大一经典高数复习资料经典最新经典全面复习

合集下载

大一高数知识点总结全

大一高数知识点总结全

大一高数知识点总结全一、导数与微分1. 函数极限和连续性1.1 函数极限的定义和性质1.2 无穷大与无穷小1.3 函数的连续性与间断点2. 导数与微分2.1 导数的定义与性质2.2 常见函数的导数2.3 高阶导数与隐函数求导二、微分中值定理与高阶导数应用1. 中值定理1.1 罗尔定理1.2 拉格朗日中值定理1.3 柯西中值定理2. 泰勒公式与函数的局部性质2.1 泰勒公式及余项2.2 函数的单调性与极值2.3 函数的凹凸性与拐点3. 高阶导数的应用3.1 曲率与曲线的切线与法线3.2 凸函数与凹函数的判定三、定积分与不定积分1. 定积分的意义与性质1.1 定积分的定义1.2 定积分的性质与运算法则1.3 可积条件与Newton-Leibniz公式2. 不定积分2.1 不定积分的定义与基本公式2.2 基本不定积分的计算方法2.3 图形与面积的应用四、微分方程1. 常微分方程基本概念1.1 微分方程的定义与基本概念1.2 一阶线性微分方程1.3 可分离变量的微分方程2. 常系数线性微分方程2.1 齐次线性微分方程2.2 非齐次线性微分方程2.3 变量变换与常系数线性微分方程3. 高阶线性微分方程3.1 n阶齐次与非齐次线性微分方程3.2 常系数线性齐次微分方程的特征方程 3.3 可降阶的线性非齐次微分方程五、多元函数微分学1. 二元函数的极限与连续性1.1 二元函数的极限定义1.2 二元函数的连续性1.3 多元函数的极限与连续性2. 偏导数与全微分2.1 偏导数的定义与计算方法2.2 高阶偏导数与混合偏导数2.3 全微分与微分近似3. 隐函数与参数方程求导3.1 隐函数与参数方程的基本概念3.2 隐函数求导与相关性质3.3 参数方程求导与相关性质以上是大一高数的知识点总结,通过学习这些内容,能够掌握基本的导数与微分、定积分与不定积分、微分方程以及多元函数微分学的知识。

希望这份总结对你的学习有所帮助。

高等数学基本知识点大全大一复习,考研必备

高等数学基本知识点大全大一复习,考研必备

大一期末复习和考研复习必备高等数学基本知识点一、函数与极限1、集合的概念⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集。

记作N+或N+。

⑶、全体整数组成的集合叫做整数集。

记作Z。

⑷、全体有理数组成的集合叫做有理数集。

记作Q。

⑸、全体实数组成的集合叫做实数集。

记作R。

⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。

2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。

变量x的变化范围叫做这个函数的定义域。

通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。

注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。

这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。

如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。

这里我们只讨论单值函数。

⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。

由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。

⑶、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。

例:笛卡尔直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。

例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。

c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。

大一上学期高数知识点大全

大一上学期高数知识点大全

大一上学期高数知识点大全1. 代数的基本概念1.1. 实数和复数1.2. 整式与分式1.3. 幂与根1.4. 指数与对数2. 函数与极限2.1. 函数的基本概念2.2. 一次函数与二次函数2.3. 指数函数与对数函数2.4. 极限的定义与性质3. 导数与微分3.1. 导数的定义与性质3.2. 常见函数的导数3.3. 高阶导数3.4. 微分的定义与应用4. 积分与不定积分4.1. 不定积分的定义与性质 4.2. 基本积分公式4.3. 定积分的定义与性质4.4. 牛顿-莱布尼茨公式5. 一元函数的应用5.1. 函数的增减性与最值问题 5.2. 函数与导数的几何意义 5.3. 曲线的图像与拐点5.4. 泰勒展开与近似计算6. 二元函数与多元函数6.1. 二元函数的性质与图像 6.2. 多元函数的极值与最值6.3. 偏导数与全微分6.4. 隐函数与参数方程7. 重积分与曲线积分7.1. 二重积分的定义与计算 7.2. 三重积分的定义与计算 7.3. 曲线积分的定义与计算 7.4. 曲面积分的定义与计算8. 空间解析几何8.1. 点、直线和平面的方程 8.2. 空间曲线与曲面8.3. 空间向量与坐标系8.4. 空间几何运算和投影9. 常微分方程9.1. 基本概念与一阶微分方程9.2. 可降阶的一阶微分方程9.3. 二阶线性常微分方程9.4. 高阶常微分方程的初值问题以上是大一上学期高等数学的主要知识点,通过深入学习这些内容,可以为后续学习及应用数学打下坚实的基础。

希望对你的学习有所帮助!。

高数大一必考知识点归纳

高数大一必考知识点归纳

高数大一必考知识点归纳高数是大一必考的一门重要课程,全面掌握其中的知识点对于大家的学习和未来的学习生涯都至关重要。

为了帮助大家更好地备考高数,本文将对大一必考的高数知识点进行归纳总结,希望能对大家的学习有所帮助。

1. 函数与极限1.1 函数的概念与性质:函数的定义、函数的图像、函数的奇偶性、函数的周期性等。

1.2 极限的概念与性质:函数极限的定义、左极限和右极限、极限的四则运算性质等。

1.3 无穷大与无穷小:无穷小的定义、无穷小的性质、无穷大的定义、无穷大的性质等。

2. 导数与微分2.1 导数的概念与计算方法:导数的定义、导数的基本公式、常见函数的导数、高阶导数等。

2.2 微分的概念与计算方法:微分的定义、微分的运算法则、微分中值定理等。

2.3 高阶导数与泰勒展开:高阶导数的概念、泰勒展开式的定义与应用等。

3. 不定积分与定积分3.1 不定积分的概念与计算方法:不定积分的定义、基本积分法、换元积分法等。

3.2 定积分的概念与计算方法:定积分的定义、定积分的性质、定积分的计算方法等。

3.3 微积分基本定理:微积分基本定理的概念、反导数与不定积分、定积分与面积计算等。

4. 微分方程4.1 微分方程的基本概念:微分方程的定义、微分方程的阶、常微分方程与偏微分方程等。

4.2 一阶微分方程:可分离变量的微分方程、一阶线性微分方程等。

4.3 高阶线性微分方程:二阶齐次线性微分方程、二阶非齐次线性微分方程等。

5. 多元函数与偏导数5.1 多元函数的概念与性质:多元函数的定义、多元函数的图像、多元函数的极限、多元函数的连续性等。

5.2 偏导数的概念与计算方法:偏导数的定义、偏导数的几何意义、偏导数的运算法则等。

5.3 高阶偏导数与全微分:高阶偏导数的概念、全微分的定义与计算方法等。

综上所述,以上列举的知识点是大一必考的高数知识点的主要内容。

大家在备考过程中可以根据这些知识点进行系统性的学习和复习,理解每个知识点的概念、性质和计算方法,并通过大量的练习题加深对知识点的理解和掌握。

高数大一最全知识点

高数大一最全知识点

高数大一最全知识点高等数学作为大一学生的必修课程,是一门基础而又重要的学科。

掌握好高数知识点,不仅对后续的学习有着重要的影响,也对提高数理思维和解决实际问题具有重要的帮助。

下面将为大家整理总结大一高数中最全的知识点。

第一章:函数与极限1. 函数的概念和性质函数定义、定义域和值域、函数的图像和性质等。

2. 极限的概念和性质数列极限、函数极限、几何意义以及重要的极限性质。

3. 连续与间断连续函数的概念、连续函数的性质、间断点和间断函数等。

第二章:导数与微分1. 导数的概念和计算导数的定义、导数的计算方法、各种函数导数的计算公式等。

2. 高阶导数与导数的应用高阶导数的定义、高阶导数的计算、导数在几何和物理问题中的应用等。

3. 微分学基本定理微分中值定理、极值与最值、凹凸性等重要的微分学定理。

第三章:积分与不定积分1. 定积分和不定积分的概念和性质定积分的定义、定积分的计算、不定积分的定义和基本积分表等。

2. 定积分的应用定积分的几何应用、定积分的物理应用、定积分的概率统计应用等。

3. 反常积分反常积分的概念和性质、反常积分判敛方法、特殊函数的反常积分等。

第四章:常微分方程1. 常微分方程的基本概念常微分方程的定义、初值问题、解的存在唯一性定理等。

2. 一阶常微分方程解法可分离变量方程、齐次方程、一阶线性方程、伯努利方程等解法。

3. 高阶线性微分方程高阶线性齐次和非齐次微分方程的解法、常系数线性微分方程等。

第五章:多元函数与偏导数1. 多元函数的概念和性质多元函数的定义、定义域、值域、图像等基本概念。

2. 偏导数与全微分偏导数的定义和计算、全微分的定义以及全微分近似等。

3. 隐函数与参数方程隐函数的存在定理、隐函数的求导、参数方程的定义和性质等。

第六章:多元函数的积分学1. 二重积分的概念和性质二重积分的定义、二重积分的计算、二重积分的性质等。

2. 三重积分和曲线、曲面积分三重积分的定义、三重积分的计算、曲线积分、曲面积分的概念与计算等。

大一高数笔记全部知识点

大一高数笔记全部知识点

大一高数笔记全部知识点第一章数列与极限1.1 数列1.1.1 数列的概念1.1.2 等差数列1.1.3 等比数列1.2 极限的概念与性质1.2.1 极限的定义1.2.2 极限存在的条件1.2.3 极限的性质1.3 极限运算法则1.3.1 无穷小量与无穷大量1.3.2 极限的四则运算第二章函数与连续2.1 函数的概念与性质2.1.1 函数的定义2.1.2 函数的性质2.2 基本初等函数2.2.1 幂函数与指数函数2.2.2 对数函数与指数对数函数2.3 函数的极限与连续性2.3.1 函数的极限2.3.2 函数的连续性第三章导数与微分3.1 导数的概念与计算方法3.1.1 导数的定义3.1.2 常用函数的导数计算3.2 微分的概念与性质3.2.1 微分的定义3.2.2 微分的性质3.3 高阶导数与导数的应用3.3.1 高阶导数的定义3.3.2 导数的应用:切线与法线第四章积分与不定积分4.1 不定积分的概念与性质4.1.1 不定积分的定义4.1.2 不定积分的性质4.2 定积分的概念与性质4.2.1 定积分的定义4.2.2 定积分的性质4.3 积分的运算法则与应用4.3.1 积分的基本运算法则4.3.2 积分的应用:面积与曲线长度第五章多元函数与偏导数5.1 多元函数的概念与性质5.1.1 多元函数的定义5.1.2 多元函数的性质5.2 偏导数的概念与计算方法5.2.1 偏导数的定义5.2.2 常用函数的偏导数计算5.3 高阶偏导数与微分的应用5.3.1 高阶偏导数的定义5.3.2 微分的应用:切平面与法线以上是大一高数课程中的全部知识点。

