二次根式计算专题——30题(教师版含答案)
二次根式计算专题30题(教师版含答案解析)
【答案】(1)32;(2)163
9
【解析】
;(3)6;(4)6
试题分析:本题主要考查根式的根式的混合运算和0次幂运算.根据运算法则先算乘除
专业知识分享
3
28
3
323
14
3
.
考点:二次根式运算.
6
4.计算:3623
2
【答案】22.
【解析】
试题分析:先算乘除、去绝对值符号,再算加减.
试题解析:原式=32332
=22
考点:二次根式运算.
5.计算:2183(32)
【答案】33.
【解析】
试题分析:先将二次根式化成最简二次根式,再化简.
试题解析:2183(32)=23233633.
32
1;
(2)(621)3
x
xx 4x
6x2xx
()3
2x
x
(3x2x)3x
x3x
专业知识分享
1
3
.
考点:二次根式的混合运算.
3.计算:
1
31224823
3
.
【答案】
【解析】
14
3
.
试题分析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.
试题解析:
1
31224823
3
2
=(63343)23
2
试卷第6页,总10页
完美WORD格式
②
122814
63248126334323323
3333
.
③
2a12a1222a121a
3a3=3a=4a2a
2236a3663
.
二次根式计算专题——30题(教师版含答案)
(2) 3 12 3 1 1 48 27 32
【答案】(1)0;(2) 4 3 .
【解析】
试题分析:(1)原式=1 5 2 3 1 0 ;
(2)原式= 6 3 3 2 3 3 3 4 3 .
试题解析:原式=1 3 3 2 1 3 2 2 3
考点:1.实数的运算;2.零指数幂;3.分母有理化. 20.计算:
①
8
2
1 2
0
②
6 3 2
1 3
48
12
③
3a2 3
a 2
1 2
2a 3
【答案】① 2 1;② 14 ;③ a .
考点:二次根式化简.
14.计算 (3 2 24 8) 12 3
【答案】 -
2+
6
.
23
试卷第 4 页,总 10 页
【解析】 试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案. 试题解析:
(3 2 - 24 + 8) ¸ 12 = ( 6 - 2 6 +2 2) ¸ 2 3 = (2 2 - 6) ¸ 2 3 3
5
3
3 2 1;
(2) (6 x 2x 1 ) 3 x
4xBiblioteka (6 x 2x x ) 3 x 2x
(3 x 2 x ) 3 x
x 3 x
试卷第 1 页,总 10 页
1. 3
考点: 二次根式的混合运算.
3.计算: 3 12 2
二次根式计算专题——30题教师版含答案
二次根式计算专题1.计算:⑴ ()()24632463+- ⑵ 20(2π+【答案】(1)22; (2) 6-【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案.(2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) ()()24632463+-22=-=54-32=22.(2)20(2π+312=+-6=-考点: 实数的混合运算.2.计算(1)﹣× (2)(6﹣2x )÷3. 【答案】(1)1;(2)13【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案.试题解析:3=-⨯32=-1=;(2)2÷2()2x=-÷=÷=13=.考点: 二次根式的混合运算.3.计算:⎛÷⎝【答案】143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.4.计算:322663-+-⨯【答案】22.【解析】试题分析:先算乘除、去绝对值符号,再算加减.试题解析:原式=23323-+-=22考点:二次根式运算.5.计算:)23(3182+-⨯【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.6=-考点:二次根式化简.6.计算:2421332--.【答案】22.【解析】试题分析:根据二次根式的运算法则计算即可.22-==.考点:二次根式的计算.7.计算:)13)(13(2612-++÷-.2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.1)=31-2. 考点:二次根式的化简.8⎝ 【答案】0.【解析】试题分析: 根据二次根式运算法则计算即可.0+=⎝. 考点:二次根式计算.9.计算:()0+1π.【答案】1-【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:()0+1π11=-=-考点:二次根式的化简.10.计算:435.03138+-+ 【答案】323223+. 【解析】试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2322322+-+=323223+. 考点:二次根式的化简.11.计算:(1)(2)()020********π---【答案】(1)1(2)3-【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,.绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:(1)(1==+(2)()020141201431133π---=--+=-. 考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.绝对值.12.计算: 212)31()23)(23(0+---+ 【答案】2.【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.试题解析:解:原式=2123+-- =2考点:二次根式的混合运算.130(2013)|-+-.【答案】1.【解析】0(2013)|+-+-1=+1=.考点:二次根式化简.14.计算12)824323(÷+-【答案】23-.【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:???=- 考点: 二次根式的混合运算.15-2-. 【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.22=-=- 考点: 二次根式的运算.16.化简:(1)83250+ (2)2163)1526(-⨯-【答案】(1)92;(2)- 【解析】试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式92=;(2)原式==-考点:二次根式的混合运算;17.计算(1)2(2)2【答案】(1)3(2)3.【解析】试题分析:(1)根据运算顺序计算即可;(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)233=-=.(2)(2223===.考点:二次根式化简.181)(1+- 【答案】17.【解析】,运用平方差公式计算1)(1+,再进行计算求解.181-- =17考点:实数的运算.19.计算:231|21|27)3(0++-+--【答案】-【解析】试题分析: 本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=11-+=-考点:1.实数的运算;2.零指数幂;3.分母有理化.20.计算:① 01 2⎛⎫+- ⎪⎝⎭ ② ⎛ ⎝ ③⎛- ⎝1;②143;③a 3-. 【解析】试题分析:①针对算术平方根,绝对值,零指数3个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.1112⎛⎫+-= ⎪⎝⎭.②143⎛⎛=÷== ⎝⎝.1a 2a 63⎛---⋅=- ⎝. 考点:1.二次根式计算;2.绝对值;3.0指数幂.21.计算:(1)2012101(1)5()1)2----++(2)【答案】(1)0;(2)【解析】试题分析:(1)原式=152310-++-=;(2)原式==.考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1(0π (2)2(3(4+-【答案】(1)1;(2)5.【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1(011π+-==.(2)((()2344951675+--=+--=. 考点:1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式.23.(1)18282-+(2)3127112-+ (3)0)31(33122-++(4))2332)(2332(-+【答案】(1)-(3)6;(4)6- 【解析】试题分析:本题主要考查根式的根式的混合运算和0次幂运算.根据运算法则先算乘除法,是分式应该先将分式转化为整式,再按运算法则计算。
二次根式计算专题-30题(教师版含答案解析)
完美WORD格式二次根式计算专题1.计算:⑴ 3 6 4 2 3 6 4 2 ⑵ 2 0( 3) ( 3) 27 3 2 【答案】(1)22; (2) 6 4 3【解析】试题分析:(1) 根据平方差公式,把括号展开进行计算即可求出答案.(2) 分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) 3 6 4 2 3 6 4 22 2(3 6) (4 2)=54-32=22.(2) 2 0( 3) ( 3) 27 3 23 1 3 3 2 36 4 3考点: 实数的混合运算.2.计算(1)﹣×(2)(6 ﹣2x )÷ 3 .【答案】(1)1;(2)【解析】1 3试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案. 试题解析:(1)20 5 15 3122 5 5 35 32 33 21;(2)(6 2 1 ) 3xx x 4x6 x 2x x( ) 32 xx(3 x 2 x) 3 xx 3 x专业知识分享13.考点: 二次根式的混合运算.3.计算:13 12 2 48 2 33.【答案】【解析】14 3.试题分析:先将二次根式化成最简二次根式, 再算括号里面的, 最后算除法.试题解析:13 12 2 48 2 332=(6 3 3 4 3) 2 332833 2 3143.考点:二次根式运算.64.计算: 3 6 2 32【答案】 2 2 .【解析】试题分析:先算乘除、去绝对值符号, 再算加减.试题解析:原式=3 2 3 3 2= 2 2考点:二次根式运算.5.计算: 2 18 3( 3 2)【答案】 3 3.【解析】试题分析:先将二次根式化成最简二次根式, 再化简.试题解析: 2 18 3( 3 2)= 2 3 2 3 3 6 3 3.考点:二次根式化简.6.