粒径分布测定法

合集下载

粉尘粒径分布测定实验—安德逊移液管法

粉尘粒径分布测定实验—安德逊移液管法

粉尘粒径分布测定实验—安德逊移液管法通风与除尘中所研究的粉尘都是由许多大小不同粉尘粒子所组成的聚合体。

粉尘的粒径分布也叫分散度—即粉尘中各种粒径或粒径范围的尘粒所占的百分数。

以数量统计形式表征的粉尘粒径布称为粉尘粒径数量分布;以质量统计形式表征的粉尘粒径分布称为粉尘粒径质量分布。

粉尘的粒径分布不同,其对人体到的危害以及除尘的机理也都不同,掌握粉尘的粒径分布是进行除尘器设计和研究的基本条件。

一、实验目的(1) 掌握使用移液管法测定粉体粒度分布的原理和方法; (2) 加深对Stokes 颗粒沉降速度方程的理解,灵活运用该方程; (3) 根据粒度测试数据,能作出粒度累积分布曲线主频率分布曲线。

二、实验原理本实验使用液体重力沉降法(安德逊移液管法)来测定分析粉尘的粒径分布。

液体重力沉降法是根据不同大小的粒子在重力作用下,在液体中的沉降速度各不相同这一原理而得到的。

粒子在液体(或气体)介质中作等速自然沉降时所具有的速度,称为沉降速度,其大小可以用斯托克斯公式表示。

μρρ18)(2pL p t gd v -=(1)式中:v t — 粒子的沉降速度,cm/s ; μ — 液体的动力黏度,g/(cm ·s)ρp — 粒子的真密度, g/cm 3; ρL — 液体的密度,g/cm 3 g — 重力加速度,981cm/s 2; d p —粒子的直径, cm 。

由式(1)可得gtHgv d L p L p tp )(18)(18ρρμρρμ-=-=(2)这样,粒径便可以根据其沉降速度求得。

由于沉降速度是沉降高度与沉降时间的比值,以此替换沉降速度。

使上式变为2)(18pL p gd Ht ρρμ-=(3) 式中:H — 粒子的沉降高度,cm ; t — 粒子的沉降时间,s 粒子在液体中沉降情况可用图1表示。

粉样放入玻璃瓶内某种液体介质中,经搅拌后,使粉样均匀地扩散在整个液体中,如图1中状态甲。

经过t 1后,因重力作用,悬浮体由状态甲变为状态乙。

0982 粒度和粒度分布测定法第二法筛分法公示稿(第一次)

0982 粒度和粒度分布测定法第二法筛分法公示稿(第一次)

附件1:0982 粒度和粒度分布测定法第二法筛分法草案公示稿(第一次)0982粒度和粒度分布测定法本法用于测定原料药、辅料和药物制剂粉末或颗粒的粒子大小或粒度分布。

其中第一法、用于测定粒子大小或限度,第二法用于测定药物制剂的粒子大小、或限度或粒度分布,第三法用于测定原料药或药物制剂的粒度分布。

第一法(显微镜法)本法中的粒度,系以显微镜下观察到的长度表示。

目镜测微尺的标定照显微鉴别法(通则2001)标定目镜测微尺。

测定法取供试品,用力摇匀,黏度较大者可按各品种项下的规定加适量甘油溶液(1→2)稀释,照该剂型或各品种项下的规定,量取供试品,置载玻片上,覆以盖玻片,轻压使颗粒分布均匀,注意防止气泡混入,半固体可直接涂在载玻片上,立即在50~100倍显微镜下检视盖玻片全部视野,应无凝聚现象,并不得检出该剂型或各品种项下规定的50μm及以上的粒子。

再在200~500倍的显微镜下检视该剂型或各品种项下规定的视野内的总粒数及规定大小的粒数,并计算其所占比例(%)。

第二法(筛分法)筛分法是通过合宜孔径的药筛对粉末或颗粒的粒子大小和粒度分布进行评估和分级的方法。

一般分为手动筛分法、机械筛分法与空气喷射筛分法气流筛分法。

一般情况下,手动筛分法和机械筛分法适用于测定大部分粒径大于75μm的供试品。

;对于粒径较小的供试品,由于其质量较小,在筛分过程中提供的重力不足以克服内聚力和粘附力,使颗粒相互团聚并粘附在筛面上,从而导致预期通过筛面的颗粒被保留,对于粒径小于75μm的样品,则应因此,采用气流筛分法空气喷射筛分法或其他适宜的方法更为合适。

