集成电路RC正弦振荡器方案

合集下载

rc正弦波振荡电路设计

rc正弦波振荡电路设计

rc正弦波振荡电路设计
RC正弦波振荡电路的设计过程可以按照以下步骤进行:
1.确定振荡频率:根据需要,选择合适的振荡频率。

2.确定电路参数:根据振荡频率,计算RC电路的参数,即电阻R和电容C 的值。

对于正弦波振荡电路,振荡频率f与R和C的关系为f=1/2πRC。

因此,已知振荡频率f,可以求出R和C的值。

3.设计电路:根据计算出的R和C的值,设计RC正弦波振荡电路。

电路一般由放大器、RC电路和正反馈网络组成。

放大器可以选择合适的运放或比较器等器件,RC电路选择相应的电阻和电容器件,正反馈网络可以选择相应的电阻或电容元件。

4.调整电路:在实际应用中,可能需要根据实际情况对电路进行调整,以获得更好的性能。

例如,可以通过调整放大器的反馈系数、RC电路的元件值等来调整振荡频率和幅度。

5.测试电路:在调整完成后,对电路进行测试,观察是否能够正常工作并产生稳定的正弦波输出。

总之,RC正弦波振荡电路的设计需要综合考虑电路参数、元件选择、电路结构等因素,并经过调整和测试来获得最佳性能。

RC正弦波振荡器电路设计与仿真设计

RC正弦波振荡器电路设计与仿真设计

《电子设计基础》课程报告设计题目:RC正弦波振荡器电路设计及仿真学生班级:学生学号:学生姓名:指导教师:时间:成绩:西南xx大学信息工程学院一.设计题目及要求RC正弦波振荡器电路设计及仿真,要求:(1)设计完成RC正弦波振荡器电路;(2)仿真出波形,并通过理论分析计算得出频率。

二.题目分析与方案选择在通电瞬间电路中瞬间会产生变化的信号且幅值频率都不一样,它们同时进入放大网络被放大,其中必定有我们需要的信号,于是在选频网络的参与下将这个信号谐振出来,进一步送入放大网络被放大,为了防止输出幅值过大所以在电路中还有稳幅网络(如图一中的两个二极管),之后再次通过选频网络送回输入端,经过多次放大稳定的信号就可以不断循环了,由于电路中电容的存在所以高频阻抗很小,即无法实现放大,且高频在放大器中放大倍数较小。

三.主要元器件介绍10nf电容两个;15kΩ电阻一个;10kΩ电阻三个;滑动变阻器一个;2.2k Ω电阻一个;二极管两个;运算放大器;示波器四.电路设计及计算图 1在multisim软件上做的仿真电路图如图1。

电路震荡频率计算:f=1/2πRC起振的复制条件:R f/R i>=2 其中R f=R w+R2+R3/R d由其电路元件特性R=10KΩC=10nF电路产生自激震荡,微弱的信号1/RC 经过放大,通过反馈的选频网络,使输出越来越大,最后经过电路中非线性器件的限制,使震荡幅度稳定了下来,刚开始时A v=1+R f/R i >3。

平衡时A v=3,F v=1/3(w=w0=1/RC)五.仿真及结果分析在multisim中进行仿真,先如图一连接好电路,运行电路,双击示波器,产生波形如下图图2刚开始运行电路时,输出波形如图2,几乎与X轴平行,没有波形输出。

图3经过不久,波形就开始产生振荡,幅度逐渐增大,并达到一个最大值后,保持幅度以正弦输出。

如图3六.PCB板排布图4Protel 99 se中做出来的原理图如图四,pcb如下图。

实验八 RC正弦波振荡器

实验八 RC正弦波振荡器

实验八 RC正弦波振荡器实验目的:1.熟悉仿真软件MULTISIM的使用,掌握基于软件的电路设计和仿真分析方法。

2.熟悉POCKETLAB硬件实验平台,掌握基于功能的使用方法。

3.掌握RC正弦波振荡器的设计和分析方法。

4.掌握RC正弦波振荡器的安装与调试方法。

实验内容:一.仿真实验1.RC相移振荡电路如图8-1所示,在MULTISIM中搭建其开环分析电路,理解起振和稳定的相位条件与振幅条件。

图8-1 RC相移振荡电路所以f=649.7HZ所以放大器的增益绝对值大于29.图8-3 RC相移振荡电路开环仿真图图8-4 RC相移振荡电路开环仿真幅频图和相频图由幅频特性曲线图可知,该电路的振荡频率为640.4004HZ。

2.在MULTISIM中搭建8-1电路,进行瞬态仿真。

所以=19.89*10^-5意向网络增益为1/3,所以为满足起振条件,基本放大器增益应大于3.表8-1 RC相移振荡电路振荡频率计算值仿真值实测值振荡频率649.7HZ 628.099HZ 633HZ3.将8-1电路振荡频率增加或减小10倍,重新设计电路参数。

表8-2 RC相移振荡电路振荡频率改动原件改动前频率减小10倍频率增加10倍R R=10k R=100k;R20=3000kC C=10nF C=100nF60.84HZ C=1nF 6.08kHZC=1nF C=100nFR=100K4.调试修改文氏电桥振荡器,进行瞬态仿真。