通过学习这些知识,我们可以建立起数学的基础框架,为以后的学习打下坚实的基础。

每个知识点都有其重要性和实用性,在理解和掌握的过程中,我们要注重理论联系实际,通过例题和应用题的练习来提高解题能力。

希望同学们能够认真学习,并在课后进行适当的巩固和扩展。

加油!。

大一经典高数复习资料经典最新(经典全面复习)

大一经典高数复习资料经典最新(经典全面复习)

高等数学(本科少学时类型)第一章 函数与极限第一节 函数○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★)(){},|U a x x a δδ=-<(){},|0U a x x a δδ=<-<第二节 数列的极限○数列极限的证明(★)【题型示例】已知数列{}n x ,证明{}lim n x x a →∞=【证明示例】N -ε语言1.由n x a ε-<化简得()εg n >, ∴()N g ε=⎡⎤⎣⎦2.即对0>∀ε,()N g ε∃=⎡⎤⎣⎦,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞→lim第三节 函数的极限○0x x →时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x x =→0lim【证明示例】δε-语言1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg =2.即对0>∀ε,()εδg =∃,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0lim○∞→x 时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x =∞→lim【证明示例】X -ε语言1.由()f x A ε-<化简得()x g ε>, ∴()εg X =2.即对0>∀ε,()εg X =∃,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞→lim第四节 无穷小与无穷大○无穷小与无穷大的本质(★) 函数()x f 无穷小⇔()0lim =x f 函数()x f 无穷大⇔()∞=x f lim○无穷小与无穷大的相关定理与推论(★★)(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1-为无穷大 【题型示例】计算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x )1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U内是有界的;(∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0=→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)3.由定理可知()()0lim 0x x f x g x →⋅=⎡⎤⎣⎦(()()lim 0x f x g x →∞⋅=⎡⎤⎣⎦)第五节 极限运算法则○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则关于多项式()p x 、()x q 商式的极限运算设:()()⎪⎩⎪⎨⎧+⋯++=+⋯++=--nn n mm m b x b x b x q a x a x a x p 110110 则有()()⎪⎪⎩⎪⎪⎨⎧∞=∞→0limb a x q x p x m n m n m n >=< ()()()()000lim 00x x f x g x f x g x →⎧⎪⎪⎪=∞⎨⎪⎪⎪⎩()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00lim 0x x f x g x →=(不定型)时,通常分子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9x x x →--【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()23333311limlim lim 93336x x x x x x x x x →→→--====-+-+ 其中3x =为函数()239x f x x -=-的可去间断点倘若运用罗比达法则求解(详见第三章第二节):解:()()00233323311lim lim lim 9269x L x x x x x x x '→→→'--===-'- ○连续函数穿越定理(复合函数的极限求解)(★★) (定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦【题型示例】求值:93lim23--→x x x【求解示例】3x →==第六节 极限存在准则及两个重要极限○夹迫准则(P53)(★★★) 第一个重要极限:1sin lim 0=→xxx∵⎪⎭⎫⎝⎛∈∀2,0πx ,x x x tan sin <<∴1sin lim 0=→x x x 0000lim11lim lim 1sin sin sin lim x x x x x x x x x x →→→→===⎛⎫⎪⎝⎭(特别地,000sin()lim 1x x x x x x →-=-)○单调有界收敛准则(P57)(★★★)第二个重要极限:e x xx =⎪⎭⎫⎝⎛+∞→11lim(一般地,()()()()lim lim lim g x g x f x f x =⎡⎤⎡⎤⎣⎦⎣⎦,其中()0lim >x f )【题型示例】求值:11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x【求解示例】()()211121212122121122122121lim21221232122lim lim lim 121212122lim 1lim 121212lim 121x x x x x x x x x x x x x x x x x x x x x x x x +++→∞→∞+→∞⋅++++⋅⋅+++→∞+→∞++→∞+++⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎢⎥=+=+ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎢⎥=+⎪⎢⎥+⎝⎭⎣⎦解:()()12lim 1212121212122lim 121x x x x x x x x x ee e e+→∞⎡⎤⋅+⎢⎥+⎣⎦+→∞+→∞⎡⎤⋅+⎢⎥+⎣⎦+⎛⎫⎪+⎝⎭====第七节 无穷小量的阶(无穷小的比较) ○等价无穷小(★★)1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1UU U U U U U e +- 2.U U cos 1~212-(乘除可替,加减不行)【题型示例】求值:()()xx x x x x 31ln 1ln lim 20++++→ 【求解示例】()()()()()()()3131lim 31lim 31ln 1lim 31ln 1ln lim ,0,000020=++=+⋅+=++⋅+=++++=≠→→→→→x x x x x x x x x x x x x x x x x x x x x 所以原式即解:因为第八节 函数的连续性 ○函数连续的定义(★)()()()000lim lim x x x x f x f x f x -+→→==○间断点的分类(P67)(★)⎩⎨⎧∞⋯⋯⎩⎨⎧)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数()⎩⎨⎧+=x a e x f x 2 ,00≥<x x 应该怎样选择数a ,使得()x f 成为在R 上的连续函数?【求解示例】1.∵()()()2010000f e e e f a a f a --⋅++⎧===⎪⎪=+=⎨⎪=⎪⎩2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 0∴e a =第九节 闭区间上连续函数的性质 ○零点定理(★)【题型示例】证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 【证明示例】1.(建立辅助函数)函数()()()x f x g x C ϕ=--在闭区间[],a b 上连续;2.∵()()0a b ϕϕ⋅<(端点异号)3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0fg C ξξ--=(10<<ξ) 4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第二章 导数与微分第一节 导数概念○高等数学中导数的定义及几何意义(P83)(★★)【题型示例】已知函数()⎩⎨⎧++=bax e x f x 1 ,00>≤x x 在0=x 处可导,求a ,b【求解示例】1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩ ∴1,2a b ==【题型示例】求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ⎡⎤⎣⎦处的切线与法线方程) 【求解示例】1.()x f y '=',()a f y a x '='=| 2.切线方程:()()()y f a f a x a '-=- 法线方程:()()()1y f a x a f a -=--' 第二节 函数的和(差)、积与商的求导法则○函数和(差)、积与商的求导法则(★★★) 1.线性组合(定理一):()u v u v αβαβ'''±=+ 特别地,当1==βα时,有()u v u v '''±=± 2.函数积的求导法则(定理二):()uv u v uv '''=+3.函数商的求导法则(定理三):2u u v uv v v '''-⎛⎫= ⎪⎝⎭第三节 反函数和复合函数的求导法则○反函数的求导法则(★)【题型示例】求函数()x f 1-的导数【求解示例】由题可得()x f 为直接函数,其在定于域D 上单调、可导,且()0≠'x f ;∴()()11fx f x -'⎡⎤=⎣⎦' ○复合函数的求导法则(★★★)【题型示例】设(ln y e =,求y '【求解示例】(22arcsi y ex a e e e ''='⎛⎫' ⎪+=⎝⎛⎫⎪ =⎝⎭=解:⎛ ⎝第四节 高阶导数 ○()()()()1n n fx fx -'⎡⎤=⎣⎦(或()()11n n n n d y d y dx dx --'⎡⎤=⎢⎥⎣⎦)(★) 【题型示例】求函数()x y +=1ln 的n 阶导数 【求解示例】()1111y x x-'==++, ()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦, ()()()()()2311121y x x --'⎡⎤'''=-⋅+=-⋅-⋅+⎣⎦……()1(1)(1)(1)n n n y n x --=-⋅-⋅+!第五节 隐函数及参数方程型函数的导数 ○隐函数的求导(等式两边对x 求导)(★★★) 【题型示例】试求:方程ye x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程【求解示例】由ye x y +=两边对x 求导 即()yy x e '''=+化简得1yy ey ''=+⋅∴ee y -=-='11111 ∴切线方程:()e x ey +--=-1111法线方程:()()e x e y +---=-111○参数方程型函数的求导【题型示例】设参数方程()()⎩⎨⎧==t y t x γϕ,求22dx yd【求解示例】1.()()t t dx dy ϕγ''=2.()22dy d y dx dxt ϕ'⎛⎫⎪⎝⎭=' 第六节 变化率问题举例及相关变化率(不作要求) 第七节 函数的微分○基本初等函数微分公式与微分运算法则(★★★) ()dx x f dy ⋅'=第三章 中值定理与导数的应用第一节 中值定理 ○引理(费马引理)(★) ○罗尔定理(★★★) 【题型示例】现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ∃∈, 使得()()cos sin 0ff ξξξξ'+=成立【证明示例】1.(建立辅助函数)令()()sin x f x x ϕ=显然函数()x ϕ在闭区间[]0,π上连续,在开区间()0,π上可导;2.又∵()()00sin00f ϕ==()()sin 0f ϕπππ== 即()()00ϕϕπ==3.∴由罗尔定理知()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x >时,xe e x >⋅【证明示例】1.(建立辅助函数)令函数()x f x e =,则对1x ∀>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;2.由拉格朗日中值定理可得,[]1,x ξ∃∈使得等式()11x e e x eξ-=-成立, 又∵1e e ξ>,∴()111x e e x e e x e ->-=⋅-,化简得x e e x >⋅,即证得:当1x >时,xe e x >⋅ 【题型示例】证明不等式:当0x >时,()ln 1x x +< 【证明示例】1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ∀>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()11f x x'=+; 2.由拉格朗日中值定理可得,[]0,x ξ∃∈使得等式()()()1ln 1ln 1001x x ξ+-+=-+成立, 化简得()1ln 11x x ξ+=+,又∵[]0,x ξ∈, ∴()111f ξξ'=<+,∴()ln 11x x x +<⋅=, 即证得:当1x >时,xe e x >⋅第二节 罗比达法则○运用罗比达法则进行极限运算的基本步骤(★★) 1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件 A .属于两大基本不定型(0,0∞∞)且满足条件, 则进行运算:()()()()lim limx a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)B .☆不属于两大基本不定型(转化为基本不定型) ⑴0⋅∞型(转乘为除,构造分式) 【题型示例】求值:0lim ln x x x α→⋅【求解示例】 ()10000201ln ln lim ln limlimlim111lim 0x x L x x x x xx x x x xxxx a ααααααα∞∞-'→→→→→'⋅===⋅'⎛⎫- ⎪⎝⎭=-=解: (一般地,()0lim ln 0x x x βα→⋅=,其中,R αβ∈)⑵∞-∞型(通分构造分式,观察分母) 【题型示例】求值:011lim sin x x x →⎛⎫-⎪⎝⎭【求解示例】 200011sin sin lim lim lim sin sin x x x x x x x x x x x x →→→--⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪⋅⎝⎭⎝⎭⎝⎭解:()()()()000002sin 1cos 1cos sin limlim lim lim 0222L x x L x x x x x x xx x x ''→→→→''---====='' ⑶00型(对数求极限法)【题型示例】求值:0lim xx x →【求解示例】()()0000lim ln ln 000002ln ,ln ln ln 1ln ln 0lim ln lim lim111lim lim 0lim lim 11x x x x x L x yy x x x x x y x y x x x xx xx y xx x x y e e e x→∞∞'→→→→→→→===='→=='⎛⎫ ⎪⎝⎭==-=====-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法)【题型示例】求值:()10lim cos sin xx x x →+【求解示例】()()()()()1000000lim ln ln 10ln cos sin cos sin ,ln ,ln cos sin ln 0lim ln limln cos sin cos sin 10lim lim 1,cos sin 10lim =lim x xx x L x x yy x x x x y x x y xx x y x y xx x x x x x x y e e e e→→→'→→→→+=+=+→='+⎡⎤--⎣⎦====++'===解:令两边取对数得对求时的极限,从而可得⑸0∞型(对数求极限法) 【题型示例】求值:tan 01lim xx x →⎛⎫⎪⎝⎭【求解示例】()()tan 0020002220011,ln tan ln ,1ln 0lim ln lim tan ln 1ln ln lim lim lim 1sec 1tan tan tan sin sin lim lim li xx x x L x x x L x y y x x x y x y x x x x x x x x x x x x x →→∞∞'→→→'→→⎛⎫⎛⎫==⋅ ⎪⎪⎝⎭⎝⎭⎡⎤⎛⎫→=⋅ ⎪⎢⎥⎝⎭⎣⎦'=-=-=-⎛⎫'⎛⎫- ⎪ ⎪⎝⎭⎝⎭'==='解:令两边取对数得对求时的极限,00lim ln ln 002sin cos m 0,1lim =lim 1x x yy x x x xy e e e →→→→⋅====从而可得 ○运用罗比达法则进行极限运算的基本思路(★★)00001∞⎧⎪∞-∞−−→←−−⋅∞←−−⎨∞⎪∞⎩∞(1)(2)(3)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分式形式) ⑶取对数获得乘积式(通过对数运算将指数提前)第三节 泰勒中值定理(不作要求) 第四节 函数的单调性和曲线的凹凸性 ○连续函数单调性(单调区间)(★★★) 【题型示例】试确定函数()3229123f x x x x =-+-的单调区间 【求解示例】1.