方程2x 2﹣y ﹣3=0.(1)请你直接写出该方程的两组整数解;(2)若{n =n n =n 和{n =n n =n 是方程2x 2﹣y ﹣3=0的两组不同的解,求m +n 的值. 33.(2018秋•硚口区期末)分解因式(1)x 2﹣9x(2)x (x ﹣4)+4(3)x 2﹣2x ﹣1534.(2018秋•十堰期末)在当今“互联网+”时代,有一种用“因式分解法”生成密码的方法:将一个多项式因式分解,如将多项式x 3+2x 2﹣x ﹣2分解的结果为(x ﹣1)(x +1)(x +2).当x =19时,x ﹣1=18,x +1=20,x +2=21,此时可得到数字密码182021.(1)根据上述方法,当x =37,y =12时,对于多项式x 3﹣xy 2分解因式后可以形成哪些数字密码(写出两个即可)?(2)将多项式x 3+(m ﹣3n )x 2﹣nx ﹣21因式分解后,利用题目中所示的方法,当x =87时可以得到密码808890,求m ,n 的值.35.(2018秋•咸安区期末)如图,“主收1号”小麦的试验田是边长为am (a >1)的正方形去掉一个边长为1m 的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a ﹣1)m 的正方形,两块试验田的小麦都收获了500kg .(1)哪种小麦的单位面积产量高?(2)若高的单位面积产量是低的单位面积产量的n +3n (kg )倍,求a 的值(3)利用(2)中所求的a 的值,分解因式x 2﹣ax ﹣108= .第14章《整式的乘法与因式分解》解答题参考答案与试题解析一.解答题(共35小题)1.【答案】(1)(m ﹣n );(2)(a +b )2=(a ﹣b )2+4ab ;(3)29.【解答】解:(1)图①中画有阴影的小正方形的边长(m ﹣n );(2)(m +n )2=(m ﹣n )2+4mn ;(3)由(2)得:(a +b )2=(a ﹣b )2+4ab ;∵a +b =7,ab =5,∴(a ﹣b )2=(a +b )2﹣4ab =49﹣20=29;答:(a ﹣b )2的值为29.2.【答案】见试题解答内容【解答】解:(1)y 2﹣7y +12=(y ﹣3)(y ﹣4)(2)3x 2﹣2x ﹣1=(x ﹣1)(3x +1).3.【答案】见试题解答内容【解答】解:(1)原式=(3a +2)(3a ﹣2);(2)原式=a (x 2+2ax +a 2)=a (x +a )2;(3)原式=(x +3)(x ﹣1).4.【答案】见试题解答内容【解答】解:(1)设B 盒子的高为h 分米,由题意得:576n ×1.5=576n +6×1.5×3 解得:h =3经检验,h =3是原分式方程的解.答:B 盒子的高为3分米.(2)∵B 盒子的高为3分米∴A 盒子的高为:3+6=9(分米)∴A 盒子的底面积为:576n +6=64(平方米)∴A 盒子的底边长为:√64=8(分米)∴A 盒子的侧面积为:4×8×9=288(平方分米)∵制作底面的材料1.5元/平方分米,侧面制作材料的费用是0.5元/平方分米 ∴一个A 盒子的制作费用是:64×1.5+288×0.5=240(元)答:制作一个A 盒子的制作费用是240元.(3)∵由(2)得a =240∴x 2﹣31x +a =x 2﹣31x +240=(x ﹣16)(x ﹣15)故答案为:(x ﹣16)(x ﹣15).5.【答案】见试题解答内容【解答】解:(1)(2y )2•(﹣xy 2)=4y 2•(﹣xy 2)=﹣4xy 4;(2)ax 2+2a 2x +a 3=a (x 2+2ax +a 2)=a (x +a )2.6.【答案】见试题解答内容【解答】解:(1)原式=y (y 2﹣6xy +9x 2),=y (y ﹣3x )2;(2)原式=4a2﹣4ab+b2+8ab,=4a2+4ab+b2,=(2a+b)2.7.【答案】见试题解答内容【解答】解:(1)由题可得,大正方形的面积=(a+b)2 ,大正方形的面积=(a﹣b)2+4ab,∴(a+b)2 =(a﹣b)2+4ab,故答案为:(a+b)2 =(a﹣b)2+4ab;(2)∵(x+y)2 =(x﹣y)2+4xy,∴(x﹣y)2 =(x+y)2﹣4xy=25﹣4×94=16,∴x﹣y=4或x﹣y=﹣4,故答案为:4,﹣4;(3)∵(2019﹣m)2+(m﹣2020)2=7,又(2019﹣m+m﹣2020)2=(2019﹣m)2+(m﹣2020)2+2(2019﹣m)(m﹣2020),∴1=7+2(2019﹣m)(m﹣2020),∴(2019﹣m)(m﹣2020)=﹣3.8.【答案】见试题解答内容【解答】解:(1)a3•a4•a+(a2)4+(﹣2a4)2=a8+a8+4a8=6a8;(2)9x2y+6xy+y=y(9x2+6x+1)=y(3x+1)29.【答案】见试题解答内容【解答】解:(1)x2+7x+10=(x+5)(x+2);(2)﹣2x2﹣6x+36=﹣2(x2+3x﹣18)=﹣2(x+6)(x﹣3).10.【答案】见试题解答内容【解答】解:(1)(x+2)(x+3)=x2+3x+2x+6=x2+5x+6;(2)3x2+6xy+3y2=3(x2+2xy+y2)=3(x+y)2.11.【答案】见试题解答内容【解答】解:(1)2a2+5ab+2b2=(2a+b)(a+2b);(2)4xy=(x+y)2﹣(x﹣y)2;(3)当两个正数的和一定时,它们的差的绝对值越小则积越大;当两个正数的积一定时,它们的差的绝对值越小则和越小;故答案为:2a2+5ab+2b2=(2a+b)(a+2b),4xy=(x+y)2﹣(x﹣y)2,大,小.12.【答案】见试题解答内容【解答】解:(1)x3﹣16x=x(x2﹣16)=x(x﹣4)(x+4);(2)4xy2﹣4x2y﹣y3=﹣y(4x2﹣4xy+y2)=﹣y(2x﹣y)2.13.【答案】见试题解答内容【解答】解:(1)原式=(4+b)(4﹣b);(2)原式=3a(x2﹣2xy+y2)=3a(x﹣y)2.14.【答案】见试题解答内容【解答】解:(1)原式=﹣8ab+2b3;(2)原式=15x2y÷5xy﹣10xy2÷5xy=3x﹣2y.15.【答案】见试题解答内容【解答】解(1)原式=m(x﹣y)+n(x﹣y)=(x﹣y)(m+n);(2)原式=2(a+2b)﹣3m(a+2b)=(a+2b)(2﹣3m).16.【答案】见试题解答内容【解答】解:(1)原式=2(x2﹣9)=2(x+3)(x﹣3);(2)原式=(a﹣2b)2﹣32=(a﹣2b+3)(a﹣2b﹣3).17.【答案】见试题解答内容【解答】解:(1)(x+3)(x﹣1)=x2﹣x+3x﹣3=x2+2x﹣3;(2)2x2y+4xy2+2y3=2y(x2+2xy+y2),=2y(x+y)2.18.【答案】见试题解答内容【解答】解:(1)(a﹣b)2+4ab,=a2﹣2ab+b2+4ab,=a2+2ab+b2,=(a+b)2;(2)20192﹣2018×2020,=20192﹣(2019﹣1)(2019+1),=20192﹣20192+1,=1.19.【答案】见试题解答内容【解答】解:(1)原式=a(x2+2x+1)=a(x+1)2;(2)原式=(a2+4)(a2﹣4)=(a2+4)(a+2)(a﹣2).20.【答案】见试题解答内容【解答】解:(1)(x﹣y)(x2+xy+y2)=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3;(2)①∵a m=2,a n=4,a k=32(a≠0),∴a3m+2n﹣k=a3m•a2n÷a k=(a m)3•(a n)2÷a k=23×42÷32=4;①∵a k ÷a 3m ÷a n =a k ﹣3m ﹣n ,∴a k ÷a 3m ÷a n=32÷23÷4=4÷4=1=a 0,∴a k ﹣3m ﹣n =a 0,∴k ﹣3m ﹣n =0.21.【答案】见试题解答内容【解答】解:(1)设另一个因式为x +a ,得x 2﹣px ﹣6=(x ﹣3)(x +a ) 则x 2﹣px ﹣6=x 2+(a ﹣3)x ﹣3a , ∴{−3n =−6−n =n −3,解得a =2,p =1. 故答案为:1.(2)设另一个因式为(x +n ),得2x 2+3x ﹣k =(2x +5)(x +n )则2x 2+3x ﹣k =2x 2+(2n +5)x +5n∴{2n +5=3−n =5n , 解得n =﹣1,k =5,∴另一个因式为(x ﹣1),k 的值为5.22.【答案】见试题解答内容【解答】解:(1)证明:由题意得:S 1=(a +3)(b +3)=ab +3(a +b )+9,S 2=(a ﹣2)(b ﹣2)=ab ﹣2(a +b )+4,∴S 1﹣S 2=ab +3(a +b )+9﹣ab +2(a +b )﹣4,=5(a +b )+5=5(a +b +1),∴S 1与S 2的差一定是5的倍数.(2)∵S 1=2S 2,∴ab +3a +3b +9=2(ab ﹣2a ﹣2b +4)∴ab ﹣7a ﹣7b ﹣1=0,∴ab ﹣7a ﹣7b =1,∵将原长方形的长和宽分别减少7厘米后得到的新长方形面积为:(a ﹣7)(b ﹣7)=ab ﹣7a ﹣7b +49=1+49=50,∴将原长方形的长和宽分别减少7厘米后得到的新长方形面积为50平方厘米. (3)由题意可得方程组:{n +3=2(n −2)n +3=n +3+n −2, 解得:{n =7n =4.5, 或可得方程组:{n +3=2(n −2)n +3=n +3+n −2, 解得:b =2,a =﹣3<0故该组方程组的解不符合题意,∴a ,b 的值分别为7和4.5.23.【答案】见试题解答内容【解答】解:(1)12×14=(13﹣1)(13+1)=132﹣1;99×101═(100﹣1)(100+1)═1002﹣1;故答案为:132﹣1,1002﹣1;(2)n (n +2)=(n +1﹣1)(n +1+1)=(n +1)2﹣1;故答案为:n +1;(3)童威的做法对,面积扩大了,扩大了4平方米;理由如下:设原长方形菜园的宽为x米,则长为(x+4)米,原长方形面积为:x(x+4)=(x+2)2﹣4;现正方形面积为(x+2)2;∴现面积比原面积增加了4平方米.24.【答案】见试题解答内容【解答】解:(1)由图(1)和图(2)可得正方形的边长为a+b,由图(2)可得因式分解的等式a2+2ab+b2=(a+b)2.故答案为a+b,a2+2ab+b2=(a+b)2;(2)∵(2a+b)(a+2b)=2a2+5ab+2b2,∴需要用A类卡片2张,B类卡片5张,C类卡片2张,∴x+y+z=2+5+2=9;故答案为9;(3)三种拼法:第一种:A型卡片拿掉1张,B型卡片拿掉1张,则能拼出一个长方形,即长方形的长为5A+11b,宽为b,∴b(5a+11b)=5ab+11b2;第二种:A型卡片拿掉1张,C型卡片拿掉1张,则能拼出一个长方形,即长方形的长为3A+5b,宽为2b,∴2b(3a+5b)=6ab+10b2;或者长为6A+10b,宽为b,∴(6a+10b)b=6ab+10b2;此种情况共2种拼法;第三种:C型卡片拿掉2张,则能拼出一个正方形方形,即正方形边长为A+3b,∴(a+3b)2=a2+6ab+9b2.25.【答案】见试题解答内容【解答】解:(1)ac﹣bc=c(a﹣b)﹣a2+2ab﹣b2=﹣(a2﹣2ab+b2)=﹣(a﹣b)2(2)∵ac﹣bc=﹣a2+2ab﹣b2∴c(a﹣b)=﹣(a﹣b)2c(a﹣b)+(a﹣b)2=0(a﹣b)(c+a﹣b)=0∵a、b、c分别是△ABC的三边,满足两边之和大于第三边,即c+a﹣b>0∴a﹣b=0即a=b故△ABC的形状是等腰三角形.26.【答案】见试题解答内容【解答】解:(1)∵x2﹣4x+3=0,∴(x﹣1)(x﹣3)=0,∴x﹣1=0或x﹣3=0,解得:x=1或x=3;(2)∵x3+y3=(x+y)(x2﹣xy+y2),∴x3﹣y3=x3+(﹣y)3=[x+(﹣y)][x2﹣x(﹣y)+(﹣y)2]=(x﹣y)(x2+xy+y2);(3)∵x6﹣7x3﹣8=0,∴(x3)2﹣7x3﹣8=0,∴(x3﹣8)(x3+1)=0,∴x3﹣8=0或x3+1=0,∴x=2或x=﹣127.【答案】见试题解答内容【解答】解:(1)x2+4x+4=(x+2)2;16x2+8x+1=(4x+1)2;9x2﹣12x+4=(3x﹣2)2故答案为:(x+2)2;(4x+1)2;(3x﹣2)2;(2)①a、b、c之间的关系为b2=4ac,故答案为:b 2=4ac ;①∵多项式x 2﹣2(m ﹣3)x +(10﹣6m )是一个完全平方式, ∴[﹣2(m ﹣3)]2=4×1×(10﹣6m )解得,m =±1.28.【答案】见试题解答内容【解答】解:(1)原式=(1+2x ﹣3y )2.(2)令A =a +b ,则原式变为A (A ﹣4)+4=A 2﹣4A +4=(A ﹣2)2, 故(a +b )(a +b ﹣4)+4=(a +b ﹣2)2.29.【答案】见试题解答内容【解答】(1)解法一:原式=(mx ﹣my )+(nx ﹣ny )=m (x ﹣y )+n (x ﹣y )=(m +n )(x ﹣y );解法二:原式=(mx +nx )﹣(my +ny )=x (m +n )﹣y (m +n )=(m +n )(x ﹣y );(2)解法一:原式=(2a +4b )﹣(3ma +6mb )=2(a +2b )﹣3m (a +2b )=(2﹣3m )(a +2b );解法二:原式=(2a ﹣3ma )+(4b ﹣6mb )=a (2﹣3m )+2b (2﹣3m )=(2﹣3m )(a +2b ).30.【答案】见试题解答内容【解答】解:(1)m ﹣n .(2分)(2)(m +n )2=(m ﹣n )2+4mn .(6分)(3)(m ﹣n )2=(m +n )2﹣4mn =49﹣4×6=25.(10分)31.【答案】见试题解答内容【解答】解:(1)原式=4a 2﹣1﹣2(a 2﹣4a +4)=4a 2﹣1﹣2a 2+8a ﹣8=2a 2+8a ﹣9;(2)原式=(2a ﹣1)2﹣9b 2﹣[(2a ﹣3b )+1]2=4a 2﹣4a +1﹣9b 2﹣[4a 2﹣12ab +9b 2+2(2a ﹣3b )+1]=4a 2﹣4a +1﹣9b 2﹣4a 2+12ab ﹣9b 2﹣4a +6b ﹣1=﹣18b 2﹣8a +12ab +6b .32.【答案】见试题解答内容【解答】解:(1)∵2x 2﹣y ﹣3=0,∴当x =0时,y =﹣3;当x =1时,y =﹣1,即方程2x 2﹣y ﹣3=0的两组整数解是{n =0n =−3,{n =1n =−1; (2)∵{n =n n =n 和{n =n n =n 是方程2x 2﹣y ﹣3=0的两组不同的解, ∴{2n 2−n −3=0n 2n 2−n −3=0n 且m ≠n , ①﹣①,得m +n =−12. 33.【答案】见试题解答内容【解答】解:(1)x 2﹣9x =x (x ﹣9);(2)x (x ﹣4)+4=x 2﹣4x +4=(x ﹣2)2;(3)x 2﹣2x ﹣15=(x +3)(x ﹣5).34.【答案】见试题解答内容【解答】解:(1)∵x 3﹣xy 2=x (x ﹣y )(x +y )∴当x =37,y =12时,x ﹣y =25,x +y =49∴可得到数字密码372549或374925(2)∵当x =87时,密码为808890,且x 3的系数是1 ∴由(1)可知:x ﹣7=80,x +1=88,x +3=90∴x 3+(m ﹣3n )x 2﹣nx ﹣21=(x ﹣7)(x +1)(x +3)=x 3﹣3x 2﹣25x ﹣21 ∴m ﹣3n =﹣3,n =25即m =72,n =25答:m =72,n =25.35.【答案】见试题解答内容【解答】解:(1)由题意可得:“主收1号”单位面积产量=500n 2−1,“丰收2号”单位面积产量=500(n −1)2 ∵(a ﹣1)2﹣(a 2﹣1)=2﹣2a ,且a >1∴(a ﹣1)2﹣(a 2﹣1)<0∴(a ﹣1)2<a 2﹣1∴500n 2−1<500(n −1)2∴丰收2号”单位面积产量高. (2)由题意可得:n +3n ×500n 2−1=500(n −1)2 解得:a =3经检验,a =3是分式方程的解,并符合题意,即:a 的值为3.(3)x 2﹣ax ﹣108=x 2﹣3x ﹣108=(x ﹣12)(x +9)故答案为:(x ﹣12)(x +9)。