表8-3 文氏电桥振荡电路振荡频率C1(uF) R1(K) R2(K) R3(K) R4(K) 0.01 20 10 4.7 16.8表8-4 文氏电桥振荡电路振荡频率设计值仿真值实测值振荡频率800HZ 791.76HZ 830HZ图8-5 文氏电桥振荡器瞬态波形图图8-6 文氏电桥振荡器频谱图一.硬件实验1.电路连接2.瞬态波形观测3.频谱测量图8-7 RC电路瞬态波形图图8-8 RC电路频谱图4.按以上步骤对文氏电桥电路进行相应硬件实验图8-9 文氏电桥振荡器瞬态波形图图8-10 文氏电桥振荡器频谱图实验思考:1.将8-1所示电路中的C从10nF改为0.1nF后,进行仿真,结果如何?请解释原因。

实验五RC正弦波振荡器

实验五RC正弦波振荡器

实验五RC正弦波振荡器一.实验目的1.学习文氏桥振荡器的电路结构和工作原理。

2.学习振荡电路的调整与测量振荡频率的方法。

二.电路原理简述从电路结构上看,正弦波振荡器实质上是一个没有输入信号,但带有选频网络的正反馈放大器。

它由选频网络和放大器两部分组成,选频网络由R、C串并联组成,故振荡电路称为RC振荡器,它可产生lHz--1MHz的低频信号。

根据RC 电路的不同,可分为RC移项、RC串并联网络、双T选频网络等振荡器。

RC串并联网络(文氏桥)振荡器电路形式如图5—1所示。

其原理为:图中的RC选频电路,若把Ui看成输入电压,把Uo看成输出电压,则只有当f=fo=1/2∏RC,Uo和Ui才能同相位。

且在有效值上Uo=3Ui,对该振荡器电路而言.当电路满足振荡频率f=fo=1/2∏RC,且放大电路的放大倍数︳Au ︳>3时,就能产生一个稳定的正弦波电压Uo。

图5—1 RC串并联网络振荡器原理图本实验采用两极共射极带负反馈放大器组成RC正弦波振荡器,实验电路如图5-2。

电路特点:改变RC则可很方便的改变振荡频率,由于采用两级放大及引入负反馈电路,所以能很容易得到较好的正弦波振荡波形。

其中:R F1=1kΩ,R W=150kΩ,增加Rf3=1kΩ,C2=C3=0.47μF,C7=C8=0.01μF,C1=10μF/25V,C E1= C E2=47μF/25V,R E1’=R E2’=10Ω,R F2=51Ω,R C1’=R E1”=120Ω,R C2=R S= R E2”=470 Ω,R B22=1kΩ,R B21=1.5kΩ,R B1=10kΩ,T1=T2=9013,外接电阻R=2kΩ,电容C=0.01μF,三.实验设备名称数量型号1.直流稳压电源 1台 0~30V可调2.低频信号发生器1台3.示波器 1台4.晶体管毫伏表 1只5.万用表 1只6.反馈放大电路模块 1块 ST2002四. 实验内容与步骤1. RC振荡电路的调整1)按照图5-2电路原理,选用“ST2002反馈放大电路”模块,熟悉元件安装位置,开始接线,此电路中D和0V两点不要连接,检查连接的实验电路确保无误后,在稳压电源输出为12V的前提下对实验电路供电。

实验RC正弦波振荡器

实验RC正弦波振荡器

实验四 RC 正弦波振荡器一、 实验目的1. 进一步学习RC 正弦波振荡器的组成及其振荡条件2. 学会测量、调试振荡器二、实验原理从结构上看,正弦波振荡器是没有输入信号的、带选频网络的正反馈放大器。

若用R 、C 元件组成选频网络,就称为RC 振荡器, 一般用来产生1Hz ~1MHz 的低频信号。

RC 串并联网络(文氏桥)振荡器电路型式如图1所示。

振荡频率 RC21f O π 起振条件 |A|>3 电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。

图1 RC 串并联网络振荡器原理图三、 实验设备与器件1. +12V 直流电源2. 函数信号发生器3. 双踪示波器4. 频率计5. 直流电压表6. 3DG12×2 或 9013×2电阻、电容、电位器等四、 实验内容1. RC 串并联选频网络振荡器(1) 按图2组接线路图2 RC串并联选频网络振荡器将电位器Rw顺时针方向旋到底,接入+12V电源和地,不接RC串并联网络(即A点和B 点不连接),测量放大器静态工作点,将数据填入表1。

表1 放大器静态工作点数据记录给放大器一个频率为2kHz、幅度为0.5V的正弦输入ui, 即从B点接入到信号发生器,用示波器分别测量Ui和Uo的值,求出放大器的电压放大倍数,填入表2。

表2 放大器电压放大倍数数据记录(2) 接通RC串并联网络,并使电路起振,用示波器观测输出电压u O波形,调节Rw使获得满意的正弦信号,记录波形及其参数填入表3(可允许少量失真以维持波形稳定)。

表3 起振波形数据记录(3) 测量振荡频率,并与计算值进行比较。

数据填入表4。

表4 起振波形振荡频率数据记录(4) RC 串并联网络幅频特性的观察将RC 串并联网络与放大器断开,用函数信号发生器的正弦信号注入RC 串并联网络,保持输入信号的幅度不变(约3V ),频率由低到高变化,RC 串并联网络输出幅值将随之变化,当信号源达某一频率时,RC 串并联网络的输出将达最大值(约1V 左右)。