但是在经方法验证可行的情况下,筛分法也可用于粒径中位值小于75μm的粉末或颗粒。

对于只能通过粒度大小进行分类的粉末或颗粒,筛分法是很好的选择。

筛分法需要的样品量大(一般至少需要25g,取决于粉末或颗粒的密度以及药筛的直径),而且难以筛分易堵塞筛孔的油性或其他粘附性粉末或颗粒。

颗粒能否通过筛孔一般取决于颗粒的最大宽度或厚度,而不是颗粒的长度,因此筛分法是一种二维的尺寸估算方法。

土壤—颗粒组成(粒径分布)的测定—比重计法

土壤—颗粒组成(粒径分布)的测定—比重计法

FHZDZTR0008 土壤 颗粒组成(粒径分布)的测定 比重计法F-HZ-DZ-TR-0008土壤—颗粒组成(粒径分布)的测定—比重计法1 范围本方法适用于土壤颗粒组成(粒径分布)的测定。

2 原理土样经化学和物理方法处理成悬浮液定容后,根据司笃克斯(Stokes)定律及土壤比重计浮泡在悬浮液中所处的平均有效深度,静置不同时间后,用土壤比重计直接读出每升悬浮液中所含各级颗粒的质量,计算其百分含量,并定出土壤质地名称。

比重计法操作较简便,但精度较差,可根据需要选择使用。

3 试剂3.1 氢氧化钠溶液:0.5mol/L ,20g 氢氧化钠,加水溶解后稀释至1000mL 。

3.2 六偏磷酸钠溶液:0.5mol/L ,51g六偏磷酸钠溶于水,加水稀释至1000mL 。

图1 搅拌棒 3.3 草酸钠溶液:0.5mol/L ,33.5g 草酸钠溶于水,加水稀释至1000mL 。

4 仪器4.1 土壤比重计,又称甲种比重计或鲍氏比重计,刻度0~60g/L 。

4.2 量筒,1000mL 。

4.3 锥形瓶,500mL 。

4.4 烧杯,50mL 。

4.5 洗筛,直径6cm ,孔径0.25mm 。

4.6 土壤筛,孔径2、1、0.5mm 。

4.7 搅拌棒(图1)。

5 操作步骤5.1 称取通过2mm 筛孔的10g(精确至0.001g)风干土样置于已知质量的50mL 烧杯(精确至0.001g)中,放入烘箱,在105℃烘6h ,再在干燥器中冷却后称至恒量(精确至0.001g),计算土壤水分换算系数。

5.2 称取通过2mm 筛孔的50g(精确至0.01g)风干土样(粘土或壤土50g ,砂土100g)置于500mL 锥形瓶中。

5.3 分散土样:根据土壤的pH 值,于锥形瓶中加入50mL 0.5mol/L 氢氧化钠溶液(酸性土壤)、50mL 0.5mol/L 六偏磷酸钠溶液(碱性土壤)或50mL 0.5mol/L 草酸钠溶液(中性土壤),然后加水使悬浮液体积达到250mL 左右,充分摇匀。

颗粒粒径的众多测试方法

颗粒粒径的众多测试方法

颗粒粒径的众多测试⽅法 1)筛分法:筛分法是⼀种最传统的粒度测试⽅法,也是过去最常⽤的⽅法。

它是使颗粒通过不同尺⼨的筛孔来测试粒度的。

筛分法分⼲筛和湿筛两种形式,可以⽤单个筛⼦来控制单⼀粒径颗粒的通过率,也可以⽤多个筛⼦叠加起来同时测量多个粒径颗粒的通过率,并计算出百分数。

筛分法有⼿⼯筛、振动筛、负压筛、全⾃动筛等多种⽅式。

颗粒能否通过筛⼏与颗粒的取向和筛分时间等素因素有关,不同的⾏业有各⾃的筛分⽅法标准。

(2)显微镜法:测量与实际颗粒投进⾯积相同的球形颗粒的直径即等效投影⾯积直径。

包括显微镜、CCD摄像头(或数码像机)、图形采集卡、计算机等部分组成。

它的基本⼯作原理是将显微镜放⼤后的颗粒图像通过CCD摄像头和图形采集卡传输到计算机中,由计算机对这些图像进⾏边缘识别等处理,计算出每个颗粒的投影⾯积,根据等效投影⾯积原理得出每个颗粒的粒径,再统计出所设定的粒径区间的颗粒的数量,就可以得到粒度分布了。

