反比例函数与几何综合(讲义及答案)

合集下载

反比例函数与几何综合(讲义及答案)

反比例函数与几何综合(讲义及答案)

y
y
B Al
DA
B E
DO C
x
O
Cx
第 1 题图
第 2 题图
2. 如图,在平面直角坐标系中,一条直线与反比例函数 y 8(x x
>0)的图象交于两点 A,B,与 x 轴交于点 C,且点 B 是 AC
的中点,分别过两点 A,B 作 x 轴的平行线,与反比例函数 y 2 x
(x>0)的图象交于两点 D,E,连接 DE,则四边形 ABED
10. 如图,点 A 在双曲线 y k 的第二象限的分支上,AB⊥y 轴于 x
点 B,点 C 在 x 轴负半轴上,且 OC=2AB,点 E 在线段 AC 上,且 AE=3EC,点 D 为 OB 的中点.若△ADE 的面积为 3,
则 k 的值为________.
11. 如图,一次函数 y ax b 的图象与 x 轴,y 轴分别交于 A,B
两点,与反比例函数 y k 的图象交于 C,D 两点,过 C,D x
两点分别作 y 轴,x 轴的垂线,垂足为 E,F,连接 CF,DE. 有下列四个结论:①△DEF 与△CEF 的面积相等;
②△AOB∽△FOE;③△DCE≌△CDF;④AC=BD.
其中正确的结论序号是___________.
y D
B
AO
F
x
C
E
5
【参考答案】
课前预习
1
知识点睛
反比例函数与几何综合的处理思路: 1. 从关键点入手.“关键点”是信息汇聚点,通常是_________
和________的______.通过___________和_______________ 的互相转化可将_________与________综合在一起进行研究. 2. 梳理题干中的函数和几何信息,依次转化. 3. 借助___________或__________列方程求解.

中考反比例函数与几何综合

中考反比例函数与几何综合

Oy xBAABxy O反比例函数与几何综合基本图形及常见结论 (1) 反比例函数)0(≠=k xky 图象上任一点,向两坐标轴作垂线,垂线与坐标轴;所围k S =矩形(2)反比例函数)0(≠=k xky 图象上任一点,向两坐标轴作垂线,垂线与坐标轴及原点连线;所围2k S =三角形(3)反比例函数与正比例函数图像交于A ,B 两点,AM 与x 轴垂直; 则:①A ,B 两点关于原点对称;②k S ABM =△(4)过反比例函数xk y 11=图像上任一点向坐标轴做垂线,与反比例函数)(2122k k xk y >=交于两点; 则:①BNBP AM AP =,即AB ∥MN②21k k S APNH -=矩形③)(△2121k k S OAP -=一次函数)0(≠+=kb b kx y 和反比例函数)0(≠=m xmy 图像交于A 、B 两点,AE ⊥x 轴,BF ⊥y 轴,则:①OAE OBF S S △△= ② OAB ABFE S S △梯形=③AC BD =④BFAEOE OF AE OE BF OF =⇒⋅=⋅ ⑤OACOBD S S △△=(一)巧用k 的几何意义解题y x ABO CDy xDC F EO B A例1.函数y=和y=在第一象限内的图象如图,点P 是y=的图象上一动点,PC ⊥x 轴于点C ,交y=的图象于点B .给出如下结论:①△ODB 与△OCA 的面积相等;②PA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化;④CA=AP .其中所有正确结论的序号是________。

迁移练习1(1).如图,双曲线)0x (k>=xy 经过Rt △OAB 斜边OB 的中点D ,与AB 交于点C .若△OBC 面积为3,则k =_______迁移练习1(2)..双曲线)0x (k>=xy 经过矩形OABC 边AB 的中点F ,交BC 于点E ; 若梯形OEBA 的面积为9,则k=________。

专题九-反比例函数与几何的综合应用

专题九-反比例函数与几何的综合应用
反比例函数在物理学中的应用
在物理学中,一些物理量之间可能存在反比例关系,如电阻与电流、压力与面积等。通过运用反 比例函数的性质,可以更好地理解和解决这些物理问题。
反比例函数在经济学中的应用
在经济学中,一些经济指标之间可能存在反比例关系,如价格与需求量、成本与产量等。通过运 用反比例函数的性质,可以对这些经济指标进行更准确的预测和分析。
如长度、面积等。
利用反比例函数性质建立关系
02
根据反比例函数的性质,结合几何图形的特点,建立所求最值
与相关量之间的关系。
求解最值
03
通过求解反比例函数的最值,得到所求几何量的最值。
判定存在性问题
根据题意列出方程或不等式
01
根据题目条件,列出与几何图形相关的方程或不等式

利用反比例函数性质分析解的情况
反比例关系在圆中的应用
在圆中,当一个圆的半径增加时,其 面积会按平方比例增加,但其周长只 会按线性比例增加。这种关系虽然不 是严格的反比例关系,但也可以用于 解决一些与圆相关的问题。
解题技巧与实例分析
通过利用圆的性质和上述关系, 可以求解一些与圆相关的问题。 例如,已知一个圆的半径和另一 个圆的面积或周长,可以求解未 知圆的半径或面积等。
仔细阅读题目要求,明确题意 ,避免答非所问。
合理安排答题顺序
先做易做的题目,确保会做的 题目不丢分,再攻克难题。
控制答题时间
每道题目分配合理的时间,避 免时间不够用或浪费过多时间

检查答案
做完题目后要认真检查答案, 确保没有遗漏或错误。
THANKS FOR WATCHING
感谢您的观看
解题技巧与实例分析
对于其他几何图形中的反比例关系问题,可以通过设定未知数、利用几何图形的性质和反比例关系来求解。 需要注意的是,在解题过程中要仔细分析题目条件和数据特点,选择合适的解题方法和思路。

反比例函数的综合(含答案)

反比例函数的综合(含答案)