2022-2023学年上学期初中数学人教版八年级期末必刷常考题之因式分解

2022-2023学年上学期初中数学人教版八年级期末必刷常考题之因式分解

2022-2023学年上学期初中数学人教版八年级期末必刷常考题之因式分解一.选择题(共5小题)1.(2021春•青川县期末)下列因式分解正确的是()A.x2y2﹣z2=x2(y+z)(y﹣z)B.﹣x2y﹣4xy+5y=﹣y(x2+4x+5)C.(x+2)2﹣9=(x+5)(x﹣1)D.9﹣12a+4a2=﹣(3﹣2a)22.(2021春•东昌府区期末)把多项式﹣x2+mx+35进行因式分解为﹣(x﹣5)(x+7),则m的值是()A.2 B.﹣2 C.12 D.﹣123.(2021春•金塔县期末)下列多项式中,不能用平方差公式分解的是()A.x2﹣y2B.﹣x2﹣y2C.4x2﹣y2D.﹣4+x24.(2021春•开江县期末)下列从左到右的变形是因式分解的是()A.10x2﹣5x=5x(2x﹣1)B.x2﹣4x+1=x(x﹣4)+1C.x2+2x﹣1=(x﹣1)2D.(y﹣1)(y﹣2)=y2﹣3y+25.(2021春•永年区期末)若(20212﹣4)(20202﹣4)=2023×2019×2018m,则m的值是()A.2020 B.2021 C.2022 D.2024二.填空题(共5小题)6.(2021春•聊城期末)已知二次三项式x2+px+q因式分解的结果是(x﹣3)(x﹣5),则p+q=.7.(2021春•高密市期末)下列因式分解正确的是.A.3x2﹣6xy=3x(x﹣2y)B.x2﹣9y2=(x﹣3y)(x+y)C.x2+x﹣2=(x﹣2)(x+1)D.4x2+4x+1=2(x+1)28.(2021春•东海县期末)若=98×100×102,则a=.9.(2021春•新都区期末)已知x2﹣3x+1=0,则x3﹣x2﹣5x+2021的值为.10.(2021春•金坛区期末)因式分解:4x2﹣y2﹣2y﹣1=.三.解答题(共5小题)11.(2021春•滕州市期末)阅读下面的材料:常用的分解因式的方法有提取公因式法,公式法等,但有的多项式只用上述方法无法分解,如:x2﹣4y2﹣2x+4y,细心观察这个式子,会发现前两项符合平方差公式,后两项可提取公因式,前后两部分分别因式分解后又出现新的公因式,提取公因式就可以完成整个式子的分解因式.具体过程如下:x2﹣4y2﹣2x+4y=(x2﹣4y2)﹣(2x﹣4y)=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).像这种将一个多项式适当分组后,进行分解因式的方法叫做分组分解法.利用分组分解法解决下面的问题:(1)分解因式:x2﹣2xy+y2﹣2x+2y;(2)△ABC的三边a,b,c满足a2﹣b2﹣ac+bc=0,判断△ABC的形状.12.(2021春•鄄城县期末)因式分解:(1)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);(2)(x2+1)2﹣4x2.13.(2021春•东昌府区期末)把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣15;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.14.(2021春•甘孜州期末)利用因式分解进行简便运算:(1)29×20.21+72×20.21﹣20.21;(2)1012+198×101+99².15.(2021春•金台区期末)阅读下列材料:材料1:将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q 因式分解成(x+m)(x+n),如:(1)x2+4x+3=(x+1)(x+3);(2)x2﹣4x﹣12=(x﹣6)(x+2).材料2:因式分解:(x+y)2+2(x+y)+1.解:将“x+y看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2,再将“A”还原得:原式=(x+y+1)2.上述解题用到“整体思想”整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1,把x2+2x﹣24分解因式;(2)结合材料1和材料2,完成下面小题:①分解因式:(x﹣y)2﹣8(x﹣y)+16;②分解因式:m(m﹣2)(m2﹣2m﹣2)﹣3.2022-2023学年上学期初中数学人教版八年级期末必刷常考题之因式分解参考答案与试题解析一.选择题(共5小题)1.(2021春•青川县期末)下列因式分解正确的是()A.x2y2﹣z2=x2(y+z)(y﹣z)B.﹣x2y﹣4xy+5y=﹣y(x2+4x+5)C.(x+2)2﹣9=(x+5)(x﹣1)D.9﹣12a+4a2=﹣(3﹣2a)2【考点】提公因式法与公式法的综合运用.【专题】计算题;整式;应用意识.【分析】利用平方差、完全平方公式先判断A、C、D,再利用提公因式与完全平方公式判断B.【解答】解:∵x2y2﹣z2=(xy+z)(xy﹣z)≠x2(y+z)(y﹣z),故选项A不符合题意;﹣x2y﹣4xy+5y=﹣y(x2+4x﹣5)=﹣y(y+5)(x﹣4),分解不彻底,故选项B不符合题意;(x+2)2﹣9=(x+5)(x﹣1),故选项C符合题意;9﹣12a+4a2=(3﹣2a)2≠﹣(3﹣2a)2,故选项D不符合题意.故选:C.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.2.(2021春•东昌府区期末)把多项式﹣x2+mx+35进行因式分解为﹣(x﹣5)(x+7),则m的值是()A.2 B.﹣2 C.12 D.﹣12【考点】因式分解﹣十字相乘法等.【专题】整式;运算能力.【分析】因式分解的结果利用多项式乘多项式的运算法则计算,利用多项式相等的条件求出m的值即可.【解答】解:﹣x2+mx+35=﹣(x﹣5)(x+7)=﹣x2﹣2x+35,可得m=﹣2.故选:B.【点评】此题考查了因式分解﹣十字相乘法,熟练掌握多项式乘多项式的运算法则是解本题的关键.3.(2021春•金塔县期末)下列多项式中,不能用平方差公式分解的是()A.x2﹣y2B.﹣x2﹣y2C.4x2﹣y2D.﹣4+x2【考点】因式分解﹣运用公式法.【专题】整式;运算能力.【分析】根据能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反进行分析即可.【解答】解:A、x2﹣y2=(x+y)(x﹣y),能用平方差公式分解,故此选项不符合题意;B、﹣x2﹣y2无法因式分解,不能用平方差公式分解,故此选项符合题意;C、4x2﹣y2=(2x+y)(2x﹣y),能用平方差公式分解,故此选项不符合题意;D、﹣4+x2=x2﹣4=(x+2)(x﹣2),能用平方差公式分解,故此选项不符合题意.故选:B.【点评】此题主要考查了平方差公式分解因式,关键是掌握能用平方差公式分解因式的多项式的特点.4.(2021春•开江县期末)下列从左到右的变形是因式分解的是()A.10x2﹣5x=5x(2x﹣1)B.x2﹣4x+1=x(x﹣4)+1C.x2+2x﹣1=(x﹣1)2D.(y﹣1)(y﹣2)=y2﹣3y+2【考点】因式分解的意义.【专题】整式;运算能力.【分析】根据因式分解的定义判断即可.【解答】解:A、左边是多项式,右边是整式的积的形式,符合因式分解的定义,故此选项符合题意;B、右边不是整式的积的形式,不符合因式分解的定义,故此选项不符合题意;C、左边的多项式不能用完全平方公式分解,因式分解错误,故此选项不符合题意;D、是整式的乘法,不是因式分解,故此选项不符合题意.故选:A.【点评】本题考查了因式分解的定义,掌握因式分解的定义是解题的关键,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.5.(2021春•永年区期末)若(20212﹣4)(20202﹣4)=2023×2019×2018m,则m的值是()A.2020 B.2021 C.2022 D.2024【考点】因式分解的应用.【专题】因式分解;应用意识.【分析】利用因式分解的意义将等式左边利用平方差公式进行变形后即可得出结论.【解答】解:∵20212﹣4=20212﹣22=(2021+2)(2021﹣2)=2023×2019,20202﹣4=20202﹣22=(2020+2)(2020﹣2)=2022×2018,又∵(20212﹣4)(20202﹣4)=2023×2019×2018m,∴2023×2019×2022×2018=2023×2019×2018×m,∴m=2022.故选:C.【点评】本题主要考查了因式分解的应用.将等式左边的数字4看成22,可以平方差公式进行变形是解题的关键.二.填空题(共5小题)6.(2021春•聊城期末)已知二次三项式x2+px+q因式分解的结果是(x﹣3)(x﹣5),则p+q=7.【考点】因式分解﹣十字相乘法等.【专题】整式;运算能力.【分析】直接利用多项式乘多项式运算法则得出p,q的值,进而得出答案.【解答】解:∵x2+px+q=(x﹣3)(x﹣5),∴x2+px+q=x2﹣8x+15,故p=﹣8,q=15,则p+q=﹣8+15=7.故答案为:7.【点评】此题主要考查了十字相乘法分解因式,正确运用多项式乘多项式运算法则是解题关键.7.