由于这种⽅法单次所测到的颗粒个数较少,对同⼀个样品可以通过更换视场的⽅法进⾏多次测量来提⾼测试结果的真实性。

除了进⾏粒度测试之外,它还常⽤来观察和测试颗粒的形貌 (3)刮板:把样品刮到⼀个平板的表⾯上,观察粗糙度,以此来评价样品的粒度是否合格。

此法是涂料⾏业采⽤的⼀种⽅法。

(3)沉降法:依据颗粒的沉降速度作等效对⽐,所测的粒径为等效沉速径,即⽤与被测颗粒具有相同沉降速度的同质球形颗粒的直径来代表实际颗粒的⼤⼩。

有简单的沉降瓶法和按此原理设计的粒度仪。

例如⼀种纳⽶颗粒粒度分析仪采⽤的是差⽰沉淀法进⾏颗粒粒度的测量和分析。

样品被注⼊到⾼速旋转的液体中,然后在离⼼⼒的作⽤下,样品被快速沉淀并通过检测头被检测并拾取。

因为⼤⼩不同的颗粒到达检测头的时间不同,因此通过记录颗粒到达检测头的时间,就可以知道颗粒的⼤⼩, (4)电阻法:电阻法⼜叫库尔特法,是由美国⼀个叫库尔特的⼈发明的⼀种粒度测试⽅法。

这种⽅法是根据颗粒在通过⼀个⼩微孔的瞬间,占据了⼩微孔中的部分空间⽽排开了⼩微孔中的导电液体,使⼩微孔两端的电阻发⽣变化的原理测试粒度分布的。

“颗粒粒径分析方法”汇总大全

“颗粒粒径分析方法”汇总大全

“颗粒粒径分析方法”汇总大全1.图像分析法:图像分析法采用颗粒物料的显微图像,通过图像处理软件进行颗粒粒径分析。

该方法可以直接观察颗粒的形态和大小,并具有非常高的精度和可靠性。

2.激光粒度仪法:激光粒度仪法利用激光光束照射颗粒物料,并通过散射光的强度和角度变化来计算颗粒粒径。

激光粒度仪具有操作简单、分析速度快等优点,广泛应用于颗粒物料的粒径分析中。

3.切向流分析法:切向流分析法是通过颗粒物料在切向流的作用下进行直径分布测定的方法。

在测定中,颗粒物质通过装置,按其体积分布在切向方向,在每个位置软盘,都装有一个由流速控制单元所控制的编码器,标有一个确定的位置或已知大小的孔,然后通过测定颗粒通过的孔的数量与孔的直径,从而推算出颗粒的大小分布。