计算:1 4 323 .22 2【答案】.2【解析】试题分析:根据二次根式的运算法则计算即可.试题解析:1 4 32 2 3234 2 2 22 2 2 2.考点:二次根式的计算.试卷第 2 页,总10 页完美WORD格式7.计算:1262(31)(31).【答案】32.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.试题解析:1262(31)(31)=23331=32.考点:二次根式的化简.8.计算:12236322【答案】0.【解析】试题分析:根据二次根式运算法则计算即可.试题解析:36331 12226660.2222考点:二次根式计算.9.计算:0+1123.【答案】13.【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:0+1123123313.考点:二次根式的化简.10.计算:83130.53433【答案】3222【解析】.试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2333223=232222.考点:二次根式的化简.11.计算:(1)2712451 3(2)020141182014223专业知识分享【答案】(1)1 15; (2) 3 2 .【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,. 绝对值 4 个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:( 1 )1 1 127 12 45 3 3 2 3 3 5 3 3 3 5 3 1 153 3 3.(2)020141 18 20142 23 1 3 2 1 2 2 3 3 2 .考点:1. 实数的运算;2. 有理数的乘方;3. 零指数幂;4. 二次根式化简;5. 绝对值.12.计算:( 3 2)( 3 2) (1 03) 2 1 2【答案】 2 .【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.试题解析:解:原式= 3 2 1 2= 2考点:二次根式的混合运算.13.计算:327 ( 2013) | 2 3 |3.【答案】4 3 1. 【解析】试题分析:解:327 ( 2013) | 2 3 |33 3 3 1 2 34 3 1.考点:二次根式化简.214.计算(3 24 8) 123【答案】2 6- + .2 3试卷第 4 页,总10 页完美WORD格式【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:2(3 - 24 + 8) ? 12 ( 6 - 2 6 +22) ? 2 3 (2 2 - 6) ? 2 332 6= - +2 3考点: 二次根式的混合运算.15.计算:12 1 2 1- -2 3【答案】4 3 2- .3 2【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.试题解析:1 12 234 3 2 12 - - 2 = 2 3 - - = -2 3 2 3 3 2考点: 二次根式的运算.50 32 16.化简:(1)8(2)( 6 2 15) 3 6 1 2【答案】(1)【解析】92;(2) 6 5 .试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式= 5 2 4 2 922 2;(2)原式= 6 3 2 15 3 3 2 3 2 6 5 3 2 6 5 .考点:二次根式的混合运算;17.计算(1)27 3 3 22 12 3(2)【答案】(1)3 3 ; (2)3.【解析】试题分析:(1)根据运算顺序计算即可;专业知识分享(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)27 3 3 2 3 3 3 2 3 3 3 .(2)2 2 212 3 2 3 3 3 3 .考点:二次根式化简.18.计算:18(3 2 1)(1 3 2)2 4【答案】17. 【解析】试题分析:先化简12和84,运用平方差公式计算(3 2 1)(1 3 2) ,再进行计算求解 .试题解析:原式==172 218 12 2考点: 实数的运算.119.计算:( 3) 27 |1 2 |32【答案】 2 3 .【解析】试题分析:本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简 4 个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=1 3 3 2 1 3 2 2 3考点:1.实数的运算;2.零指数幂;3.分母有理化.20.计算:1 2 0②16 3 2 48 123①8 2③2 a 1 2a3a 32 2 3【答案】① 2 1;②【解析】143;③a3.试题分析:①针对算术平方根,绝对值,零指数 3 个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.试题解析:①18 2 =2 2 2 1 2 1.2试卷第 6 页,总10 页完美WORD格式②1 2 28 14 6 3 2 48 12 6 3 3 4 3 2 3 3 2 33 3 3 3.③ 2 a 1 2a 1 2 2 2a 1 2 1 a3a 3 = 3a = 4a 2a2 23 6 a 3 6 6 3. 考点:1. 二次根式计算; 2. 绝对值; 3.0 指数幂.21.计算:(1)2012 1 1 3 0( 1) 5 ( ) 27 ( 2 1)2(2)1 13 12 3 48 273 2【答案】(1)0;(2)43.【解析】试题分析:(1)原式=1 5 2 3 1 0;(2)原式=6 3 3 2 3 3 3 4 3 .考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1)327 33(2) 2(3 5) (4 7)(4 7)【答案】(1)2 3 1;(2)6 5 5 .【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0 指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1)3 027 3 3 3- 3 1 2 3 1.3(2)23 54 7 4 7 9 65 5 167 6 5 5 .考点:1. 二次根式化简; 2.0 指数幂; 3. 完全平方公式和平方差公式. 23.(1) 2 8 2 18(2)1212713(3)212 33(1 03)(4)(2 3 3 2 )(2 3 3 2)【答案】(1) 3 2 ;(2) 16 39【解析】;(3)6;(4) 6试题分析:本题主要考查根式的根式的混合运算和0 次幂运算. 根据运算法则先算乘除专业知识分享法,是分式应该先将分式转化为整式,再按运算法则计算。
二次根式计算专题——30题教师版含问题详解
标准文案大全二次根式计算专题1.计算:⑴ ()()24632463+- ⑵20(2π+ 【答案】(1)22; (2) 6-【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案.(2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) ()()24632463+-22=-=54-32=22.(2)20(2π+312=+--6=-考点: 实数的混合运算.2.计算(1)﹣× (2)(6﹣2x )÷3. 【答案】(1)1;(2)13【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案.试题解析:3=-⨯32=-1=;(2)2÷2()2x=-÷=÷=13=.考点: 二次根式的混合运算.3.计算:⎛-÷⎝【答案】143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.4.计算:322663-+-⨯【答案】22.【解析】试题分析:先算乘除、去绝对值符号,再算加减.试题解析:原式=23323-+-=22考点:二次根式运算.5.计算:)23(3182+-⨯【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.6=-考点:二次根式化简.6.计算:2421332--.【答案】22.【解析】试题分析:根据二次根式的运算法则计算即可.22-==.考点:二次根式的计算.试卷第2页,总10页标准文案大全7.计算:)13)(13(2612-++÷-.2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.1)=31-2.考点:二次根式的化简.8⎝ 【答案】0.【解析】试题分析: 根据二次根式运算法则计算即可.0==⎝. 考点:二次根式计算.9.计算:()0+1π错误!未找到引用源。
二次根式计算专题——30题教师版含答案
二次根式计算专题1.计算:⑴ ()()24632463+- ⑵ 20(2π+【答案】(1)22; (2) 6-【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案.(2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) ()()24632463+-22=-=54-32=22.(2)20(2π+312=+-6=-考点: 实数的混合运算.2.计算(1)﹣× (2)(6﹣2x )÷3. 【答案】(1)1;(2)13【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案.试题解析:3=-⨯32=-1=;(2)2÷2()2x=-÷=÷=13=.考点: 二次根式的混合运算.3.计算:⎛÷⎝【答案】143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.4.计算:322663-+-⨯【答案】22.【解析】试题分析:先算乘除、去绝对值符号,再算加减.试题解析:原式=23323-+-=22考点:二次根式运算.5.计算:)23(3182+-⨯【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.6=-考点:二次根式化简.6.计算:2421332--.【答案】22.【解析】试题分析:根据二次根式的运算法则计算即可.22-==.考点:二次根式的计算.7.计算:)13)(13(2612-++÷-.2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.1)=31-2. 考点:二次根式的化简.8⎝ 【答案】0.【解析】试题分析: 根据二次根式运算法则计算即可.0+=⎝. 考点:二次根式计算.9.计算:()0+1π.【答案】1-【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:()0+1π11=-=-考点:二次根式的化简.10.