(2021春•高密市期末)下列因式分解正确的是A.A.3x2﹣6xy=3x(x﹣2y)B.x2﹣9y2=(x﹣3y)(x+y)C.x2+x﹣2=(x﹣2)(x+1)D.4x2+4x+1=2(x+1)2【考点】提公因式法与公式法的综合运用;因式分解﹣十字相乘法等.【专题】整式;运算能力.【分析】利用提公因式法,公式法以及十字相乘法逐项进行因式分解即可.【解答】解:A.3x2﹣6xy=3x(x﹣2y),因此选项A正确;B.x2﹣9y2=(x﹣3y)(x+3y),因此选项B不正确;C.x2+x﹣2=(x+2)(x﹣1),因此选项C不正确;D.4x2+4x+1=(2x+1)2,因此选项D不正确;故答案为:A.【点评】本题考查因式分解,掌握提公因式法、公式法、十字相乘法是正确判断的关键.8.(2021春•东海县期末)若=98×100×102,则a=100.【考点】因式分解的应用.【专题】计算题;运算能力.【分析】将(992﹣1)(1012﹣1)进行分解,即可得.【解答】解:===98×100×102,∴a=100,故答案为:100.【点评】本题考查了因式分解的应用,根据平方差公式将(992﹣1)(1012﹣1)分解是关键.9.(2021春•新都区期末)已知x2﹣3x+1=0,则x3﹣x2﹣5x+2021的值为2019.【考点】因式分解的应用.【专题】因式分解;运算能力.【分析】先将x3﹣x2﹣5x+2021变形凑出x2﹣3x,然后利用x2﹣3x=﹣1化简即可.【解答】解:x3﹣x2﹣5x+2021=x3﹣3x²+2x²﹣6x+x+2021=x(x²﹣3x)+2(x²﹣3x)+x+2021,∵x2﹣3x+1=0,∴x2﹣3x=﹣1,∴原式=﹣x﹣2+x+2021=2019,故答案为2019.【点评】本题主要考查整体代入求代数式的值,关键是要把x3﹣x2﹣5x+2021变形凑出x2﹣3x,然后整体换掉.10.(2021春•金坛区期末)因式分解:4x2﹣y2﹣2y﹣1=(2x+y+1)(2x﹣y﹣1).【考点】因式分解﹣分组分解法.【专题】计算题;整式;应用意识.【分析】先给后三项加上一个负括号,利用完全平方公式,再利用平方差公式分解.【解答】解:4x2﹣y2﹣2y﹣1=4x2﹣(y2+2y+1)=(2x)2﹣(y+1)2=(2x+y+1)(2x﹣y﹣1).故答案为:(2x+y+1)(2x﹣y﹣1).【点评】本题考查了整式的因式分解,掌握因式分解的公式法并合理分组是解决本题的关键.三.解答题(共5小题)11.(2021春•滕州市期末)阅读下面的材料:常用的分解因式的方法有提取公因式法,公式法等,但有的多项式只用上述方法无法分解,如:x2﹣4y2﹣2x+4y,细心观察这个式子,会发现前两项符合平方差公式,后两项可提取公因式,前后两部分分别因式分解后又出现新的公因式,提取公因式就可以完成整个式子的分解因式.具体过程如下:x2﹣4y2﹣2x+4y=(x2﹣4y2)﹣(2x﹣4y)=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).像这种将一个多项式适当分组后,进行分解因式的方法叫做分组分解法.利用分组分解法解决下面的问题:(1)分解因式:x2﹣2xy+y2﹣2x+2y;(2)△ABC的三边a,b,c满足a2﹣b2﹣ac+bc=0,判断△ABC的形状.【考点】因式分解的应用.【专题】因式分解;应用意识.【分析】(1)x2﹣2xy+y2﹣2x+2y,利用完全平方公式因式分解,先将x2﹣2xy+y2=(x﹣y)2,得到(x ﹣y)2﹣2(x﹣y),再利用提取公因式即可得到(x﹣y)﹣(x﹣y﹣2),(2)已知a2﹣b2﹣ac+bc=0先为两组,a2﹣b2和ac﹣bc,分别提公因式a+b与c,得(a+b)(a﹣b)﹣c(a﹣b)=0再提公因式得(a﹣b)(a+b﹣c)=0因此a=b或a+b﹣c=0,三角形任意两边之和大于第三边,即a+b﹣c≠0,根据等腰三角形的判定得△ABC是等腰三角形.【解答】解:(1)x2﹣2xy+y2﹣2x+2y=(x2﹣2xy+y2)﹣2(x﹣y)=(x﹣y)(x﹣y﹣2),(2)a2﹣b2﹣ac+bc=0,∵a2﹣b2﹣ac+bc=0,∴(a2﹣b2)﹣(ac﹣bc)=0,(a+b)(a﹣b)﹣c(a﹣b)=0,(a﹣b)(a+b﹣c)=0,a﹣b=0或a+b﹣c=0,∵三角形任意两边之和大于第三边,∴a+b﹣c≠0,∴△ABC是等腰三角形.【点评】本题主要考查了因式分解和等腰三角形的判定,解本题要熟练掌握因式分解和等腰三角形的判定.12.(2021春•鄄城县期末)因式分解:(1)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);(2)(x2+1)2﹣4x2.【考点】提公因式法与公式法的综合运用;因式分解﹣分组分解法.【专题】因式分解;整式;应用意识.【分析】(1)用提取公因式法分解因式;(2)用平方差公式、完全平方公式分解因式.【解答】解:(1)原式=(a﹣b)(x﹣y)+(a﹣b)(x+y)=(a﹣b)[(x﹣y)+(x+y)]=2x(a﹣b),(2)原式=(x2+1)2﹣(2x)2=(x2+1+2x)(x2+1﹣2x)=(x+1)2(x﹣1)2.【点评】本题主要考查了提公因式法与公式法的综合运用、分组分解法分解因式,掌握这几种因式分解的方法,把(b﹣a)化为(a﹣b)是解题关键.13.(2021春•东昌府区期末)把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣15;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.【考点】提公因式法与公式法的综合运用.【专题】计算题;整式;运算能力.【分析】(1)直接提取公因式;(2)先加上负括号,再利用十字相乘法;(3)先提取公因式2mn,再利用完全平方公式;(4)利用平方差公式因式分解.【解答】解:(1)2(x﹣y)﹣(x﹣y)2=(x﹣y)[2﹣(x﹣y)]=(x﹣y)(2﹣x+y);(2)﹣x2+8x﹣15=﹣(x2﹣8x+15)=﹣(x﹣5)(x﹣3);(3)8m3n+40m2n2+50mn3=2mn(4m2+20mn+25n2)=2mn(2m+5n)2;(4)a4﹣b4=(a2+b2)(a2﹣b2)=(a2+b2)(a+b)(a﹣b).【点评】本题考查了整式的分解因式,一般来说,有公因式先提取公因式,提取公因式后再考虑运用公式法或十字相乘法分解.14.(2021春•甘孜州期末)利用因式分解进行简便运算:(1)29×20.21+72×20.21﹣20.21;(2)1012+198×101+99².【考点】因式分解的应用.【专题】整式;运算能力.【分析】(1)观察式子,利用提公因式法进行求解;(2)根据式子的特点,利用完全平方公式进行求解.【解答】解:(1)29×20.21+72×20.21﹣20.21=(29+72﹣1)×20.21=100×20.21=2021;(2)1012+198×101+99²=1012+2×99×101+992=(101+99)2=2002=40000.【点评】本题考查因式分解的应用,解题的关键是根据每个式子中的特点选择适当的因式分解的方法(如提公因式法、公式法等),从而简化计算.15.(2021春•金台区期末)阅读下列材料:材料1:将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q 因式分解成(x+m)(x+n),如:(1)x2+4x+3=(x+1)(x+3);(2)x2﹣4x﹣12=(x﹣6)(x+2).材料2:因式分解:(x+y)2+2(x+y)+1.解:将“x+y看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2,再将“A”还原得:原式=(x+y+1)2.上述解题用到“整体思想”整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1,把x2+2x﹣24分解因式;(2)结合材料1和材料2,完成下面小题:①分解因式:(x﹣y)2﹣8(x﹣y)+16;②分解因式:m(m﹣2)(m2﹣2m﹣2)﹣3.【考点】提公因式法与公式法的综合运用;因式分解﹣十字相乘法等.【专题】整式;运算能力.【分析】(1)将x2+2x﹣24写成x2+(6﹣4)x+6×(﹣4),根据材料1的方法可得(x+6)(x﹣4)即可;(2)①令x﹣y=A,原式可变为A2﹣8A+16,再利用完全平方公式即可;②令B=m(m﹣2)=m2﹣2m,原式可变为B(B﹣2)﹣3,即B2﹣2B﹣3,利用十字相乘法可分解为(B﹣3)(B+1),再代换后利用十字相乘法和完全平方公式即可.【解答】解:(1)x2+2x﹣24=x2+(6﹣4)x+6×(﹣4)=(x+6)(x﹣4);(2)①令x﹣y=A,则原式可变为A2﹣8A+16,A2﹣8A+16=(A﹣4)2=(x﹣y﹣4)2,所以(x﹣y)2﹣8(x﹣y)+16=(x﹣y﹣4)2;②设B=m2﹣2m,则原式可变为B(B﹣2)﹣3,即B2﹣2B﹣3=(B﹣3)(B+1)=(m2﹣2m﹣3)(m2﹣2m+1)=(m﹣3)(m+1)(m﹣1)2,所以m(m﹣2)(m2﹣2m﹣2)﹣3=(m﹣3)(m+1)(m﹣1)2.【点评】本题考查十字相乘法,公式法分解因式,掌握十字相乘法和完全平方公式的结构特征是正确应用的前提。