4.光散射法:光散射法根据颗粒物料对光的散射情况,来推算颗粒的粒径分布。

根据散射光的强度和角度变化,结合光散射模型,可以计算颗粒的粒径大小。

5.静电感应法:静电感应法利用颗粒物料在电场中的运动情况,来计算颗粒的粒径分布。

通过对颗粒物料施加电场,观察颗粒在电场中的运动情况,可以推算出颗粒的大小分布。

6.分光光度法:分光光度法是通过颗粒物料对特定波长的光吸收的强度来计算颗粒粒径的方法。

通过对颗粒物料在特定波长下的光吸收强度的测定,结合经验公式,可以计算出颗粒的粒径大小。

7.声速法:声速法通过颗粒物料在声波场中传播的速度来计算颗粒的粒径分布。

通过对颗粒物料在特定频率的声场中声速的测量,可以推算出颗粒的大小分布。

8.雷达粒度仪法:雷达粒度仪法利用雷达波的散射情况来计算颗粒的粒径分布。

通过对颗粒物料在特定频率的雷达波场中散射强度的测量,可以推算出颗粒的大小分布。

除了上述列出的常见颗粒粒径分析方法外,还有一些特殊颗粒物料的分析方法,例如电子显微镜法、X射线衍射法等,可根据具体需求进行选择和使用。

这些方法各有优劣,需要根据具体实验要求、仪器设备及经费等因素进行选择。

0982 粒度和粒度分布测定法

0982 粒度和粒度分布测定法

0982 粒度和粒度分布测定法粒度是指物质颗粒的大小。

在材料科学和工程中,粒度是一个重要的物理特性,可以影响材料的性质和性能。

因此,粒度的测定是一项关键的实验技术。

粒度的测定方法有很多种,其中常用的方法包括筛分法、激光粒度分析法和显微镜分析法等。

筛分法是最常用的粒度测定方法之一。

它通过将物料通过连续不同孔径大小的筛网进行筛分,将不同尺寸的颗粒分离出来。

然后,可以根据筛网上留下的颗粒数量和颗粒的重量来计算颗粒的粒度分布。

这种方法适用于颗粒粒度较大的物料。

激光粒度分析法是一种利用激光技术来测量颗粒尺寸的方法。

它通过激光发射器产生一束激光,然后将激光射入测量区域,颗粒吸收光能并散射回光检测器,通过测量散射光的强度和角度可以确定颗粒的尺寸。

这种方法适用于颗粒粒度较小的物料。

显微镜分析法是一种直接观察和测量颗粒尺寸的方法。

通过使用显微镜观察样品,可以直接测量颗粒的大小。

这种方法适用于颗粒粒度较小且形状复杂的物料。

无论使用哪种方法,粒度分布是粒度测定的一个重要参数。

粒度分布指的是不同粒径范围内颗粒的数量或体积的分布情况。

常用的粒度分布表达方法有累积分布曲线和差异分布曲线等。

累积分布曲线是一种常用的粒度分布表示方法。

它通过绘制颗粒粒径对应的累积百分比来表示不同粒径颗粒的占比。

累积分布曲线的斜率越大,表示颗粒粒径的分散程度越大。

差异分布曲线是粒度分布的一种补充曲线。

它通过绘制颗粒粒径的频率对粒径的对数进行尺度变换,并计算累积频率来表示颗粒粒度的分散情况。

差异分布曲线可以更加细致地描述粒度的分布情况,尤其对于颗粒粒径较小的材料。

总之,粒度的测定是非常重要的科学实验技术。

不同的材料需要选择适合的粒度测定方法,以获得准确的粒度参数,为材料的研发和应用提供科学依据。

同时,粒度分布的分析也是粒度测定的重要环节,通过分析粒度分布可以了解颗粒的分散情况和性能特点。

因此,在科学研究和工程实践中,粒度的测定和粒度分布的分析始终是不可缺少的内容。

药品粒度和粒度分布测定法

药品粒度和粒度分布测定法

德信诚培训网
药品粒度和粒度分布测定法
一目的:制定粒度和粒度分布测定法,规范粒度和粒度分布的测定操作。

二适用范围:适用于粒度和粒度分布的测定。

三责任者:品控部。

四正文
本法用于测定原料药和药物制剂的粒子大小或粒度分布。

其中第一法、第二法用于测定药物制剂的粒子大小或限度,第三法用于测定原料药或药物制剂的粒度分布。

第一法(显微镜法)
本法中的粒度,系以显微镜下观察到的长度表示。

目镜测微尺的标定用以确定使用同一显微镜及特定倍数的物镜、目镜和镜筒长度时,目镜测微尺上每一格所代表的长度。

将镜台测微尺置于显微镜台上,对光调焦,并移动测微尺于视野中央;取下目镜,旋下接目镜的目镜盖,将目镜测微尺放入目镜筒中部的光栏上(正面向上),旋上目镜后反置镜筒上。

此时在视野中可同时观察到镜台测微尺的像及目镜成测微尺的分度小格,移动镜台测微尺和旋转目镜,使两种量尺的刻度平行,并令左边的“0”刻度重合;寻找第二条重合刻度,记录两条刻度的读数,并根据比值计算出目镜测微尺每小格在该物镜条件下所相当的长度(um)。

由于镜台测微尺每格相当于10um,故目镜测微尺每1小格的长度为:
更多免费资料下载请进:好好学习社区。

欧洲药典关于空气动力学粒径分布的要求

欧洲药典关于空气动力学粒径分布的要求

欧洲药典关于空气动力学粒径分布的要求
欧洲药典(European Pharmacopoeia)是欧洲国家间共同制定的药品质量标准,目的
是确保在欧洲市场上销售的药品的质量和安全。

空气动力学粒径分布是指药品中粒子大小
的分布情况。

欧洲药典关于空气动力学粒径分布的要求包括以下几个方面:
1.粒径分布的测定方法
粒径分布的测定方法应该符合欧洲药典规定的方法,比如使用梁型粒度仪、激光粒度
仪等仪器来进行测定。