∵函数()f x 在其定义域R 上连续,且可导∴()261812f x x x '=-+2.令()()()6120f x x x '=--=,解得:121,2x x ==4.∴函数f x 的单调递增区间为,1,2,-∞+∞; 单调递减区间为()1,2【题型示例】证明:当0x >时,1xe x >+ 【证明示例】1.(构建辅助函数)设()1x x e x ϕ=--,(0x >)2.()10xx e ϕ'=->,(0x >)∴()()00x ϕϕ>=3.既证:当0x >时,1xe x >+【题型示例】证明:当0x >时,()ln 1x x +< 【证明示例】1.(构建辅助函数)设()()ln 1x x x ϕ=+-,(0x >)2.()1101x xϕ'=-<+,(0x >) ∴()()00x ϕϕ<=3.既证:当0x >时,()ln 1x x +<○连续函数凹凸性(★★★)【题型示例】试讨论函数2313y x x =+-的单调性、极值、凹凸性及拐点【证明示例】1.()()236326661y x x x x y x x '⎧=-+=--⎪⎨''=-+=--⎪⎩2.令()()320610y x x y x '=--=⎧⎪⎨''=--=⎪⎩解得:120,21x x x ==⎧⎨=⎩4.⑴函数13y x x =+-单调递增区间为(0,1),(1,2)单调递增区间为(,0)-∞,(2,)+∞;⑵函数2313y x x =+-的极小值在0x =时取到,为()01f =,极大值在2x =时取到,为()25f =;⑶函数2313y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸; ⑷函数2313y x x =+-的拐点坐标为()1,3第五节 函数的极值和最大、最小值 ○函数的极值与最值的关系(★★★)⑴设函数()f x 的定义域为D ,如果M x ∃的某个邻域()M U x D ⊂,使得对()M x U x ∀∈,都适合不等式()()M f x f x <,我们则称函数()f x 在点(),M M x f x ⎡⎤⎣⎦处有极大值()M f x ;令{}123,,,...,M M M M Mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最大值M 满足:()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;⑵设函数()f x 的定义域为D ,如果m x ∃的某个邻域()m U x D ⊂,使得对()m x U x ∀∈,都适合不等式()()m f x f x >,我们则称函数()f x 在点(),m m x f x ⎡⎤⎣⎦处有极小值()m f x ;令{}123,,,...,m m m m mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最小值m 满足:()(){}123min ,,,,...,,m m m mn m f a x x x x fb =;【题型示例】求函数()33f x x x =-在[]1,3-上的最值【求解示例】1.∵函数()f x 在其定义域[]1,3-上连续,且可导 ∴()233f x x '=-+2.令()()()3110f x x x '=--+=, 解得:121,1x x =-= 4.又∵12,12,318f f f -=-==- ∴()()()()max min 12,318f x f f x f ====- 第六节 函数图形的描绘(不作要求)第七节 曲率(不作要求)第八节 方程的近似解(不作要求) 第四章 不定积分第一节 不定积分的概念与性质 ○原函数与不定积分的概念(★★) ⑴原函数的概念:假设在定义区间I 上,可导函数()F x 的导函数为()F x ',即当自变量x I ∈时,有()()F x f x '=或()()dF x f x dx =⋅成立,则称()F x 为()f x 的一个原函数⑵原函数存在定理:(★★)如果函数()f x 在定义区间I 上连续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续) ⑶不定积分的概念(★★)在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:()()f x dx F x C =+⎰(⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量)○基本积分表(★★★)○不定积分的线性性质(分项积分公式)(★★★)()()()()1212k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ 第二节 换元积分法○第一类换元法(凑微分)(★★★) (()dx x f dy ⋅'=的逆向应用)()()()()f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰【题型示例】求221dx a x +⎰【求解示例】2211111arctan 11x x dx dx d Ca x a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:【题型示例】求【求解示例】()()121212x x C=+=+=○第二类换元法(去根式)(★★)(()dx x f dy ⋅'=的正向应用)⑴对于一次根式(0,a b R ≠∈):t =,于是2t bx a-=, 则原式可化为t⑵对于根号下平方和的形式(0a >):tan x a t =(22t ππ-<<), 于是arctan xt a=,则原式可化为sec a t ;⑶对于根号下平方差的形式(0a >):asin x a t =(22t ππ-<<),于是arcsin xt a=,则原式可化为cos a t ;bsec x a t =(02t π<<),于是arccos at x =,则原式可化为tan a t ;【题型示例】求(一次根式) 【求解示例】2221t x t dx tdttdt dt t C Ct =-=⋅==+=⎰⎰【题型示例】求(三角换元)【求解示例】()()2sin ()2222arcsincos 22cos 1cos 221sin 2sin cos 222x a t t xt adx a ta a tdt t dta a t t C t t t C ππ=-<<==−−−−−−→=+⎛⎫=++=++ ⎪⎝⎭⎰⎰第三节 分部积分法 ○分部积分法(★★)⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-⎰⎰⑵分部积分法函数排序次序:“反、对、幂、三、指” ○运用分部积分法计算不定积分的基本步骤: ⑴遵照分部积分法函数排序次序对被积函数排序; ⑵就近凑微分:(v dx dv '⋅=) ⑶使用分部积分公式:udv uv vdu =-⎰⎰⑷展开尾项vdu v u dx '=⋅⎰⎰,判断a .若v u dx '⋅⎰是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果); b .若v u dx '⋅⎰依旧是相当复杂,无法通过a 中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2x e x dx ⋅⎰【求解示例】()()222222222222222x x x x x x x x x x x x x x x e x dx x e dx x de x e e d x x e x e dx x e x d e x e xe e dx x e xe e C⋅===-=-⋅=-⋅=-+=-++⎰⎰⎰⎰⎰⎰⎰解:【题型示例】求sin xe xdx ⋅⎰【求解示例】()()()()sin cos cos cos cos cos cos sin cos sin sin cos sin sin x x x xx x x x x x x x x x e xdx e d x e x xd ee x e xdx e x e d x e x e x xd e e x e x e xdx⋅=-=-+=-+=-+=-+-=-+-⎰⎰⎰⎰⎰⎰⎰解:()sin cos sin sin x x x x e xdx e x e x xd e ⋅=-+-⎰⎰即: ∴()1sin sin cos 2xxe xdx e x x C ⋅=-+⎰第四节 有理函数的不定积分 ○有理函数(★)设:()()()()101101m m mn n nP x p x a x a x a Q x q x b x b x b --=++⋯+==++⋯+ 对于有理函数()()P x Q x ,当()P x 的次数小于()Q x 的次数时,有理函数()()P x Q x 是真分式;当()P x 的次数大于()Q x 的次数时,有理函数()()P x Q x 是假分式○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数()()P x Q x 的分母()Q x 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示为一次因式()kx a -;而另一个多项式可以表示为二次质因式()2lx px q ++,(240p q -<); 即:()()()12Q x Q x Q x =⋅一般地:n mx n m x m ⎛⎫+=+⎪⎝⎭,则参数n a m =- 22b c ax bx c a x x a a ⎛⎫++=++ ⎪⎝⎭则参数,b cp q a a ==⑵则设有理函数()()P x Q x 的分拆和式为:()()()()()()122k lP x P x P x Q x x a x px q =+-++其中()()()()1122...k kkP x A A A x a x a x a x a =+++----()()()()2112222222...ll llP x M x N M x N x px q x px q x px q M x N x px q ++=++++++++++++参数121212,,...,,,,...,l k lM M M A A A N N N ⎧⎧⎧⎨⎨⎨⎩⎩⎩由待定系数法(比较法)求出⑶得到分拆式后分项积分即可求解【题型示例】求21x dx x +⎰(构造法) 【求解示例】()()()221111111111ln 112x x x x dx dx x dx x x x xdx dx dx x x x Cx +-++⎛⎫==-+ ⎪+++⎝⎭=-+=-++++⎰⎰⎰⎰⎰⎰第五节 积分表的使用(不作要求)第五章 定积分极其应用第一节 定积分的概念与性质 ○定积分的定义(★)()()01lim nbiiai f x dx f x I λξ→==∆=∑⎰(()f x 称为被积函数,()f x dx 称为被积表达式,x则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间)○定积分的性质(★★★)⑴()()bbaaf x dx f u du =⎰⎰⑵()0aa f x dx =⎰ ⑶()()bba akf x dx k f x dx =⎡⎤⎣⎦⎰⎰⑷(线性性质)()()()()1212b b ba a a k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ ⑸(积分区间的可加性)()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0baf x dx >⎰;(推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()bbaaf x dxg x dx ≤⎰⎰;(推论二)()()bbaaf x dx f x dx ≤⎰⎰○积分中值定理(不作要求) 第二节 微积分基本公式○牛顿-莱布尼兹公式(★★★)(定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则()()()baf x dx F b F a =-⎰○变限积分的导数公式(★★★)(上上导―下下导)()()()()()()()x x d f t dt f x x f x x dxϕψϕϕψψ''=-⎡⎤⎡⎤⎣⎦⎣⎦⎰ 【题型示例】求21cos 2limt xx e dt x -→⎰【求解示例】()2211cos cos 2002lim lim 解:t t x x x L x d e dt e dt dx x x--'→→='⎰⎰()()()()2222221cos cos000cos 0cos cos 0cos 010sin sin limlim 22sin lim 2cos sin 2sin cos lim21lim sin cos 2sin cos 21122xxx x xL x xxx x x e ex x e xxdx e dx x x ex ex xe x x x x e e---→→-'→--→-→-⋅-⋅-⋅==⋅='⋅+⋅⋅=⎡⎤=+⋅⎣⎦=⋅=第三节 定积分的换元法及分部积分法 ○定积分的换元法(★★★) ⑴(第一换元法)()()()()b baa f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰【题型示例】求20121dx x +⎰ 【求解示例】()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法)设函数()[],f x C a b ∈,函数()x t ϕ=满足: a .,αβ∃,使得()(),a b ϕαϕβ==;b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续 则:()()()baf x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰【题型示例】求4⎰【求解示例】()2210,43220,1014,332332311132213111332223522933解:t t x x t x t t dx t t t dt t dt t x t =-====+−−−−−−→+⎛⎫=⋅⋅=+=+ ⎪⎝⎭=-=⎰⎰⎰⎰ ⑶(分部积分法)()()()()()()()()()()()()bba ab bb aaau x v x dx u x v x v x u x dxu x dv x u x v x v x du x ''=-=-⎡⎤⎣⎦⎰⎰⎰⎰○偶倍奇零(★★)设()[],f x C a a ∈-,则有以下结论成立: ⑴若()()f x f x -=,则()()02aaaf x dx f x dx -=⎰⎰⑵若()()f x f x -=-,则()0aaf x dx -=⎰第四节 定积分在几何上的应用(暂时不作要求) 第五节 定积分在物理上的应用(暂时不作要求) 第六节 反常积分(不作要求)如:不定积分公式21arctan 1dx x C x =++⎰的证明。