2020-2021学年八年级数学第一学期期末复习常考题必刷卷(人教版专用)含解析

2020-2021学年八年级数学第一学期期末复习常考题必刷卷(人教版专用)含解析

2020-2021八年级数学第一学期期末复习常考题必刷卷(人教版专用)一、单选题1.下列运算正确的是( )A.(−a )3=a 3 B.(a 2)3=a 5C.a 2÷a −2=1 D.(−2a 3)2=4a 6 2.下列图形中是轴对称图形的是( )A. B. C. D. 3.下列各式从左到右的变形中,是因式分解的为( ).A.()x a b ax bx -=- B.x 2−1+y 2=(x −1)(x +1)+y 2C.21(1)(1)x x x -=+-D.()ax bx c x a b c ++=++ 4.若2+ax x−1=1的解为正数,则a的取值范围为( )A.a <1 B.a <1且a ≠−2C.a >1且a ≠2D.a >1 5.人体中红细胞的直径约为0.0000077m,将数0.0000077用科学记数法表示为( )A.77×10−5 B.0.77×10−7 C.7.7×10−6 D.7.7×10−76.下列条件中,能利用“SAS ”判定△ABC ≌△A ′B ′C ′的是( ) A.AB =A ′B ′,AC =A ′C ′,∠C =∠C ′B.AB =A ′B ′,∠A =∠A ′,BC =B ′C ′C.AC =A ′C ′,∠C =∠C ′,BC =B ′C ′D.AC =A ′C ′,∠A =∠A ′,BC =B ′C ′7.如图,要测量河两岸相对两点A ,B 的距离,可以在AB 的垂线BF 上取两点C、D,使CD=BC,再作出BF的垂线DE,使A,C,E在一条直线上,这时测得DE的长是3.4m,那么AB的长为()A.1.7mB.3.4mC.6.8mD.条件不够,无法判断8.如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=34°,那么∠BED=()A.134°B.124°C.114°D.104°9.如图,OC是∠AOB的平分线,P是OC上一点,P点到OA的距离PE=2,点F是OB上任意一点,则线段PF的长的取值范围是()A.PF<2B.PF>2C.PF≥2D.PF≤210.“退耕还林还草”是我国西部地区实施的一项重要生态工程,某地规划退耕面积共69000公顷,退耕还林与退耕还草的面积比为5:3,设退耕还林的面积为x公顷,下列所列方程哪一个是不正确的?()A.x69000−x =53B.69000−x=53xC.69000−xx=35D.69000x=5+35二、填空题212.如图,在△ABC中,AD、AE分别是边BC上的中线与高,AE=5,△ABC 的面积为25,则CD的长为________.13.如图,则∠A+∠B+∠C+∠D+∠E+∠F+∠G=_____.14.若点P(a−2,2a+5)在第二象限的角平分线上,则a=_________.15.与单项式−2b的积是(2a+b)2+(2a+b)(b−2a)−6b2的多项式是______.16.如图,在平面直角坐标系中,已知点A(1,0),点B(2,4),点P是y轴上的一个动点,则△APB的周长的最小值为____________.17.如图,点A的坐标为(4,0),点B的坐标为(0,−1),分别以OB,AB为直角边在第三、第四象限作等腰Rt△OBF,等腰Rt△ABE,连接EF 交y轴于P点,点P的坐标是______.三、解答题18.计算:(π−3.14)0+(−12)−2−|1−√3| 19.先化简:(a +1a−2−1)÷a 2−2a a 2−4a +4,然后从0,2,√9中选择一个合适的数代入求值.20.如图,点A,B,C的坐标分别为(−2,3),(−3,1),(1,−2)(1)画出△ABC 关于y轴对称的图形△A 1B 1C 1.(2)直接写出A 1点关于x轴对称的点的坐标.(3)在x轴上有一点P,使得PA +PB 最短,求最短距离是多少?四、解答题(二)21.请你利用我们学习的“分式方程及其解法”解决下列问题:(1)已知关于x的方程2mx−1x +2=1的解为负数,求m的取值范围; (2)若关于x的分式方程3−2x x−3+2−nx 3−x =−1无解.求n的取值范围. 22.如图,某中学校园内有一块长为(3)a b +米,宽为(2)a b +米的长方形地块.学校计划在中间留一块边长为(a +b )米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含a、b的代数式表示)(2)当a=3,b=1时,求绿化的面积.23.长沙市北雅中学拟举办“青春似火,激情无限”运动会.为展现学生的青春活力和蓬勃朝气,使学生之间、师生之间和谐融洽的情谊得到进一步发展,计划选购一批篮球与足球,每个篮球的价格比每个足球的价格高20元,用480元单独购进篮球的件数与320元单独购进足球的件数相同.(1)足球与篮球的单价分别为多少元?(2)若学校计划购买这种足球与篮球共40个,且投入的经费不超过2100元,要使购买的篮球数量大于足球数量,则共有几种购买方案?五、解答题(三),AC=BC,DC=EC,AE与BD交于点F.24.如图,AC⊥BC,DC EC(1)请问AE=BD吗?请说明理由;(2)请判断AE与BD的位置关系,并说明理由.25.如图,已知△ABC中,AB=AC=20cm,BC=16cm,点D为AB 的中点.(1)如果点P在线段BC上以6cm/s的速度由B点向C点运动,同时点Q在线段CA上由C向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?参考答案1.DA.(−a)3=−a3,故不正确;B.(a2)3=a6,故不正确;C.a2÷a−2=a4,故不正确;D.(−2a3)2=4a6,正确;故选D.2.B解:A.不是轴对称图形,不符合题意;B.是轴对称图形,符合题意;C.不是轴对称图形,不符合题意;D.不是轴对称图形,不符合题意.故选:B.3.C解:把一个多项式化成几个整式的积的形式,叫因式分解,只有21(1)(1)-=+-符合该定义,x x x故选:C.4.B2+ax=1化为整式方程为2+ax=x−1,即(1−a)x=3,x−1(1)当1a=时,方程无解,不符题意,,符合题意,(2)当a≠1时,x=31−a2+ax=1的解为正数,x−1∴3>0,1−a解得a<1,又∵分式的分母不能为0,∴x−1≠0,即x≠1,∴31−a≠1,解得a≠−2,综上,a的取值范围为a<1且a≠−2,故选:B.5.C解:0.0000077=7.7×10−6.故选C.6.CA.边边角不能证明两个三角形全等,故A错误;B.边边角不能证明两个三角形全等,故B错误;C.AC=A′C′,∠C=∠C′,BC=B′C′符合SAS,故C正确;D.边边角不能证明两个三角形全等,故D错误,故选:C.7.B解:∵AB⊥BF,DE⊥BF,90B EDC∴∠=∠=︒,在ΔABC和ΔEDC中,{∠B=∠EDCBC=CD∠ACB=∠ECD,∴△ABC≅△EDC(ASA),∴AB=DE,∵DE=3.4m,∴AB=3.4m.故选:B.8.B∵AE平分∠BAC,∠BAE=34°,∴34EAC ∠=︒,∵ED∥AC,∴∠AED =180°−34°=146°,∵BE⊥AE,∴∠AEB =90°,∴∠BED =360°−90°−146°=124°;故答案选B.9.C解:∵P 点到OA 的距离PE =2,∴P 点到OB 的距离2,∵垂线段最短,且点F在OB上,∴PF ≥2.故选C.10.B解:退耕还林的面积为x公顷,则退耕还草的面积为(69000-x)公顷, 故x 69000−x=53,A正确; 故69000-x=x÷53,B错误;故69000−x x =35,C正确; 根据第二个等量关系可得D正确;故选:B.11.2或-2解:∵ 4x2+2mx+1 是完全平方式,∴2mx=±2(2x ×1),解得m=2或-2,故答案为2或-2.12.5.解:∵AD、AE分别是边BC上的中线与高,BC,AE⊥BC,∴BD=CD=12BCAE=25,∴12∵AE=5,∴5BC=50,∴BC=10,∴CD=1BC=5,2故答案为:5.13.540°解:连接GD,∠A+∠B+∠C+∠CDG+∠DGA=(5﹣2)×180°=540°,∵∠1+∠FGD+∠EDG=180°,∠2+∠E+∠F=180°,∠1=∠2,∴∠FGD+∠EDG=∠E+∠F,∴∠A+∠B+∠C+∠CDE+∠E+∠F+∠FGA=540°,故答案为540°.14.−1∵P(a−2,2a+5)在第二象限角平分线上,∴a−2+2a+5=0,解得,a=−1.故答案为:−1.15.−2a+2b解:∵一个多项式与单项式−2b的积是(2a+b)2+(2a+b)(b−2a)−6b2,∴这个多项式为:[(2a+b)2+(2a+b)(b−2a)−6b2]÷(−2b)=(4a2+4ab+b2+b2−4a2−6b2)÷(−2b)=(4ab−4b2)÷(−2b)=-2a+2b.故答案为:-2a+2b.16.5设点A(1,0)关于y轴的对称点C(x,y),∴点C(﹣1,0)又点P是y轴上的一个动点,∴PA+PB=PC+PB≥BC,当点P、B、C三点共线时,PC+PB取最小值BC,由两点的的距离公式可得BC=√(2+1)2+(4−0)2=5故答案为:517.(0,−3)解:如图,作EN⊥y轴于N,90ENB BOA ABE∠=∠=∠=︒,90OBA NBE∴∠+∠=︒,∠OBA+∠OAB=90°,NBE BAO∴∠=∠,在△ABO和△BEN中,{∠AOB =∠BNE∠BAO =∠NBE AB =BE∴△ABO ≅△BEN (AAS ),OB NE BF ∴==,OA=BN90OBF FBP BNE ∠=∠=∠=︒,在△BFP 和△NEP 中,{∠FPB =∠EPN∠FBP =∠ENP BF =NE,∴△BFP ≅△NEP (AAS ),BP NP ∴=,又因为点A 的坐标为(4,0),4OA BN ∴==,∴BP =NP =12BN =2, 又∵点B 的坐标为(0,−1),∴点P 的坐标为(0,−3).故答案为:(0,−3).18.6原式=1+(−2)2−(√3−1), =1+4−√3+1,=6−√3.19.3a,1 解:(a +1a−2−1)÷a 2−2a a 2−4a +4 =(a +1a−2−a−2a−2)×a 2−4a +4a 2−2a=3a−2×(a−2)2a(a−2)=3a , ∵a=0,2时,分式无意义,∴a=√9=3, ∴原式=313.20.(1)图见解析;(2)(2,-3);解:(1)如图所示,△A1B1C1即为所求.(2)A1点关于x轴对称的点的坐标为(2,-3);(3)如图所示,点P即为所求,最短距离是√12+42=√17.21.(1)m <12且m ≠−14;(2)n =53或n=1.解:(1)去分母,得2mx −1=x +2,当2m −1≠0时,解得:x =32m−1,∵ 方程有解,且解为负数, ∴{2m −1<032m−1≠−2,解得m <12且m ≠−14; (2)方程两边同时乘以(x-3),约去分母得:3−2x −(2−nx)=3−x , 整理得:(n −1)x =2,当n-1=0时,方程无解,此时n=1;当n−1≠0时,x=2n−1,要使方程无解,则有231n=-,解得:n=53;综上,n=53或n=1.22.(1)(5a2+3ab)平方米;(2)54平方米.解:(1)(3a+b)(2a+b)−(a+b)2=6a2+5ab+b2−a2−2ab−b22(53)a ab=+平方米;(2)当a=3,b=1时,22535333154a ab+=⨯+⨯⨯=.所以绿化的面积为54平方米.23.(1)足球每个40元,篮球每个60元;(2)共有5种购买方案解:(1)设足球每个x元,则篮球每个(x+20)元,由题意得480x+20=320x解得x=40,经检验x=40符合题意,40+20=60元,答:足球每个40元,篮球每个60元;(2)设购买足球a个,则购买篮球(40-a)个,由题意得{40a+60(40−a)≤210040−a>a,解得15≤a<20,∴当a=15时,40-a=25;当a=16时,40-a=24;当a=17时,40-a=23;当a=18时,40-a=22;当a=19时,40-a=21;∴共有5种购买方案.24.(1)AE=BD,证明见解析;(2)AE⊥BD,证明见解析.解:(1)AE=BD,证明如下:∵AC⊥BC,DC EC,∴∠ACB=∠ECD=90°,∴∠ACB+∠BCE=∠ECD+∠BCE,∴∠ACE=∠BCD,在△ACE和△BCD中,{AC=BC∠ACE=∠BCDEC=DC,∴△ACE≅△BCD(SAS),∴AE=BD;(2)AE⊥BD,理由如下:由(1)得△ACE≅△BCD,∴∠E=∠D,又∵∠ECD+∠D=∠EFD+∠E,∴∠EFD=∠ECD=90°,∴AE⊥BD.25.(1)①△BPD≌△CQP,理由见解析;②V Q=7.5(厘米/秒);(2)经过了803秒,点P与点Q第一次在AB边上相遇.(1)①因为t=1(秒),所以BP=CQ=6(厘米)∵AB=20,D为AB中点,∴BD=10(厘米)又∵PC=BC−BP=16−6=10(厘米)∴PC=BD,∵AB=AC,∴∠B=∠C,在△BPD与△CQP中,{BP=CQ∠B=∠C PC=BD,∴△BPD≌△CQP(SAS),②因为VP≠VQ,所以BP≠CQ,又因为∠B=∠C,要使△BPD与△CQP全等,只能BP=CP=8,即△BPD≌△CPQ,故CQ=BD=10.所以点P、Q的运动时间t=BP6=86=43(秒),此时VQ=CQt=1043=7.5(厘米/秒);(2)因为VQ>VP,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,设经过x秒后P与Q第一次相遇,依题意得152x=6x+2×20,解得x=803(秒)此时P运动了803×6=160(厘米)又因为△ABC的周长为56厘米,160=56×2+48,所以点P、Q在AB边上相遇,即经过了803秒,点P与点Q第一次在AB边上相遇.。