此外,在测定方法中也应该包括样品的制备、取样等详细步骤。

2.粒径分布的表达
粒径分布通常使用累积经验百分数来表达,即该粒径以下的颗粒所占的百分比。

同时,欧洲药典也要求在表达粒径分布时应该标注粒子数量、温度、相对湿度等条件参数。

3.粒径分布的限值要求
欧洲药典中对于不同类型药品的粒径分布都有相应的限值要求。

比如,对于喷雾剂,
药物颗粒必须保证80%到90%的颗粒大小在1至5微米之间;对于粉雾剂,至少75%的颗粒必须小于10微米。

这些限制是为了确保药品的安全性和有效性。

4.验证方法的要求
欧洲药典还要求在验证粒径分布测定方法时,应当使用适当的参考物质,并进行不少
于三次测定,每次测定应取不少于三个位置的样品。

总的来说,欧洲药典对于药品粒径分布的要求是十分严格的,这也是为了确保药品的
质量和安全。

药品生产企业应该严格按照这些要求来生产和质检药品,以确保药品的质量
和效力。

0982 粒度和粒度分布测定法第二法

0982 粒度和粒度分布测定法第二法

粒度和粒度分布测定法第二法一、引言在粉体工程中,粒度和粒度分布是非常重要的参数,直接影响材料的物理性质、化学性质和加工工艺。

对粉体的粒度和粒度分布进行准确测定是非常必要的。

粒度分布是指不同粒径颗粒在不同体积或质量下所占的百分比,通常通过粒度分布曲线来表示。

粒度和粒度分布测定法有多种方法,其中第二法是比较常用的一种。

二、粒度和粒度分布测定法第二法概述粒度和粒度分布测定法第二法是指采用分级分选和间接测定的方法,通过一定的分析和计算来得出粉体的粒度和粒度分布情况。

这种方法适用于许多不同的颗粒物料,可以有效地得出较为准确的结果。

具体步骤如下:1. 准备样品:从所需的粉末样品中取得一定质量或体积的样品,保证样品的代表性和可测性。

2. 分级处理:通过筛分或离心分级等方法,将样品按照颗粒大小分成不同的组分。

3. 间接测定:通过对分级后各组分的颗粒大小进行测定,如采用激光粒度仪、分析仪器等设备进行测定。

4. 计算分布:将测定得到的各组分的粒度大小数据进行统计和计算,得出粒度分布曲线和相关参数。

三、粒度和粒度分布测定法第二法优缺点优点:1. 可适用性强:适用于各种颗粒粉末的测定,广泛用于化工、医药、冶金、建材等行业。

2. 测量结果准确:通过多次测定和计算,可以得出较为准确的粒度分布曲线,有助于分析材料的质量和性能。

3. 操作简便:相对于其他测定方法,第二法的操作相对简单,设备也比较常见。

缺点:1. 耗时较长:需要进行分级处理和多次测定计算,整个过程较为耗时。

2. 仪器要求较高:粒度仪、分析仪器等设备对操作人员的技术要求较高,且设备投资成本相对较高。

四、个人观点和理解对于粒度和粒度分布的测定,我个人认为第二法是一种较为可靠的方法。

它虽然在操作上可能有一定的复杂性和耗时性,但通过严谨的操作和计算,可以得出较为准确的结果。

在实际工程应用中,我们需要综合考虑时间成本和测量结果的准确性,选择合适的方法来进行粒度和粒度分布的测定。

土壤_颗粒组成(粒径分布)的测定_吸管法

土壤_颗粒组成(粒径分布)的测定_吸管法

50mL 烧杯中作土壤水分换算系数的测定,另两份分别放入 50mL 烧杯中作测定盐酸洗失量和
颗粒分析用。
5.2 土壤水分换算系数的测定:将已知质量的 50mL 烧杯(精确至 0.001g)盛土样后,放入
烘箱,在 105℃烘 6h,再在干燥器中冷却后称至恒量(精确至 0.001g),计算土壤8
31
3
29
4
47
21
4
32
40
0.05 25
1
39
1
34
1
29
1
24
1
19
2.75 0.02 25
10
20
9
45
9
13
8
44
8
7
0.002 8
5
30
30
5
11
50
4
54 49
4
39
9
4
24
52
0.05 25
1
37
2.80 0.02 25
10
3
0.002 8
5
21
20
5
1
31
1
26
1
22
1
17
h
min
s
h
min
s
h
min
s
表2续
32.5℃
h
min
s
0.05 25
2
4
1
57
1
51
1
45
1
39
2.40 0.02 25
12
55
12
11
11
32
10
55

2024年矿山粉尘检测方法(三篇)

2024年矿山粉尘检测方法(三篇)