大一高数上所有知识点总结

大一高数上所有知识点总结

大一高数上所有知识点总结一、函数与极限1. 函数的概念与性质1.1 函数的定义1.2 函数的性质2. 极限的概念与性质2.1 极限的定义2.2 极限存在的充分条件2.3 极限的性质及四则运算法则3. 无穷小量与无穷大量3.1 无穷小量的概念与性质3.2 无穷大量的概念与性质4. 极限的计算4.1 用夹逼准则求极限4.2 用无穷小量比较求极限4.3 用洛必达法则求极限4.4 用泰勒公式求极限二、导数与微分1. 导数的概念与求导法则1.1 导数的概念1.2 导数的计算与求导法则1.3 隐函数的导数1.4 高阶导数2. 函数的微分与高阶导数2.1 函数的微分2.3 高阶导数的概念与计算3. 函数的增减性与凹凸性3.1 函数的单调性3.2 函数的最值与最值存在条件3.3 函数的凹凸性及拐点三、函数的应用1. 泰勒公式在误差估计中的应用2. 函数的极值及其应用3. 函数的图形与曲线的切线方程4. 收敛性与闭区间紧性的概念及应用四、不定积分1. 不定积分的概念与性质1.1 不定积分的定义1.2 不定积分的性质1.3 不定积分的基本公式2. 不定积分的计算2.1 一些特殊函数的不定积分2.2 有理函数的不定积分2.3 有理三角函数的不定积分2.4 特殊的不定积分解法五、定积分1. 定积分的概念与性质1.1 定积分的定义1.2 定积分的性质2. 定积分的几何应用2.1 定积分与曲线下面积2.2 定积分与旋转体的体积计算2.3 定积分与空间几何体的体积计算六、微分方程1. 微分方程的概念与基本性质1.1 微分方程的定义1.2 微分方程的基本性质2. 常微分方程的解法2.1 一阶微分方程的解法2.2 二阶微分方程的解法2.3 高阶微分方程的解法3. 微分方程在物理问题中的应用3.1 弹簧振动问题3.2 电路的动态特性问题3.3 理想气体的状态方程问题七、多元函数微积分1. 多元函数的概念与性质1.1 多元函数的定义1.2 多元函数的导数与偏导数1.3 多元函数的微分2. 多元函数的极值与条件极值2.1 多元函数的极值点2.2 多元函数的条件极值点3. 二重积分与三重积分3.1 二重积分的概念与性质3.2 二重积分的计算3.3 三重积分的概念与性质3.4 三重积分的计算4. 重积分在几何与物理中的应用4.1 重积分与平面图形的面积计算4.2 重积分与曲面旋转体的体积计算4.3 重积分与空间物体的质量与重心计算八、无穷级数1. 数项级数的概念与性质1.1 数项级数的概念1.2 数项级数收敛的充分条件1.3 数项级数的审敛法2. 幂级数2.1 幂级数的概念与性质2.2 幂级数的收敛域2.3 幂级数在收敛域上的一致收敛性3. 函数项级数3.1 函数项级数的概念与性质3.2 函数项级数收敛的判别法3.3 函数项级数的一致收敛性以上是大一高数的知识点总结,总结了函数与极限、导数与微分、函数的应用、不定积分、定积分、微分方程、多元函数微积分、无穷级数等内容。

大一高数复习知识点

大一高数复习知识点

大一高数复习知识点一、函数与极限1. 函数的概念函数是数学中的一个基本概念,它描述了输入与输出之间的关系。

一般来说,我们把输入称为自变量,输出称为因变量。

2. 极限的概念极限是函数中的一个重要概念,用来描述函数在某一点上的趋近性。

简单来说,一个函数的极限可以看作是函数在该点附近的稳定值。

3. 基本的极限运算法则- 常数乘以函数的极限等于函数的极限乘以该常数。

- 两个函数的和的极限等于两个函数的极限之和。

- 函数的极限与自变量无关。

二、导数与微分1. 导数的定义导数描述了函数在某一点上的变化率。

在数学上,导数可以通过极限来定义,即函数在某一点上的极限值。

2. 常见函数的导数公式- 常数函数的导数为0。

- 幂函数的导数可以通过幂函数的指数减1再乘以导数来计算。

- 指数函数和对数函数的导数可以通过指数函数或对数函数自身来计算。

3. 微分的概念微分描述了函数在某一点上的局部线性逼近。

它是导数的一种应用。

三、微分中值定理1. 罗尔定理罗尔定理指出,如果一个函数在某一闭区间上连续,在该区间的两个端点处取得相同的函数值,那么在这个区间内,存在至少一点使得函数的导数等于零。

2. 拉格朗日中值定理拉格朗日中值定理是导数中值定理的一种情况,它表示在一个开区间上,函数存在至少一点处的导数等于该区间上函数的平均斜率。

四、不定积分与定积分1. 不定积分的定义不定积分是函数逆运算的一种形式,使用一个表示无穷小的符号 "dx" 来表示。

不定积分可以求出一个函数的原函数。

2. 常见函数的不定积分公式- 幂函数的不定积分可以通过幂函数的幂次加1再除以幂次来计算。

- 指数函数和对数函数的不定积分可以通过指数函数或对数函数自身来计算。

3. 定积分的定义定积分用来计算曲线与坐标轴之间的面积或曲线的弧长。

定积分可以看作是不定积分的一种应用。

五、常微分方程1. 常微分方程的定义常微分方程是含有未知函数的导数的方程,其中未知函数是变量的函数。

高等数学复习资料大全

高等数学复习资料大全

高等数学复习资料大全高等数学复习资料大全一、函数的极限1、函数极限的定义:当函数f(x)在x趋近于某一值时,函数值无限接近于某一确定的数值A,则称A为函数f(x)在x趋近于这一值时的极限。

2、函数极限的性质:(1)唯一性:若极限存在,则唯一。

(2)局部有界性:在极限附近的函数值有界。

(3)局部保号性:在极限附近,函数值的符号保持不变。

(4)归结原则:若在某一区间内,f(x)恒等于A,则A为f(x)在该区间内的极限。

3、极限的四则运算:设、存在,则、也存在,且、、、。

4、复合函数的极限:设、存在,且g(x)在u=a处连续,则、存在,且、。

5、无穷小与无穷大:(1)无穷小:若当x趋近于某一值时,函数f(x)的极限为0,则称f(x)为当x趋近于这一值时的无穷小。

(2)无穷大:若当x趋近于某一值时,函数f(x)的绝对值无限增大,则称f(x)为当x趋近于这一值时的无穷大。

6、两个重要极限:(1)sin x / x = 1 (x趋近于0);(2)(1+k)^ x / kx = e^k (k为常数且k趋近于0)。

二、导数与微分1、导数的定义:设y=f(x),若增量 / 趋于0时,之间的比值也趋于0,则称f(x)在处可导,称此比值为f(x)在处的导数。

2、导数的几何意义:函数在某一点处的导数就是曲线在该点处的切线的斜率。

3、微分的定义:设y=f(x),若函数的增量可以表示为,其中A不依赖于,则称在处可微分,为f(x)在处的微分。

4、导数与微分的关系:若函数在某一点处可导,则在该点处必可微分;反之,若函数在某一点处可微分,则在该点处不一定可导。

5、导数的计算方法:(1)四则运算导数公式;(2)复合函数的导数;(3)隐函数求导法;(4)对数求导法;(5)高阶导数。

三、不定积分1、不定积分的定义:设f(x)是一个函数,是一个常数,则对f(x)进行积分所得的结果称为f(x)的不定积分,记为或。

2、不定积分的性质:(1)线性性质:和都存在,且;(2)恒等性质:都存在,且。

大一高数知识点全总结

大一高数知识点全总结

大一高数知识点全总结一、导数与微分大一高数的第一个重点知识点是导数与微分。

导数是研究函数变化率的工具,表示函数在某一点处的切线斜率。

微分则是导数的另一种表达方式,它是建立在导数的基础上,用于在某一点附近对函数进行线性逼近。

在学习导数与微分时,需要注意以下几个重要的概念和公式:1. 导数的定义:导数可以用函数的极限表示,即 f'(x) =lim(Δx→0) (f(x+Δx)-f(x))/Δx,其中 f'(x) 表示函数 f(x) 在点 x 处的导数。

2. 常见函数求导法则:常数函数、幂函数、指数函数、对数函数、三角函数等函数的导数可以利用一些基本的求导法则确定。

3. 高阶导数:函数的导数也可以再次求导,得到的导数称为高阶导数。

4. 微分的定义:函数 y = f(x) 在点 x 处的微分可以表示为 dy = f'(x)dx。

5. 微分的应用:微分可以用来进行近似计算,比如在物理上的位移、速度和加速度等问题中的应用。

二、极限与连续极限与连续是大一高数的第二个重点知识点。

极限是数列、函数趋近于某个确定值的概念,连续则是函数在某一区间内无断点的特性。

在学习极限与连续时,需要注意以下几个重要的概念和定理:1. 数列极限的定义:对于一个数列 {an},若存在常数 A,使得当 n 趋于无穷时,an 与 A 的差值无限接近,则称数列 {an} 的极限为 A。