计算:435.03138+-+ 【答案】323223+. 【解析】试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2322322+-+=323223+. 考点:二次根式的化简.11.计算:(1)(2)()020********π---【答案】(1)1(2)3-【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,.绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:(1)(1==+(2)()020141201431133π---=--+=-. 考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.绝对值.12.计算: 212)31()23)(23(0+---+ 【答案】2.【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.试题解析:解:原式=2123+-- =2考点:二次根式的混合运算.130(2013)|-+-.【答案】1.【解析】0(2013)|+-+-1=+1=.考点:二次根式化简.14.计算12)824323(÷+-【答案】23-.【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:???=- 考点: 二次根式的混合运算.15-2-. 【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.22=-=- 考点: 二次根式的运算.16.化简:(1)83250+ (2)2163)1526(-⨯-【答案】(1)92;(2)- 【解析】试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式92=;(2)原式==-考点:二次根式的混合运算;17.计算(1)2(2)2【答案】(1)3(2)3.【解析】试题分析:(1)根据运算顺序计算即可;(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)233=-=.(2)(2223===.考点:二次根式化简.181)(1+- 【答案】17.【解析】,运用平方差公式计算1)(1+,再进行计算求解.181-- =17考点:实数的运算.19.计算:231|21|27)3(0++-+--【答案】-【解析】试题分析: 本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=11-+=-考点:1.实数的运算;2.零指数幂;3.分母有理化.20.计算:① 01 2⎛⎫+- ⎪⎝⎭ ② ⎛ ⎝ ③⎛- ⎝1;②143;③a 3-. 【解析】试题分析:①针对算术平方根,绝对值,零指数3个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.1112⎛⎫+-= ⎪⎝⎭.②143⎛⎛=÷== ⎝⎝.1a 2a 63⎛---⋅=- ⎝. 考点:1.二次根式计算;2.绝对值;3.0指数幂.21.计算:(1)2012101(1)5()1)2----++(2)【答案】(1)0;(2)【解析】试题分析:(1)原式=152310-++-=;(2)原式==.考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1(0π (2)2(3(4+-【答案】(1)1;(2)5.【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1(011π+-==.(2)((()2344951675+--=+--=. 考点:1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式.23.(1)18282-+(2)3127112-+ (3)0)31(33122-++(4))2332)(2332(-+【答案】(1)-(3)6;(4)6- 【解析】试题分析:本题主要考查根式的根式的混合运算和0次幂运算.根据运算法则先算乘除法,是分式应该先将分式转化为整式,再按运算法则计算。
二次根式计算专题30题(教师版含答案)
二次根式计算专题1.计算:⑴ ()()24632463+- ⑵ 20(3)(3)2732π++-+-【答案】(1)22; (2) 643-【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案.(2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) ()()24632463+-22(36)(42)=-=54-32 =22.(2)2(3)(3)2732π++-+-313323=+-+- 643=-考点: 实数的混合运算. 2.计算(1)﹣×(2)(6﹣2x)÷3.【答案】(1)1;(2)13【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案. 试题解析:2051123525532335=-⨯32=-1=;(2)1(62)34x x x÷62)3x x x x =÷ (3)3x x x =÷3x x =13=.考点: 二次根式的混合运算.3.计算:⎛÷⎝【答案】143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.4.计算:322663-+-⨯【答案】22.【解析】试题分析:先算乘除、去绝对值符号,再算加减.试题解析:原式=23323-+-=22考点:二次根式运算.5.计算:)23(3182+-⨯【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.6=-考点:二次根式化简.6.计算:2421332--.【答案】22.【解析】试题分析:根据二次根式的运算法则计算即可.22-==.考点:二次根式的计算.7.计算:)13)(13(2612-++÷-.2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.1)=31-2. 考点:二次根式的化简.8⎝【答案】0.【解析】试题分析: 根据二次根式运算法则计算即可.0==⎝. 考点:二次根式计算.9.计算:()0+1π.【答案】1-【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:()0+1π11=-=- 考点:二次根式的化简. 10.计算:435.03138+-+ 【答案】323223+. 【解析】试题分析:先化成最简二次根式,再进行运算. 试题解析:原式=2322322+-+=323223+. 考点:二次根式的化简. 11.计算:(1)(2)()02014120143π----【答案】(1)1(2)3-【解析】 试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,.绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果. 试题解析:(1)(1==(2)()020141201431133π---=--+=-. 考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.绝对值.12.计算: 212)31()23)(23(0+---+ 【答案】2.【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法. 试题解析:解:原式=2123+-- =2考点:二次根式的混合运算.130(2013)|+-+-.【答案】1. 【解析】0(2013)|-+-1=+1=.考点:二次根式化简. 14.计算12)824323(÷+- 【答案】2623.【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:248)12(62622)23(226)232623考点: 二次根式的混合运算.15112 2322.【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.11223432223232332考点: 二次根式的运算.16.化简:(1)83250+(2)2163)1526(-⨯-【答案】(1)92;(2)-【解析】试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式92=;(2)原式==-考点:二次根式的混合运算;17.计算(1)2(2)2【答案】(1)3(2)3.【解析】试题分析:(1)根据运算顺序计算即可;(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)233=-=.(2)(2223===.考点:二次根式化简.181)(1+- 【答案】17. 【解析】,运用平方差公式计算1)(1+,再进行计算求解.181--=17考点:实数的运算.19.计算:231|21|27)3(0++-+--【答案】-.【解析】试题分析: 本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=11-+=-考点:1.实数的运算;2.零指数幂;3.分母有理化. 20.计算:①1 2⎛⎫+- ⎪⎝⎭ ② ⎛ ⎝ ③⎛- ⎝1;②143;③a3-. 【解析】试题分析:①针对算术平方根,绝对值,零指数3个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.1112⎛⎫+-= ⎪⎝⎭.②143⎛⎛=÷ ⎝⎝.1a 2a 63⎛-=-⋅=- ⎝. 考点:1.二次根式计算;2.绝对值;3.0指数幂.21.计算:(1)2012101(1)5()1)2----++(2)【答案】(1)0;(2)【解析】 试题分析:(1)原式=152310-++-=;(2)原式==. 考点:1.实数的运算;2.二次根式的加减法. 22.计算与化简(1(0π (2)2(3(4+-【答案】(1)1;(2)5.【解析】 试题分析:(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1(011π==.(2)((()2344951675+--=+--=.考点:1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式. 23.(1)18282-+(2)3127112-+(3)0)31(33122-++(4))2332)(2332(-+【答案】(1)-(3)6;(4)6- 【解析】试题分析:本题主要考查根式的根式的混合运算和0次幂运算.根据运算法则先算乘除法,是分式应该先将分式转化为整式,再按运算法则计算。
二次根式计算专题30题(教师版含答案解析)
试题解析:
0
+1123123313.