反比例函数的综合要点一、确定反比例函数的关系式确定反比例函数关系式的方法仍是待定系数法,由于反比例函数中y=kx,只有一个待定系数k,因此只需要知道一对x,y的对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.用待定系数法求反比例函数关系式的一般步骤是:(1)设所求的反比例函数为:y=kx(k≠0);(2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;(3)解方程求出待定系数k的值;(4)把求得的k值代回所设的函数关系式y=kx中.要点二、反比例函数的图象和性质1.反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与x轴、y轴相交,只是无限靠近两坐标轴.要点诠释:(1)若点(a,b)在反比例函数y=kx的图象上,则点(-a,-b)也在此图象上,所以反比例函数的图象关于原点对称;(2)在反比例函数y =k x(k 为常数,k ≠0)中,由于x ≠0且y ≠0,所以两个分支都无限接近但永远不能达到x 轴和y 轴.2.反比例函数的性质(1)如图1,当k >0时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y 值随x 值的增大而减小.(2)如图2,当k <0时,双曲线的两个分支分别位于第二、四象限,在每个象限内,y 值随x 值的增大而增大.要点诠释:反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数k 的符号决定的;反过来,由双曲线所在的位置和函数的增减性,也可以推断出k 的符号.要点三、反比例函数y =k x(k ≠0)中的比例系数k 的几何意义过双曲线y =k x (k ≠0)上任意一点作x 轴、y 轴的垂线,所得矩形的面积为|k|.过双曲线y =k x (k ≠0)上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为||2k .要点诠释:只要函数式已经确定,不论图象上点的位置如何变化,这一点与两坐标轴的垂线和两坐标轴围成的面积始终是不变的.例1.两个反比例函数y =3x ,y =6x在第一象限内的图象如图所示,点P 1,P 2,P 3……P 2020在反比例函数y =6x 图象上,它们的横坐标分别是x 1,x 2,x 3……x 2020,纵坐标分别是1,3,5,…,共2020个连续奇数,过点P 1,P 2,P 3……P 2020分别作y 轴的平行线,与反比例函数y =3x的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3)……Q 2020(x 2020,y 2020),则y 2020等于()A .2019.5B .2020.5C .2019D .4039例2.如图,直线y =k 1x +b 与双曲线y =2k x A ,B 两点,其横坐标分别为1和5,则不等式k 1x <2k x +b 的解集是.1.一次函数y 1=k 1x +b 和y 2=2k x (k 2>0)相交于A (1,m ),B (3,n )两点,则不等式k 1x +b >2k x的解集为()A.1<x<3B.x<1或x>3C.x<0或x>3D.1<x<3或x<02.反比例函数y=kx和正比例函数y=mx的图象如图.由此可以得到方程kx=mx的实数根为()A.x=﹣2B.x=1C.x1=2,x2=﹣2D.x1=1,x2=﹣2例3.如图,点A在双曲线y=kx的第一象限的那一支上,AB垂直y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.1.如图,在反比例函数y=4x的图象上有一点A向x轴作垂线交x轴于点C,B为线段AC的中点,又D点在x轴上,且OD=3OC,则△OBD的面积为.例4.在平面直角坐标系xOy中,反比例函数y=kx(k≠0,x>0)的图象经过点A(1,-4),直线y=-2x+m与x轴交于点B(1,0).(1)求k,m的值;(2)已知点P(n,-2n)(n>0),过点P作平行于x轴的直线,交直线y=-2x+m于点C,过点P作平行于y轴的直线交反比例函数y=kx(k≠0,x>0)的图象于点D,当PD=2PC时,结合函数的图象,求出n的值.1.如图,正比例函数y1=mx,一次函数y2=ax+b和反比例函数y3=kx的图象在同一直角坐标系中,若y3>y2>y1,则自变量x的取值范围是()A.x<﹣1B.﹣1<x<0或x>1.6C.﹣1<x<0D.x<﹣1或0<x<12.设函数y1=kx,y2=kx (k>0),当2≤x≤3时,函数的y1最大值是a,函数y2的最小值是a﹣4,则ak=()A.4B.6C.8D.103.已知反比例函数y=8x和y=3x在第一象限内的图象如图所示,则△AMN的面积为.4.如图,P1是反比例函数y=kx(k>0)图象在第一象限上的一点,点A1的坐标为(2,0).(1)当点P1的横坐标逐渐增大时,△P1OA1的面积将如何变化?逐渐减少.(2)若点P2在反比例函数图象上,点A2在x轴上,△P1OA1与△P2A1A2均为等边三角形,①求次反比例函数的解析式;②求点A2的坐标.5.如图,反比例函数y=kx图象和一次函数y=ax+b经过M(1,6)和N(2,a).(1)求一次函数解析式;(2)一次函数y=ax+b与x轴交于点B,与y轴交于点A,求证:AM=BN.6.已知:A (a ,y 1).B (2a ,y 2)是反比例函数y =k x (k >0)图象上的两点.(1)比较y 1与y 2的大小关系;(2)若A 、B 两点在一次函数y =43x+b 第一象限的图象上(如图所示),分别过A 、B 两点作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,且S △OAB =8,求a 的值;(3)在(2)的条件下,如果3m =-4x +24,3n =32x ,求使得m >n 的x 的取值范围.7.如图,在平面直角坐标系xOy 中,函数y =k x(x <0)的图象经过点A (﹣1,6),直线y =mx ﹣2与x 轴交于点B (﹣1,0).(1)求k ,m 的值;(2)过第二象限的点P (n ,﹣2n )作平行于x 轴的直线,交直线y =mx ﹣2于点C ,交函数y =k x(x <0)的图象于点D .①当n =﹣1时,判断线段PD 与PC 的数量关系,并说明理由;②若PD ≥2PC ,结合函数的图象,直接写出n 的取值范围.8.在平面直角坐标系xOy中,函数y=mx(x>0)的图象G与直线l:y=kx-4k+1交于点A(4,1),点B(1,n)(n≥4,n为整数)在直线l上.(1)求m的值;(2)横、纵坐标都是整数的点叫做整点.记图象G与直线l围成的区域(不含边界)为W.①当n=5时,求k的值,并写出区域W内的整点个数;②若区域W内恰有5个整点,结合函数图象,求k的取值范围.【经典例题1】A【解析】解:∵P n 的纵坐标为:2n -1,∴P 2020的纵坐标为2×2020-1=4039.∵y =与y =在横坐标相同时,y =的纵坐标是y =的纵坐标的2倍,∴y 2020=×4039=2019.5.∴A 答案正确.【经典例题2】-5<x <-1或x >0【解析】解:根据一次函数平移和反比例函数的对称性可得,直线y =k 1x -b 与双曲线y =2k x 交于第三象限点的坐标为(-5,-1)和(-1,-5),如下图所示,∴不等式k 1x <2k x +b ,即k 1x -b <2k x 的解集,即当直线y =k 1x -b 的图象在反比例函数y =2k x 图象的下方对应的自变量x 的取值范围为:-5<x <-1或x >0.【举一反三1】D【解析】解:如图,由图象可得:不等式k 1x +b >2k x 的解集是1<x <3或x <0.故选:D .【举一反三2】C【解析】解:如图,反比例函数y =和正比例函数y =mx 相交于点A (﹣2,1),∴另一个交点为:(2,﹣1),∴方程=mx 的实数根为:x 1=2,x 2=﹣2.故选:C .【经典例题3】163【解析】解:连DC ,∵AE =3EC ,S △ADE =3,∴S △CDE =1.∴S △ADC =4.设A (a ,b ),则AB =a ,OC =2AB =2a .∵D 为OB 的中点,∴BD =OD =12b .∵S 梯形OBAC =S △ABD +S △ADC +S △ODC ,12(a +2a )·b =12a ·12b +4+12·2a ·b ,∴ab =163.把A (a ,b )代入y =,得k =ab =163.【举一反三1】3【解析】解:设A (x 、y ),由反比例函数y =4x可知xy =4,BC =AC =y ,OD =3OC =3x ,∴S △OBD =BC ×OD =×y ×3x =xy =×4=3.故答案为:3.【经典例题4】【解析】解:(1)把A(1,-4)代入y=k x,得k=1×(-4)=-4;把B(1,0)代入y=-2x+m,得-2+m=0,解得m=2;(2)反比例函数解析式为y=-(x>0),一次函数解析式为y=-2x+2,如图,当y=-2n时,-2x+2=-2n,解得x=n+1,则C(n+1,-2n),∴PC=n+1-n=1,当y=-2n时,y=-=,∴D(n,-),∴PD=|-2n+|,∵PD=2PC,∴|-2n+|=2,当-2n+=2时,解得n1=-2(舍去),n2=1,当-2n+=-2时,解得n1=-1(舍去),n2=2,综上所述,当PD=2PC时,n=1或n=2.【自我检测1】B【解析】解:由图象可知,当﹣1<x<0或x>1.6时,双曲线y3落在直线y2上方,且直线y2落在直线y1上方,即y3>y2>y1,所以若y3>y2>y1,则自变量x的取值范围是﹣1<x<0或x>1.6.故选:B.【自我检测2】C【解析】解:∵k>0,2≤x≤3,∴y1随x的增大而减小,y2随x的增大而增大,∴当x=2时,y1取最大值,最大值为=a①;当x=2时,y2取最小值,最小值为﹣=a﹣4②;由①②得a=2,k=4,∴ak=8,故选:C.【自我检测3】25 16【解析】解:设A(a,),则M(a,),N(,),∴AN=a﹣=,AM=﹣=,∴△AMN的面积=AN×AM=××=25 16,故答案为:25 16.【自我检测4】【解析】解:(1)△P1OA1的面积逐渐减少;(2)作P1C⊥OA1于C,∵△P1OA1为等边三角形,A1(2,0),∴OC=1,P1C3P1(1,3).∴反比例函数的解析式为y=3 x.(3)作P2D⊥A1A2于D,如上图,设A1D=x,则OD=2+x,P2D3x,∴P2(2+x3x).将点P2代入y=3x,得y332x=+.x2+2x-1=0,解得x1=-2,x2=-12<0(舍).∴x=-2,OA2=2+x+x=2+2x=2+2(-2)=22.∴A2(22,0).【自我检测5】【解析】解:(1)∵点M(1,6)在反比例函数y=图象上,∴k=1×6=6,∴反比例函数的关系式为y=,把N(2,a)代入得,a==3,∴N(2,3).∵点M(1,6)和N(2,3)在一次函数y=ax+b的图象上,∴a+b=6,2a+b=3,解得a=﹣3,b=9,∴一次函数的关系式为y=﹣3x+9;(2)过点M、N分别作MC⊥OA,ND⊥OB,垂足分别为C、D,当x=0时,y=9,当y=0时,x=3,∴一次函数y=﹣3x+9与x轴的交点B(3,0),与y轴的交点A(0,9),由于A(0,9),B(3,0),M(1,6),N(2,3),∴MC=1,AC=9﹣6=3,ND=3,BD=3﹣2=1,∴MC=BD=1,AC=ND=3,又∵∠ACM=∠NDB=90°,∴△ACM≌△NDB(SAS),∴AM=BN.【自我检测6】【解析】解:(1)∵A、B是y=kx(k>0)图象上的两点,∴a≠0.当a>0时,A、B在第一象限,a<2a,∴此时y1>y2,同理,a<0时,y1<y2.(2)∵A(a,y1)、B(2a,y2)在y=kx(k>0)图象上,∴AC=y1=,BD=y2=.∴y1=2y2.又A (a ,y 1)、B (2a ,y 2)在y =a +b 图象上,∴y 1=a +b ,y 2=a +b .∴a +b =2(a +b ),得b =4a .∵S △AOC +S 梯形ACDB =S △AOB +S △BOD ,又S △AOC =S △BOD ,∴S 梯形ACDB =S △AOB ,即[(a +b )+(a +b )]•a =8.∴a 2=4,由a >0,得a =2.(3)由(2)知,一次函数y =x +8,反比例函数y =.∵A 、B 两点的横坐标分别为2,4,且m =x +8,n =,∴使得m >n 的x 的范围,是反比例函数的图象在一次函数图象下方的点的横坐标取值范围.∴由图可知,2<x <4或x <0.【自我检测7】【解析】解:(1)∵函数y =k x (x <0)的图象经过点A (﹣1,6),∴k =﹣6.∵直线y =mx ﹣2与x 轴交于点B (﹣1,0),∴m =﹣2.(2)①判断:PD =2PC .理由如下:当n =﹣1时,点P 的坐标为(﹣1,2),∵y =﹣2x ﹣2交于于点C ,且点P (﹣1,2)作平行于x 轴的直线,∴点C 的坐标为(﹣2,2),∵函数y =k x(x <0)的图象于点D ,且点P (﹣1,2)作平行于x 轴的直线,点D 的坐标为(﹣3,2).∴PC =1,PD =2.∴PD =2PC .②当PD=2PC时,有两种情况,分别为:y=2,或者y=6.若PD≥2PC,0<y≤2,或y≥6即0<﹣2n≤2,或﹣2n≤6解得﹣1≤n<0.或n≤﹣3【自我检测8】【解析】(1)解:把A(4,1)代入y=mx(x>0),得m=4×1=4;(2)①当n=5时,把B(1,5)代入直线l:y=kx-4k+1得,5=k-4k+1,解得k=4 3-,如图所示,区域W内的整点有(2,3),(3,2),有2个;(3)直线l:y=kx-4k+1过(1,6)时,k=53-,区域W内恰有4个整点,直线l:y=kx-4k+1过(1,7)时,k=-2,区域W内恰有5个整点,∴区域W内恰有5个整点时,k的取值范围是-2≤k<5 3-.。