2. 函数极限的定义:对于一个函数 f(x),若存在常数 A,使得当 x 趋于某个值 x0 时,f(x) 与 A 的差值无限接近,则称函数 f(x) 的极限为 A。

3. 极限的性质与四则运算:极限具有唯一性和有界性,并且可利用四则运算法则求解。

4. 无穷小量与无穷大量:无穷小量是指当 x 趋于某个值时,其极限为 0 的量;无穷大量是指当 x 趋于某个值时,其绝对值无限增大的量。

5. 连续函数的定义与性质:函数在某一点 x0 处连续,意味着函数在 x0 处的极限等于函数在 x0 处的取值,并且连续函数的四则运算结果仍然是连续函数。

大一高数期末复习课提纲(很有用)

大一高数期末复习课提纲(很有用)

18
常用函数的麦克劳林公式
2 n+1 x 3 x5 x sin x = x − + − ! + ( −1)n + o( x 2 n+2 ) 3! 5! ( 2n + 1)! 2n x 2 x4 x6 x n 2n cos x = 1 − + − + ! + ( −1) + o( x ) 2! 4! 6! ( 2n)!
( a) 当 f ʹ′ʹ′( x0 ) < 0, f ( x )在 x0 处取得极大值 , ( b) 当 f ʹ′ʹ′( x0 ) > 0, f ( x )在 x0 处取得极小值 .
23
求极值的步骤:
a. 求导数 f ʹ′( x); b. 求驻点(方程 f ʹ′( x) = 0 的根) 及 f ʹ′( x)不存在 的点. c. 检查 f ʹ′( x) 在b中所有点左右的正负号, 或 f ʹ′ʹ′( x) 在该点的符号, 判断极值点. d . 求极值.
x x n x ln(1 + x ) = x − + − ! + ( −1) + o( x n+1 ) 2 3 n+1
2
3
n+1
19
1 2 n n = 1 + x + x + ! + x + o( x ) 1− x m( m − 1) 2 (1 + x ) = 1 + mx + x +! 2! m( m − 1)!( m − n + 1) n n + x + o( x ) n!
lim f ( x ) = f ( x0 )
6

高数笔记大一全部知识点总结

高数笔记大一全部知识点总结

高数笔记大一全部知识点总结高等数学是大一学生必修的一门课程,它是应用数学的重要基础,也是后续专业课程的前置知识。

以下是对大一高等数学课程的全部知识点进行的总结。

1. 数列与数学归纳法1.1 等差数列与等差数列的通项公式1.2 等比数列与等比数列的通项公式1.3 数列的求和公式与极限2. 函数与极限2.1 函数的定义与性质2.2 极限的定义与性质2.3 无穷大与无穷小2.4 函数的连续性与间断点3. 导数与微分3.1 导数的定义与几何意义3.2 常见函数的导数公式3.3 高阶导数与隐式函数求导 3.4 微分的定义与应用4. 微分中值定理与导数应用4.1 极值与最值4.2 高阶导数与凹凸性4.3 中值定理与罗尔定理4.4 泰勒公式与应用5. 积分与不定积分5.1 积分的定义与性质5.2 基本积分公式与换元积分法 5.3 分部积分与定积分5.4 数列和函数积分与应用6. 定积分与曲线长度6.1 定积分的定义与计算6.2 曲线长度的计算6.3 平面图形的面积与旋转体的体积 6.4 广义积分与收敛性7. 常微分方程7.1 微分方程的基本概念与分类7.2 可分离变量方程与齐次方程7.3 一阶线性微分方程与常数变易法 7.4 高阶线性微分方程与特征根法8. 多元函数微分学8.1 二元函数的偏导数与全微分8.2 隐函数与隐函数求导8.3 多元函数的极值与条件极值8.4 二重积分与累次积分以上是大一高等数学课程的全部知识点总结。

通过对这些知识点的学习,可以建立起扎实的数学基础,为后续专业课程的学习打下坚实的基础。

同时,高等数学也培养了我们的逻辑思维能力和问题解决能力,为我们的学习生涯做好了铺垫。

掌握这些知识点后,我们可以通过大量的习题和实例来巩固和应用所学知识,提高自己的数学思维和解题能力。

除了课堂学习外,可以参加数学竞赛、加入学术团队等方式,进一步拓宽数学知识的应用领域。

高等数学是一门重要的学科,不仅在理工科领域中有广泛的应用,也在其他学科中扮演着重要角色。

大一高数知识点归纳

大一高数知识点归纳

大一高数知识点归纳一、极限与连续1. 极限的概念- 数列极限的定义与性质- 函数极限的定义与性质- 无穷小与无穷大的概念- 极限的四则运算法则2. 极限的计算- 极限的代入法- 极限的因式分解法- 洛必达法则- 夹逼定理3. 连续函数- 连续性的定义- 连续函数的性质- 闭区间上连续函数的性质(最大值最小值定理)二、导数与微分1. 导数的概念- 导数的定义- 导数的几何意义与物理意义- 可导与连续的关系2. 常见函数的导数- 基本初等函数的导数- 导数的运算法则- 高阶导数3. 微分- 微分的定义- 微分的运算法则- 隐函数的微分法三、中值定理与导数的应用1. 中值定理- 罗尔定理- 拉格朗日中值定理- 柯西中值定理2. 导数的应用- 函数的单调性- 函数的极值问题- 曲线的凹凸性与拐点- 函数的渐近线四、不定积分1. 不定积分的概念- 原函数与不定积分的定义 - 不定积分的基本性质2. 常见函数的积分方法- 换元积分法- 分部积分法- 有理函数的积分五、定积分1. 定积分的概念- 定积分的定义- 定积分的性质2. 定积分的计算- 微积分基本定理- 定积分的换元法与分部积分法3. 定积分的应用- 平面图形的面积- 曲线的长度- 旋转体的体积六、级数1. 级数的基本概念- 级数的定义与分类- 收敛级数与发散级数2. 级数的收敛性判别- 正项级数的比较判别法- 比值判别法与根值判别法- 交错级数的收敛性判别3. 幂级数- 幂级数的收敛半径与收敛区间 - 泰勒级数与麦克劳林级数七、空间解析几何1. 向量与直线- 向量的运算与性质- 直线的方程与性质2. 平面与曲线- 平面的方程- 空间曲线的方程3. 多元函数的微分学- 偏导数与全微分- 多元函数的链式法则八、重积分1. 二重积分- 二重积分的定义与性质 - 二重积分的计算方法2. 三重积分- 三重积分的定义与性质 - 三重积分的计算方法九、曲线积分与格林公式1. 曲线积分- 曲线积分的定义与性质 - 曲线积分的计算2. 格林公式- 格林公式的表述- 应用格林公式计算曲线积分以上是大一高数的主要知识点归纳,每个部分都包含了关键的概念、定义、性质和计算方法。