辽宁省鞍山市2020-2021学年八年级(上)期末数学试卷 解析版

辽宁省鞍山市2020-2021学年八年级(上)期末数学试卷  解析版

2020-2021学年辽宁省鞍山市八年级(上)期末数学试卷一、选择题:(每题2分,共20分)1.2﹣3的值是()A.﹣6B.﹣8C.D.﹣2.下面各图形中,对称轴最多的是()A.长方形B.正方形C.等边三角形D.等腰三角形3.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°4.下列运算正确的是()A.a3•a4=a12B.(m3)2=m5C.x3+x3=x6D.(﹣a2)3=﹣a6 5.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD 6.下列各分式中,最简分式是()A.B.C.D.7.下列因式分解正确的是()A.﹣3x2n﹣6x n=﹣3x n(x2+2)B.x2+x+1=(x+1)2C.2x2﹣=2(x+)(x﹣)D.4x2﹣16=(2x+4)(2x﹣4)8.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD 的度数为()A.65°B.60°C.55°D.45°9.如图,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点D作DF⊥AB,垂足为点F,点E在边AC上,若DE=DB,则下列结论不正确的是()A.DC=DF B.DE=BF C.AC=AF D.AB=AC+CE 10.在平面直角坐标系中,点A,B的坐标分别为(﹣3,0)、(0,﹣5),若平面内存在一点C,使△ABC是等腰直角三角形,则下列C点坐标不符合题意的是()A.(﹣8,﹣3)B.(﹣5,﹣8)C.(2,3)D.(5,﹣3)二、填空题:(每题2分,共16分)11.(﹣)2020•(1.5)2021=.12.已知△ABC的两条边长分别为2和5,则第三边c的取值范围是.13.如图,△ABC中,CD平分∠ACB,若∠A=68°,∠BCD=31°,则∠B=.14.若一个多边形外角和与内角和相等,则这个多边形是边形.15.已知x+y=6,xy=7,则x2y+xy2的值是.16.甲、乙两个港口之间的海上行程为skm,一艘轮船以akm/h的航速从甲港顺水航行到达乙港.已知水流速度为xkm/h,则这艘轮船从乙港逆水航行回到甲港所用的时间为h.17.如图的4×4的正方形网格中,有A、B、C、D四点,直线a上求一点P,使P A+PB最短,则点P应选点(C或D).18.如图,在△ABC中,若∠ABC=45°,P为BC边上一点,且PC=2PB,∠APC=60°,过点C作CE⊥AP,则∠ACB的度数是.三、解答题:(本题共44分)19.计算:(1)4xy2z÷(﹣2x﹣2yz﹣1)2;(2)(m+2+)•.20.先化简,再求值:(a2b﹣2ab﹣b2)÷b﹣(a+b)(a﹣b),其中a=0.5,b=﹣1.21.如图,在等腰直角三角形ABC中,∠ACB=90°,点M是边AB上任意一点,连接CM,过点A,B分别作AE⊥CM,BF⊥CM,垂足分别为E,F,若BF=2.6cm,AE=0.9cm,分别求出CF,EF的长.22.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点M.(1)在给出图上画出一个格点△MB1C1,并使它与△ABC全等且A与M是对应点;(2)以点M所在的水平直线为对称轴,画出△ABC的轴对称图形△A2B2C2.23.观察下列各式:12+32+42=2×(12+32+3)22+32+52=2×(22+32+6)32+62+92=2×(32+62+18)…(1)请用a,b,c表示左边由小到大的三个底数,并写出它们之间的关系;(2)请用字母a,b写出上述等式的规律,并加以证明.四、综合题:(本题共20分)24.假期里,学校组织部分团员同学参加“关爱老年人”的爱心援助活动,计划分乘大、小两辆车前往相距140km的乡村敬老院.(1)若小车速度是大车速度的1.4倍,则小车比大车早一个小时到达,求大、小车速度.(2)若小车与大车同时以相同速度出发,但走了60千米以后,发现有物品遗忘,小车准备加速返回取物品,要想与大车同时到达,应提速到原来的多少倍?25.如图,在△ABC中.(1)如图①,分别以AB、AC为边作等边△ABD和等边△ACE,连接BE,CD;①猜想BE与CD的数量关系是;②若点M,N分别是BE和CD的中点,求∠AMN的度数;(2)如图②,若分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB =∠CAE=α,DC、BE交于点P,连接AP,请直请接写出∠APC与α的数量关系2020-2021学年辽宁省鞍山市八年级(上)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.2﹣3的值是()A.﹣6B.﹣8C.D.﹣【分析】直接利用负整数指数幂的性质分析得出答案.【解答】解:2﹣3==.故选:C.2.下面各图形中,对称轴最多的是()A.长方形B.正方形C.等边三角形D.等腰三角形【分析】利用轴对称图形的性质分别判断各选项的对称轴条数,进而得出答案.【解答】解:∵长方形有两条对称轴,正方形有4条对称轴,等边三角形有3条对称轴,等腰三角形有1条对称轴,∴对称轴最多的是:正方形.故选:B.3.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°【分析】要根据已知的对应边去找对应角,并运用“全等三角形对应角相等”即可得答案.【解答】解:∵图中的两个三角形全等a与a,c与c分别是对应边,那么它们的夹角就是对应角∴∠α=50°故选:D.4.下列运算正确的是()A.a3•a4=a12B.(m3)2=m5C.x3+x3=x6D.(﹣a2)3=﹣a6【分析】根据幂的乘方和积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,逐项判断即可.【解答】解:∵a3•a4=a7,∴选项A不符合题意;∵(m3)2=m6,∴选项B不符合题意;∵x3+x3=2x3,∴选项C不符合题意;∵(﹣a2)3=﹣a6,∴选项D符合题意.故选:D.5.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD【分析】此题需对每一个选项进行验证从而求解.【解答】解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.6.下列各分式中,最简分式是()A.B.C.D.【分析】利用最简分式定义判断即可.【解答】解:A、原式为最简分式,符合题意;B、原式==x+y,不符合题意;C、原式==,不符合题意;D、原式==,不符合题意.故选:A.7.下列因式分解正确的是()A.﹣3x2n﹣6x n=﹣3x n(x2+2)B.x2+x+1=(x+1)2C.2x2﹣=2(x+)(x﹣)D.4x2﹣16=(2x+4)(2x﹣4)【分析】运用提取公因式法,完全平方公式和平方差公式进行因式分解,并作出正确的判断.【解答】解:A、﹣3x2n﹣6x n=﹣3x n(x n+2),故本选项计算错误.B、x2+x+1≠(x+1)2,故本选项计算错误.C、2x2﹣=2(x+)(x﹣),故本选项计算正确.D、4x2﹣16=4(x+2)(x﹣2),故本选项计算错误.故选:C.8.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD 的度数为()A.65°B.60°C.55°D.45°【分析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【解答】解:由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠CAD=65°,故选:A.9.如图,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点D作DF⊥AB,垂足为点F,点E在边AC上,若DE=DB,则下列结论不正确的是()A.DC=DF B.DE=BF C.AC=AF D.AB=AC+CE 【分析】根据全等三角形的判定和性质解答即可.【解答】解:∵Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点D作DF ⊥AB,垂足为点F,∴DC=DF,故A正确,在Rt△DCE与Rt△DFB中,,∴Rt△DCE≌Rt△DFB(HL),∴CE=BF,故B错误,在Rt△ADC与Rt△ADF中,,∴Rt△ADC≌Rt△ADF(HL),∴AC=AF,故C正确,∴AB=AF+BF=AC+CE,故D正确,故选:B.10.在平面直角坐标系中,点A,B的坐标分别为(﹣3,0)、(0,﹣5),若平面内存在一点C,使△ABC是等腰直角三角形,则下列C点坐标不符合题意的是()A.(﹣8,﹣3)B.(﹣5,﹣8)C.(2,3)D.(5,﹣3)【分析】根据由全等三角形的判定和性质可求点C坐标.【解答】解:∵A(﹣3,0),B(0,﹣5),∴OA=3,OB=5,∵△ABC是等腰直角三角形,∴点C的坐标为(﹣8,﹣3),(﹣5,﹣8),(2,3),(5,﹣2),故选:D.二.填空题11.(﹣)2020•(1.5)2021=.【分析】积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘,据此计算即可.【解答】解:(﹣)2020•(1.5)2021=(﹣)2020•(1.5)2020×=(﹣)2020•()2020×====.故答案为:.12.已知△ABC的两条边长分别为2和5,则第三边c的取值范围是3<c<7.