考点:二次根式的化简.
10.计算:
83
1
3
0.5
3
4
33
【答案】3
2
22
【解析】
.
试题分析:先化成最简二次根式,再进行运算.
试题解析:原式=
2333
223=23
2222
.
考点:二次根式的化简.
11.计算:
(1)
271245
1
3
(2)
0
2014
1182014223
3
28
3
323
14
3
.
考点:二次根式运算.
6
4.计算:3623
2
【答案】22.
【解析】
试题分析:先算乘除、去绝对值符号,再算加减.
试题解析:原式=32332
=22
考点:二次根式运算.
5.计算:2183(32)
【答案】33.
【解析】
试题分析:先将二次根式化成最简二次根式,再化简.
试题解析:2183(32)=23233633.
考点:二次根式化简.
2
14.计算(3248)12
3
【答案】
26
-+.
23
试卷第4页,总10页
完美WORD格式
【解析】
试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.
试题解析:
2
(3-24 +8)?12(6-26+22) ?23(22-6) ?23
3
26
=-+
23
考点:二次根式的混合运算.
二次根式计算专题——30题教师版含问题详解
标准文案二次根式计算专题1.计算:⑴3 64 2 3 6 4 2⑵(3)2(3)0273 2【答案】 (1)22;(2) 6 4 3 【解析】试题分析:(1) 根据平方差公式,把括号展开进行计算即可求出答案.(2) 分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) 3 6 4 2 3 6 4 2(3 6) 2 (4 2) 2=54- 32=22.(2)( 3)2( 3) 027 3 23 1 3 3 2 36 4 3考点 : 实数的混合运算.2.计算( 1)﹣×( 2)( 6 ﹣ 2x )÷ 3 .【答案】( 1) 1;( 2)13【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案.试题解析:(1) 20 5 15 1232 5 5 335 2 33 21 ;(2)(6 x 2x 1 ) 3 x4 x(6x 2x x ) 3 x2 x(3 x 2 x ) 3 xx 3 x大全1.3考点 : 二次根式的混合运算 .3.计算: 3 12 2 1 48 2 3.3【答案】14 .3【解析】试题分析:先将二次根式化成最简二次根式, 再算括号里面的 , 最后算除法.试题解析:3 12 2 1 48 2 3 =(6 3 2 34 3) 2 3 28 3 2 3 14 .3 3 3 3考点:二次根式运算.4.计算: 3 6 623 2【答案】2 2 .【解析】试题分析:先算乘除、去绝对值符号, 再算加减 .试题解析:原式=3 2 3 3 2=2 2考点:二次根式运算 .5.计算: 2 18 3( 3 2)【答案】 3 3 .【解析】试题分析:先将二次根式化成最简二次根式, 再化简.试题解析: 2 18 3(3 2)= 2 32 33 6 33.考点:二次根式化简.6.计算:3231 4 .2 2【答案】 2 .2【解析】试题分析:根据二次根式的运算法则计算即可.试题解析:321 443 22 22 3222.2 2考点:二次根式的计算 .试卷第 2 页,总 10 页。
二次根式计算专题30题(教师版含答案)
二次根式计算专题1.计算:⑴ ()()24632463+- ⑵ 20(3)(3)2732π++-+-【答案】(1)22; (2) 643-【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案.(2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) ()()24632463+-22(36)(42)=-=54-32 =22.(2)2(3)(3)2732π++-+-313323=+-+- 643=-考点: 实数的混合运算. 2.计算(1)﹣×(2)(6﹣2x)÷3.【答案】(1)1;(2)13【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案. 试题解析:2051123525532335=-⨯32=-1=;(2)1(62)34x x x÷62)3x x x x =÷ (3)3x x x =÷3x x =13=.考点: 二次根式的混合运算.3.计算:⎛÷⎝【答案】143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.4.计算:322663-+-⨯【答案】22.【解析】试题分析:先算乘除、去绝对值符号,再算加减.试题解析:原式=23323-+-=22考点:二次根式运算.5.计算:)23(3182+-⨯【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.6=-考点:二次根式化简.6.计算:2421332--.【答案】22.【解析】试题分析:根据二次根式的运算法则计算即可.22-==.考点:二次根式的计算.7.计算:)13)(13(2612-++÷-.2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.1)=31-2. 考点:二次根式的化简.8⎝【答案】0.【解析】试题分析: 根据二次根式运算法则计算即可.0==⎝. 考点:二次根式计算.9.计算:()0+1π.【答案】1-【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:()0+1π11=-=- 考点:二次根式的化简. 10.计算:435.03138+-+ 【答案】323223+. 【解析】试题分析:先化成最简二次根式,再进行运算. 试题解析:原式=2322322+-+=323223+. 考点:二次根式的化简. 11.计算:(1)(2)()02014120143π----【答案】(1)1(2)3-【解析】 试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,.绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果. 试题解析:(1)(1==(2)()020141201431133π---=--+=-. 考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.绝对值.12.计算: 212)31()23)(23(0+---+ 【答案】2.【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法. 试题解析:解:原式=2123+-- =2考点:二次根式的混合运算.130(2013)|+-+-.【答案】1. 【解析】0(2013)|-+-1=+1=.考点:二次根式化简. 14.计算12)824323(÷+- 【答案】2623.【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:248)12(62622)23(226)232623考点: 二次根式的混合运算.15112 2322.【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.11223432223232332考点: 二次根式的运算.16.化简:(1)83250+(2)2163)1526(-⨯-【答案】(1)92;(2)-【解析】试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式92=;(2)原式==-考点:二次根式的混合运算;17.计算(1)2(2)2【答案】(1)3(2)3.【解析】试题分析:(1)根据运算顺序计算即可;(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)233=-=.(2)(2223===.考点:二次根式化简.181)(1+- 【答案】17. 【解析】,运用平方差公式计算1)(1+,再进行计算求解.181--=17考点:实数的运算.19.计算:231|21|27)3(0++-+--【答案】-.【解析】试题分析: 本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=11-+=-考点:1.实数的运算;2.零指数幂;3.分母有理化. 20.计算:①1 2⎛⎫+- ⎪⎝⎭ ② ⎛ ⎝ ③⎛- ⎝1;②143;③a3-. 