高数大一上知识点总结复习

高数大一上知识点总结复习

高数大一上知识点总结复习在大一上学期的学习中,我们学习了高等数学(高数)的一些基础知识点。

这些知识点对我们建立数学思维、提高分析问题和解决问题的能力非常重要。

接下来,我将对这些知识点进行总结和复习。

一、极限与连续1. 数列与极限数列的概念:数列是按照一定规律排列的一串数。

数列的极限:当数列中的数值趋于某个常数时,称该常数为数列的极限。

数列极限的性质:极限唯一性、保号性、夹逼性、有界性等。

2. 函数与极限函数的定义:函数是一个对应关系,将一个自变量的值映射到一个因变量的值。

函数的极限:当自变量趋近于某个值时,函数对应的因变量的值趋近于某个常数。

函数极限的性质:极限唯一性、四则运算法则、复合函数的极限等。

3. 连续与间断连续函数的定义:函数在其定义域内的任何点上都满足极限存在且与函数值相等。

间断点与间断性:函数在某些点上极限不存在或者与函数值不相等,称为间断点。

二、导数与微分1. 导数的概念与性质导数的定义:描述函数在某一点附近的变化率。

导数可以表示斜率、速率、函数的变化趋势等。

导数的性质:四则运算法则、常数函数的导数、乘积法则、商法则等。

2. 导数的应用切线与法线:导数与函数图像上的切线方程和法线方程的应用。

函数的单调性:导数与函数的单调性的关系,判断函数在某个区间上的单调性。

函数的最值:通过导数来判断函数的最值。

3. 微分的概念与性质微分的定义:描述函数在某一点附近的变化量。

微分的性质:微分与导数的关系、微分的线性性质等。

三、不定积分与定积分1. 不定积分不定积分的定义:描述函数的原函数。

不定积分是导数的逆运算。

基本积分表:求解一些常见函数的不定积分所需的基本积分表。

不定积分的性质:线性性质、分部积分法、换元积分法等。

2. 定积分定积分的定义:描述函数在某个区间上的累积效果。

定积分的性质:线性性质、区间可加性、积分中值定理等。

牛顿-莱布尼茨公式:定积分和不定积分的关系。

四、微分方程1. 微分方程的概念与基本形式微分方程的定义:含有一个或多个未知函数的导数和自变量的关系式。

大一必考高数知识点

大一必考高数知识点

大一必考高数知识点在大一的学习生活中,高等数学是必修课程之一,对于学习理工科的同学来说,掌握好高数知识点非常重要。

下面将介绍一些大一必考的高数知识点,帮助同学们更好地应对高数考试。

一、函数与极限1. 函数的定义与性质:介绍函数的定义、定义域、值域等概念,以及奇函数和偶函数的性质。

2. 函数的极限:介绍函数极限的定义、左极限和右极限的概念,以及常见函数的极限计算方法。

3. 无穷大与无穷小:讲解无穷大和无穷小的定义,以及无穷小的判定方法。

二、导数与微分1. 导数的定义:介绍导数的定义,讨论导数存在的条件,并给出常见函数的导数计算方法。

2. 导数的应用:介绍导数在几何与物理问题中的应用,如切线与法线、相关变率、最值等。

3. 微分的概念:引入微分的概念,讨论微分与导数的关系,并解释微分的几何意义。

三、不定积分与定积分1. 不定积分的定义:介绍不定积分的定义,给出常见函数的不定积分计算方法,如幂函数、指数函数、三角函数等。

2. 定积分的概念:介绍定积分的定义,讨论定积分的性质,如线性性、区间可加性等。

3. 定积分的应用:介绍定积分在几何与物理问题中的应用,如曲线长度、平面面积、体积、质量等。

四、级数1. 数项级数:讲解数项级数的定义与判敛条件,介绍常见级数的性质,如正项级数、比较判别法、比值判别法等。

2. 幂级数:介绍幂级数的定义与收敛半径,讨论幂级数的收敛性以及幂函数展开。

五、微分方程1. 微分方程的基本概念:介绍常微分方程的分类,讲解微分方程的阶、线性与非线性等概念。

2. 一阶常微分方程:讨论一阶常微分方程的可分离变量、线性方程、齐次方程等特殊类型的解法。

总结:以上介绍了大一必考的高数知识点,包括函数与极限、导数与微分、不定积分与定积分、级数以及微分方程等内容。

希望同学们能够认真学习这些知识点,充分理解概念和原理,并进行大量的练习,以提高解题能力和应对考试的能力。

祝大家在高数考试中取得优异的成绩!。

大一第一学期高数知识点

大一第一学期高数知识点

大一第一学期高数知识点在大一的第一学期,高等数学(又称高数)是必修课程之一,对于理工科的学生来说,掌握高数知识点是十分重要的。

本文将介绍大一第一学期高数的主要知识点,包括函数与极限、导数与微分、高阶导数与泰勒展开、不定积分和定积分五个部分。

一、函数与极限1. 函数的概念:函数是两个集合之间的一种映射关系,常用符号表示为y=f(x)。

2. 极限的概念:极限是数列或函数逐渐趋近于某个值的过程,包括左极限、右极限和无穷极限。

3. 极限的性质:包括四则运算法则、绝对值法则、比较法则等。

4. 常见函数的极限:如幂函数、指数函数、对数函数等。

二、导数与微分1. 导数的概念:导数描述了函数在某一点的变化率,也可以理解为函数曲线在该点的切线斜率。

2. 导数的计算方法:使用极限定义、基本导数法则、求导公式等方法计算导数。

3. 常见函数的导数:如幂函数、指数函数、对数函数、三角函数等。

4. 微分的概念:微分是导数的一种近似表示,表示函数在某一点附近的增量。

5. 微分的计算方法:使用微分公式和微分运算法则等方法计算微分。

三、高阶导数与泰勒展开1. 高阶导数的概念:高阶导数表示导数的导数,如二阶导数、三阶导数等。

2. 高阶导数的计算方法:通过对原函数多次求导来计算高阶导数。

3. 泰勒展开的概念:泰勒展开是一种使用多项式逼近函数的方法,可将函数在某点附近展开成幂级数。

4. 泰勒展开的计算方法:使用公式对函数进行泰勒展开。

四、不定积分1. 不定积分的概念:不定积分是求解函数的原函数的过程,表示为∫f(x)dx。

2. 基本积分公式:包括幂函数积分、三角函数积分、指数函数积分等基本公式。

3. 换元积分法:使用换元法将原函数转化为容易求解的形式。

4. 分部积分法:使用分部积分公式对复杂函数进行求积分。

五、定积分1. 定积分的概念:定积分是计算曲线下面的面积的方法,表示为∫[a,b]f(x)dx。

2. 定积分的性质:包括线性性质、区间可加性、积分中值定理等性质。

大一高数考试必背知识点

大一高数考试必背知识点

大一高数考试必背知识点
在大一高数考试中,准备充分且掌握重要的知识点非常重要。

下面是一些大一高数考试必背的知识点,希望对你有所帮助。

一、函数与极限
1. 函数的定义和性质
2. 极限的定义和性质
3. 极限运算法则
4. 无穷小与无穷大
5. 函数的连续性和间断点
6. 函数的导数和微分
二、导数与微分
1. 导数的定义和性质
2. 导数的四则运算与求导法则
3. 高阶导数和隐函数求导
4. 微分的定义和性质
5. 微分中值定理和罗尔定理
三、积分
1. 不定积分和定积分的概念
2. 基本积分表和常用积分公式
3. 定积分的性质和基本定理
4. 反常积分的概念和判定
5. 曲线的面积与弧长
四、微分方程
1. 微分方程的概念和基本形式
2. 一阶微分方程的解法
3. 高阶线性微分方程及其特解
4. 变量分离法和齐次方程
5. 常系数线性齐次方程
五、多元函数与偏导数
1. 多元函数的定义和性质
2. 偏导数的定义和计算
3. 隐函数的偏导数
4. 方向导数和梯度
5. 极值和最大值最小值
六、空间解析几何
1. 点、直线和平面的方程
2. 空间曲线的参数方程
3. 空间曲面的方程和性质
4. 直线与曲面的位置关系
5. 空间向量的运算和坐标表示
以上是大一高数考试必背的知识点,通过充分理解这些知识点并进行适当的练习和应用,相信你将能够在考试中取得好成绩。

祝你顺利通过考试!。

高数大一最全知识点总结

高数大一最全知识点总结

高数大一最全知识点总结高等数学作为一门重要的学科,对于大一学生来说是一门必修课程。

掌握高等数学的基本知识点,不仅对于日后的学习打下了坚实的基础,也有助于理解其他相关学科的内容。

本文将对高数大一学习中的各个知识点进行总结和归纳,帮助读者更好地理解和应用这些知识。

一、微分与导数1. 函数与极限- 一元函数与多元函数- 函数的极限定义- 常见函数的极限计算方法2. 导数与微分- 导数的定义与性质- 常见函数的导数计算方法- 微分的概念与应用3. 高级导数- 高阶导数的定义- 高阶导数的性质- 隐函数与参数方程的高阶导数计算二、积分与微分方程1. 不定积分与定积分- 不定积分的定义与性质- 常见函数的积分计算方法- 定积分的定义与性质- 积分中值定理及其应用2. 微分方程基础- 微分方程的概念- 一阶常微分方程的解法- 高阶常微分方程的解法3. 微分方程的应用- 物理问题中的微分方程- 生活中的微分方程应用- 模型问题中的微分方程建立与求解三、级数与数列1. 数列与极限- 数列极限的定义与性质- 常见数列极限计算方法- 无穷大与无穷小2. 常数项级数- 级数的概念与性质- 常数项级数的敛散性判定- 常数项级数的收敛性判定方法3. 幂级数- 幂级数的概念与性质- 幂级数的收敛区间与收敛半径的计算 - 幂级数的应用四、空间解析几何1. 三维空间中的点、直线、平面- 点的坐标表示- 直线的参数方程与一般方程- 平面的点法式与一般方程2. 直线与平面的位置关系- 直线与平面的交点- 直线与平面的夹角- 平面与平面的位置关系3. 空间曲线与曲面- 空间曲线的参数方程- 隐函数方程与参数方程的相互转化 - 曲面方程的一般形式与特殊形式五、多元函数与偏导数1. 多元函数的概念与性质- 多元函数的定义- 多元函数的极限与连续性判定- 多元函数的偏导数与全微分2. 偏导数的计算- 偏导数的定义与性质- 偏导数的计算方法与应用- 高阶偏导数的定义与计算3. 多元函数极值与条件极值- 多元函数的极值判定条件- 多元函数的最值计算- 有条件的极值问题总结:通过对高数大一知识点的总结,我们了解了微分与导数、积分与微分方程、级数与数列、空间解析几何以及多元函数与偏导数等重要内容。

大一高数复习资料

大一高数复习资料

第一章复习x.1 函数的极限及其连续性 概念:省略注意事项1. 无界变量与无穷大的区别:无穷大量一定是无界变量,但无界变量不一定是无穷大量,例如,x x x f y sin )(==是无界变量,但不是无穷大量。

因为取22ππ+==n x x n 时,22)(ππ+=n x f n ,当n 充分大时,)(n x f 可以大于一预先给定的正数M ;取πn x x n 2==时,0)(=n x f 2. 记住常用的等价形式 当0→x 时,,~arctan ,~tan ,~arcsin ,~sin x x x x x x x xx x x x x e x x x αα~1)1(,21~cos 1,~1,~)1ln(2-+--+例1 当0→x 时,下列函数哪一个是其他三个的高阶无穷小 (1)2x 。

(2)x cos 1-。

(3)x x tan sin - (4))1ln(2x +。

()解:因为222~)1ln(,21~cos 1x x x x +-,所以选择C 练习 xxe x x cos ln cos lim 20-→解 )]1(cos 1ln[cos 11limcos ln cos lim2200-+-+-=-→→x xe x x e x x x x 31cos cos 1lim 1cos lim)]1(cos 1ln[cos 1lim)]1(cos 1ln[1lim020002-=--+-=-+-+-+-=→→→→x xx x x xx e x x x x x3. 若函数的表达式中包含有b a +(或b a +),则在运算前通常要在分子分母乘以其共轭根式b a -(或b a -),反之亦然,然后再做有关分析运算 例2 求)1sin(lim 2π+∞→n n 。