【分析】根据三角形三边关系定理可得5﹣2<c<5+2,进而求解即可.【解答】解:由题意,得5﹣2<c<5+2,即3<c<7.故答案为:3<c<7.13.如图,△ABC中,CD平分∠ACB,若∠A=68°,∠BCD=31°,则∠B=50°.【分析】根据角平分线的定义和三角形内角和解答即可.【解答】解:∵CD平分∠ACB,∠BCD=31°,∴∠ACB=2∠BCD=62°,∵∠A=68°,∴∠B=180°﹣∠A﹣∠ACB=180°﹣62°﹣68°=50°,故答案为:50°.14.若一个多边形外角和与内角和相等,则这个多边形是四边形.【分析】利用多边形的内角和公式与多边形的外角和定理列出方程,然后解方程即可求出多边形的边数.【解答】解:设这个多边形的边数是n,则(n﹣2)•180°=360°,解得n=4.故答案为:四.15.已知x+y=6,xy=7,则x2y+xy2的值是42.【分析】将所求式子因式分解,然后将x+y=6,xy=7代入,即可解答本题.【解答】解:∵x+y=6,xy=7,∴x2y+xy2=xy(x+y)=7×6=42,故答案为:42.16.甲、乙两个港口之间的海上行程为skm,一艘轮船以akm/h的航速从甲港顺水航行到达乙港.已知水流速度为xkm/h,则这艘轮船从乙港逆水航行回到甲港所用的时间为h.【分析】用航行的路程除以逆水航行的速度即可得到时间.【解答】解:∵甲港顺水以akm/h的航速航行到乙港,已知水流的速度为xkm/h,∴逆水航行的速度为(a﹣2x)km/h,∴返回时的时间为:h.故答案是:.17.如图的4×4的正方形网格中,有A、B、C、D四点,直线a上求一点P,使P A+PB最短,则点P应选C点(C或D).【分析】首先求得点A关于直线a的对称点A′,连接A′B,即可求得答案.【解答】解:如图,点A′是点A关于直线a的对称点,连接A′B,则A′B与直线a 的交点,即为点P,此时P A+PB最短,∵A′B与直线a交于点C,∴点P应选C点.故答案为:C.18.如图,在△ABC中,若∠ABC=45°,P为BC边上一点,且PC=2PB,∠APC=60°,过点C作CE⊥AP,则∠ACB的度数是75°.【分析】根据直角三角形的性质和三角形的内角和解答即可.【解答】解:连接BE,在Rt△CEP中,∠PCE=90°﹣∠APC=90°﹣60°=30°,∴PE=PC,∵PC=2PB,∴PE=PB,∴∠PBE=∠PEB,∵∠PBE+∠PEB=∠APC=60°,∴∠PBE=∠PEB=30°,∵∠ABE=∠ABC﹣∠PBE,∠ABC=45°,∴∠ABE=45°﹣30°=15°,∴∠ABE=∠BAE,∴EB=EA,∵∠EBP=30°,∠PCE=30°,∴∠EBP=∠PCE,∴EB=EC,∴EA=EC,∴∠EAC=∠ECA,∵CE⊥AP,∴∠AEC=90°,∴∠EAC+∠ECA=90°,∴∠ECA=45°,∴∠ACB=∠ECA+∠PCE=45°+30°=75°,故答案为:75°.三.解答题19.计算:(1)4xy2z÷(﹣2x﹣2yz﹣1)2;(2)(m+2+)•.【分析】(1)先进行乘方运算,然后进行同底数幂的除法运算;(2)先把括号内通分,再把分子分母因式分解,然后约分即可.【解答】解:(1)原式=4xy2z÷(4x﹣4y2z﹣2)=x5z3;(2)原式=•=﹣•=﹣2(m+3)=﹣2m﹣6.20.先化简,再求值:(a2b﹣2ab﹣b2)÷b﹣(a+b)(a﹣b),其中a=0.5,b=﹣1.【分析】直接利用整式的混合运算法则化简,进而把a,b的值代入得出答案.【解答】解:原式=a2﹣2a﹣b﹣(a2﹣b2)=a2﹣2a﹣b﹣a2+b2=﹣2a﹣b+b2,当a=0.5,b=﹣1时,原式=﹣2×0.5﹣(﹣1)+(﹣1)2=﹣1+1+1=1.21.如图,在等腰直角三角形ABC中,∠ACB=90°,点M是边AB上任意一点,连接CM,过点A,B分别作AE⊥CM,BF⊥CM,垂足分别为E,F,若BF=2.6cm,AE=0.9cm,分别求出CF,EF的长.【分析】由AE⊥CM.BF⊥CM,推出∠AEC=∠BFC=∠ACB=90°,推出∠CAE+∠ACE=90°,∠ACE+∠BCF=90°,可得∠CAE=∠BCF,根据AAS即可证△ACE≌△CBF,可得AE=CF=0.9cm,BF=CE=2.6cm,即可求解.【解答】证明:∵AE⊥CM.BF⊥CM,∴∠AEC=∠BFC=∠ACB=90°,∴∠CAE+∠ACE=90°,∠ACE+∠BCF=90°,∴∠CAE=∠BCF,在△ACE和△CBF中,,∴△ACE≌△CBF(AAS),∴AE=CF=0.9(cm),BF=CE=2.6(cm),∴EF=CE﹣CF=1.7(cm).22.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点M.(1)在给出图上画出一个格点△MB1C1,并使它与△ABC全等且A与M是对应点;(2)以点M所在的水平直线为对称轴,画出△ABC的轴对称图形△A2B2C2.【分析】(1)根据对称性即可画出一个格点△MB1C1,使它与△ABC全等且A与M是对应点;(2)根据对称性即可以点M所在的水平直线为对称轴,画出△ABC的轴对称图形△A2B2C2.【解答】解:(1)如图,△MB1C1即为所求;(2)如图,△A2B2C2即为所求.23.观察下列各式:12+32+42=2×(12+32+3)22+32+52=2×(22+32+6)32+62+92=2×(32+62+18)…(1)请用a,b,c表示左边由小到大的三个底数,并写出它们之间的关系;(2)请用字母a,b写出上述等式的规律,并加以证明.【分析】(1)根据题目中的等式,可以写出用a,b,c表示左边由小到大的三个底数对应的等式,然后即可写出它们之间的关系;(2)根据(1)中结果,可以用a、b表示出相应的等式,然后证明即可.【解答】解:(1)∵12+32+42=2×(12+32+3),22+32+52=2×(22+32+6),32+62+92=2×(32+62+18),…,∴用a,b,c表示左边由小到大的三个底数,这个式子是a2+b2+c2=2×(a2+b2+ab),它们之间的关系是c=a+b;(2)a2+b2+(a+b)2=2(a2+b2+ab),证明:∵a2+b2+(a+b)2=a2+b2+a2+2ab+b2=2a2+2b2+2ab=2(a2+b2+ab),∴a2+b2+(a+b)2=2(a2+b2+ab)成立.24.假期里,学校组织部分团员同学参加“关爱老年人”的爱心援助活动,计划分乘大、小两辆车前往相距140km的乡村敬老院.(1)若小车速度是大车速度的1.4倍,则小车比大车早一个小时到达,求大、小车速度.(2)若小车与大车同时以相同速度出发,但走了60千米以后,发现有物品遗忘,小车准备加速返回取物品,要想与大车同时到达,应提速到原来的多少倍?【分析】(1)设大车速度为x千米/时,则小车速度为1.4x千米/时,根据“小车比大车早一个小时到达”列出方程并解答.(2)设原速度为a千米/时,小车后来提速到原来得m倍,根据两车行驶时间相等列出方程并解答.【解答】解:(1)设大车速度为x千米/时,由题意,得,解得x=40,经检验x=40是方程的解,∴1.4x=56(千米/时).∴大车得速度是40千米/时,小车得速度是56千米/时;(2)设原速度为a千米/时,小车后来提速到原来得m倍,则,解得m=2.5,且符合题意.答:应提速到原来的2.5倍.25.如图,在△ABC中.(1)如图①,分别以AB、AC为边作等边△ABD和等边△ACE,连接BE,CD;①猜想BE与CD的数量关系是BE=CD;②若点M,N分别是BE和CD的中点,求∠AMN的度数;(2)如图②,若分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB =∠CAE=α,DC、BE交于点P,连接AP,请直请接写出∠APC与α的数量关系【分析】(1)①证△ABE≌△ADC(SAS),即可得出结论;(2)连接AN,由①得:△ABE≌△ADC(SAS),则BE=CD,∠ABE=∠ADC,再证△ADN≌△ABM(SAS),得AN=AM,∠DAN=∠BAM,然后证∠MAN=∠BAD=60°,得△AMN为等边三角形,即可得出∠AMN=60°;(3)过A作AM⊥CD于M,AN⊥BE于N,同(2)得:△ABE≌△ADC(SAS),△ADM ≌△ABN(SAS),则∠AEB=∠ACD,AM=AN,证出P A平分∠DPE,得∠APE=∠DPE,再证∠EPC=∠CAE=α,得∠DPE=180°﹣α,则∠APE=90°﹣α,即可得出结论.【解答】解:(1)①BE=CD,理由如下:∵△ABD和△ACE是等边三角形,∴AB=AD,∠BAD=∠CAE=60°,AC=AE,∴∠CAE+∠BAC=∠BAD+∠BAC,即∠BAE=∠DAC,∴△ABE≌△ADC(SAS),∴BE=CD,故答案为:BE=CD;(2)连接AN,如图①所示:由①得:△ABE≌△ADC(SAS),∴BE=CD,∠ABE=∠ADC,∵点M,N分别是BE和CD的中点,∴BM=DN,又∵AD=AB,∴△ADN≌△ABM(SAS),∴AN=AM,∠DAN=∠BAM,∴∠BAM+∠BAN=∠DAN+∠BAN,即∠MAN=∠BAD=60°,∴△AMN为等边三角形,∴∠AMN=60°;(3)∠APC=,理由如下:过A作AM⊥CD于M,AN⊥BE于N,如图②所示:同(2)得:△ABE≌△ADC(SAS),△ADM≌△ABN(SAS),∴∠AEB=∠ACD,AM=AN,∵AM⊥CD,AN⊥BE,∴P A平分∠DPE,∴∠APE=∠DPE,又∵∠EPC+∠ACD=∠CAE+∠AEB,∴∠EPC=∠CAE=α,∴∠DPE=180°﹣α,∴∠APE=(180°﹣α)=90°﹣α,∴∠APC=∠APE+∠EPC=90°﹣α+α=90°+α.。