2024年矿山粉尘检测方法粉尘检测是以科学的方法对生产环境空气中粉尘的含量及其物理化学性状进行测定、分析和检查的工作。

从安全和卫生学的角度出发,日常的粉尘检测项目主要是粉尘浓度、粉尘中游离二氧化硅含量和粉尘分散度(也称为粒度分布)。

1.矿山粉尘浓度测定(1)矿山粉尘浓度标准。

我国对作业场所空气中粉尘的允许浓度规定为:岩矿中游离二氧化硅含量大于10%的矿山,粉尘允许浓度为1mg/m3;岩矿中游离二氧化硅含量小于10%的矿山,粉尘允许浓度为4mg/m3。

(2)粉尘浓度测定。

矿的粉尘浓度测定主要有滤膜测尘法和快速直读测尘仪测定法。

①滤膜采样测尘。

测尘原理是用粉尘采样器(或呼吸性粉尘采样器)抽取采集一定体积的含尘空气,含尘空气通过滤膜时,粉尘被捕集在滤膜上,根据滤膜的增重计算出粉尘浓度。

②快速直读测尘仪。

用滤膜采样器测尘是一种间接测量粉尘浓度的方法。

由于准备工作、粉尘采样和样品处理时间比较长,不能立即得到结果,在卫生监督和评价防尘措施效果时显得不方便。

为了满足实际工作的需要,各国研制开发了可以立即获得粉尘浓度的快速测定仪。

2.粉尘游离二氧化硅的测定国家标准中规定的测定方法是焦磷酸质量法,也有用红外分光光度计测定法进行测定。

呼吸性粉尘中游离二氧化硅含量的测定,煤矿粉尘采用红外光谱法,非煤矿山粉尘采用x射线沿设法。

(1)焦磷酸质量法。

在245~250℃的温度下,焦磷酸能溶解硅酸盐及金属氧化物,面对游离二氧化硅几乎不溶,因此,用焦磷酸处理粉尘试样后,所得残渣的质量即为游离二氧化硅的量,以百分比表示。

为了求得更精确的结果,可将残渣再用氢氟酸处理,经过这一过程所减轻的质量则为游离二氧化硅的含量。

(2)红外分光分析法。

当红外光与物质相互作用时,其能量与物质分子的振动或转动能级相当会发生能级的跃迁,即分子电低能级过渡到高能级。

其结果是某些波长的红外光被物质分子吸收产生红外吸收光谱。

游离二氧化硅的吸收光谱的波长为12.5m,12.8m,14.4m。

乳剂的粒径分布

乳剂的粒径分布

乳剂的粒径分布是指乳滴的大小及其分布情况。

乳剂的粒径分
布对于乳剂的稳定性、药效和用药安全性等方面都有重要影响。

乳剂的粒径分布可以用不同的方法进行测定,如显微镜法、库
尔特计数器法、激光散射法和透射电镜法等。

其中,显微镜法和库
尔特计数器法是常用的测定方法。

显微镜法可以观察到乳滴的形态
和大小,但测定数量有限;库尔特计数器法则可以测定大量乳滴的
大小和分布情况,更具有代表性。

乳剂的粒径分布特征可以用不同的参数进行描述,如平均粒径、中位数粒径、体积平均粒径、数量平均粒径等。

这些参数可以帮助
我们了解乳滴的大小及分布情况。

在制备乳剂时,应尽量减小乳滴的大小并使其分布均匀。

同时,应选择适当的乳化剂和制备工艺,以获得理想的乳剂粒径分布。

土壤—颗粒组成(粒径分布)的测定—比重计法

土壤—颗粒组成(粒径分布)的测定—比重计法

FHZDZTR0008 土壤 颗粒组成(粒径分布)的测定 比重计法F-HZ-DZ-TR-0008土壤—颗粒组成(粒径分布)的测定—比重计法1 范围本方法适用于土壤颗粒组成(粒径分布)的测定。

2 原理土样经化学和物理方法处理成悬浮液定容后,根据司笃克斯(Stokes)定律及土壤比重计浮泡在悬浮液中所处的平均有效深度,静置不同时间后,用土壤比重计直接读出每升悬浮液中所含各级颗粒的质量,计算其百分含量,并定出土壤质地名称。