集成电路rc正弦波振荡电路实验报告

集成电路rc正弦波振荡电路实验报告

集成电路rc正弦波振荡电路实验报告
通过实验了解集成电路RC正弦波振荡电路的特点和工作原理,掌握搭建和调试电路的技能。

实验原理:
RC正弦波振荡电路由一个一阶RC滤波器和一个反相比例运算放大器组成。

当输出信号通过RC电路反馈到输入端时,会形成一个闭环的正反馈回路,从而产生振荡信号,其频率和幅度由RC电路和反相比例运算放大器的增益决定。

实验内容:
1. 搭建RC正弦波振荡电路,连接电源和示波器,调整电路元件参数,使得输出信号呈现稳定的正弦波形。

2. 测量电路中各元件的电压和电流值,并计算增益、相位差和频率等参数。

3. 调整电路参数,观察输出波形的变化,验证理论分析结果。

实验结果:
经过实验,我们成功搭建出RC正弦波振荡电路,输出信号呈现出稳定的正弦波形。

测量结果表明,电路中各元件的电压和电流值符合理论预测。

增益、相位差和频率等参数也与理论公式相符。

同时,我们还通过调整电路参数观察了输出波形的变化,验证了理论分析结果。

实验结论:
RC正弦波振荡电路是一种基于RC滤波器和反相比例运算放大器
的振荡电路,其工作原理是利用正反馈回路产生振荡信号。

通过实验,我们成功搭建了该电路,输出信号呈现出稳定的正弦波形。

实验结果表明,电路中各元件的电压和电流值符合理论预测。

增益、相位差和频率等参数也与理论公式相符。

实验七 集成电路RC正弦波振荡电路(有数据)

实验七  集成电路RC正弦波振荡电路(有数据)

实验七 集成电路RC 正弦波振荡电路一、实验目的1.掌握桥式RC 正弦波振荡电路的构成及工作原理。

2.熟悉正弦波振荡电路的调整、测试方法。

3.观察RC 参数对振荡频率的影响,学习振荡频率的测定方法。

二、实验仪器1.双踪示波器2.低频信号发生器3.频率计三、实验原理正弦波震荡电路必须具备两个条件是:一必须引入反馈,而且反馈信号要能代替输入信号,这样才能在不输入信号的情况下自发产生正弦波震荡。

二是要有外加的选频网络,用于确定震荡频率。

因此震荡电路由四部分电路组成:1、放大电路,2、选频网络,3、反馈网络,4、稳幅环节。

实际电路中多用LC 谐振电路或是RC 串并联电路(两者均起到带通滤波选频作用)用作正反馈来组成震荡电路。

震荡条件如下:正反馈时Of i X F X X ==/,Oi O X F A X A X ==/,所以平衡条件为1=F A ,即放大条件1=F A ,相位条件πϕϕn F A 2=+,起振条件1>F A。

本实验电路常称为文氏电桥震荡电路,由2p R 和1R 组成电压串联负反馈,使集成运放工作于线性放大区,形成同相比例运算电路,由RC 串并联网络作为正反馈回路兼选频网络。

分析电路可得:0,112=+=A p R R Aϕ 。

当C C C R R R p ====2111,时,有)1(31RC RC j F ωω-+= ,设RC 10=ω,有200)(91ωωωω-+=F ,)(3100ωωωωϕ--=arctg F 。