第12章 全等三角形-2021-2022学年八年级数学上学期期中期末考试满分全攻略(人教版)原卷版

第12章 全等三角形-2021-2022学年八年级数学上学期期中期末考试满分全攻略(人教版)原卷版

第12章 全等三角形典型题专练一、单选题1.(2021·辽宁八年级期末)如图,已知∠ABC ,小彬借助一把没有刻度且等宽的直尺,按如图的方法画出了∠ABC 的平分线BP .他这样做的依据是( )A .在一个角的内部,且到角两边的距离相等的点在这个角的平分线上B .角平分线上的点到这个角两边的距离相等C .三角形三条角平分线的交点到三条边的距离相等D .测量垂直平分线上的点到这条线段的距离相等2.(2020·四川成都市·成都七中八年级开学考试)如图,MB ND =,MBA D ∠=∠,添加下列条件不能判定ABM CDN ≌的是( )A .M N ∠=∠B .AM CN =C .AB CD = D .AC BD =3.(2019·山东临沂市·八年级期中)如图,已知AC =DB ,AO =DO ,CD =100 m ,则A ,B 两点间的距离( )A .大于100 mB .等于100 mC .小于100 mD .无法确定4.(2019·广东八年级期末)如图,点P 是AOB ∠平分线OC 上的一点,PD OB ⊥,垂足为D ,若3PD =,则点P 到边OA 的距离是( )A B .3 C .5 D .45.(2020·陕西八年级期中)如图,D 是AB 上一点.DF 交AC 于点,,//E DE FE FC AB =,若1,3BD CF ==,则AB 的长是( )A .6B .72 C .3 D .46.(2019·全国八年级专题练习)如果△ABC 与△DEF 是全等形,则下列说法:①它们的周长相等;②它们的面积相等;③它们的每个对应角都相等;④它们的每条对应边都相等.其中正确的是A .①②③④B .①②③C .①②D .①7.(2020·重庆璧山·八年级期中)如图,已知AC AD =,再添加一个条件仍不能判定ABC ABD ∆≅∆的是( )A .90C D ∠=∠=︒B .BAC BAD ∠=∠ C .BC BD = D .ABC ABD ∠=∠8.(2019·黑龙江齐齐哈尔市·)如图,已知△ABC 中,∠ABC =45°,AC =4,H 是高AD 和BE 的交点,则线段BH 的长度为( )A .6B .5C .4D .39.(2019·山东八年级期中)如图,直线AC 上取点B ,在其同一侧作两个等边三角形△ABD 和△BCE ,连接AE ,CD 与GF ,下列结论正确的有( )① AE = DC ;②∠AHC =120︒;③△AGB ≌△DFB ;④BH 平分∠AHC ;⑤GF ∥ACA .①②④B .①③⑤C .①③④⑤D .①②③④⑤10.(2019·山东八年级期中)如图,AB A B ''=,A A '∠=∠,若ABC A B C '''∆≅∆,则还需添加的一个条件有( )A .1种B .2种C .3种D .4种11.(2019·河北邯郸市·八年级期中)如图,∠E =∠F =90°,∠B =∠C ,AE =AF ,下列结论不正确的结论是( )A .CD =DN ;B .∠1=∠2;C .BE =CF ;D .△ACN ≌△ABM .12.(2019·微山县清华实验学校八年级月考)如图,正方形的网格中,∠1+∠2+∠3十∠4+∠5等于( )A .175°B .180°C .210°D .225°13.(2019·四川省绵阳市三台广利中学八年级月考)下列说法正确的个数( )①三角形的三条高所在直线交于一点;②一个角的补角比这个角的余角大90°;③垂直于同一条直线的两条直线互相垂直;④两直线相交,同位角相等;⑤面积相等的两个正方形是全等图形;⑥已知两边及一角不能唯一作出三角形.A .1个B .2个C .3个D .4个14.(2020·北京市京源学校八年级期中)如图所示,在ABC ∆中,90C =∠,AD 平分BAC ∠,DE AB ⊥于点E ,则下列结论:①DA 平分CDE ∠;②∠BAC =∠BDE ;③DE 平分∠ADB ;④BE AC AB +=.其中正确的有( )A .①②B .①④C .③④D .①②④二、填空题15.(2020·三台县潼川初级中学校八年级月考)如图,△ABE ≌△CDF ,∠DFC =50°,那么∠BEC =___________.16.(2021·江苏)如图,在Rt △ABC 中,∠C =90°,AD 平分∠CAB ,CD =3,AB =10,则△ABD 的面积为________.17.(2019·福建漳州·八年级期中)如图,O 是BAC ∠内一点,且点O 到AB ,AC 的距离OE ,OF 相等,则AEO AFO ∆≅∆的依据是__.18.(2020·和平县和丰中学八年级月考)如图,∠D=∠C=90°,E 是DC 的中点,AE 平分∠DAB ,∠DEA=28°,则∠ABE 的度数是__________.19.(2020·全国八年级课时练习)如图,将△ABC 沿BC 所在的直线平移到△A'B'C'的位置,则△ABC _______△A'B'C',图中∠A 与____,∠B 与____,∠ACB 与____是对应角.20.(2019·河南八年级期末)如图,在ABC ∆中,AB AC =,4BC =,ABC ∆的面积是16,AC 边的垂直平分线BF 分别交AC ,AB 边于点E ,F .若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM ∆周长的最小值为__________.21.(2020·重庆西南大学银翔实验中学)如图,在四边形ABCD 中,,90,AB BC ABC CDA BE AD ︒=∠=∠=⊥于,10ABCD E S =四边形,则BE 的长为__________三、解答题22.(2020·新疆巴州第一中学八年级期中)如图,已知AE=CF ,AD=CB ,AD ∥CB ,求证:DF ∥BE .23.(2019·广西贵港·八年级期末)如图,已知a ∠和线段a ,求作菱形ABCD ,使A a ∠=∠,AB a .(只保留作图痕迹,不要求写出作法)24.(2019·德惠市第九中学八年级期中)在四边形ABCD 中,AD =BC ,AB =CD .求证:△ABC ≌△CDA .25.(2020·黑龙江牡丹江·八年级期中)已知在ABC 中,90ACB ∠=︒,AC BC =,直线l 绕点C 旋转,过点A 作AD l ⊥于D ,过点B 作BE l ⊥于E ,若6AD =,3BE =,画图并直接写出DE 的长.26.(2020·云南省个旧市第二中学八年级期中)如图,AB=CD ,AC=BD ,求证:△ABC ≅△DCB .27.(2020·广东中山一中八年级期中)如图,已知AC CB ⊥,DB CB ⊥,AB DE ⊥,垂足为F ,AB DE =,E 是BC 的中点.(1)求证:BD BC =.(2)若3cm AC =,求BD 的长.28.(2020·北京市京源学校八年级期中)如图,在△ABC中,BA=BC.点D为△ABC外一点,连接DA,∠DAC恰好为25°.线段AD沿直线AC翻折得到线段'ADAD.过点C作AD的平行线交'于点E,连接BE.(1)求证:AE=CE;(2)求AEB的度数.29.(2020·山东八年级期末)已知AOB ∠.求作:A O B '''∠,使A O B AOB '''∠=∠(1)如图1,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)如图2,画一条射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';(3)以点C '为圆心,CD 长为半径画弧,与第2步中所画的弧交于点D ;(4)过点D 画射线O B '',则A O B AOB '''∠=∠.根据以上作图步骤,请你证明A O B AOB '''∠=∠.30.(2020·西安高新一中沣东中学八年级期末)如图,在等边△ABC中,点F、E分别在BC、AC边上,AE=CF,AF与BE相交于点P.(1)求证:AEP∽BEA;(2)若BE=3AE,AP=2,求等边ABC的边长.31.(2020·广西八年级期中)已知,如图,∠C=∠D=90°,E是CD的中点,AE平分∠DAB.求证:BE平分∠ABC.32.(2017·广东吴川一中实验学校八年级月考)如图,已知点D是∠ABC的平分线上一点,点P在BD上,PA⊥AB,PC⊥BC,垂足分别为A,C.求证:(1)AD=CD;(2)∠ADB=∠CDB.33.(2019·如皋市白蒲镇初级中学八年级月考)如图,已知AD∥BC,DC⊥BC, AE平分∠BAD, E为CD中点,试探索AD、BC和AB之间有何关系?并说明理由.34.(2019·上饶市广信区第七中学八年级月考)已知△ABN和△ACM的位置如图,∠1=∠2,AB=AC,AM=AN.求证:(1)∠M=∠N.(2)BD=CE.35.(2019·德州市第九中学)如图,A、D、B、E四点在同一条直线上,AD=BE,BC∥EF,BC=EF.(1)求证:AC=DF;(2)若CD为∠ACB的平分线,∠A=25°,∠E=71°,求∠CDF的度数.36.(2018·武汉市南湖中学八年级月考)如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF =AC.求证:(1)EC=BF;(2)EC⊥BF;(3)连接AM,求证:AM平分∠EMF.37.(2020·武汉市六中位育中学八年级)(1)如图,在四边形ABCD 中,AB AD =,180B D ∠+∠=︒,E 、F 分别是边BC 、CD 上的点,且12EAF BAD ∠=∠.求证:EF BE FD =+;(2)如图,在四边形ABCD 中,AB AD =,180B ADC ∠+∠=︒,E 、F 分别是边BC 、CD 延长线上的点,且12EAF BAD ∠=∠.(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.38.(2018·江苏八年级月考)如图,已知点C是AB上一点,△ACM、△CBN都是等边三角形.(1)△ACN≌△MCB吗?为什么?(2)证明:CE=CF;(3)若△CBN绕着点C旋转一定的角度(如图2),则上述2个结论还成立吗?(4)若AN、MB相交于O,则∠AOB度数有没变化?若没有变化,则∠AOB= .。