【解析】试题分析:①针对算术平方根,绝对值,零指数3个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.1112⎛⎫+-= ⎪⎝⎭.②143⎛⎛=÷ ⎝⎝.1a 2a 63⎛-=-⋅=- ⎝. 考点:1.二次根式计算;2.绝对值;3.0指数幂.21.计算:(1)2012101(1)5()1)2----++(2)【答案】(1)0;(2)【解析】 试题分析:(1)原式=152310-++-=;(2)原式==. 考点:1.实数的运算;2.二次根式的加减法. 22.计算与化简(1(0π (2)2(3(4+-【答案】(1)1;(2)5.【解析】 试题分析:(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1(011π==.(2)((()2344951675+--=+--=.考点:1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式. 23.(1)18282-+(2)3127112-+(3)0)31(33122-++(4))2332)(2332(-+【答案】(1)-(3)6;(4)6- 【解析】试题分析:本题主要考查根式的根式的混合运算和0次幂运算.根据运算法则先算乘除法,是分式应该先将分式转化为整式,再按运算法则计算。
二次根式计算专题——30题(教师版含答案)
(2)(两2 ( 73)0V27 |73 21 332 ,34.3考点:实数的混合运算• V20W1-1 ; (2)-32 •计算(1)【答案】(1) 【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案试题解析:(1).20 .5 .5,6 ; x(一 2x x) x3.x二次根式计算专题1计算:⑴3J6 4J2 3J6 4/2⑵(J3)2( J3)° J 27 |^3 2【答案】(1)22; (2) 6 4,3【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案(2)分别根据平方、非零数的零次幕、二次根式、绝对值的意义进行计算即可得出答案 试题解析:(1) 3.. 6 4.2 3 6 4.2(3 6)2(4 . 2)2=54 — 32 =22.(3 x 2 -x) 3、x x 3. x[X 丨二 (2)14~34 .计算:..3 6、643试题解析:.324 4.2 亠2 2 .2 鼻2 2 21 3.考点:二次根式的混合运算 3•计算:3、,12 2,1.48 2.3 •14【答案】3【解析】试题分析:先将二次根式化成最简二次根式 ,再算括号里面的,最后算除法. 试题解析. 1 _________ _ _ 2 _ — — 28 —3>/i22V48 2-J3=(6^/3 — V 3 4V3)2/3 —y/3 2J 3考点:二次根式运算.【答案】2,2. 【解析】试题分析:先算乘除、去绝对值符号 ,再算加减.试题解析:原式=3 2,3 ,3 2=2 •. 2考点:二次根式运算 5.计算: 、2 ,18 3(.3 2)【答案】3.3 .【解析】试题分析: 先将二次根式化成最简二次根式,再化简.试题解析: ,2 ,18 3(、一 3 2)=2 3、2 3.3 6 3、3考点:二次根式化简.6.计算:国€令【答案】【解析】试题分析:根据二次根式的运算法则计算即可考点:二次根式的计算(2) 12014 1820147 •计算:,12 ...6 ,2 (,31)(.3 1).【答案】,3 2 .【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用 公式简化计算过程. 试题解析:、一歪 (、、3 1)(、.3 1) = 2.3 ...3 3 1 = ...3 2 .考点:二次根式的化简. 8•计算:12.2 出 32N2【答案】0. 【解析】试题分析:根据二次根式运算法则计算即可•试题解析:12 232.6 3、6 1;6 0. 2V 22考点:二次根式计算• 9 .计算:+1屁 73 .【答案】1 .3.【解析】试题分析:任何非零数的零次方都为 1,负数的绝对值等于它的相反数,再对二次根式进行化简即可. 试题解析: +1712丽1 2用1.考点:二次根式的化简.10 .计算:..8 3»'3,0.53 4【答案】 3显\3,22【解析】试题分析: 先化成最简二次根式 ,再进行运算.试题解析: 原式=2、23 2空=3,23」2 2 2 2考点:二次根式的化简. 11 .计算:12 .计算:( ..3 '..2)( .3 . 2) (1,3)0【答案】(1) 1 .15; (2) 3 2 .【解析】试题分析:(1)根据二次根式的运算法则计算即可 ;(2)针对有理数的乘方,零指数幕,二次根式化简,.绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果 •试题解析:( 1 )27 ,7245 ■1 332J3 3逅1曲3,3 3.5 \頁1 届.3(2)1201418201422 31 3.21 2 233 .2 .考点: 1.实数的运算; 2.有理数的乘方;3.零指数幕;4. 二次根式化简;5.绝对值.【答案】、、2 . 【解析】试题分析:本题主要考查了二次根式的混合运算•熟练化简二次根式后,在加减的过程 中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再 化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及 零指数幕的意义,去掉括号后,计算加减法. 试题解析: 解:原式=3 2 12=.2考点:二次根式的混合运算.13 .计算:-27: ( 2013)0 | 2.3|.【答案】4 3 1 . 【解析】试题分析:解:.27 - ( 2013)0| 2 33 3 3 1 2.34.3 1 .考点:二次根式化简、.8) ,12 【答案】(2) ( ..62.15) -.3 6 【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案 试题解析(3、2 -、.24+、、8) ? .. 12 (、.6 - 2 6 +2.. 2) ? 2、、3 (2 ..2 - , 6) ? 2.3 ,2 .6 —__ + _ -2 3考点:二次根式的混合运算【答案】辽-232【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案 试题解析:卫-」J 1—2、.3-二-空—口-空V 2 V 32 3 3 2考点:二次根式的运算• 16 •化简:(1)50 32J8【答案】(1) 9; (2)6、、5 .【解析】 试题分析: 2(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:⑴原式汽严2 ;考点:二次根式的混合运算; 17 •计算(1) 27 .3、3 2(2)•、、12 . 3 2【答案】(1) 3 3; (2) 3.【解析】试题分析:(1)根据运算顺序计算即可(2)原式-,3 2. 15.3 3&32 6.5 32①',82|3a 233个考点分别进行计算,然后根据实数③根据二次根式运算法(2)将括号内化为最简二次根式后合并再平方运算即可 试题解析:(1) • 27,3 3 2 3.3 3 2 3 3 ,3 .____ 2 2 2(2)1232 33 3 3.考点:二次根式化简• 18 •计算:、1 (3 . 2 1)(1 3.2) f【答案】17. 【解析】 试题分析:先化简1和一8,运用平方差公式计算(3. 2 1)(1 3 2),再进行计算求丫24解•试题解析:原式=_1 18 1丄22 2=17考点:实数的运算•19 .计算:(3)0,27 |1213 2【答案】2, 3 .【解析】试题分析: 本题涉及零指数幕、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 试题解析:原式=1 3..3、、2 1 .3 , 2 2、、3考点:1 •实数的运算;2 •零指数幕;3 •分母有理化.20 .计算:14②14:③3【解析】试题分析:①针对算术平方根,绝对值,零指数的运算法则求得计算结果;②根据二次根式运算法则计算即可; 则计算即可•试题解析:①罷问2曲血1血1.2 .二次根式的加减法.• 3 ° (2) (3 . 5)2 (4 . 7)(4 V7)0指数幕定义计算,再合并同试题解析:(1) 273、、3八3 1 2-31(2) 3.5 2 4,74.79 6.5 516 76.5 5.0次幕运算.根据运算法则先算乘除②6乔 2^1 448 尿6応 |>/3 4/3 2爲害宾2/3③37 32 2 \23=6芒2;:= 6右i 2ai .考点:1.二次根式计算;2.绝对值;3.0指数幕. 21•计算:(1) ( 1)2012| 5(1)1湎 (罷 1)°(2) 3.12 3 11.48 .27V 3 2【答案】(1) 0; (2) 4、、3 . 【解析】试题分析:(1)原式=1 5 2 3 10 ;(2)原式=6 .一3 ,3 2、、3 3 3 4^ 3 . 考点:1.实数的运算; 22 .计算与化简(1).27 -3_【答案】(1) 2.3 1 ; (2) 6.5 5.【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可考点:1.二次根式化简;2.0指数幕;3.完全平方公式和平方差公式23. (1) 2 .8 2 .18(3)2蔦 3(1.3)0(4) (2.3 3、.2)(2、3 3 一2)【答案】(1) 3、2 ; (2);(3) 6 ; (4)69【解析】试题分析:本题主要考查根式的根式的混合运算和6乜2二2 2七1法,是分式应该先将分式转化为整式,再按运算法则计算。