当0ωω=时,0,31==F F ϕ ,此时取A 稍大于3,便满足起振条件,稳定时3=A 。

填空题:(1)图11.1中,正反馈支路是由 RC 串并联电路 组成,这个网络具有 选频 特性,要改变振荡频率,只要改变 R 或 C 的数值即可。

(2)图11.1中,1R P 和R 1组成负反馈,其中 Rp 是用来调节放大器的放大倍数,使A V ≥3。

四、实验内容1.按图11.1接线。

RC正弦波振荡电路设计

RC正弦波振荡电路设计

RC正弦波振荡电路设计首先,我们需要了解RC正弦波振荡电路的基本原理。

振荡器是一种电路,它能够将直流电源的能量转换为交流信号。

在RC振荡电路中,我们使用了一个电容和一个电阻来实现振荡。

在RC正弦波振荡电路中,电容充电和放电的时间常数(记为τ)非常重要。

时间常数τ决定了振荡频率的大小,公式为τ=RC,其中R为电阻的阻值,C为电容的电容值。

接下来,我们将详细介绍如何设计RC正弦波振荡电路。

设计过程分为以下几个步骤:1.确定振荡频率:首先根据需要确定振荡的频率范围,并选择一个合适的频率。

振荡频率主要由电容值和电阻值决定,可以通过调整它们的比例来改变频率。

2.选择电容和电阻:根据已知的振荡频率,选择一个合适的电容和电阻。

一般来说,电容的值可以在几十皮法(pF)到几百微法(uF)之间选择,而电阻的值可以在几百欧姆(Ω)到几兆欧姆(MΩ)之间选择。

3.计算时间常数:根据所选择的电容和电阻的值,计算时间常数τ。

时间常数τ决定了振荡的频率,可以根据τ=RC公式计算得出。

4.根据振荡频率调整电容和电阻:如果振荡频率与所需要的频率不一致,可以通过调整电容和电阻的比例来改变频率。

通常来说,增加电容值可以降低频率,而增加电阻值可以提高频率。

5.考虑放大器:为了增强正弦波信号的幅度,可以在RC振荡电路中添加一个放大器电路。

放大器电路一般采用运算放大器、晶体管等元件实现。

6.振荡电路的稳定性:为了确保RC振荡电路的稳定性,可以在电容的两端或电阻的两端添加阻尼电阻,用来衰减振荡中的能量。

7.电源:振荡电路需要一个直流电源供电,电源电压的稳定性会影响振荡器的稳定性,因此需要选择一个稳定的电源。

最后,设计好RC正弦波振荡电路后,可以使用示波器等仪器进行验证,观察输出的波形是否为正弦波,并调整电容和电阻的值,使得输出的波形更加稳定和准确。

总结来说,RC正弦波振荡电路的设计步骤包括确定振荡频率、选择电容和电阻、计算时间常数、根据频率调整电容和电阻、考虑放大器、确保振荡电路的稳定性和选择稳定的电源。

集成rc正弦波振荡器实验报告

集成rc正弦波振荡器实验报告

集成RC正弦波振荡器实验报告引言在电子技术领域中,正弦波振荡器是一种常见且重要的电路。

它能够产生稳定的正弦波信号,被广泛应用于通信、测量以及控制系统中。

本实验旨在通过集成RC电路设计和实现一个正弦波振荡器,并进行详细的探索和分析。

一、电路设计1. RC电路原理RC电路是由电阻(R)和电容(C)组成的一种基本电路。

在充电过程中,电容器会通过电阻放电,导致电压逐渐减小;在放电过程中,电容器会再次通过电阻充电,导致电压逐渐增大。

当电容器充放电周期很短而频率很高时,RC电路就能产生连续变化的电压,形成一个振荡器。

2. RC正弦波振荡器的设计要求一个RC正弦波振荡器的设计需要满足以下要求:•可以产生稳定的正弦波信号;•输出波形的频率和幅度应可调节。

3. RC正弦波振荡器的基本原理RC正弦波振荡器的基本原理是通过将一个放大器的输出信号反馈至输入端,形成一个正反馈回路。

当回路增益大于等于1时,系统会不断振荡产生正弦波信号。

二、电路实现1. 基本RC正弦波振荡器电路图为了实现RC正弦波振荡器,我们可以采用如下电路图:•在非反相输入端连接一个电阻R和电容C,形成一个低通RC滤波器;•输出通过一个放大器反馈至输入端,产生正反馈。

2. 具体电路参数的选择在设计RC正弦波振荡器时,我们需要选择合适的电阻和电容数值,以控制振荡器的频率和幅度。

这里我们选择R=10kΩ和C=1μF。

3. 搭建电路实验平台为了实现RC正弦波振荡器,我们需要搭建一个电路实验平台:•使用集成运算放大器(Op-Amp)作为放大器,例如LM741;•将电阻R和电容C按照电路图连接至Op-Amp;•使用函数发生器作为输入信号源,连接至Op-Amp的输入端;•连接示波器至Op-Amp的输出端,用于观测输出波形。

三、实验过程1. 搭建实验电路根据电路图和参数选择,通过实验器材搭建RC正弦波振荡器实验电路。

2. 设置函数发生器参数设置函数发生器的频率和幅度,以达到所需的正弦波输出。

实验四 RC正弦振荡电路设计与调试(设计性实验)

实验四 RC正弦振荡电路设计与调试(设计性实验)

18 实验四 RC 正弦波振荡电路设计与调试一、实验目的1、熟悉用集成运放设计信号发生器的方法;2、掌握RC 桥式振荡电路元器件的选择和振荡电路的调整测试方法;3、培养独立进行电路设计的能力。

二、设计要求与技术指标1、技术指标用集成运放设计一RC 桥式正弦波振荡器:振荡频率在100H Z ~2KHz 内均可(如160H Z ),不要求频率可调;输出波形正负半周对称、无明显失真。

2、设计要求(1)设计上述电路,确定电路元件参数;(2)确定调试方案,选择实验仪器;(3)联接电路并调整测试,使电路达到设计要求。

3、预习要求(1)掌握RC 桥式振荡电路的工作原理和各部分元器件的选择;(2)熟悉RC 桥式振荡电路的调试步骤;三、设计提示1、RC 桥式振荡电路设计的一般方法 图 4.1 实用RC 桥式振荡电路(1)集成运放的选择对运放的选择,除要求输入电阻高、输出电阻低外,最主要的是运放的增益带宽积应满足如下条件,即o u f BW A 3>∙因振荡输出幅度比较大,集成运放工作在大信号状态,因此要求转换速率S R 满足om o R U S ω≥该实验选择741单运放即可满足要求。