第十四章 整式的乘法与因式分解- 章末检测试卷(解析版)-人教版八年级数学试题

第十四章  整式的乘法与因式分解- 章末检测试卷(解析版)-人教版八年级数学试题

2020-2021学年八年级数学上册期末复习(人教版)单元冲刺必刷卷第十四章 整式的乘法与因式分解(解析版)姓名: 满分:120分 时间:120分钟 得分: 分一、选择题(每小题3分,共30分)1.计算3a 2·a 3的结果是( C )A .4a 5B .4a 6C .3a 5D .3a 62.计算下列代数式,结果为x 5的是( D )A .x 2+x 3B .x·x 5C .x 6-xD .2x 5-x 53.下列运算正确的是( C )A .3a ×2a =6aB .a 8÷a 4=a 2C .-3(a -1)=3-3aD .(13 a 3)2=19a 9 4.若x +2y -4=0,则4y ·2x -2的值等于( A )A .4B .6C .-4D .85.已知(2a +2b -3)(2a +2b +3)=40,则a +b 的值为( C )A .72B .-72C .±72D .±3 6.一个三角形的面积为(x 3y)2,它的一条边长为(2xy)2,那么这条边上的高为( A ) A .12 x 4 B .14 x 4 C .12 x 4y D .12x 2 7.如图,两个正方形边长分别为a ,b ,如果a +b =9,ab =12,则阴影部分的面积为( B )A .21.5B .22.5C .23.5D .24(第7题图) (第15题图)8.248-1能被60到70之间的某两个整数整除,则这两个数是( B )A .61和63B .63和65C .65和67D .64和679.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式x 4-y 4,因式分解的结果是(x -y)(x +y)(x 2+y 2),若取x =9,y =9,则各个因式的值是:x -y =0,x +y =18,x 2+y 2=162,于是就可以把“018162”作为一个六位数的密码.对于多项式x 3-xy 2,取x =20,y =10,用上述方法产生的密码不可能是( A )A .201010B .203010C .301020D .20103010.已知三个实数a ,b ,c 满足a -2b +c =0,a +2b +c <0,则( D )A .b >0,b 2-ac ≤0B .b <0,b 2-ac ≤0C .b >0,b 2-ac ≥0D .b <0,b 2-ac ≥0二、填空题(每小题3分,共18分)11.若(x -2)0=1,则x 的取值范围是x ≠2.12.3m =4,3n =6,则3m +2n =144.13.计算:(-14 ab 2)3÷(-0.5a 2b)=132 ab 5. 14.已知a 2-6a +9与|b -1|互为相反数,计算a 3b 3+2a 2b 2+ab 的结果是48.15.如图,从边长为a +4的正方形纸片中剪去一个边长为a 的正方形(a >0),剩余部分沿虚线剪开,拼成一个长方形(不重叠无缝隙),则长方形的面积为8a +16.16.若x 2-3x -7=0,则x(x -1)(x -2)(x -3)的值为63.三、解答题(共72分)17.(6分)计算:(1)(-a)2+a 7÷a -(a 2)3;解:a 2.(2)[(a -2b)2+(a -2b)(2b +a)-2a(2a -b)]÷2a.解:-a -b.18.(9分)把下列各式因式分解:(1)x(m -x)(m -y)-m(x -m)(y -m);解:-(m -x)2(m -y).(2)ax 2+8ax +16a ;解:a(x +4)2.(3)(x 2-5)2+8(5-x 2)+16.解:(x +3)2(x -3)2.19.(7分)先化简,再求值:(m -n)(m +n)+(m +n)2-2m 2,其中m ,n 满足⎩⎪⎨⎪⎧m +2n =1,3m -2n =11. 解:原式=2mn ,又∵m ,n 满足⎩⎪⎨⎪⎧m +2n =1,3m -2n =11, 解得⎩⎪⎨⎪⎧m =3,n =-1, ∴原式=-6.20.(8分)已知实数a 满足a 2+2a -8=0,求a(a +2)2-a(a -3)(a -1)+3(5a -2)的值. 解:原式=8(a 2+2a)-6,∵a 2+2a -8=0,∴a 2+2a =8,∴原式=58.21.(8分)小华同学在学习整式乘法时发现,如果合理地使用乘法公式可以简化运算,于是如下计算题她是这样做的:(2x-3y)2-(x-2y)(x+2y)=4x2-6xy+3y2-x2-2y2第一步=3x2-6xy+y2第二步小禹看到小华的做法后,对她说:“你做错了,在第一步运用公式时出现了错误,你好好检查一下.”小华仔细检查后自己找到了如下一处错误:小禹看到小华的改错后说:“你还有错没有改出来.”(1)你认为小禹说的对吗?对(填“对”或“不对”);(2)如果小禹说的对,那小华还有哪些错误没有改出来?请你帮助小华把第一步中的其他错误圈画出来并改正,再完成此题的解答过程.解:(2)圈出来的其他错误为:正确解法为:(2x-3y)2-(x-2y)(x+2y)=4x2-12xy+9y2-x2+4y2=3x2-12xy+13y2.22.(8分)(1)计算:(a-2)(a2+2a+4)=a3-8;(2x-y)(4x2+2xy+y2)=8x3-y3.(2)上面的整式乘法计算结果很简洁,你又发现一个新的乘法公式(请用含a,b的式子表示)(a-b)(a2+ab+b2)=a3-b3.(3)下列各式能用你发现的乘法公式计算的是C.A.(a-3)(a2-3a+9) B.(2m-n)(2m2+2mn+n2)C.(4-x)(16+4x+x2) D.(m-n)(m2+2mn+n2)23.(8分)阅读下面的材料:常用的分解因式的方法有提取公因式法、公式法等,但有的多项式只用上述方法无法分解.如x2-4y2-2x+4y,细心观察这个式子,会发现前两项符合平方差公式,后两项可提取公因式,前、后两部分分别因式分解后又出现新的公因式,提取公因式就可以完成整个式子的分解因式.具体过程如下:x2-4y2-2x+4y=(x2-4y2)-(2x-4y)=(x+2y)(x-2y)-2(x-2y)=(x-2y)(x+2y-2).像这种将一个多项式适当分组后,进行分解因式的方法叫做分组分解法.利用分组分解法解决下面的问题:(1)分解因式:x2-2xy+y2-4;(2)已知△ABC的三边长a,b,c满足a2-ab-ac+bc=0,判断△ABC的形状并说明理由.解:(1)x2-2xy+y2-4=(x-y)2-4=(x-y+2)(x-y-2).(2)△ABC是等腰三角形.理由:∵a2-ab-ac+bc=0,∴a(a-b)-c(a-b)=0,∴(a-b)(a-c)=0,∴a-b=0或a-c=0,∴a=b或a=c,∴△ABC是等腰三角形.24.(8分)观察下列各式发现规律,完成后面的问题:2×4=32-1,3×5=42-1,4×6=52-1,5×7=62-1.(1)12×14=132-1,99×101=1002-1;(2)n(n+2)=(________)2-1(n为整数);(3)童威家现有一个用篱笆围成的长方形菜园,其长比宽多4米(长、宽均为整数),为了扩大菜园面积,童威用原来的篱笆围成一个正方形,童威的做法对吗?面积是否扩大了?如果扩大了,扩大了多少?试说明理由.解:(2)n(n+2)=(n+1-1)(n+1+1)=(n+1)2-1,故答案为:n+1.(3)童威的做法对,面积扩大了,扩大了4平方米.理由:设原长方形菜园的宽为x米,则长为(x+4)米,原长方形面积为x(x+4)=(x+2)2-4,现正方形面积为(x+2)2,∴现面积比原面积扩大了4平方米.25.(10分)材料:一般地,如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,比如指数式23=8可以转化为对数式3=log28,对数式2=log636可以转化为指数式62=36.根据以上材料,解决下列问题:(1)计算:log24=________,log216=________,log264=________;(2)观察(1)中的三个数,猜测:log a M+log a N=________(a>0,且a≠1,M>0,N>0),并加以证明这个结论;(3)已知log a3=5,求log a9和log a27的值(a>0,且a≠1).解:(1)∵22=4,24=16,26=64,∴log24=2;log216=4;log264=6.故答案为:24 6.(2)设log a M=x,log a N=y,则a x=M,a y=N,∴M·N=a x·a y=a x+y,根据对数的定义,得x+y=log a MN,即log a M+log a N=log a MN.故答案为:log a MN.(3)由log a3=5,得a5=3,∵9=3×3=a5·a5=a10,27=3×3×3=a5·a5·a5=a15,∴根据对数的定义,得log a9=10,log a27=15.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档