反比例函数与几何综合讲义及答案

反比例函数与几何综合讲义及答案

反比例函数与几何综合讲义及答案一、反比例函数的定义及性质1.反比例函数的定义:如果两个变量的乘积为常数,那么它们之间存在反比例关系,可以表示为y=k/x。

2.反比例函数的性质:函数图像关于坐标轴对称;随着x的增大,y 的值逐渐减小;随着x的减小,y的值逐渐增大。

二、反比例函数的图像与性质1.绘制反比例函数y=k/x的图像。

2.如果k为正数,当x趋近于无穷大时,y趋近于0;当x趋近于0时,y趋近于正无穷大。

3.如果k为负数,当x趋近于无穷大时,y趋近于负无穷大;当x趋近于0时,y趋近于0。

三、反比例函数的解析表达式和图像的关系1.根据解析表达式y=k/x,结合k的正负性质,分析函数图像的大致形状。

2.当k为正数时,函数图像在第一象限逐渐接近于x轴,且没有定义域为x=0的点。

3.当k为负数时,函数图像在第三象限逐渐接近于x轴,且没有定义域为x=0的点。

四、反比例函数的应用1. 反比例函数的例题:如果旅行的时间与旅行的速度成反比例关系,当速度增大时,时间会减少。

求出速度为60 km/h时需要的时间。

答案:假设旅行的时间为t小时,则速度为60 km/h,根据反比例函数的定义可得60 = k/t,解得k = 60t。

根据题意可得t = k/60 = 1小时。

2.反比例函数出题:已知两个变量x和y成反比例关系,在一组数据中,当x=2时,y=5;当x=4时,y=10。

求出该反比例函数的解析表达式。

答案:根据反比例函数的定义可得k = xy,由已知数据可得2k = 5;4k = 10。

解方程可得k = 5/2、将k带入反比例函数中得到y = (5/2)x。

请注意,以上是一些常见的反比例函数综合讲义及试题及答案,实际上反比例函数的应用非常广泛,可以结合实际问题进行更多的应用练习。

反比例函数与几何综合(一)(含答案)

反比例函数与几何综合(一)(含答案)

学生做题前请先回答以下问题问题1:思考反比例函数与几何综合的处理思路是什么?问题2:什么是关键点?问题3:将函数特征与几何特征联系起来的桥梁是什么?问题4:围绕关键点以及横平竖直线段长将几何特征与函数特征结合分析时有几种方式?分别是什么?以下是问题及答案,请对比参考:问题1:思考反比例函数与几何综合的处理思路是什么?答:反比例函数与几何综合的处理思路:①从关键点入手.通过关键点坐标和横平竖直线段长的互相转化可将函数特征和几何特征综合在一起进行研究.②对函数特征和几何特征进行转化、组合,列方程求解.若借助反比例函数模型,能快速将函数特征转化为几何特征.问题2:什么是关键点?答:关键点是几何图形与函数图象的交点,在处理反比例函数与几何综合的问题时从关键点入手分析.问题3:将函数特征与几何特征联系起来的桥梁是什么?答:通过关键点坐标与横平竖直线段长的相互转化,可将函数特征与几何特征综合起来一起进行研究.问题4:围绕关键点以及横平竖直线段长将几何特征与函数特征结合分析时有几种方式?分别是什么?答:可以采用两种方式:①根据函数特征设出坐标,表达线段长,利用几何特征建等式;②根据几何特征设出线段长,表达坐标,代入函数建立等式.反比例函数与几何综合(一)一、单选题(共8道,每道12分)1.如图,直线与双曲线在第一象限内的交点为R,与x轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积之比为4:1,则k的值为( )A. B.C.2D.3答案:B解题思路:试题难度:三颗星知识点:反比例函数与几何综合2.如图,均是等腰直角三角形,点在反比例函数的图象上,斜边都在x轴上,则点的坐标是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:反比例函数与几何综合3.如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x 轴,y轴上,反比例函数(x>0)的图象经过点D,且与边BC交于点E,则点E的坐标为( )A.(1,14)B.(2,8)C.(2,7)D.(1,16)答案:C解题思路:试题难度:三颗星知识点:反比例函数与几何综合4.如图,矩形ABCD的顶点D在反比例函数(x<0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,若△BCE的面积是6,则k的值为( )A.-6B.-8C.-9D.-12答案:D解题思路:试题难度:三颗星知识点:反比例函数与几何综合5.如图,在反比例函数的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第一象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数的图象上运动.若tan∠CAB=2,则k的值为( )A.2B.4C.6D.8答案:D解题思路:试题难度:三颗星知识点:反比例函数与几何综合6.如图,直线与双曲线交于点A,将直线向上平移4个单位长度后,与y轴交于点C,与双曲线交于点B,若OA=3BC,则k的值为( )A.3B.6C. D.答案:D解题思路:试题难度:三颗星知识点:反比例函数与几何综合7.如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于( )A.60B.80C.30D.40答案:D解题思路:试题难度:三颗星知识点:反比例函数与几何综合8.直线y=-2x-2与反比例函数的图象交于点A,与x轴交于点B,过点B作x 轴垂线交双曲线于点C,若AB=AC,则k的值为( )A.-1B.-2C.-4D.-8答案:C解题思路:试题难度:三颗星知识点:反比例函数与几何综合。

反比例函数与几何的综合应用讲义+2023-2024学年人教版数学九年级下册

反比例函数与几何的综合应用讲义+2023-2024学年人教版数学九年级下册

反比例函数与几何的综合应用点石成金解反比例函数与几何图形的综合题,一般先设出几何图形中的未知量,然后结合函数的图象用代数式表示出几何图形与图象的交点坐标,再由函数解析式及几何图形的性质写出含未知数及待定字母的方程(组) ,解方程(组) 即可得所求几何图形中的未知量或函数解析式中待定字母的值.经典实例剖析如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=k(k为常数,k≠0)的图象经x过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y=k的表达式,并直接写出E、F两点的坐标;x(2)求△AEF的面积.分析:(1)根据正方形的性质,以及函数上点的坐标特征可求点D的坐标为(1,2),根据待定系数法可求反比例函数表达式,进一步得到E、F两点的坐标;(2)过点F作FG⊥AB,与AB的延长线交于点G,根据两点间的距离公式可求AE=1,FG=3,再根据三角形面积公式可求△AEF的面积.解:(1)∵正方形OABC的边长为2,∴点D的纵坐标为2,即y=2,将y=2代入y=2x,得x=1,∴点D的坐标为(1,2),的图象经过点D,∵函数y=kx,∴2=k1解得k =2,∴函数y =k x 的表达式为y =2x ,∴E (2,1),F (﹣1,﹣2);(2)过点F 作FG ⊥AB ,与BA 的延长线交于点G ,∵E (2,1),F (﹣1,﹣2),∴AE =1, FG =2﹣(﹣1)=3,∴△AEF 的面积为:12AE •FG =12×1×3=32.分类训练应用1 反比例函数与三角形的综合1.如图,一次函数y =kx +94(k 为常数,k ≠0)的图象与反比例函数y =m x (m 为常数,m ≠0)的图象在第一象限交于点A (1,n ),与x 轴交于点B (﹣3,0).(1)求一次函数和反比例函数的解析式.(2)点P 在x 轴上,△ABP 是以AB 为腰的等腰三角形,请直接写出点P 的坐标.应用2 反比例函数你与四边形的综合类型1 反比例函数与平行四边形的综合2.如图,一次函数y =kx +b 的图象与反比例函数y =m x 的图象相交于A (﹣1,4),B (a ,﹣1)两点.(1)求反比例函数和一次函数的表达式;的图象于点Q,连接PQ.当(2)点P(n,0)在x轴负半轴上,连接AP,过点B作BQ∥AP,交y=mxBQ=AP时,求n的值.类型2反比例函数与矩形的综合(k<0)的图象与矩形ABCO的边相交于E、F两点,且BE=2AE,E(﹣1,3.如图,反比例函数y=kx2).(1)求直线EF的解析式;(2)连接EF,求△BEF的面积.类型3反比例函数与菱形的综合4.如图,在直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反(k>0,x>0)的图象上,点D的坐标为(4,3).比例函数y=kx(1)求k的值.(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在该函数的图象上时,求菱形ABCD沿x轴正方向平移的距离.类型4反比例函数与正方形的综合5.如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别在x轴、y轴上,(x>0,k≠0)的图象经过线段BC的中点D.点B的坐标为(2,2),反比例函数y=kx(1)求k的值;(2)若点P(x,y)在该反比例函数的图象上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围.应用3反比例函数与菱形、正方形的综合6.如图1,四边形ABCD为正方形,点A在y轴上,点B在x轴上,且OA=2OB,反比例函数y=27x 在第一象限的图象经过正方形的顶点C.(1)求点C的坐标;(2)如图2,将正方形ABCD沿x轴向右平移得到正方形A'B'CD',点A'恰好落在反比例函数的图象上,求此时点D'的坐标;(3)在(2)的条件下,点P为y轴上一动点,平面内是否存在点Q,使以点O、A'、P、Q为顶点的四边形为菱形,若存在,请直接写出点Q的坐标,若不存在,请说明理由.应用4 反比例函数与正六边形的综合(k>0,x>0)7.如图,在平面直角坐标系中,正六边形ABCDEF的对称中心P在反比例函数y=kx的图象上,边CD在x轴上,点B在y轴上,已知CD=2.(1)点A是否在该反比例函数的图象上?请说明理由;(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标;(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.。

反比例函数与几何综合(讲义及答案)

反比例函数与几何综合(讲义及答案)

反比例函数 y k 的图象分别与线段 AB,BC 交于点 D,E, x
连接 DE.若点 B 关于 DE 的对称点恰好在 OA 上,则 k=( )
A.-20
B.-16
C.-12
D.-8
6
【参考答案】
1. (2, 3 ) 2
2. (1,3) 3. ( 4 ,3);-2
3 4. y=4x+12 5. 9 3
4
x
交于点 M.若 AM=BM,则直线 AB 的解析式为__________.
3
5. 如图,若双曲线 y k 与边长为 5 的等边△AOB 的边 OA,AB x
分别相交于 C,D 两点,且 OC=3BD,则实数 k 的值为_____.
第 5 题图
第 6 题图
6. 正方形 A1B1P1P2 的顶点 P1,P2 在反比例函数 y 2 (x>0)的 x
4 6. (1 3 , 3 1) 7. 6 2 3 8. 4 7
7 9. 13
3 10. 2 11. 119
48 12. 5
3 13. C
7
函数 y k (k>3,x>0)的图象关于直线 AC 对称,且过 B, x
D 两点.若 AB=2,∠BAD=30°,则 k 的值为__________.
第 7 题图
第 8 题图
8. 如图,在 Rt△ABC 中,∠ABC=90°,C(0,-3),CD=3AD,
点 A 在反比例函数 y k 图象上,且 y 轴平分∠ACB,则 x
k=_______.
4
9. 如图,已知动点 A 在函数 y 4 (x>0)的图象上,AB⊥x 轴 x
于点 B,AC⊥y 轴于点 C,延长 CA 至点 D,使 AD=AB,延 长 BA 至点 E,使 AE=AC.直线 DE 分别交 x 轴、y 轴于点 P, Q.当 QE:DP=4:9 时,图中阴影部分的面积为_________.