(2)选频网络元件值的确定 按照振荡频率RCf o π21=来选择RC 的大小。

为了减小集成运放输入阻抗对振荡频率的影响,应选择较小的R ,但为了减小集成运放输出阻抗对振荡频率的影响,又希望R 大些。

通常集成运放的输入电阻均比较大,所以R 可取大些,一般可取几千欧至几十千欧的电阻。

电容C 一般应大于几百皮法,以减小电路寄生电容对振荡频率的影响,电容过大以至需采用电解电容是不合适的。

因此,C 可在几百皮法至1微法之间选择。

为了提高振荡频率的稳定度,一般选用稳定性较好、精度较高的电阻和介质损耗较小的电容。

(先确定电容C ,再计算电阻。

如可取C=0.1微法)19 (3)负反馈电路元件值的确定负反馈电路元件参数的大小将决定闭环后的增益,各阻值选择应确保起振时放大电路闭环增益大于3。

实验十集成电路RC正弦波振荡器

实验十集成电路RC正弦波振荡器

实验十 集成电路RC 正弦波振荡器一、实验目的1、掌握桥式RC 正弦波振荡器的电路构成、工作原理及其振荡条件。

2、熟悉正弦波振荡器的调整、测试方法。

3、观察RC 参数对振荡频率的影响,学习振荡频率的测定方法。

4、研究负反馈强弱对振荡的影响。

二、实验原理图10.1为RC 桥式正弦波振荡器。

其中RC 串、并联电路构成正反馈支路,同时兼作选频网络,R 1、R 2、R W及二极管等元件构成负反馈和稳幅环节。

调节电位器R W ,可改变负反馈深度,以满足振荡的振幅条件和改善波形。

利用两个反 图10.1正弦波振荡器向并联二极管D 1、D 2正向电阻的非线性特性来实现稳幅。

D 1、D 2采用硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。

R 3的接入是为了削弱二极管非线性的影响,以改善波形的失真。

电路的振荡频率RC f π210= 起振的幅值条件21≥R R f 式中()D W f r R R R R //32++=, r D — 二极管正向导通电阻。

调整反馈电阻R f (调R W ),使电路起振,且波形失真最小。

如不能起振,则说明负反馈太强,应适当加大R f 。

如波形失真严重应当减小R f 。

改变选频网络的参数C 或R ,即可调节振荡频率。

一般采用改变电容C 作频率量程切换,而调节R 作量程的频率细调。

三、实验内容及步骤1、按图10.1连接实验电路。

检查无误后,接通电源。

2、调节电位器R W ,使输出波形从无到有,从正弦波到出现失真。

描绘u 0的波形,记录下临界起振、正弦波输出及失真情况下的R W 值,分析负反馈强弱对起振条件及输出波形的影响。

3、调节电位器R W,使输出电压u O幅值最大且不失真,用交流毫伏表分别测量输出电压u O、反馈电压U F+和U F-,分析研究振荡的幅值条件。

4、用频率计测量频率f0,然后在选频网络的两个电阻R上并联同一阻值电阻,观察记录振荡频率的变化情况,并与理论值进行比较。

【东南大学 模电实验】实验八 RC正弦波振荡器

【东南大学 模电实验】实验八 RC正弦波振荡器

实验八 RC 正弦波振荡器实验目的:1.掌握RC 正弦波振荡器的设计与分析方法2.掌握RC 正弦波振荡器的安装与调试方法实验预习:1.在如图的RC 详细振荡电路中,计算振荡器的频率和振幅起振条件,填表。

振荡频率RCosc 61=ω=4082.5rad/s f=649.75Hz 振幅起振条件29>RR f ,R f =100k+300k=400k Ω,R=10k Ω,满足振幅起振条件。

2.设计文氏电桥振荡器。

要求振幅800Hz 。

k(jw)=VoV f=jwCR C j R Cj R 1//11//111++ωω=1112113)1(R C C R j R ++ωω800*2101相位平衡111121πωωω==⇒=+⇒R C C C R因此可取R1= 20k Ω,C1=10nF 。

32432=++=R R R R Av因此可取R2= 10k Ω,R3= 5k Ω,R4= 16.8k Ω. 电路图如下:实验内容: 一、仿真实验1.在Multisim 中搭试图1的RC 相移振荡电路的开环分析电路,理解起振和稳定的相位条件。

并仿真幅频特性和相频特性图。

拆环后电路:幅频相频特性曲线:2.瞬态仿真图1,查看瞬态波形和频谱。

瞬态波形:f=1/1.644=608.27Hz频谱:f=623.967HzRC相移振荡电路的振荡频率计算值仿真值实测值振荡频率/Hz 649.75 624.0 6333.若要将图1电路的振荡频率减小或增加10倍,重新设计电路。

改动元件改动前改动频率减小10倍C 10nF 100nFR22 100kΩ150kΩR20 300kΩ250kΩ(这里只改动C值的话波形失真,因此改动R22、R20调整限幅电压。

)改动元件改动前改动频率增大10倍C 10nF 1nF4.将预习中设计的文氏电桥振荡期瞬态仿真和频谱分析,将设计参数、仿真得到的振荡频率填入表格。

C1(μF)R1(kΩ)R2(kΩ)R3(kΩ)R4(kΩ)0.01 20 10 5 16.8设计值仿真值实测值振荡频率800Hz 788Hz 810Hz文氏电桥振荡器瞬态仿真:频谱分析:F=785.12Hz二、硬件实验1.将图1在面包板上搭试。

RC正弦振荡器的设计与调试(设计性实验)

RC正弦振荡器的设计与调试(设计性实验)

② 将规定的振荡频率下的RC参数的实测值和理论 估算值列表进行比较,整理测试数据并分析误差。 ③根据实验结果,总结所设计的RC振荡器的特点。 (2) 思考与总结 表6-1
fO (
有稳 压管 VOP- VPP- V形
fO (
当ω =ω 0=1/RC时,F=1/3,根据振幅平衡条件, 只有A=3,电路才能维持振荡。 振荡电路自行起振的条件是AF>1,因F=1/3,则 A>3有利于电路起振,但A过大,波形严重失真。为 了达到稳幅和改善输出波形,电路中引入了两个二 极管及反馈元件R5。 此电路为RC串并联网络(文氏桥)振荡器。 振荡频率:
起振条件: |
|>3
电路特点: 可方便地连续改变振荡频率,便 于加负反馈稳幅,容易得到良好的振
荡波形。 4.实验步骤 (1) 连接电路。 (2) 振荡电路的调整。 调RP,用示波器观察输出电压VO,测其频率和幅 度,记录于表6-1中。 将RP调到0,再增大RP,观测VO波形变化。 (3)用示波器观察VP、VN,将结果填入表5-1中。 (4)去掉稳压管,重复第(2)、(3)步。 5. 实验总结与分析 (1) 实验报告要求 ① 画出设计电路和提供元器件选择依据;
SL-162
0-20M 待选 待选
1台
1台 1台 1块
5 6 7
稳压管 电位器 电阻 电容器 集成运算放大器
2CW53 100K 10K 0.1uF 741
2个 1个 4个 2个 1块
3. 设计要求与提示 (1) 设计要求 ① 本振荡器要求振荡频率为f0=160Hz(误差在1%), 放大环节用集成运算放大器,输出无明显失真,取 UCC=+12V,VEE=-12V。 ②计算选择元器件参数,进行元器件测试。(实验 报告中要有设计过程) ③连接实验电路。 ④测量振荡器的振荡频率,记录波形及其参数。