二次根式计算专题-30题(教师版含答案解析)
完美WORD格式二次根式计算专题1.计算:⑴ 3 6 4 2 3 6 4 2 ⑵ 2 0( 3) ( 3) 27 3 2 【答案】(1)22; (2) 6 4 3【解析】试题分析:(1) 根据平方差公式,把括号展开进行计算即可求出答案.(2) 分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) 3 6 4 2 3 6 4 22 2(3 6) (4 2)=54-32=22.(2) 2 0( 3) ( 3) 27 3 23 1 3 3 2 36 4 3考点: 实数的混合运算.2.计算(1)﹣×(2)(6 ﹣2x )÷ 3 .【答案】(1)1;(2)【解析】1 3试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案. 试题解析:(1)20 5 15 3122 5 5 35 32 33 21;(2)(6 2 1 ) 3xx x 4x6 x 2x x( ) 32 xx(3 x 2 x) 3 xx 3 x专业知识分享13.考点: 二次根式的混合运算.3.计算:13 12 2 48 2 33.【答案】【解析】14 3.试题分析:先将二次根式化成最简二次根式, 再算括号里面的, 最后算除法.试题解析:13 12 2 48 2 332=(6 3 3 4 3) 2 332833 2 3143.考点:二次根式运算.64.计算: 3 6 2 32【答案】 2 2 .【解析】试题分析:先算乘除、去绝对值符号, 再算加减.试题解析:原式=3 2 3 3 2= 2 2考点:二次根式运算.5.计算: 2 18 3( 3 2)【答案】 3 3.【解析】试题分析:先将二次根式化成最简二次根式, 再化简.试题解析: 2 18 3( 3 2)= 2 3 2 3 3 6 3 3.考点:二次根式化简.6.计算:1 4 323 .22 2【答案】.2【解析】试题分析:根据二次根式的运算法则计算即可.试题解析:1 4 32 2 3234 2 2 22 2 2 2.考点:二次根式的计算.试卷第 2 页,总10 页完美WORD格式7.计算:1262(31)(31).【答案】32.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.试题解析:1262(31)(31)=23331=32.考点:二次根式的化简.8.计算:12236322【答案】0.【解析】试题分析:根据二次根式运算法则计算即可.试题解析:36331 12226660.2222考点:二次根式计算.9.计算:0+1123.【答案】13.【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:0+1123123313.考点:二次根式的化简.10.计算:83130.53433【答案】3222【解析】.试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2333223=232222.考点:二次根式的化简.11.计算:(1)2712451 3(2)020141182014223专业知识分享【答案】(1)1 15; (2) 3 2 .【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,. 绝对值 4 个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:( 1 )1 1 127 12 45 3 3 2 3 3 5 3 3 3 5 3 1 153 3 3.(2)020141 18 20142 23 1 3 2 1 2 2 3 3 2 .考点:1. 实数的运算;2. 有理数的乘方;3. 零指数幂;4. 二次根式化简;5. 绝对值.12.计算:( 3 2)( 3 2) (1 03) 2 1 2【答案】 2 .【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.试题解析:解:原式= 3 2 1 2= 2考点:二次根式的混合运算.13.计算:327 ( 2013) | 2 3 |3.【答案】4 3 1. 【解析】试题分析:解:327 ( 2013) | 2 3 |33 3 3 1 2 34 3 1.考点:二次根式化简.214.计算(3 24 8) 123【答案】2 6 - + .2 3试卷第 4 页,总10 页完美WORD格式【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:2(3 - 24 + 8) ? 12 ( 6 - 2 6 +22) ? 2 3 (2 2 - 6) ? 2 332 6= - +2 3考点: 二次根式的混合运算.15.计算:12 1 2 1- -2 3【答案】4 3 2- .3 2【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.试题解析:1 12 234 3 2 12 - - 2 = 2 3 - - = -2 3 2 3 3 2考点: 二次根式的运算.50 32 16.化简:(1)8(2)( 6 2 15) 3 6 1 2【答案】(1)【解析】92;(2) 6 5 .试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式= 5 2 4 2 922 2;(2)原式= 6 3 2 15 3 3 2 3 2 6 5 3 2 6 5 .考点:二次根式的混合运算;17.计算(1)27 3 3 22 12 3(2)【答案】(1)3 3 ; (2)3.【解析】试题分析:(1)根据运算顺序计算即可;专业知识分享(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)27 3 3 2 3 3 3 2 3 3 3 .(2)2 2 212 3 2 3 3 3 3 .考点:二次根式化简.18.计算:18(3 2 1)(1 3 2)2 4【答案】17. 【解析】试题分析:先化简12和84,运用平方差公式计算(3 2 1)(1 3 2) ,再进行计算求解 .试题解析:原式==172 218 12 2考点: 实数的运算.119.计算:( 3) 27 |1 2 |32【答案】 2 3 .【解析】试题分析:本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简 4 个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=1 3 3 2 1 3 2 2 3考点:1.实数的运算;2.零指数幂;3.分母有理化.20.计算:1 2 0②16 3 2 48 123①8 2③2 a 1 2a3a 32 2 3【答案】① 2 1;②【解析】143;③a3.试题分析:①针对算术平方根,绝对值,零指数 3 个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.试题解析:①18 2 =2 2 2 1 2 1.2试卷第 6 页,总10 页完美WORD格式②1 2 28 14 6 3 2 48 12 6 3 3 4 3 2 3 3 2 33 3 3 3.③ 2 a 1 2a 1 2 2 2a 1 2 1 a3a 3 = 3a = 4a 2a2 23 6 a 3 6 6 3. 