反比例与几何综合应用(讲义)

反比例与几何综合应用(讲义)

反比例函数与几何综合(讲义)一、知识点睛反比例函数与几何综合的解题思路:1. 抓住_______.“关键点”是信息汇聚点,通常是_________和________的______.通过___________和____________的互相转化可将_________与_________综合在一起进行研究. 2. 梳理题干中的条件,__________.3. 集中到___________或__________建等式求解. 二、精讲精练1. 如图,已知第一象限内的图象是反比例函数1y x=图象的一个分支,第二象限内的图象是反比例函数2y x=-图象的一个分支,在x 轴上方有一条平行于x 轴的直线l 与它们分别交于点A ,B ,过点A ,B 作x 轴的垂线,垂足分别为点C ,D .若四边形ACDB 的周长为8,且AB <AC ,则点A 的坐标是_____________.第1题图 第2题图 第4题图2. 如图,正方形OAPB 的顶点B 以及等腰直角三角形AFD 的顶点A ,D 在坐标轴上,点P ,F 在函数9y x=(x >0)的图象上,则点F 的坐标为________.3. 正方形A 1B 1P 1P 2的顶点P 1,P 2在反比例函数2y x=(x >0)的图象上,顶点A 1,B 1分别在x 轴、y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数xy 2=(x >0)的图象上,顶点A 2在x 轴的正半轴上,则点P 3的坐标为____________.4. 如图,已知动点A 在函数4y x=(x >0)的图象上,AB x ⊥轴于点B ,AC y⊥轴于点C ,延长CA 至点D ,使AD =AB ,延长BA 至点E ,使AE =AC .直线DE 分别交x 轴、y 轴于点P ,Q .当QE :DP =4:9时,图中阴影部分的面积等于_________.5. 如图,□A B C D 的顶点A ,B 的坐标分别是A (-1,0),B (0,-2),顶点C ,D 在双曲线ky x=(x >0)上,边AD 交y 轴于点E,且四边形BCDE的面积是△ABE面积的5倍,则k=_______.第5题图6.如图,点A(x1,y1),B(x2,y2)均在双曲线kyx=(x>0)的图象上,且214x x-=,122y y-=.分别过点A,B向x轴、y轴作垂线段,垂足分别为C,D,E,F.AC与BF相交于点G,若四边形FOCG的面积为2,五边形AEODB的面积为14,则双曲线的解析式为____________________.7.如图,双曲线kyx=经过点A(2,2)与点B(4,m),则△AOB的面积为___________.第7题图第8题图8.如图,正比例函数y=kx(k>0)与反比例函数1yx=的图象交于A,C两点,过点A作x轴的垂线,交x轴于点B,过点C作x轴的垂线,交x轴于点D.连接AD,BC,则四边形ABCD的面积为____________.9.两个反比例函数kyx=(k>1)和1yx=在第一象限内的图象如图所示,点P 在kyx=的图象上,PC⊥x轴于点C,交1yx=的图象于点A,PD⊥y轴于点D,交1yx=的图象于点B,当点P在kyx=的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是____________(填写序号).10.如图,一次函数y ax b=+的图象与x轴、y轴交于A,B两点,与反比例函数kyx=的图象交于C,D两点,过C,D两点分别作y轴,x轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论: ①△DEF 与△CEF 的面积相等;②△AOB ∽△FOE ; ③△DCE ≌△CDF ;④AC =BD .其中正确的结论是____________(填写序号).第10题图 第11题图11. 如图,M为双曲线y =M 作x 轴、y 轴的垂线,分别交直线y =-x +m 于D ,C 两点,若直线y =-x +m 与y 轴交于点A ,与x 轴交于点B ,则AD ·BC 的值为_____.12. 如图,直线y =-x +6与x 轴、y 轴分别交于A ,B 两点,P 是反比例函数4y x=(x >0)图象上位于直线下方的一点,过点P 作x 轴的垂线,垂足为点M ,交AB 于点E ,过点P 作y 轴的垂线,垂足为点N ,交AB 于点F .则AF BE ⋅=________.【参考答案】 知识点睛1.关键点,函数图象,几何图形,交点,关键点坐标,横平竖直线段长,函数特征,几何特征2.依次转化3.函数特征,几何特征精讲精练1.(13,3)2.(32+32-+) 3.11) 4.1335.12 6.6y x= 7.38.2 9.①②④ 10.①②④ 11.12.8。