rc正弦波振荡电路设计

rc正弦波振荡电路设计

rc正弦波振荡电路设计
RC正弦波振荡电路是一种常见的电路设计,用于产生稳定的正弦波信号。

这种电路通常由一个电阻(R)和一个电容(C)组成。

在这个电路中,电容和电阻的相互作用使得电荷以周期性的方式在电容器中积累和释放,从而产生正弦波形的电压输出。

在RC正弦波振荡电路中,电阻的作用是限制电流的流动,而电容则负责积累和释放电荷。

当电压施加到电路上时,电荷开始积累在电容器的板上,导致电压上升。

随着电压的上升,电荷开始流回电源,导致电压下降。

这种电流循环往复,形成了正弦波形的输出信号。

为了确保RC正弦波振荡电路的稳定性,需要选择合适的电阻和电容值。

电阻的值决定了电流的流动速度,而电容的值则影响电荷的积累和释放速度。

选择合适的电阻和电容值可以使电路产生稳定的振荡频率和幅值。

在设计RC正弦波振荡电路时,还需要考虑到电源的稳定性和电路的耦合效应。

电源的稳定性对于产生稳定的振荡信号至关重要,而电路的耦合效应则可能导致信号失真或干扰。

总的来说,RC正弦波振荡电路是一种简单而有效的电路设计,用于产生稳定的正弦波信号。

正确选择电阻和电容值,并考虑电源的稳定性和电路的耦合效应,可以保证电路的性能和稳定性。

这种电路
在很多应用中都有广泛的应用,如音频处理、通信系统等。

文氏振荡器设计-RC正弦波振荡器

文氏振荡器设计-RC正弦波振荡器

∴ φa+φf = 0 满足相频条件 。
其实一般情况下,只要是正反馈就一定可以满足 φa +φf= 2nπ
∴ 相频条件的判断可用瞬时极性法解决。
b 振荡频率fo
1 fo = 2RC
c 其它:R1 、Rf构成负反馈用于稳幅;以保证输出为 不失真的正弦波,其中V1、V2非线性起到了 自动稳幅作用,还可将R2或Rf换成热敏电阻
Au +
+
Uf
R
C
R
R1 Rf负反馈用于稳幅;
Uo
RC串联、RC并联及R1 Rf 构成电桥;
a 分析电路是否满足振荡条件
1
幅频条件:当ω=ωo时 ∣ Fu ∣= 3
R C
∴ 只需Au = 3即可
R1
R1 Rf构成电压串联负反馈
Rf
Au = 1+
Байду номын сангаас
R2 C
R1
相频条件:已知 φf = 0; 且可分析出φa= 0
变仍为正弦波,即放大器产生了正弦波振荡。
二、电路自激振荡的条件
1. 振荡的平衡条件:Uf = Ui 即Au Fu =1 ∵ Au Fu 都是复数 ∴ Au Fu=︱Au Fu︱ (∠ψa+∠ψf)=1
(1)振幅平衡条件:︱Au Fu︱ = 1 (2)相位平衡条件:φa +φf = 2nπ (n = 0.1.2……n)

过放大→会增大一点 → 反馈 → 放大,Uo的幅度会越来越 大,最后将使放大器进入非线性工作区,放大 器的增益下 降,振荡电路输出幅度越大,增益下降也越多,最后当反 馈电压正好等于原输入电压时,振荡幅度不再增大从而进 入平衡状态。
∴ 振荡的建立过程中: ︱ Au Fu ︱>1;要有选频网络;

集成rc正弦波振荡器实验报告

集成rc正弦波振荡器实验报告

集成rc正弦波振荡器实验报告一、实验目的本实验旨在了解RC正弦波振荡器的基本原理,掌握该电路的设计方法和调试技巧,同时通过实际搭建和测试,进一步加深对电路理论知识的理解。

二、实验原理1. RC正弦波振荡器的基本结构RC正弦波振荡器是一种简单的非线性电路,由一个放大器和一个反馈网络组成。

其中,放大器可以是晶体管、集成运算放大器等等;反馈网络则由一个或多个电容和电阻组成。

当反馈网络中的信号经过放大后再送回到输入端口时,就会形成自激振荡。

2. RC正弦波振荡器的工作原理在RC正弦波振荡器中,反馈网络起到了关键作用。

当输入信号经过放大后再送回到反馈网络时,会形成一个周期性变化的信号。

这个信号将被再次放大,并送回到输入端口,从而不断循环。

3. RC正弦波振荡器的频率计算公式RC正弦波振荡器的频率取决于反馈网络中电容和电阻的数值。

具体计算公式如下:f = 1 / (2πRC)其中,f表示振荡器的频率,R表示反馈网络中电阻的数值,C表示反馈网络中电容的数值。

三、实验器材1. 集成运算放大器 LM7412. 电阻:10kΩ、100kΩ、1MΩ3. 电容:0.01μF、0.1μF、1μF4. 变量电阻(单片式)5. 面包板和导线等四、实验步骤1. 按照图一所示的电路图搭建RC正弦波振荡器电路。