解 ])1sin[(lim )1sin(lim 22πππn n n n n n +-+=+∞→∞→nn n n n n n n ++-=-+-=∞→∞→1sin)1(lim )1sin()1(lim 22ππ当∞→n 时,)(,01~1sin22∞→→++++n nn nn ππ又 1|)1(|=-n,故0)1sin(lim 2=+∞→πn n练习 求])1(2121[lim -+++-+++∞→n n n解 原式=22)1()1(221lim 2)1(2)1(lim =-++⋅=⎥⎦⎤⎢⎣⎡--+∞→∞→n n n n n n n n n n n 4. e x xx =⎪⎭⎫⎝⎛+∞→11lim 该极限的特点:⎩⎨⎧∞与幂互为倒数后的变量(包括符号))括号中(型未定式121)1(解题方法(1) 若极限呈∞1型,但第二个特点不具备,则通常凑指数幂使(2)成立 (2) 凡是∞1型未定式,其结果:底必定是e ,幂可这样确定: 设0)(lim =x u ,∞=)(lim x v ,则)()(lim )]()[(lim ))(1ln()(lim ))(1ln()()(lim ))(1lim (x u x v x u x v x u x v x u x v x v e e e e x u ±±±±====±这是因为 )(~))(1ln(x u x u ±±。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学(本科少学时类型)第一章 函数与极限第一节 函数○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★)(){},|U a x x a δδ=-<(){},|0U a x x a δδ=<-<第二节 数列的极限○数列极限的证明(★)【题型示例】已知数列{}n x ,证明{}lim n x x a →∞= 【证明示例】N -ε语言1.由n x a ε-<化简得()εg n >, ∴()N g ε=⎡⎤⎣⎦2.即对0>∀ε,()N g ε∃=⎡⎤⎣⎦,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞→lim第三节 函数的极限○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0lim【证明示例】δε-语言1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg =2.即对0>∀ε,()εδg =∃,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0lim○∞→x 时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x =∞→lim【证明示例】X -ε语言1.由()f x A ε-<化简得()x g ε>, ∴()εg X =2.即对0>∀ε,()εg X =∃,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞→lim第四节 无穷小与无穷大○无穷小与无穷大的本质(★) 函数()x f 无穷小⇔()0lim =x f 函数()x f 无穷大⇔()∞=x f lim○无穷小与无穷大的相关定理与推论(★★)(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f1-为无穷大【题型示例】计算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U内是有界的;(∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0=→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)3.由定理可知()()0lim 0x x f x g x →⋅=⎡⎤⎣⎦(()()lim 0x f x g x →∞⋅=⎡⎤⎣⎦)第五节 极限运算法则○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则关于多项式()p x 、()x q 商式的极限运算设:()()⎪⎩⎪⎨⎧+⋯++=+⋯++=--nn n mm m b x b x b x q a x a x a x p 110110则有()()⎪⎪⎩⎪⎪⎨⎧∞=∞→0lim 0b a x q x p x m n m n m n >=<()()()()000lim 00x x f x g x f x g x →⎧⎪⎪⎪=∞⎨⎪⎪⎪⎩()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00lim 0x x f x g x →=(不定型)时,通常分子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9x x x →--【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()23333311limlim lim 93336x x x x x x x x x →→→--====-+-+ 其中3x =为函数()239x f x x -=-的可去间断点倘若运用罗比达法则求解(详见第三章第二节):解:()()0233323311lim lim lim 9269x L x x x x x x x '→→→'--===-'- ○连续函数穿越定理(复合函数的极限求解)(★★) (定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦ 【题型示例】求值:93lim 23--→x x x【求解示例】3x →===第六节 极限存在准则及两个重要极限○夹迫准则(P53)(★★★) 第一个重要极限:1sin lim 0=→xxx∵⎪⎭⎫⎝⎛∈∀2,0πx ,x x x tan sin <<∴1sin lim0=→x x x 0000lim11lim lim 1sin sin sin lim x x x x x x x x x x →→→→===⎛⎫⎪⎝⎭(特别地,000sin()lim1x x x x x x →-=-)○单调有界收敛准则(P57)(★★★)第二个重要极限:e x xx =⎪⎭⎫⎝⎛+∞→11lim(一般地,()()()()lim lim lim g x g x f x f x =⎡⎤⎡⎤⎣⎦⎣⎦,其中()0lim >x f )【题型示例】求值:11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x【求解示例】()()211121212122121122122121lim21221232122lim lim lim 121212122lim 1lim 121212lim 121x x x x x x x x x x x x x x x x x x x x x x x x +++→∞→∞+→∞⋅++++⋅⋅+++→∞+→∞++→∞+++⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎢⎥=+=+ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎢⎥=+⎪⎢⎥+⎝⎭⎣⎦解:()()12lim 1212121212122lim 121x x x x x x x x x ee e e+→∞⎡⎤⋅+⎢⎥+⎣⎦+→∞+→∞⎡⎤⋅+⎢⎥+⎣⎦+⎛⎫⎪+⎝⎭====第七节 无穷小量的阶(无穷小的比较) ○等价无穷小(★★)1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1UU U U U U U e +- 2.U U cos 1~212-(乘除可替,加减不行)【题型示例】求值:()()xx x x x x 31ln 1ln lim20++++→【求解示例】()()()()()()()3131lim 31lim 31ln 1lim 31ln 1ln lim ,0,000020=++=+⋅+=++⋅+=++++=≠→→→→→x x x x x x x x x x x x x x x x x x x x x 所以原式即解:因为第八节 函数的连续性 ○函数连续的定义(★)()()()000lim lim x x x x f x f x f x -+→→==○间断点的分类(P67)(★)⎩⎨⎧∞⋯⋯⎩⎨⎧)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数()⎩⎨⎧+=x a e x f x 2 ,00≥<x x 应该怎样选择数a ,使得()x f 成为在R 上的连续函数?【求解示例】1.∵()()()2010000f e e e f a a f a --⋅++⎧===⎪⎪=+=⎨⎪=⎪⎩2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 0∴e a =第九节 闭区间上连续函数的性质 ○零点定理(★)【题型示例】证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 【证明示例】1.(建立辅助函数)函数()()()x f x g x C ϕ=--在闭区间[],a b 上连续;2.∵()()0a b ϕϕ⋅<(端点异号)3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0fg C ξξ--=(10<<ξ) 4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第二章 导数与微分第一节 导数概念○高等数学中导数的定义及几何意义(P83)(★★)【题型示例】已知函数()⎩⎨⎧++=b ax e x f x 1 ,00>≤x x 在0=x 处可导,求a ,b【求解示例】1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩ ∴1,2a b ==【题型示例】求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ⎡⎤⎣⎦处的切线与法线方程) 【求解示例】1.()x f y '=',()a f y a x '='=| 2.切线方程:()()()y f a f a x a '-=- 法线方程:()()()1y f a x a f a -=--' 第二节 函数的和(差)、积与商的求导法则○函数和(差)、积与商的求导法则(★★★) 1.线性组合(定理一):()u v u v αβαβ'''±=+ 特别地,当1==βα时,有()u v u v '''±=± 2.函数积的求导法则(定理二):()uv u v uv '''=+3.函数商的求导法则(定理三):2u u v uv v v '''-⎛⎫= ⎪⎝⎭第三节 反函数和复合函数的求导法则○反函数的求导法则(★)【题型示例】求函数()x f1-的导数【求解示例】由题可得()x f 为直接函数,其在定于域D上单调、可导,且()0≠'x f ;∴()()11fx f x -'⎡⎤=⎣⎦' ○复合函数的求导法则(★★★)【题型示例】设(ln y e =,求y '【求解示例】(22arcsi y ex a e e e ''='⎛⎫' ⎪+=⎝⎛⎫⎪ =⎝⎭=解:⎛ ⎝第四节 高阶导数 ○()()()()1n n fx fx -'⎡⎤=⎣⎦(或()()11n n n n d y d y dx dx --'⎡⎤=⎢⎥⎣⎦)(★) 【题型示例】求函数()x y +=1ln 的n 阶导数 【求解示例】()1111y x x-'==++, ()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦, ()()()()()2311121y x x --'⎡⎤'''=-⋅+=-⋅-⋅+⎣⎦……()1(1)(1)(1)nn n y n x --=-⋅-⋅+!第五节 隐函数及参数方程型函数的导数 ○隐函数的求导(等式两边对x 求导)(★★★) 【题型示例】试求:方程ye x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程【求解示例】由ye x y +=两边对x 求导即()y y x e '''=+化简得1yy e y ''=+⋅∴ee y -=-='11111 ∴切线方程:()e x ey +--=-1111法线方程:()()e x e y +---=-111○参数方程型函数的求导【题型示例】设参数方程()()⎩⎨⎧==t y t x γϕ,求22dx yd【求解示例】1.()()t t dx dy ϕγ''= 2.()22dy d y dx dxt ϕ'⎛⎫⎪⎝⎭=' 第六节 变化率问题举例及相关变化率(不作要求)第七节 函数的微分○基本初等函数微分公式与微分运算法则(★★★) ()dx x f dy ⋅'=第三章 中值定理与导数的应用第一节 中值定理 ○引理(费马引理)(★) ○罗尔定理(★★★) 【题型示例】现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ∃∈, 使得()()cos sin 0ff ξξξξ'+=成立【证明示例】1.(建立辅助函数)令()()sin x f x x ϕ=显然函数()x ϕ在闭区间[]0,π上连续,在开区间()0,π上可导;2.又∵()()00sin00f ϕ==()()sin 0f ϕπππ== 即()()00ϕϕπ==3.∴由罗尔定理知()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x >时,xe e x >⋅ 【证明示例】1.(建立辅助函数)令函数()x f x e =,则对1x ∀>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;2.由拉格朗日中值定理可得,[]1,x ξ∃∈使得等式()11x e e x e ξ-=-成立,又∵1e e ξ>,∴()111x e e x e e x e ->-=⋅-,化简得x e e x >⋅,即证得:当1x >时,xe e x >⋅ 【题型示例】证明不等式:当0x >时,()ln 1x x +< 【证明示例】1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ∀>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()11f x x'=+;2.由拉格朗日中值定理可得,[]0,x ξ∃∈使得等式()()()1ln 1ln 1001x x ξ+-+=-+成立,化简得()1ln 11x x ξ+=+,又∵[]0,x ξ∈, ∴()111f ξξ'=<+,∴()ln 11x x x +<⋅=, 即证得:当1x >时,xe e x >⋅第二节 罗比达法则○运用罗比达法则进行极限运算的基本步骤(★★) 1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件 A .属于两大基本不定型(0,0∞∞)且满足条件,则进行运算:()()()()lim limx a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)B .