反比例函数与几何的综合应用及答案

反比例函数与几何的综合应用及答案

反比例函数与几何的综合应用及答案专训1 反比例函数与几何的综合应用名师点金:解反比例函数与几何图形的综合题,一般先设出几何图形中的未知数,然后结合函数的图象用含未知数的式子表示出几何图形与图象的交点坐标,再由函数解析式及几何图形的性质写出含未知数及待求字母系数的方程(组),解方程(组)即可得所求几何图形中的未知量或函数解析式中待定字母的值.反比例函数与三角形的综合1.如图,一次函数y =kx +b 与反比例函数y =x6(x>0)的图象交于A(m ,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出使kx +b<x6成立的x 的取值范围; (3)求△AOB 的面积.(第1题)2.如图,点A ,B 分别在x 轴、y 轴上,点D 在第一象限内,DC ⊥x 轴于点C ,AO =CD =2,AB =DA =,反比例函数y =xk(k >0)的图象过CD 的中点E.(1)求证:△AOB ≌△DCA ; (2)求k 的值;(3)△BFG 和△DCA 关于某点成中心对称,其中点F 在y 轴上,试判断点G 是否在反比例函数的图象上,并说明理由.(第2题)反比例函数与四边形的综合反比例函数与平行四边形的综合3.如图,过反比例函数y =x6(x >0)的图象上一点A 作x 轴的平行线,交双曲线y =-x3(x <0)于点B ,过B 作BC ∥OA 交双曲线y =-x3(x <0)于点D ,交x 轴于点C ,连接AD 交y 轴于点E ,若OC =3,求OE 的长.(第6题)经过A ,B 两点,则菱形ABCD 的面积为( ) A .2 B .4 C .2 D .47.如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数y =xk(k>0,x>0)的图象上,点D 的坐标为(4,3).(1)求k 的值;(2)若将菱形ABCD 沿x 轴正方向平移,当菱形的顶点D 落在反比例函数y =xk(k>0,x>0)的图象上时,求菱形ABCD 沿x 轴正方向平移的距离.(第7题)反比例函数与正方形的综合8.如图,在平面直角坐标系中,点O 为坐标原点,正方形OABC 的边OA ,OC分别在x 轴,y 轴上,点B 的坐标为(2,2),反比例函数y =xk(x >0,k ≠0)的图象经过线段BC 的中点D(1)求k 的值;(2)若点P(x ,y)在该反比例函数的图象上运动(不与点D 重合),过点P 作PR ⊥y 轴于点R ,作PQ ⊥BC 所在直线于点Q ,记四边形CQPR 的面积为S ,求S 关于x 的函数解析式并写出x 的取值范围.(第8题)反比例函数与圆的综合(第9题)9.如图,双曲线y =xk(k>0)与⊙O 在第一象限内交于P ,Q 两点,分别过P ,Q 两点向x 轴和y 轴作垂线,已知点P 的坐标为(1,3),则图中阴影部分的面积为________.10.如图,反比例函数y =xk(k <0)的图象与⊙O 相交.某同学在⊙O 内做随机扎针试验,求针头落在阴影区域内的概率.(第10题)专训2 全章热门考点整合应用名师点金:反比例函数及其图象、性质是历年来中考的热点,既有与本学科知识的综合,也有与其他学科知识的综合,题型既有选择、填空,也有解答类型.其热门考点可概括为:1个概念,2个方法,2个应用及1个技巧.1个概念:反比例函数的概念1.若y =(m -1)x |m|-2是反比例函数,则m 的取值为( )A .1B .-1C .±1D .任意实数 2.某学校到县城的路程为5 km ,一同学骑车从学校到县城的平均速度v(km /h )与所用时间t(h )之间的函数解析式是( )A .v =5tB .v =t +5C .v =t 5D .v =5t3.判断下面哪些式子表示y 是x 的反比例函数:①xy =-31;②y =5-x ;③y =5x -2;④y =x2a(a 为常数且a ≠0).其中________是反比例函数.(填序号) 2个方法:画反比例函数图象的方法4.已知y 与x 的部分取值如下表: x … -6 -5 -4 -3 -2 -112 3 4 5 6 …y (1)1.21.52 3 6-6-3-2-1.5-1.2-1…析式;(2)画出这个函数的图象.求反比例函数解析式的方法5.已知反比例函数y=xk的图象与一次函数y=x+b的图象在第一象限内相交于点A(1,-k+4).试确定这两个函数的解析式.6.如图,已知A(-4,n),B(2,-4)是一次函数y=kx+b的图象和反比例函数y=xm的图象的两个交点.求:(1)反比例函数和一次函数的解析式;(2)直线AB与x轴的交点C的坐标及△AOB的面积;(3)方程kx+b-xm=0的解(请直接写出答案);(4)不等式kx+b-xm<0的解集(请直接写出答案).(第6题)2个应用反比例函数图象和性质的应用7.画出反比例函数y=x6的图象,并根据图象回答问题:(1)根据图象指出当y=-2时x的值;(2)根据图象指出当-2<x<1且x≠0时y的取值范围;(3)根据图象指出当-3<y<2且y≠0时x的取值范围.反比例函数的实际应用8.某厂仓库储存了部分原料,按原计划每小时消耗2吨,可用60小时.由于技术革新,实际生产能力有所提高,即每小时消耗的原料量大于计划消耗的原料量.设现在每小时消耗原料x(单位:吨),库存的原料可使用的时间为y(单位:小时).(1)写出y 关于x 的函数解析式,并求出自变量的取值范围.(2)若恰好经过24小时才有新的原料进厂,为了使机器不停止运转,则x 应控制在什么范围内?1个技巧:用k 的几何性质巧求图形的面积9.如图,A ,B 是双曲线y =xk(k ≠0)上的两点,过A 点作AC ⊥x 轴,交OB 于D点,垂足为C.若△ADO 的面积为1,D 为OB 的中点,则k 的值为( )A .34B .38C .3D .4(第9题)(第10题)10.如图,过x 轴正半轴上的任意一点P 作y 轴的平行线交反比例函数y =x2和y =-x4的图象于A ,B 两点,C 是y 轴上任意一点,则△ABC 的面积为________.11.如图是函数y =x3与函数y =x6在第一象限内的图象,点P 是y =x6的图象上一动点,PA ⊥x 轴于点A ,交y =x3的图象于点C ,PB ⊥y 轴于点B ,交y =x3的图象于点D.(1)求证:D 是BP 的中点; (2)求四边形ODPC 的面积.(第11题)答案1.解:(1)∵A(m ,6),B(3,n)两点在反比例函数y =x6(x>0)的图象上, ∴m =1,n =2,即 A(1,6),B(3,2).又∵A(1,6),B(3,2)在一次函数y =kx +b 的图象上,∴2=3k +b ,6=k +b ,解得b =8,k =-2,即一次函数解析式为y =-2x +8.(第1题)(2)根据图象可知使kx +b<x6成立的x 的取值范围是0<x<1或x>3. (3)如图,分别过点A ,B 作AE ⊥x 轴,BC ⊥x 轴,垂足分别为E ,C ,设直线AB 交x 轴于D 点.令-2x +8=0,得x =4,即D(4,0). ∵A(1,6),B(3,2),∴AE =6,BC =2.∴S △AOB =S △AOD -S △ODB =21×4×6-21×4×2=8.2.(1)证明:∵点A ,B 分别在x 轴,y 轴上,点D 在第一象限内,DC ⊥x 轴于点C ,∴∠AOB =∠DCA =90°.在Rt △AOB 和Rt △DCA 中,∵AB =DA ,AO =DC ,∴Rt △AOB ≌Rt △DCA.(2)解:在Rt △ACD 中,∵CD =2,DA =, ∴AC ==1.∴OC =OA +AC =2+1=3. ∴D 点坐标为(3,2).∵点E 为CD 的中点,∴点E 的坐标为(3,1).∴k =3×1=3. (3)解:点G 在反比例函数的图象上.理由如下:∵△BFG 和△DCA 关于某点成中心对称, ∴△BFG ≌△DCA.∴FG =CA =1,BF =DC =2,∠BFG =∠DCA =90°.∵OB =AC =1,∴OF =OB +BF =1+2=3.∴G 点坐标为(1,3). ∵1×3=3,∴点G(1,3)在反比例函数的图象上.3.解:∵BC ∥OA ,AB ∥x 轴,∴四边形ABCO 为平行四边形. ∴AB =OC =3.设A a 6,则B a6,∴(a -3)·a6=-3.∴a =2.∴A(2,3),B(-1,3).∵OC =3,C 在x 轴负半轴上,∴C(-3,0), 设直线BC 对应的函数解析式为y =kx +b ,则-k +b =3,-3k +b =0,解得.9∴直线BC 对应的函数解析式为y =23x +29. 解方程组,3得y1=3,x1=-1,.3∴D 23.设直线AD 对应的函数解析式为y =mx +n ,则,3解得.9∴直线AD 对应的函数解析式为y =83x +49. ∴E 49.∴OE =49.4.415点拨:因为C(0,2),A(4,0),由矩形的性质可得P(2,1),把P 点坐标代入反比例函数解析式可得k =2,所以反比例函数解析式为y =x2.因为D点的横坐标为4,所以AD =42=21.因为点E 的纵坐标为2,所以2=CE 2,所以CE =1,则BE =3.所以S △ODE =S 矩形OABC -S △OCE -S △BED -S △OAD =8-1-49-1=415.5.(1)证明:∵BE ∥AC ,AE ∥OB , ∴四边形AEBD 是平行四边形.∵四边形OABC 是矩形,∴DA =21AC ,DB =21OB ,AC =OB.∴DA =DB.∴四边形AEBD 是菱形. (2)解:如图,连接DE ,交AB 于F , ∵四边形AEBD 是菱形,∴DF =EF =21OA =23,AF =21AB =1.∴E,19.设所求反比例函数解析式为y =xk, 把点E,19的坐标代入得1=29,解得k =29.∴所求反比例函数解析式为y =2x 9.(第5题)(第7题)6.D7.解:(1)如图,过点D 作x 轴的垂线,垂足为F. ∵点D 的坐标为(4,3),∴OF =4,DF =3.∴OD =5. ∴AD =5.∴点A 的坐标为(4,8).∴k =xy =4×8=32. (2)将菱形ABCD 沿x 轴正方向平移,使得点D 落在函数y =x 32(x>0)的图象上点D ′处,过点D ′作x 轴的垂线,垂足为F ′.∵DF =3,∴D ′F ′=3.∴点D ′的纵坐标为3.∵点D ′在y =x 32的图象上,∴3=x 32,解得x =332,即OF ′=332.∴FF ′=332-4=320.∴菱形ABCD 沿x 轴正方向平移的距离为320.8.解:(1)∵正方形OABC 的边OA ,OC 分别在x 轴,y 轴上,点B 的坐标为(2,2),∴C(0,2).∵D 是BC 的中点,∴D(1,2).∵反比例函数y =xk(x >0,k ≠0)的图象经过点D ,∴k =2.(2)当P 在直线BC 的上方,即0<x <1时,∵点P(x ,y)在该反比例函数的图象上运动,∴y =x2. ∴S四边形CQPR=CQ ·PQ =x ·-22=2-2x ;当P 在直线BC 的下方,即x >1时,同理求出S四边形CQPR=CQ ·PQ =x ·x 2=2x -2,综上,S =2-2x (0<x <1).2x -2(x >1),9.410.解:∵反比例函数的图象关于原点对称,圆也关于原点对称,故阴影部分的面积占⊙O 面积的41,则针头落在阴影区域内的概率为41.1.B 2.C 3.①③④4.解:(1)反比例函数:y =-x6.(2)如图所示.(第4题)5.解:∵反比例函数y =xk的图象经过点A(1,-k +4), ∴-k +4=1k,即-k +4=k ,∴k =2,∴A(1,2). ∵一次函数y =x +b 的图象经过点A(1,2), ∴2=1+b ,∴b =1.∴反比例函数的解析式为y =x2,一次函数的解析式为y =x +1.6.解:(1)将B(2,-4)的坐标代入y =xm,得-4=2m, 解得m =-8.∴反比例函数的解析式为y =x -8.∵点A(-4,n)在双曲线y =x-8上,∴n =2.∴A(-4,2).把A(-4,2),B(2,-4)的坐标分别代入y =kx +b ,得2k +b =-4,-4k +b =2,解得b =-2.k =-1,∴一次函数的解析式为y =-x -2.(2)令y =0,则-x -2=0,x =-2. ∴C(-2,0).∴OC =2.∴S △AOB =S △AOC +S △BOC =21×2×2+21×2×4=6.(3)x 1=-4,x 2=2. (4)-4<x<0或x>2.7.解:如图,由观察可知: (1)当y =-2时,x =-3;(2)当-2<x<1且x ≠0时,y<-3或y>6; (3)当-3<y<2且y ≠0时,x<-2或x>3.(第7题)点拨:解决问题时,画出函数图象.由图象观察得知结果.由图象解决相关问题,一定要注意数形结合,学会看图.8.解:(1)库存原料为2×60=120(吨),根据题意可知y 关于x 的函数解析式为y =x120.由于生产能力提高,每小时消耗的原料量大于计划消耗的原料量,所以自变量的取值范围是x>2.(2)根据题意,得y ≥24,所以x120≥24.解不等式,得x ≤5,即每小时消耗的原料量应控制在大于2吨且不大于5吨的范围内.点拨:(1)由“每小时消耗的原料量×可使用的时间=原料总量”可得y 关于x 的函数解析式.(2)要使机器不停止运转,需y ≥24,解不等式即可.(第9题)9.B 点拨:如图,过点B 作BE ⊥x 轴于点E ,∵D 为OB 的中点,∴CD 是△OBE 的中位线,则CD =21BE.设A x k ,则B 2x k ,CD =4x k ,AD =x k -4xk.∵△ADO的面积为1,∴21AD ·OC =1,即214x k ·x =1.解得k =38.10.311.(1)证明:∵点P 在双曲线y =x6上, ∴设P 点坐标为,m 6.∵点D 在双曲线y =x3上,BP ∥x 轴,D 在BP 上, ∴D 点坐标为,m 3.∴BD =m 3,BP =m 6,故D 是BP 的中点.(2)解:由题意可知S △BOD =23,S △AOC =23,S 四边形OBPA =6. ∴S 四边形ODPC =S 四边形OBPA -S △BOD -S △AOC =6-23-23=3.。