比重计法操作较简便,但精度较差,可根据需要选择使用。

3 试剂3.1 氢氧化钠溶液:0.5mol/L ,20g 氢氧化钠,加水溶解后稀释至1000mL 。

3.2 六偏磷酸钠溶液:0.5mol/L ,51g六偏磷酸钠溶于水,加水稀释至1000mL 。

图1 搅拌棒 3.3 草酸钠溶液:0.5mol/L ,33.5g 草酸钠溶于水,加水稀释至1000mL 。

4 仪器4.1 土壤比重计,又称甲种比重计或鲍氏比重计,刻度0~60g/L 。

4.2 量筒,1000mL 。

4.3 锥形瓶,500mL 。

4.4 烧杯,50mL 。

4.5 洗筛,直径6cm ,孔径0.25mm 。

4.6 土壤筛,孔径2、1、0.5mm 。

4.7 搅拌棒(图1)。

5 操作步骤5.1 称取通过2mm 筛孔的10g(精确至0.001g)风干土样置于已知质量的50mL 烧杯(精确至0.001g)中,放入烘箱,在105℃烘6h ,再在干燥器中冷却后称至恒量(精确至0.001g),计算土壤水分换算系数。

5.2 称取通过2mm 筛孔的50g(精确至0.01g)风干土样(粘土或壤土50g ,砂土100g)置于500mL 锥形瓶中。

5.3 分散土样:根据土壤的pH 值,于锥形瓶中加入50mL 0.5mol/L 氢氧化钠溶液(酸性土壤)、50mL 0.5mol/L 六偏磷酸钠溶液(碱性土壤)或50mL 0.5mol/L 草酸钠溶液(中性土壤),然后加水使悬浮液体积达到250mL 左右,充分摇匀。

粒度和粒度分布测定法操作规程

粒度和粒度分布测定法操作规程

1.目的:建立粒度和粒度分布测定法操作规程,规范粒度和粒度分布测定法的操作。

2.范围:本公司产品、中间体的检验。

3.责任:QC 检验员。

4.内容:4.1简介:4.1.1本法用于测定原料药和药物制剂的粒子大小或粒度分布。

其中第一法、第二法用于测定药物制剂的粒子大小或限度,第三法用于测定原料药或药物制剂的粒度分布。

4.2第一法 (显微镜法)本法中的粒度,系指显微镜下观察到的长度表示。

4.2.1目镜测微尺的标定用以确定使用同一显微镜及特定倍数的物镜、目镜和镜筒长度时,目镜测微尺上每一格所代表的长度。

将镜台测微尺置于显微镜台上,对光调焦,并移动测微尺于视野中央;取下目镜,旋下接目镜的目镜盖,将目镜测微尺放入目镜筒中部的光栏上(正面向上),旋上目镜盖后返置镜筒上。

此时在视野中可同时观察到镜台测微尺的像及目镜测微尺的分度小格,移动镜台测微尺和旋转目镜,使两种量尺的刻度平行,并令左边的“0”刻度重合;寻找第二条重合刻度,记录两条刻度的读数;并根据比值计算除目镜测微尺每小格在该物镜条件下所相当的长度(μm ),由于镜台测微尺每格相当于10μm ,故目镜测微尺每小格的长度为:格数相重区间目镜测微尺的格数相重区间镜台测微尺的 10 当测定时要使用不同的放大倍数时,应分别标定。

4.2.2测定法取供试品,用力摇匀,粘度较大者可按各品种项下的规定加适量甘油溶液(1→2)稀释,照该剂型或各品种项下的规定,量取供试品,置载玻片上,覆以盖玻片,轻压使颗粒分布均匀,注意防止气泡混入。

半固体可直接涂在载玻片上,立即在50~100倍显微镜下检视盖玻片全部视野,应无凝聚现象,并不得检出该剂型或各品种项下规定的50μm及以上的例子。

再在200~500倍的显微镜下检视该剂型或各品种项下规定的视野内的总粒数及规定大小的粒数,并计算其所占比例(%)。

4.3第二法(筛分法)4.3.1.1筛分法一般分为手动筛分法、机械筛分法与空气喷射筛分法。

手动筛分法和机械筛分法适用于测定大部分粒径大于75μm的样品,则应采用空气喷射筛分法或其他适宜的方法。

粒径分布测定法

粒径分布测定法

粒径分布测定法本方法基于激光静态散射(衍射)原理测定中药粉末粒径分布情况。

来自He-Ne激光器的激光束经扩束、滤波,汇聚后照射到测量区,测量区的待测颗粒群在激光的照射下产生散射谱(散射谱的强度空间分布与被测颗粒群的大小有关),被光电探测器阵列所接收,转换成电信号后经放大和A/D转换通过工作站进行数据处理。