☆不属于两大基本不定型(转化为基本不定型) ⑴0⋅∞型(转乘为除,构造分式) 【题型示例】求值:0lim ln x x x α→⋅【求解示例】()10000201ln ln lim ln lim lim lim 111lim 0x x L x x x x x x x x x x x x x a ααααααα∞∞-'→→→→→'⋅===⋅'⎛⎫- ⎪⎝⎭=-=解: (一般地,()0lim ln 0x x x βα→⋅=,其中,R αβ∈)⑵∞-∞型(通分构造分式,观察分母) 【题型示例】求值:011lim sin x x x →⎛⎫-⎪⎝⎭【求解示例】200011sin sin lim lim lim sin sin x x x x x x x x x x x x →→→--⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪⋅⎝⎭⎝⎭⎝⎭解:()()()()000002sin 1cos 1cos sin limlim lim lim 0222L x x L x x x x x x xx x x ''→→→→''---====='' ⑶00型(对数求极限法)【题型示例】求值:0lim xx x →【求解示例】()()0000lim ln ln 000002ln ,ln ln ln 1ln ln 0lim ln lim lim111lim lim 0lim lim 11x x x x x L x yy x x x x x y x y x x x xx xx y xx x x y e e e x→∞∞'→→→→→→→===='→=='⎛⎫ ⎪⎝⎭==-=====-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法)【题型示例】求值:()10lim cos sin xx x x →+【求解示例】()()()()()1000000lim ln ln 10ln cos sin cos sin ,ln ,ln cos sin ln 0limln limln cos sin cos sin 10lim lim 1,cos sin 10lim =lim x xx x L x x yy x x x x y x x y xx x y x y xx x x x x x x y e e e e→→→'→→→→+=+=+→='+⎡⎤--⎣⎦====++'===解:令两边取对数得对求时的极限,从而可得⑸0∞型(对数求极限法) 【题型示例】求值:tan 01lim xx x →⎛⎫⎪⎝⎭【求解示例】()()tan 00200020*******,ln tan ln ,1ln 0lim ln lim tan ln 1ln ln limlimlim 1sec 1tan tan tan sin sin lim lim li xx x x L x x x L x y y x x x y x y x x x xx x x xx x x x x →→∞∞'→→→'→→⎛⎫⎛⎫==⋅ ⎪⎪⎝⎭⎝⎭⎡⎤⎛⎫→=⋅ ⎪⎢⎥⎝⎭⎣⎦'=-=-=-⎛⎫'⎛⎫-⎪ ⎪⎝⎭⎝⎭'==='解:令两边取对数得对求时的极限,00lim ln ln 002sin cos m 0,1lim =lim 1x x yy x x x xy e e e →→→→⋅====从而可得○运用罗比达法则进行极限运算的基本思路(★★)00001∞⎧⎪∞-∞−−→←−−⋅∞←−−⎨∞⎪∞⎩∞(1)(2)(3)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分式形式) ⑶取对数获得乘积式(通过对数运算将指数提前)第三节 泰勒中值定理(不作要求) 第四节 函数的单调性和曲线的凹凸性 ○连续函数单调性(单调区间)(★★★) 【题型示例】试确定函数()3229123f x x x x =-+-的单调区间 【求解示例】1.∵函数()f x 在其定义域R 上连续,且可导 ∴()261812f x x x '=-+2.令()()()6120f x x x '=--=,解得:121,2x x ==4.∴函数f x 的单调递增区间为,1,2,-∞+∞; 单调递减区间为()1,2【题型示例】证明:当0x >时,1xe x >+ 【证明示例】1.(构建辅助函数)设()1x x e x ϕ=--,(0x >)2.()10xx e ϕ'=->,(0x >)∴()()00x ϕϕ>=3.既证:当0x >时,1xe x >+【题型示例】证明:当0x >时,()ln 1x x +<【证明示例】1.(构建辅助函数)设()()ln 1x x x ϕ=+-,(0x >)2.()1101x xϕ'=-<+,(0x >) ∴()()00x ϕϕ<=3.既证:当0x >时,()ln 1x x +<○连续函数凹凸性(★★★)【题型示例】试讨论函数2313y x x =+-的单调性、极值、凹凸性及拐点【证明示例】1.()()236326661y x x x x y x x '⎧=-+=--⎪⎨''=-+=--⎪⎩ 2.令()()320610y x x y x '=--=⎧⎪⎨''=--=⎪⎩解得:120,21x x x ==⎧⎨=⎩3.(四行表)x (,0)-∞ 0 (0,1)1 (1,2)2 (2,)+∞y ' - 0 + + 0 - y '' + + - - y 1 (1,3) 54.⑴函数13y x x =+-单调递增区间为(0,1),(1,2)单调递增区间为(,0)-∞,(2,)+∞;⑵函数2313y x x =+-的极小值在0x =时取到,为()01f =,极大值在2x =时取到,为()25f =;⑶函数2313y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸;⑷函数2313y x x =+-的拐点坐标为()1,3第五节 函数的极值和最大、最小值○函数的极值与最值的关系(★★★)⑴设函数()f x 的定义域为D ,如果M x ∃的某个邻域()M U x D ⊂,使得对()M x U x ∀∈,都适合不等式()()M f x f x <,我们则称函数()f x 在点(),M M x f x ⎡⎤⎣⎦处有极大值()M f x ;令{}123,,,...,M M M M Mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最大值M 满足:()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;⑵设函数()f x 的定义域为D ,如果m x ∃的某个邻域()m U x D ⊂,使得对()m x U x ∀∈,都适合不等式()()m f x f x >,我们则称函数()f x 在点(),m m x f x ⎡⎤⎣⎦处有极小值()m f x ;令{}123,,,...,m m m m mn x x x x x ∈则函数()f x 在闭区间[],ab 上的最小值m 满足:()(){}123min ,,,,...,,m m m mn m f a x x x x f b =;【题型示例】求函数()33f x x x =-在[]1,3-上的最值【求解示例】1.∵函数()f x 在其定义域[]1,3-上连续,且可导 ∴()233f x x '=-+2.令()()()3110f x x x '=--+=, 解得:121,1x x =-= x1- ()1,1-1 (]1,3()f x ' 0+-()f x极小值极大值4.又∵12,12,318f f f -=-==- ∴()()()()max min 12,318f x f f x f ====- 第六节 函数图形的描绘(不作要求) 第七节 曲率(不作要求)第八节 方程的近似解(不作要求) 第四章 不定积分第一节 不定积分的概念与性质 ○原函数与不定积分的概念(★★) ⑴原函数的概念:假设在定义区间I 上,可导函数()F x 的导函数为()F x ',即当自变量x I ∈时,有()()F x f x '=或()()dF x f x dx =⋅成立,则称()F x 为()f x 的一个原函数⑵原函数存在定理:(★★)如果函数()f x 在定义区间I 上连续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续) ⑶不定积分的概念(★★)在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:()()f x dx F x C =+⎰(⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量)○基本积分表(★★★)○不定积分的线性性质(分项积分公式)(★★★)()()()()1212k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ 第二节 换元积分法○第一类换元法(凑微分)(★★★) (()dx x f dy ⋅'=的逆向应用)()()()()f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰【题型示例】求221dx a x +⎰【求解示例】222211111arctan 11x x dx dx d Ca x a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:【题型示例】求【求解示例】()()121212x x C=+=+=○第二类换元法(去根式)(★★)(()dx x f dy ⋅'=的正向应用)⑴对于一次根式(0,a b R ≠∈):t =,于是2t b x a-=,则原式可化为t⑵对于根号下平方和的形式(0a >):tan x a t =(22t ππ-<<),于是arctan xt a=,则原式可化为sec a t ;⑶对于根号下平方差的形式(0a >):asin x a t =(22t ππ-<<),于是arcsin xt a=,则原式可化为cos a t ;bsec x a t =(02t π<<),于是arccos at x =,则原式可化为tan a t ;【题型示例】求(一次根式) 【求解示例】2221t x t dx tdttdt dt t C Ct =-=⋅==+=⎰⎰【题型示例】求(三角换元)【求解示例】()()2sin ()2222arcsincos 22cos 1cos 221sin 2sin cos 222x a t t xt adx a ta a tdt t dta a t t C t t t C ππ=-<<==−−−−−−→=+⎛⎫=++=++ ⎪⎝⎭⎰⎰第三节 分部积分法 ○分部积分法(★★)⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-⎰⎰⑵分部积分法函数排序次序:“反、对、幂、三、指” ○运用分部积分法计算不定积分的基本步骤: ⑴遵照分部积分法函数排序次序对被积函数排序; ⑵就近凑微分:(v dx dv '⋅=) ⑶使用分部积分公式:udv uv vdu =-⎰⎰⑷展开尾项vdu v u dx '=⋅⎰⎰,判断a .若v u dx '⋅⎰是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果); b .若v u dx '⋅⎰依旧是相当复杂,无法通过a 中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2x e x dx ⋅⎰【求解示例】()()222222222222222x x x x x x x x x x x x x x x e x dx x e dx x de x e e d x x e x e dx x e x d e x e xe e dx x e xe e C⋅===-=-⋅=-⋅=-+=-++⎰⎰⎰⎰⎰⎰⎰解:【题型示例】求sin x e xdx ⋅⎰【求解示例】()()()()sin cos cos cos cos cos cos sin cos sin sin cos sin sin x x x xx x x x x x x x x x e xdx e d x e x xd ee x e xdx e x e d x e x e x xd e e x e x e xdx⋅=-=-+=-+=-+=-+-=-+-⎰⎰⎰⎰⎰⎰⎰解:()sin cos sin sin x x x x e xdx e x e x xd e ⋅=-+-⎰⎰即:∴()1sin sin cos 2xxe xdx e x x C ⋅=-+⎰第四节 有理函数的不定积分 ○有理函数(★)设:()()()()101101m m mn n nP x p x a x a x a Q x q x b x b x b --=++⋯+==++⋯+ 对于有理函数()()P x Q x ,当()P x 的次数小于()Q x 的次数时,有理函数()()P x Q x 是真分式;当()P x 的次数大于()Q x 的次数时,有理函数()()P x Q x 是假分式○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数()()P x Q x 的分母()Q x 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示为一次因式()kx a -;而另一个多项式可以表示为二次质因式()2lx px q ++,(240p q -<);即:()()()12Q x Q x Q x =⋅一般地:n mx n m x m ⎛⎫+=+ ⎪⎝⎭,则参数n a m =-22b c ax bx c a x x a a ⎛⎫++=++ ⎪⎝⎭则参数,b cp q a a ==⑵则设有理函数()()P x Q x 的分拆和式为:()()()()()()122k lP x P x P x Q x x a x px q =+-++其中()()()()1122...k kkP x A A A x a x a x a x a =+++----()()()()2112222222...ll llP x M x N M x N x px q x px q x px q M x N x px q ++=++++++++++++参数121212,,...,,,,...,l k lM M M A A A N N N ⎧⎧⎧⎨⎨⎨⎩⎩⎩由待定系数法(比较法)求出⑶得到分拆式后分项积分即可求解【题型示例】求21x dx x +⎰(构造法) 【求解示例】()()()221111111111ln 112x x x x dx dx x dx x x x xdx dx dx x x x Cx +-++⎛⎫==-+ ⎪+++⎝⎭=-+=-++++⎰⎰⎰⎰⎰⎰第五节 积分表的使用(不作要求)第五章 定积分极其应用第一节 定积分的概念与性质 ○定积分的定义(★)()()01lim nbiiai f x dx f x I λξ→==∆=∑⎰(()f x 称为被积函数,()f x dx 称为被积表达式,x则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间)○定积分的性质(★★★)⑴()()b baaf x dx f u du =⎰⎰ ⑵()0a af x dx =⎰ ⑶()()b ba akf x dx k f x dx =⎡⎤⎣⎦⎰⎰⑷(线性性质)()()()()1212b b ba a a k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ ⑸(积分区间的可加性)()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0baf x dx >⎰;(推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()b baaf x dxg x dx ≤⎰⎰;(推论二)()()b baaf x dx f x dx ≤⎰⎰○积分中值定理(不作要求) 第二节 微积分基本公式○牛顿-莱布尼兹公式(★★★)(定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则()()()baf x dx F b F a =-⎰○变限积分的导数公式(★★★)(上上导―下下导)()()()()()()()x x d f t dt f x x f x x dxϕψϕϕψψ''=-⎡⎤⎡⎤⎣⎦⎣⎦⎰ 【题型示例】求21cos 2limt xx e dt x -→⎰【求解示例】()2211cos cos 2002lim lim 解:t t x x x L x d e dt e dt dx x x--'→→='⎰⎰()()()()2222221cos cos000cos 0cos cos 0cos 010sin sin limlim 22sin lim 2cos sin 2sin cos lim21lim sin cos 2sin cos 21122xxx x xL x xxx x x e ex x e xxdx e dx x x ex ex xe x x x x e e---→→-'→--→-→-⋅-⋅-⋅==⋅='⋅+⋅⋅=⎡⎤=+⋅⎣⎦=⋅=第三节 定积分的换元法及分部积分法 ○定积分的换元法(★★★) ⑴(第一换元法)()()()()b baa f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰【题型示例】求20121dx x +⎰【求解示例】()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法)设函数()[],f x C a b ∈,函数()x t ϕ=满足: a .,αβ∃,使得()(),a b ϕαϕβ==;b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续 则:()()()ba f x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰【题型示例】求40⎰ 【求解示例】()2210,43220,1014,332332311132213111332223522933解:t t x x t x t t dx t t t dt t dt t x t =-====+−−−−−−→+⎛⎫=⋅⋅=+=+ ⎪⎝⎭=-=⎰⎰⎰⎰ ⑶(分部积分法)()()()()()()()()()()()()bba ab bb aaau x v x dx u x v x v x u x dxu x dv x u x v x v x du x ''=-=-⎡⎤⎣⎦⎰⎰⎰⎰○偶倍奇零(★★)设()[],f x C a a ∈-,则有以下结论成立: ⑴若()()f x f x -=,则()()02aaaf x dx f x dx -=⎰⎰⑵若()()f x f x -=-,则()0aaf x dx -=⎰第四节 定积分在几何上的应用(暂时不作要求) 第五节 定积分在物理上的应用(暂时不作要求) 第六节 反常积分(不作要求)如:不定积分公式21arctan 1dx x C x =++⎰的证明。

相关文档
最新文档