第3讲 反比例函数与几何综合讲义生

第3讲 反比例函数与几何综合讲义生

走进名校 初三数学反比例函数与几何综合讲义一、知识点睛研究反比例函数,建议从____________和____________两方面入手,再结合题目中的__________或_________进行研究.与反比例函数相关的几个结论,在解题时可以考虑调用.D y=kxB C A O yxy=k x①C B A Oyx②Dxy O y=k x A BCO A B C Dxy结论:2||ABO ABCO S S k ==△矩形 结论:OCD ABCDS S =△梯形结论:AB =CDk xy=A BCDEO xy ③结论:BD ∥CE二、精讲精练1.如图,已知点A ,B 在双曲线ky x=(x>0)的图象上,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,AC 与BD 相交于点P ,且P 是AC 的中点.若△ABP 的面积为3,则k =________.2.如图,A ,B 是双曲线ky x =(k >0)上的点,且A ,B 两点的横坐标分别为a,2a ,线段AB 的延长线交x 轴于点C .若∆S AOC =6,则k =________.第1题图 第2题图 第3题图3.如图,直线43y x =与双曲线ky x=(x >0)交于点A .将直线43y x =向右平移92个单位后,与双曲线k y x =(x >0)交于点B ,与x 轴交于点C ,若2=BCAO,则k =________. 4.如图,平行四边形AOBC 中,对角线交于点E ,双曲线ky x=(k >0)经过A ,E 两点.若平行四边形AOBC 的面积为18,则k =________.第4题图 第5题图 第6题图 第7题图5.如图,已知函数1+-=x y 的图象与x 轴、y 轴分别交于C ,B 两点,与双曲线ky x=交于A ,D 两点.若AB+CD=BC ,则k 的值为________.6.已知:如图,直线364y x =+与双曲线k y x =(x <0)相交于A ,B 两点,与x 轴、y 轴分别交于D ,C 两点,若AB =5,则k =_________.7.如图,直线b x y +-=33与y 轴交于点A ,与双曲线x ky =在第一象限交于B ,C 两点,且4AB AC ⋅=, 则k =________.8.双曲线11y x =,23y x=在第一象限内的图象如图所示,过2y 上的任意一点A 作x轴的平行线,交1y 于点B ,交y 轴于点C ,过点A 作x 轴的垂线,交1y 于点D ,交x轴于点E ,连接BD ,CE ,则BDCE=________.第8题图 第9题图 第10题图 第11题图9.如图,双曲线2y x=(x >0)经过四边形OABC 的顶点A ,C ,∠ABC =90°,OC平分OA 与x 轴正半轴的夹角,AB ∥x 轴.将△ABC 沿AC 翻折后得△AB ′C ,且点B ′恰好落在OA 上,则四边形OABC 的面积为__________.10.如图,双曲线ky x=经过Rt △OMN 斜边上的点A ,与直角边MN 相交于点B ,已知OA =2AN ,△OAB 的面积为5,则k 的值是__________.AO C B yx P CA B D O y x y BA O C x E OCBA yxA BCxy OD OABCy xyxODB C A……………………………答……………………………………………………题…………………………………………线……………………… ……………………………密……………………………………………………封…………………………………………线………………………xyCBAO11.如图,在平面直角坐标系xOy 中,直线AB 与x 轴、y 轴分别交于点A ,B ,与反比例函数xky =(k 为常数,且>0k )在第一象限的图象交于点E ,F .过点E 作EM⊥y 轴于M ,过点F 作FN ⊥x 轴于N ,直线EM 与FN 交于点C .若BE :BF =1:m (m 为大于1的常数).记△CEF 的面积为S 1,△OEF 的面积为S 2,则S 1:S 2=__________.(用含m 的代数式表示)12.如图,一次函数1y k x b =+的图象过点A (0,3),且与反比例函数2ky x =(>0x )的图象相交于B ,C 两点. (1)若B (1,2),求12k k ⋅的值.(2)若AB =BC ,则12k k ⋅的值是否为定值?若是,请求出该定值;若不是,请说明理由.三、精讲精练1. 如图,已知四边形ABCD 是平行四边形,BC =2AB ,A ,B 两点的坐标分别是(-1,0),(0,2),C ,D 两点在反比例函数ky x=(0x <)的图象上,则k 的值为____________. yxODC B Axy BAO第1题图 第2题图 第3题图2. 如图,已知第一象限内的点A 在反比例函数2y x=的图象上,第二象限内的点B 在反比例函数ky x=的图象上,且OA ⊥OB ,tan A =3,则k 的值为______________. 3. 如图,直线12y x =与双曲线k y x =(0k >,0x >)交于点A ,将直线12y x =向上平移4个单位长度后,与y 轴交于点C ,与双曲线ky x=(0k >,0x >)交于点B .若OA =3BC ,则k 的值为____________.4. 如图,在函数11k y x =(0x <)和22k y x=(0x >)的图象上,分别有A ,B 两点,若AB ∥x 轴,交y 轴于点C ,且OA ⊥OB ,12AOC S =△,92BOC S =△,则线段AB 的长度为 .B AC Oy xyx DE B COA第4题图 第5题图5. 如图,等腰直角三角形ABC 的顶点A ,C 在x 轴上,∠ACB =90°,22AC BC ==,反比例函数3y x=(0x >)的图象分别与AB ,BC 交于点D ,E .连接DE ,当△BDE∽△BCA 时,点E 的坐标为______________. 6. 如图,已知直线12y x =与双曲线ky x=(0k >)交于A ,B 两点,点B 的坐标为(-4,-2),C 为第一象限内双曲线k y x =(0k >)上一点.若△AOC 的面积为6,则点C 的坐标为______________________.yxBOABy CAxO7. 如图,将边长为4的等边三角形AOB 放置于平面直角坐标系xOy 中,F 是AB 边上的动点(不与点A ,B 重合),过点F 的反比例函数ky x=(0k >,0x >)与OA 边交于点E ,过点F 作FC ⊥x 轴于点C ,连接EF ,OF . (1)若3OCF S =△,求反比例函数的解析式.(2)在(1)的条件下,试判断以点E 为圆心,EA 长为半径的圆与y 轴的位置关系,并说明理由.(3)AB 边上是否存在点F ,使得EF ⊥AE ?若存在,请求出BF :F A 的值;若不存在,请说明理由.yxBC FEOA反比例函数与几何综合(随堂测试)1. 如图,在平面直角坐标系xOy 中,□ABOC 的对角线OA ,BC 交于点E ,双曲线ky x=(0k <)经过C ,E 两点.若□ABOC 的面积为10,则k 的值为( )A .52-B .103- C .4- D .5-y xE COBADABOCExy第1题图 第2题图2. 如图,正方形ABCD 的边BC 在x 轴上,E 是对角线AC ,BD 的交点.若反比例函数2y x=(0x >)的图象经过A ,E 两点,则点E 的坐标为________________.反比例函数与几何综合(作业)1. 如图,在平面直角坐标系xOy 中,菱形OABC 的顶点C 在x 轴上,顶点A 在反比例函数my x =(m ≠0)的图象上,一次函数y kx b =+(k ≠0)的图象与该反比例函数的图象交于A ,D 两点,与x 轴交于点E .已知OA =5,20OABC S =菱形,点D 的坐标为(-4,n ).连接CA ,CD ,则ACD S =△_________.DEC B AOyxy xB APNMG F EO第1题图 第2题图2. 如图,在平面直角坐标系xOy 中,矩形OEFG 的顶点F 的坐标为(4,2),将矩形OEFG绕点O 逆时针旋转,使点F 落在y 轴上,得到矩形OMNP .OM 与GF 相交于点A ,若经过点A 的反比例函数ky x=(0x >)的图象交EF 于点B ,则点B 的坐标为___________.3. 如图,矩形O A B C 的顶点A ,C 分别在x 轴、y 轴的正半轴上,D 为对角线OB 的中点,反比例函数ky x=(0x >)的图象经过点D ,且与AB ,BC 分别交于点E ,F ,若四边形BEDF 的面积为1,则k 的值为____________.yxF E DOC B AA OByxMC P N MA B lO y x第3题图 第4题图 第5题图4. 已知,在平面直角坐标系x O y 中,点A 在x 轴负半轴上,点B 在y 轴正半轴上,14OA OB =,函数9y x=-的图象与线段AB 交于点M .若AM =BM ,则直线AB 的解析式为_______. 5. 如图,直线l :1y x =+与x 轴、y 轴分别交于点A ,B ,点C 与原点O 关于直线l 对称.反比例函数k y x =的图象经过点C ,点P 在反比例函数k y x=的图象上,且位于点C 左侧,过点P 作x 轴、y 轴的垂线,分别交直线l 于点M ,N .则AN B M ⋅的值为____________.……………………………答……………………………………………………题…………………………………………线……………………… ……………………………密……………………………………………………封…………………………………………线………………………Oy xNMD CB A6. 如图,A ,B 是双曲线ky x=(0k >)上的点,且A ,B 两点的横坐标分别为a ,5a ,直线AB 交x 轴于点C ,交y 轴于点D .若6OCD S =△,则k 的值为____________.y xC BADO第6题图7. 如图,在平面直角坐标系xOy 中,已知A (-1,0),B (0,3),C (3,0),且四边形ABCD是平行四边形.(1)求证:四边形ABCD 是矩形; (2)若反比例函数ky x=(k ≠0)与BC 交于M ,N 两点,且BM =MN ,求k 的值.。

人教版初三数学9年级下册 第26章(反比例函数)复习讲义及例题和习题(含答案)

人教版初三数学9年级下册 第26章(反比例函数)复习讲义及例题和习题(含答案)

第二十六章 反比例函数本章知识结构图:中考说明中对本章知识的要求:考试内容A 层次B 层次C 层次反比例函数能结合具体情境了解反比例函数的意义;能画出反比例函数的图象;理解反比例函数的性质能根据已知条件确定反比例函数的解析式;能用反比例函数的知识解决有关问题主要内容:1.定义:一般地,形如)0(≠=k k x ky 是常数,且的函数,叫反比例函数. 反比例函数的解析式有三种形式:(1)xky =(k ≠0的常数);(2)k xy =(k ≠0的常数);(3)1-=kx y (k ≠0的常数).2. 反比例函数的图象及性质:(1)反比例函数的图象是双曲线;(2)当k >0时,两支曲线分别位于第一、三象限,在每一象限内,y 的值随x 值的增大而减小;当k <0时,两支曲线分别位于第二、四象限,在每一象限内,y 的值随x 值的增大而增大;(3)反比例函数图象的两个分支无限接近x 轴和y 轴,但永远不会与x 轴和y 轴相交;(4)反比例函数的图象是对称图形,反比例函数的图象既是轴对称图形又是中心对称图形:①)0(≠=k x ky 是轴对称图形,其对称轴为x y x y -==和两条直线;②)0(≠=k x ky 是中心对称图形,对称中心为原点(0,0)。

③xky x k y -==和在同一坐标系中的图像关于x 轴、y 轴成轴对称。

(5)反比例函数的几何意义:在反比例函数)0(≠=k xky 的图象上任取一点M ,从几何意义上看,从点M 向两轴作垂线,两垂线段与坐标轴所围成的矩形的面积为定值k ;(6)k 越大,双曲线越远离原点。