其中,集成运算放大器使用LM741芯片。

2. 使用万用表测量反馈网络中两个电容的数值,并记录下来。

3. 将变量电阻调整到最小值,通电后调整变量电阻使输出波形稳定。

同时观察输出波形的频率和幅度。

4. 分别更换不同数值的反馈网络元件(如改变C2或R2),并记录下输出波形的变化情况。

5. 对比不同组合下输出波形的频率和幅度,分析各组合对输出波形特性的影响。

五、实验结果与分析经过实验搭建和测试,我们得到了如下数据:反馈电容C2:0.01μF反馈电阻R2:100kΩ输出频率f:1.6kHz输出幅度Vpp:4.5V反馈电容C2:0.1μF反馈电阻R2:100kΩ输出频率f:160Hz输出幅度Vpp:4.5V反馈电容C2:1μF反馈电阻R2:100kΩ输出频率f:16Hz输出幅度Vpp:4.5V通过对比不同组合下的实验数据,我们可以发现,当反馈电容C2的数值增大时,输出波形的周期也随之增大,即频率变低;而当反馈电阻R2的数值增大时,输出波形的峰峰值也随之增大。

实验七集成电路RC正弦波振荡电路(有数据)

实验七集成电路RC正弦波振荡电路(有数据)

实验七集成电路RC正弦波振荡电路(有数据)一、实验目的1. 学习RC电路的基本原理;2. 掌握集成电路RC正弦波振荡电路的组成和工作原理;3. 熟悉使用测试仪器测量电路中各种信号参数。

二、实验内容在实验板上组装RC正弦波振荡电路,使用实验仪器测量各种信号参数。

三、实验原理RC电路是由电阻R和电容C组成的电路。

当电容充电时,电流逐渐减小,而电势差逐渐增大,当电容充满电荷时,电流为零。

当电容放电时,电势差逐渐减小,而电流逐渐增大,当电容放完电荷时,电流又变为零。

因此,RC电路具有一定的存储能力,可以对电信号进行滤波、延时等处理。

正弦波振荡电路是一种可以产生稳定正弦波的电路,也称为RC振荡电路。

RC振荡电路由集成运算放大器(Op Amp)、电容和电阻组成。

在正弦波振荡电路中,运放输出的正弦波信号经过电容反馈到运放的反向输入,形成一个闭环,使运放输出的电压趋于稳定。

当输入正弦波信号经过反馈后,输出正弦波的频率、振幅和相位由电容和电阻的数值确定。

四、实验电路图![image.png](attachment:image.png)五、实验步骤1. 按照电路图,在实验板上组装RC正弦波振荡电路。

2. 使用万用表测量各电路元件的电阻、电容值,记录在实验记录表中。

3. 使用示波器测量电路中各信号参数,包括输入信号波形、输出信号波形、输出信号频率、振幅大小和相位差等,记录在实验记录表中。

4. 调整电路元件的数值,观察输出信号的变化。

六、实验数据记录与分析1. 测量电路元件参数| 序号 | 元器件 | 电阻/Ω | 电容/F ||------|--------|--------|--------|| R1 | 10k | 9.90k | || R2 | 100k | 99.2k | || C1 | | | 0.1μF |2. 测量输入信号波形、输出信号波形、输出信号频率、振幅大小和相位差等数据七、实验注意事项1. 实验板上组装电路时要注意电路元件的极性。

集成电路RC正弦波振荡器

集成电路RC正弦波振荡器

实验三集成电路RC正弦波振荡器一、实验目的1.掌握桥式RC正弦波振荡器的电路构成原理。

2.熟悉正弦波振荡器的高速测试方法。

3.观察RC参数对振荡频率的影响,学习振荡频率的测定方法。

二、预习要求1.复习RC桥式振荡器的工作原理。

2.图5-2所示电路中,调节R1起什么作用,两个二极管起什么作用?三、实验原理与参考电路1.基本RC桥式振荡电路如图所示,它由两部分组成,即放大电路和选频网络VF 。

由图中可知由于Z1、Z2和R1、R f正好形成一个四臂电桥,因此这种振荡电路常称为RC桥式振荡电路。

Z1Z2R图5-1RC桥式振荡电路由图可知,在时,经RC反馈网络传输到运放同相端的电压与同相,即有和。

这样,放大电路和由Z1、Z2组成的反馈网络刚好形成正反馈系统,可以满足相位平衡条件,因而有可能振荡。

实现稳幅的方法是使电路的R f/R1值随输出电压幅度增大而减小。

起振时要求放大器的增益>3,例如,R f用一个具有负温度系数的热敏电阻代替,当输出电压增加使R f的功耗增大时,热敏电阻Rf减小,放大器的增益下降,使的幅值下降。

如果参数选择合适,可使输出电压幅值基本恒定,且波形失真较小。

由于集成运放接成同相比例放大电路,它的输出阻抗可视为零,而输入阻抗远比RC 串并联网络的阻抗大得多,可忽略不计,因此,振荡频率即为RC串并联网络的。

RC串并联网络构成正弦振荡电路的正反馈,在处,正反馈系数,而R 1和R f 当构成电路中的负反馈,反馈系数。

F +与F -的关系不同,导致输出波形的不同。

2.如图5-2 ,RC 桥式振荡电路由RC 串并联网络和同放大电路组成,图中RC 选频网络形成正反馈电路,并由它决定振荡频率f0,Ra 和Rb 形成负反馈回路,由它决定起振的幅值条件和调节波形的失真与稳幅控制。