考点:1. 二次根式计算; 2. 绝对值; 3.0 指数幂.21.计算:(1)2012 1 1 3 0( 1) 5 ( ) 27 ( 2 1)2(2)1 13 12 3 48 273 2【答案】(1)0;(2)43.【解析】试题分析:(1)原式=1 5 2 3 1 0;(2)原式=6 3 3 2 3 3 3 4 3 .考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1)327 33(2) 2(3 5) (4 7)(4 7)【答案】(1)2 3 1;(2)6 5 5 .【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0 指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1)3 027 3 3 3- 3 1 2 3 1.3(2)23 54 7 4 7 9 65 5 167 6 5 5 .考点:1. 二次根式化简; 2.0 指数幂; 3. 完全平方公式和平方差公式. 23.(1) 2 8 2 18(2)1212713(3)212 33(1 03)(4)(2 3 3 2 )(2 3 3 2)【答案】(1) 3 2 ;(2) 16 39【解析】;(3)6;(4) 6试题分析:本题主要考查根式的根式的混合运算和0 次幂运算. 根据运算法则先算乘除专业知识分享法,是分式应该先将分式转化为整式,再按运算法则计算。
二次根式计算专题——30题(教师版含答案)
创作编号:GB8878185555334563BT9125XW创作者: 凤呜大王*二次根式计算专题1.计算:⑴ ()()24632463+- ⑵ 20(3)(3)2732π++-+-【答案】(1)22; (2) 643-【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案.(2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案.试题解析:(1) ()()24632463+-22(36)(42)=-=54-32 =22.(2)2(3)(3)2732π++-+-313323=+-+- 643=-考点: 实数的混合运算. 2.计算(1)﹣×(2)(6﹣2x)÷3.【答案】(1)1;(2)13【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案. 试题解析:20511235+=32 =-1 =;(2)2÷2(2x=-÷=÷=13=.考点: 二次根式的混合运算.3.计算:⎛÷⎝【答案】143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.4.计算:322663-+-⨯【答案】22.【解析】试题分析:先算乘除、去绝对值符号,再算加减.试题解析:原式=23323-+-=22考点:二次根式运算.5.计算:)23(3182+-⨯【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.6=- 考点:二次根式化简. 6.计算:2421332--. 【答案】22. 【解析】试题分析:根据二次根式的运算法则计算即可.22-==. 考点:二次根式的计算.7.计算:)13)(13(2612-++÷-.2.创作编号:GB8878185555334563BT9125XW创作者: 凤呜大王*【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.1)=31-2. 考点:二次根式的化简.8⎝ 【答案】0. 【解析】试题分析: 根据二次根式运算法则计算即可.0+=⎝. 考点:二次根式计算.9.计算:()0+1π.【答案】1【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:()0+1π11=-= 考点:二次根式的化简. 10.计算:435.03138+-+ 【答案】323223+. 【解析】试题分析:先化成最简二次根式,再进行运算. 试题解析:原式=2322322+-+=323223+. 考点:二次根式的化简. 11.计算:(1)(2)()02014120143π---【答案】(1)1(2)3-.【解析】 试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,.绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果. 试题解析:(1)(1=+(2)()020141201431133π---=--+=--.考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.绝对值.12.计算: 212)31()23)(23(0+---+ 【答案】2.【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法. 试题解析:解:原式=2123+-- =2考点:二次根式的混合运算.130(2013)|+-+-.【答案】1. 【解析】0(2013)|-+-1=+1=.考点:二次根式化简. 14.计算12)824323(÷+- 【答案】2623. 【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案. 试题解析:248)12(62622)23(226)2326考点: 二次根式的混合运算.15112 2322.【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.1122343222323考点: 二次根式的运算.16.化简:(1)83250+(2)2163)1526(-⨯-【答案】(1)92;(2)-【解析】试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*试题解析:(1)原式92=;(2)原式==-.考点:二次根式的混合运算;17.计算(1)2(2)2【答案】(1)3(2)3.【解析】 试题分析:(1)根据运算顺序计算即可;(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)233=-=.(2)(2223===.考点:二次根式化简.181)(1+- 【答案】17. 【解析】,运用平方差公式计算1)(1+,再进行计算求解.181--=17考点:实数的运算.19.计算:231|21|27)3(0++-+--【答案】-.【解析】试题分析: 本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=11-+=-考点:1.实数的运算;2.零指数幂;3.分母有理化. 20.计算:①1 2⎛⎫- ⎪⎝⎭ ② ⎛ ⎝ ③⎛- ⎝1;②143;③a 3-. 【解析】试题分析:①针对算术平方根,绝对值,零指数3个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.1112⎛⎫+-= ⎪⎝⎭.②143⎛⎛÷== ⎝⎝.1a 2a 63⎛÷---⋅=- ⎝. 考点:1.二次根式计算;2.绝对值;3.0指数幂.21.计算:(1)2012101(1)5()1)2----+(2)-【答案】(1)0;(2)【解析】 试题分析:(1)原式=152310-++-=;(2)原式==. 考点:1.实数的运算;2.二次根式的加减法. 22.计算与化简(1(0π+ (2)2(3(4+-+-【答案】(1)1;(2)5.【解析】 试题分析:(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1(011π+==.(2)((()2344951675+-+=+--=.考点:1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式.23.(1)18282-+(2)3127112-+(3)0)31(33122-++(4))2332)(2332(-+【答案】(1)-(3)6;(4)6- 【解析】试题分析:本题主要考查根式的根式的混合运算和0次幂运算.根据运算法则先算乘除法,是分式应该先将分式转化为整式,再按运算法则计算。
二次根式计算专题-30题(教师版含答案解析)