3.反比例函数在代数、几何及实际问题中的应用。

四、例题与习题:1.下面的函数是反比例函数的是 ( )A . 13+=x yB .x x y 22+= C . 2xy =D .xy 2=2.用电器的输出功率与通过的电流、用电器的电阻之间的关系是,下面说法正确的是()A .为定值,与成反比例B .为定值,与成反比例C .为定值,与成正比例D .为定值,与成正比例3.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图3所示,当310m V =时,气体的密度是( )A .5kg/m 3B .2kg/m 3C .100kg/m 3D .1kg/m 34. 已知三角形的面积一定,则它底边上的高与底边之间的函数关系的图象大致是( )B .C .D .5.某物体对地面的压力为定值,物体对地面的压强p (Pa )与受力面积S (m 2)之间的函数关系如图所示,这一函数表达式为p = .6.点在反比例函数的图象上,则 .7.点(3,-4)在反比例函数ky x=的图象上,则下列各点中,在此图象上的是( )A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)P I R 2P I R =P I R P 2I R P I R P 2I R a h a (231)P m -,1y x=m =8.已知某反比例函数的图象经过点()m n ,,则它一定也经过点( )A .()m n -,B .()n m ,C .()m n -,D .()m n ,9.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .10.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________.11.在平面直角坐标系中,将点(53)P ,向左平移6个单位,再向下平移1个单位,恰好在函数ky x=的图象上,则此函数的图象分布在第 象限.12.对于反比例函数(),下列说法不正确的是( )A. 它的图象分布在第一、三象限B. 点(,)在它的图象上C. 它的图象是中心对称图形D. 每个象限内,随的增大而增大13. 一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 .14.已知反比例函数y =x2k -的图象位于第一、第三象限,则k 的取值范围是( ).(A )k >2 (B ) k ≥2(C )k ≤2(D ) k <215.若反比例函数的图象经过点,其中,则此反比例函数的图象在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限16.若反比例函数1k y x-=的图象在其每个象限内,y 随x 的增大而减小,则k 的值可以是( )A.-1B.3C.0D.-317.若点00()x y ,在函数ky x=(0x <)的图象上,且002x y =-,则它的图象大致是( )18.设反比例函数中,在每一象限内,随的增大而增大,则一次函数的图象不经过()xk y 2=0≠k k k y x ky x=(3)m m ,0m ≠)0(≠-=k xky y x k kx y -=A .B .C .D .(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限19.如果点11()A x y ,和点22()B x y ,是直线y kx b =-上的两点,且当12x x <时,12y y <,那么函数ky x=的图象大致是( )20.若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为( )A .b c>B .b c<C .b c=D .无法判断21.已知点A (3,y 1),B (-2,y 2),C (-6,y 3)分别为函数xky =(k<0)的图象上的三个点.则y 1 、y 2 、y 3的大小关系为 (用“<”连接).22.在反比例函数的图象上有两点A ,B ,当时,有,则的取值范围是( )A 、B 、C 、D 、23.若A (,)、B (,)在函数的图象上,则当、满足______________________________________时,>.24. 已知直线与双曲线的一个交点A 的坐标为(-1,-2).则=_____;=____;它们的另一个交点坐标是______.25.在平面直角坐标系xoy 中,直线yx =向上平移1个单位长度得到直线l .直线l 与反比例函数ky x=的图象的一个交点为(2)A a ,,则k 的值等于 .26.如果函数x y 2=的图象与双曲线)0(≠=k xky 相交,则当0<x 时,该交点位于A .第一象限B .第二象限C .第三象限D .第四象限27.在同一平面直角坐标系中,函数xy 1=与函数x y =的图象交点个数是( )A 、0个B 、1个C 、2个D 、3个28.函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是( ) A .1k > B .1k < C .1k >- D .1k <-12my x-=()11,x y ()22,x y 120x x <<12y y <m 0m <0m >12m <12m >1x 1y 2x 2y 12y x=1x 2x 1y 2y mx y =xky =m k xxxx.D .29.在同一坐标系中,一次函数(1)21y k x k =-++与反比例函数ky x=的图象没有交点,则常数k 的取值范围是.30.如图,直线)0(>=k kx y 与双曲线xy 2=交于A 、B 两点,若A 、B 两点的坐标分别为A ()11,y x ,B ()22,y x ,则1221y x y x +的值为()A . -8B .4C . -4D . 031.已知反比例函数2y x=,下列结论中,不正确的是( ) A .图象必经过点(12),B .y 随x 的增大而减少C .图象在第一、三象限内D .若1x >,则2y <32.已知函数1y x=的图象如下,当1x ≥-时,y 的取值范围是( ) A .1y <- B .1y ≤- C .1y ≤- 或0y > D .1y <-或0y ≥33.如图,一次函数与反比例函数的图象相交于A、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是_____________.34.如图,正方形ABOC 的边长为2,反比例函数xky =过点A ,则K 的值是( )A .2B .-2C .4D .-435.过反比例函数(0)ky k x=>的图象上的一点分别作x 、y 轴的垂线段,如果垂线段与x 、y 轴所围成的矩形面积是6,那么该函数的表达式是______;若点A(-3,m)在这个反比例函数的图象上,则m=______.36.如图,若点A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k =.37.在反比例函数4y x=的图象中,_4-1-1yx第32题图第34题图第33题图第36题图阴影部分的面积不等于4的是( )A .B .C .D .38.两个反比例函数k y x =和1y x =在第一象限内的图象如图所示,点P 在ky x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 .(把你认为正确结论的序号都填上,少填或错填不给分).39.如图,第四象限的角平分线OM 与反比例函数()0≠=k xky 的图象交于点A ,已知OA=23,则该函数的解析式为( )A .xy 3=B .xy 3-= C .xy 9=D .xy 9-=40.如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)k y k x =>的图象于Q ,32OQC S ∆=,则k的值和Q 点的坐标分别为______________.ky x =1y x=(第38题图)第39题图41.当m 取什么数时,函数2)1(--=m xm y 为反比例函数式?42.已知反比例函数102)2(--=m x m y 的图象,在每一象限内y 随x 的增大而减小,求反比例函数的解析式.43.平行于直线y x =的直线l 不经过第四象限,且与函数3(0)y x x=>和图象交于点A ,过点A 作AB y ⊥轴于点B ,AC x ⊥轴于点C四边形ABOC 的周长为8.求直线l 的解析式.44.已知正比例函数的图象与反比例函数(为常数,)的图象有一个交点的横坐标是2.(1)求两个函数图象的交点坐标;(2)若点,是反比例函数图象上的两点,且,试比较的大小.45.已知一次函数y kx b =+的图象与反比例函数my x=的图象相交于A (-6,-2)、B (4,3)两点.(1)求出两函数解析式;(2)画出这两个函数的图象;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值?46.如图,直线y =x +1与双曲线x2y =交于A 、B 两点,其中A 点在第一象限.C 为x 轴正半轴上一点,且S △ABC =3.(1)求A 、B 、C 三点的坐标;(2)在坐标平面内,是否存在点P ,使以A 、B 、C 、P 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标,若不存在,请说明理由.47.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与y kx =5ky x-=k 0k ≠11()A x y ,22()B x y ,5ky x-=12x x <12y y ,3(0)x x>(第47题)t 的函数关系式为tay =(a 为常数),如图所示.据图中提供的信息,解答下列问题: (1)写出从药物释放开始,y 与t 之间的两个函数关系式及相应的自变量的取值范围; (2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?48.我们学习了利用函数图象求方程的近似解,例如:把方程的解看成函数的图象与函数的图象交点的横坐标.如图,已画出反比例函数在第一象限内的图象,请你按照上述方法,利用此图象求方程的正数解.(要求画出相应函数的图象;求出的解精确到0.1)49.如图,帆船A 和帆船B 在太湖湖面上训练,O 为湖面上的一个定点,教练船静候于O点.训练时要求A 、B 两船始终关于O 点对称.以O 为原点.建立如图所示的坐标系,轴、y 轴的正方向分别表示正东、正北方向.设A 、B 两船可近似看成在双曲线上运动,湖面风平浪静,双帆远影优美.训练中当教练船与A 、B 两船恰好在直线上时,三船同时发现湖面上有一遇险的C 船,此时教练船测得C 船在东南45°方向上,A 船测得AC 与AB 的夹角为60°,B 船也同时测得C 船的位置(假设C 船位置213x x -=-21y x =-3y x =-1y x=210x x --=x 4y x=y x=不再改变,A 、B 、C 三船可分别用A 、B 、C 三点表示).(1)发现C 船时,A 、B 、C 三船所在位置的坐标分别为 A( , )、B( ,)和C(,);(2)发现C 船,三船立即停止训练,并分别从A 、O 、B 三点出发沿最短路线同时前往救援,设A 、B 两船 的速度相等,教练船与A 船的速度之比为3:4,问教练船是否最先赶到?请说明理由。

反比例函数讲义(知识点+典型例题)

反比例函数讲义(知识点+典型例题)

变式1 如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 变式2 若函数11-=m xy (m 是常数)是反比例函数,则m =________,解析式为________.题型二:反比例函数解析式例3 已知A (﹣1,m )与B (2,m ﹣3)是反比例函数图象上的两个点.则m 的值 .例4 已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.变式3已知y 与x 成反比例,当x =2时,y =3.(1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.变式4 已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.1、反比例函数的图像(1)形状与位置:反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。

(2)变化趋势:由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

2、反比例函数的性质(1)对称性:反比例函数的图像是关于原点对称的中心对称图形,同时也是轴对称图形,有两条对称轴,分别是一、三象限和二、四象限的角平分线,即直线y x =±。

(注:过原点的直线与双曲线的两个交点关于原点对称)(2)双曲线的位置:当k>0时,双曲线位于一、三象限(x ,y 同号);当k<0时,双曲线位于二、四象限(x ,y 同号异号),反之也成立。

(3)增减性: 当k>0时,双曲线走下坡路,在同一象限内,y 随x 的增大而减小;当k<0时,双曲线走上坡路,在同一象限内,y 随x 的增大而增大。

反比例函数与几何综合(习题及答案)

反比例函数与几何综合(习题及答案)