在满足1212,R R R C C C ====的条件下,该电路的:振荡频率 012f RCπ=起振幅值条件13a bvf aR R A R +=≥ 即 2baR R ≥ 式中43,//bd d R R R r r =+为二极管的正向动态电阻。

RC桥式正弦波振荡器 和集成直流稳压电源的设计

RC桥式正弦波振荡器 和集成直流稳压电源的设计

模电实验报告RC桥式正弦波振荡器和集成直流稳压电源的设计课题一:RC桥式正弦波振荡器的设计一、实验目的:1.了解RC桥式正弦波振荡器的工作原理。

2.学习RC桥式正弦波振荡器的设计。

3.掌握RC桥式正弦波振荡器的调试方法。

二、设计任务和要求:1.设计一个输出频率为10KHz的RC桥式正弦波振荡器三、实验仪器:变压器一台、交流毫伏表一台、示波器一台、数字万用表一块、实验电路板一块、电烙铁一个、斜口钳一个、导线若干四、原理:RC桥式振荡器又称文氏电桥振荡器,是采用RC串并联选频网络的一种正弦波振荡器。

它具有较好的正弦波形且频率调节范围宽,它应用于生产1MHz以下的正弦波信号,且振幅和频率较稳定。

正弦波振荡器是一种具有选频网络和正负反馈网络的放大电路,其自激振荡的条件是环路增益为1,即A·F=1,其中A为放大电路的放大倍数,F为反馈系数。

为了使电路能够起振,还应该使环路增益A·F>1.运算放大器可以广泛用于正弦波发生器,其原理是将一无源(选频)网络接入正反馈电路,从而产生一定的频率振荡。

在一般情况下,由于电路参数,放大器参数总要随外界环境和电路的工作状态而变化,因而需要加非线性反馈来自动稳定其工作状态,以提高振荡器的稳定性。

电路图如下:(1)根据振荡器的频率,计算RC乘积的值RC=1/2пf=1/2*3.14*10k=1.59*10^-5S(2) 确定R,C的值为了使选频网络的特性不受运算放大器输入电阻和输出电阻的影响。

取R4=R3=1.59KΩ,则R3=R4=2.4kΩ//4.7ΩkC1=C2=C=1.59*10^-5/1.59k=0.01μF(3) 确定R1,R6,R2,R5,C3R5=R2=5.1kΩ R1=R6=4.7kΩ C3=10μF(4)输出波形如图所示,图中所示周期为T=107.305us,则频率为f=1/T=1/107.305=9.3KHz。

输出电压为 2.702mV。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

项目四:集成电路RC 正弦振荡器
一、项目名称:集成电路RC 正弦振荡器 二、项目训练目标:
1、掌握桥式RC 振荡器的电路构成及原理
2、熟悉正弦波振荡器的调整方法
3、观察RC 参数对振荡频率的影响
4、熟悉数字存储示波器的使用 三、项目培训内容及评分标准 (一)培训内容:
1、桥式RC 振荡器的电路构成及原理 (1)RC 串并联选频网络
R1
vi
(2)RC 桥式振荡器
9R
2、正弦波振荡器的调整方法
(1)若电路不能起振,可以顺时针调节9W4减小负反馈深度,提高放大倍数使电路起振。

(2)若出现波形失真,可逆时针方向调节9W4增大负反馈深度,减小放大倍数使波形不失真。

(3)若改变9W3后出现不起振的现象,可以顺时针调节9W4使电路起振。

3、频率计算及波形
(二)评分标准及细则:
四、教学总课时:3 其中教师讲解、演示节数:1
学生训练课时:1 技能考核课时:1
五、训练地点:电子综合室
六、学生分组:三人一组
七、每组所需设备:实训台、示波器
八、每组所需工具;数字万用表
九、每组所需材料:连接导线
十、项目实施程序:
(一)回顾RC桥式振荡器的组成及原理
1、RC串并联选频网络
R1
vi
2、 RC 桥式振荡器
9R 思考:(1)若元件完好,接线正确,电源电压正常,而
VO=0,原因何在,应怎么办?
(2)有输出但出现明显失真,应如何解决? (二)教师演示: 1、电路连接
2、示波器接法
3、调整方法
(1)调节9W4使电路起振
(2)调节9W3改变振荡频率
注意:正弦波振荡器的调整方法
(1)若电路不能起振,可以顺时针调节9W4减小负反馈深度,提高放大倍数使电路起振。

(2)若出现波形失真,可逆时针方向调节9W4增大负反馈深度,减小放大倍数使波形不失真。

(3)若改变9W3后出现不起振的现象,可以顺时针调节9W4使电路起振。

(三)学生实作:
步骤:
1、学生选择元件,把9W3调整到10K,按图接线。

2、接通电源,连接上示波器,调节9W4使电路起振且波形不失真,记录频率,与实际计算值比较。

3、调节电位器,用示波器观察输出波形,记录频率完成表格
4、学生练习画波形并完成报告
(四)小结:
(五)作业:1、完成实验报告,
2、回答问题
(1)电路中哪些参数与振荡频率有关?
(2)总结改变负反馈深度对振荡器起振的幅值条件及输出波形的影响。

十一、安全注意事项及7S要求:
1、注意接线要检查正确后才能通电。

2、仪器仪表要安全规范使用,轻拿轻放。

3、工位整洁。

相关文档
最新文档