完美WORD格式二次根式计算专题1.计算:⑴ 3 6 4 2 3 6 4 2 ⑵ 2 0( 3) ( 3) 27 3 2 【答案】(1)22; (2) 6 4 3【解析】试题分析:(1) 根据平方差公式,把括号展开进行计算即可求出答案.(2) 分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) 3 6 4 2 3 6 4 22 2(3 6) (4 2)=54-32=22.(2) 2 0( 3) ( 3) 27 3 23 1 3 3 2 36 4 3考点: 实数的混合运算.2.计算(1)﹣×(2)(6 ﹣2x )÷ 3 .【答案】(1)1;(2)【解析】1 3试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案. 试题解析:(1)20 5 15 3122 5 5 35 32 33 21;(2)(6 2 1 ) 3xx x 4x6 x 2x x( ) 32 xx(3 x 2 x) 3 xx 3 x专业知识分享13.考点: 二次根式的混合运算.3.计算:13 12 2 48 2 33.【答案】【解析】14 3.试题分析:先将二次根式化成最简二次根式, 再算括号里面的, 最后算除法.试题解析:13 12 2 48 2 332=(6 3 3 4 3) 2 332833 2 3143.考点:二次根式运算.64.计算: 3 6 2 32【答案】 2 2 .【解析】试题分析:先算乘除、去绝对值符号, 再算加减.试题解析:原式=3 2 3 3 2= 2 2考点:二次根式运算.5.计算: 2 18 3( 3 2)【答案】 3 3.【解析】试题分析:先将二次根式化成最简二次根式, 再化简.试题解析: 2 18 3( 3 2)= 2 3 2 3 3 6 3 3.考点:二次根式化简.6.计算:1 4 323 .22 2【答案】.2【解析】试题分析:根据二次根式的运算法则计算即可.试题解析:1 4 32 2 3234 2 2 22 2 2 2.考点:二次根式的计算.试卷第 2 页,总10 页完美WORD格式7.计算:1262(31)(31).【答案】32.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.试题解析:1262(31)(31)=23331=32.考点:二次根式的化简.8.计算:12236322【答案】0.【解析】试题分析:根据二次根式运算法则计算即可.试题解析:36331 12226660.2222考点:二次根式计算.9.计算:0+1123.【答案】13.【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:0+1123123313.考点:二次根式的化简.10.计算:83130.53433【答案】3222【解析】.试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2333223=232222.考点:二次根式的化简.11.计算:(1)2712451 3(2)020141182014223专业知识分享【答案】(1)1 15; (2) 3 2 .【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,. 绝对值 4 个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:( 1 )1 1 127 12 45 3 3 2 3 3 5 3 3 3 5 3 1 153 3 3.(2)020141 18 20142 23 1 3 2 1 2 2 3 3 2 .考点:1. 实数的运算;2. 有理数的乘方;3. 零指数幂;4. 二次根式化简;5. 绝对值.12.计算:( 3 2)( 3 2) (1 03) 2 1 2【答案】 2 .【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.试题解析:解:原式= 3 2 1 2= 2考点:二次根式的混合运算.13.计算:327 ( 2013) | 2 3 |3.【答案】4 3 1. 【解析】试题分析:解:327 ( 2013) | 2 3 |33 3 3 1 2 34 3 1.考点:二次根式化简.214.计算(3 24 8) 123【答案】2 6- + .2 3试卷第 4 页,总10 页完美WORD格式【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:2(3 - 24 + 8) ? 12 ( 6 - 2 6 +22) ? 2 3 (2 2 - 6) ? 2 332 6= - +2 3考点: 二次根式的混合运算.15.计算:12 1 2 1- -2 3【答案】4 3 2- .3 2【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.试题解析:1 12 234 3 2 12 - - 2 = 2 3 - - = -2 3 2 3 3 2考点: 二次根式的运算.50 32 16.化简:(1)8(2)( 6 2 15) 3 6 1 2【答案】(1)【解析】92;(2) 6 5 .试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式= 5 2 4 2 922 2;(2)原式= 6 3 2 15 3 3 2 3 2 6 5 3 2 6 5 .考点:二次根式的混合运算;17.计算(1)27 3 3 22 12 3(2)【答案】(1)3 3 ; (2)3.【解析】试题分析:(1)根据运算顺序计算即可;专业知识分享(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)27 3 3 2 3 3 3 2 3 3 3 .(2)2 2 212 3 2 3 3 3 3 .考点:二次根式化简.18.计算:18(3 2 1)(1 3 2)2 4【答案】17. 【解析】试题分析:先化简12和84,运用平方差公式计算(3 2 1)(1 3 2) ,再进行计算求解 .试题解析:原式==172 218 12 2考点: 实数的运算.119.计算:( 3) 27 |1 2 |32【答案】 2 3 .【解析】试题分析:本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简 4 个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=1 3 3 2 1 3 2 2 3考点:1.实数的运算;2.零指数幂;3.分母有理化.20.计算:1 2 0②16 3 2 48 123①8 2③2 a 1 2a3a 32 2 3【答案】① 2 1;②【解析】143;③a3.试题分析:①针对算术平方根,绝对值,零指数 3 个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.试题解析:①18 2 =2 2 2 1 2 1.2试卷第 6 页,总10 页完美WORD格式②1 2 28 14 6 3 2 48 12 6 3 3 4 3 2 3 3 2 33 3 3 3.③ 2 a 1 2a 1 2 2 2a 1 2 1 a3a 3 = 3a = 4a 2a2 23 6 a 3 6 6 3. 考点:1. 二次根式计算; 2. 绝对值; 3.0 指数幂.21.计算:(1)2012 1 1 3 0( 1) 5 ( ) 27 ( 2 1)2(2)1 13 12 3 48 273 2【答案】(1)0;(2)43.【解析】试题分析:(1)原式=1 5 2 3 1 0;(2)原式=6 3 3 2 3 3 3 4 3 .考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1)327 33(2) 2(3 5) (4 7)(4 7)【答案】(1)2 3 1;(2)6 5 5 .【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0 指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1)3 027 3 3 3- 3 1 2 3 1.3(2)23 54 7 4 7 9 65 5 167 6 5 5 .考点:1. 二次根式化简; 2.0 指数幂; 3. 完全平方公式和平方差公式. 23.(1) 2 8 2 18(2)1212713(3)212 33(1 03)(4)(2 3 3 2 )(2 3 3 2)【答案】(1) 3 2 ;(2) 16 39【解析】;(3)6;(4) 6试题分析:本题主要考查根式的根式的混合运算和0 次幂运算. 根据运算法则先算乘除专业知识分享法,是分式应该先将分式转化为整式,再按运算法则计算。