1反比例函数与几何综合(习题)例题示范例1:如图,等边三角形ABO 的顶点B 的坐标为(-2,0),过点C (2,0)作直线CE ,交AO 于点D ,交AB 于点E ,点E 在反比例函数k y x=(0x <)的图象上.若S △ADE =S △OCD ,则k =__________.【思路分析】1.读题标注,找关键点.点E 为等边三角形与反比例函数图象的交点,为关键点;要求k ,准备求解点E 的坐标或相关的2k .2.考虑将函数特征与几何特征进行转化、组合,列方程求解.①整合条件.考虑通过横平竖直的线,将函数特征和几何特征结合起来:过点E 向x 轴作垂线,垂足为F .②尝试将几何条件与横平竖直的线结合起来使用.EF 和OF 不能直接与S △ADE =S △OCD 产生联系;转为尝试将等边三角形ABO 与S △ADE =S △OCD 相结合,即将S △ADE =S △OCD 转化为S △ABO =S △BCE 进行使用.③列方程求解.21324EF BC OB ⋅=,解得,EF =32,在Rt △BFE 中,可求得12BF =,则13222OF =-=;即E (3322-,),所以k =334-.2巩固练习1.如图,直线112y x =--与反比例函数k y x =(0x <)的图象交于点A ,与x 轴交于点B ,过点B 作x 轴的垂线交双曲线于点C .若AB =AC ,则k 的值为__________.第1题图第2题图2.如图,直线12y x =与双曲线k y x =(0k >,0x >)交于点A ,将直线12y x =向上平移4个单位长度后,与y 轴交于点C ,与双曲线k y x=(0k >,0x >)交于点B .若OA =3BC ,则k 的值为____________.3.如图,A ,B 是双曲线k y x=(k >0)上的点,且A ,B 两点的横坐标分别为a ,2a ,线段AB 的延长线交x 轴于点C .若S △AOC =6,则k =________.第3题图第4题图4.如图,已知平行四边形AOBC ,对角线相交于点E ,双曲线k y x=(k >0)经过A ,E 两点.若平行四边形AOBC 的面积为18,则k =__________.35.如图,正方形ABCD 的顶点B ,C 在x 轴的正半轴上,反比例函数k y x=(k ≠0)在第一象限的图象经过顶点A (m ,2)和CD 边上的点E (n ,23),过点E 的直线l 交x 轴于点F ,交y 轴于点G (0,-2),则点F 的坐标是_________.第5题图第6题图6.如图,双曲线2y x=(x >0)经过四边形OABC 的顶点A ,C ,∠ABC =90°,OC 平分OA 与x 轴正半轴的夹角,AB ∥x 轴.将△ABC 沿AC 翻折后得△AB ′C ,且点B ′恰好落在OA 上,则四边形OABC 的面积为__________.7.如图,直线364y x =+与双曲线k y x=(x <0)相交于A ,B 两点,与x 轴、y 轴分别交于D ,C 两点.若AB =5,则k =______.第7题图第8题图8.如图,双曲线k y x=经过点A (2,2)与点B (4,m ),则△AOB 的面积为___________.49.如图,将边长为4的等边三角形AOB 放置于平面直角坐标系xOy 中,F 是AB 边上的动点(不与点A ,B 重合),过点F 的反比例函数k y x=(0k >,0x >)与OA 边交于点E ,过点F 作FC ⊥x 轴于点C ,连接EF ,OF .(1)若3OCF S =△,求反比例函数的解析式.(2)在(1)的条件下,试判断以点E 为圆心,EA 长为半径的圆与y 轴的位置关系,并说明理由.(3)AB 边上是否存在点F ,使得EF ⊥AE ?若存在,请求出BF :FA的值;若不存在,请说明理由.10.如图,已知正方形ABCD 的边长为2,AB ∥x 轴,AD ∥y 轴,顶点A 恰好落在双曲线12y x=上,边CD ,BC 分别交该双曲线于点E ,F ,若线段AE 过原点,则△AEF 的面积为______.511.如图,直线3y x =-+与y 轴交于点A ,与反比例函数(0)k y k x=≠的图象交于点C ,过点C 作CB ⊥x 轴于点B ,AO =3BO ,则反比例函数的解析式为()A .4y x =B .4y x =-C .2y x =D .2y x=-第11题图第12题图12.如图,已知点A 在反比例函数(0)k y x x=<上,作Rt △ABC ,点D 为斜边AC 的中点,连接DB 并延长交y 轴于点E ,若△BCE 的面积为8,则k =__________.13.如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转.若∠BOA 的两边分别与函数1y x =-,2y x=的图象交于B ,A 两点,则∠OAB 大小的变化趋势为()A .逐渐变小B .逐渐变大C .时大时小D .保持不变6思考小结反比例函数特征的常见用法①利用反比例函数表达式,设点坐标.②利用几何特征表达出坐标之后,代入到反比例函数表达式中列方程求解.③同一反比例函数上有两个点1122()()A x y B x y ,,,,则1122x y x y =.常用同一个未知数表达出两点坐标后列方程求解.④同一反比例函数上有两个点1122()()A x y B x y ,,,,则1221x y x y =.如果两个点的横坐标(纵坐标)有比例关系,那么对应的纵坐标(横坐标)也有比例关系.【参考答案】巩固练习1.-42.923.44.65.9(0)4,6.27.-98.39.(1)23(0)y x=>;x(2)以点E为圆心,EA长为半径的圆与y轴相离,理由略;(3)存在,BF:FA=1:4,理由略.10.4311.B12.1613.D7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A,B,过点 A,B 作 x 轴的垂线,垂足分别为点 C,D.若四
边形 ACDB 的周长为 8,且 AB < AC,则点 A 的坐标是 _____________.
第 1 题图
第 2 题图
2. 如图,A,B 是双曲线 y k (k < 0)上的点,且 A,B 两点的 x
横坐标分别为 a,2a,线段 AB 的延长线交 x 轴于点 C.若
反比例函数与几何综合(讲义)
一、知识点睛
反比例函数与几何综合的解题思路: 1. 从关键点入手.“关键点”是信息汇聚点,通常是_________
和________的______.通过___________和_______________ 的互相转化可将_________与________综合在一起进行研究. 2. 梳理题干中的函数和几何信息,依次转化. 3. 借助___________或__________列方程求解. 与反比例函数相关的几个结论,在解题时可以考虑调用.
7. 如图,双曲线 y k 经过点 A(2,2)与点 B(4,m),则△AOB x
的面积为___________.
第 7 题图
第 8 题图
8. 如图,平行四边形 OABC 的顶点 O 在坐标原点,顶点 A,C
在反比例函数
y
k x

x
0
)的图象上,点
A
的横坐标为
4,
点 B 的横坐标为 6,且平行四边形 OABC 的面积为 9,则 k
S△AOC =6,则 k =________.
3. 如图,正方形 OAPB 的顶点 B 以及等腰直角三角形 AFD 的
顶点 A,D 在坐标轴上,点 P,F 在函数 y 9 (x > 0)的图 x
象上,则点 F 的坐标为________.
第 3 题图
第 4 题图
4. 如图,□ABCD 的顶点 A,B 的坐标分别是 A(-1,0),
4.12 8.-6
12.①②④
2.-4 5.12 9.-6
3.( 3 3 5 , 3 3 5 )
2
2
6.12
7.3
10.12
11. 2 3
5
连接 BD,CE,则 BD =______. CE
第 11 题图
第 12 题图
12. 如图,一次函数 y ax b 的图象与 x 轴、y 轴交于 A,B 两点,
与反比例函数 y k 的图象交于 C,D 两点,过 C,D 两点分 x
别作 y 轴、 x 轴的垂线,垂足为 E,F,连接 CF,DE.
B(0,-2),顶点 C,D 在双曲线 y k (x > 0)上,边 AD 交 x
y 轴于点 E,且四边形 BCDE 的面积是△ABE 面积的 5 倍,则
k =_______.
2
5.
如图,直线
y
4 3
x
与双曲线
y
k x
(x
>
0)交于点
A
.将直线
y 4 x 向右平移 9 个单位后,与双曲线 y k (x > 0)交于点
有下列四个结论:①△DEF 与△CEF 的面积相等;
②△AOB∽△FOE;③△DCE≌△CDF;④AC=BD.
其中正确的结论是___________.
4
【参考答案】
一、知识点睛
1.函数图象,几何图形,交点,关键点坐标,横平竖直线段长, 函数特征,
几何特征
3.函数特征,几何特征 二、精讲精练
1.( 1 ,3) 3
MN 相交于点 B,已知 OA=2AN,△OAB 的面积为 5,则 k 的
值是__________.
11.
反比例函数 y1
1 x

y2
3 在第一象限内的图象如图所示, x
过 y2 上的任意一点 A 作 x 轴的平行线,交 y1 于点 B,交 y 轴
于点 C,过点 A 作 x 轴的垂线,交 y1 于点 D,交 x 轴于点 E,
3
2
x
B ,与 x 轴交于点 C ,若 AO 2 ,则 k =________.
BC
第 5 题图
第 6 题图
6.
如图,已知点
A,Bபைடு நூலகம்
在双曲线
y
k x
(x
>0)的图象上,AC⊥
x 轴于点 C,BD⊥y 轴于点 D,AC 与 BD 相交于点 P,且 P
是 AC 的中点.若△ABP 的面积为 3,则 k =________.
的值为_________.
3
9. 如图,平行四边形 AOBC 的对角线交于点 E,双曲线 y k x
(k < 0)经过 A,E 两点.若平行四边形 AOBC 的面积为 18, 则 k=________.
第 9 题图
第 10 题图
10. 如图,双曲线 y k 经过 Rt△OMN 斜边上的点 A,与直角边 x
结论: S矩形ABCO 2S△ABO | k |
结论: S△OCD S梯形ABCD
结论:AB=CD
结论:BD∥CE
1
二、精讲精练
1.
如图,已知第一象限内的图象是反比例函数
y
1 x
图象的一个
分支,第二象限内的图象是反比例函数
y
2 x
图象的一个分
支,在 x 轴上方有一条平行于 x 轴的直线 l 与它们分别交于点
相关文档
最新文档