本法适用于中药超微粉末及超微饮片粒径分布测定。

一、仪器设备干粉激光粒度分析仪主要技术参数:测量范围为0.6-300μm,颗粒分级不少于32级;频率:50Hz±2.5Hz;主机功率:小于100VA;准确度:工作标准物质的D50十次测定平均值与标准值的误差小于3%。

二、分散介质:压缩空气三、试验条件实验室温度10℃-30℃,相对湿度小于60%。

四、进样方式:干法进样。

五、试验步骤1、供试品处理供试品水分应在6.0%以下,高于6.0%的样品采用烘干法干燥,于60℃干燥2小后测定水分,如仍高于6.0%,重复操作,直至符合要求。

2、测定法2.1 测定前:激光粒度分析仪开机遇热30分钟以上。

2.2 进样:将进样粒斗插入干粉进样器的进样口中,在进样槽中加入超微粉或经复粉碎后的超微饮片样品3-5g,单击操作键,激光粒度分析仪将测定约20个测量数据,在测量的数据中,遮光比应控制在0.5-3之间,剔除遮光比不符合要求的数据,以第一个符合要求的数据起,选择连续的10个数据进行处理,工作站自动测量出小于75μm粒径颗粒的累计百分率。

3、结果判断:符合下述条件者,可判为符合规定:3.1 连续三次取样测定,累计百分率均不低于75%;3.2 三次的测量数据中,如有一次低于75%,但不低于65%,且三次平均值不低于75%。

六、注意事项仪器校准有下列情况之一者需进行仪器校准。

——首次使用前;——停用半年后;——仪器维修后;——测定50个样品后。

仪器的校准采用量值传递的方法进行,取校准用金刚砂标准物质,用干粉激光粒度分析仪检测10次,比较标准物质测量的D50与其标称值的误差,调节校准系数,直到测量值与标称值相对误差小于3.0%。

0982 粒度和粒度分布测定法

0982 粒度和粒度分布测定法

粒度和粒度分布测定法是颗粒物料分析中非常重要的一个主题。

随着科学技术的飞速发展,人们对颗粒物料分析的需求越来越高,粒度和粒度分布测定法也成为了各行各业的重要研究内容。

本文将从浅入深地探讨粒度和粒度分布测定法,帮助读者更全面地理解这一主题。

一、粒度和粒度分布测定法概述粒度是指颗粒物料的颗粒大小分布特征,而粒度分布则是指颗粒物料中各种粒径颗粒的数量分布情况。

粒度和粒度分布的测定对于分析颗粒物料的特性、质量和性能具有重要意义。

在工程领域、冶金学、地质学、化工等许多领域,粒度和粒度分布的测定都扮演着至关重要的角色。

二、粒度和粒度分布的测定方法1. 机械分析法机械分析法是一种用筛分析方法确定颗粒物料粒度和粒度分布的常用方法。

通过将颗粒物料通过不同孔径的筛网进行筛分,然后根据通过和滞留在各个筛孔内的颗粒数量来确定颗粒物料的粒度和粒度分布情况。

2. 湿式分析法湿式分析法是一种通过颗粒在液体中的沉降速度来确定颗粒物料的粒度和粒度分布的方法。

常用的湿式分析方法有沉降法和悬浮液法,通过测定颗粒在液体中的沉降速度或者在悬浮液中的分级情况来推断颗粒的粒度和粒度分布。

3. 光学分析法光学分析法是利用光学原理来确定颗粒物料的粒度和粒度分布的方法。

光学分析法可以通过显微镜、激光粒度仪等设备,观察颗粒的形态、大小和分布情况,从而得到颗粒的粒度和粒度分布数据。

4. 分析仪器法分析仪器法是利用一些粒度分析仪器来测定颗粒的粒度和粒度分布的方法。

常用的仪器有粒度分析仪、激光粒度仪等,这些仪器能够快速准确地获得颗粒物料的粒度和粒度分布数据。

三、个人观点粒度和粒度分布的测定对于颗粒物料的研究和生产具有非常重要的意义。

通过粒度和粒度分布的测定,可以更深入地了解颗粒物料的特性,为产品的改进和优化提供重要依据。

随着科学技术的不断进步,粒度和粒度分布测定法的方法也在不断创新和完善,为颗粒物料分析提供了更多选择和可能性。

总结回顾本文从粒度和粒度分布的概念、测定方法和个人观点三个方面对粒度和粒度分布的测定进行了探讨。

纳米颗粒粒径大小、粒径分布及比表面积的测试方法与各种方法的特点

纳米颗粒粒径大小、粒径分布及比表面积的测试方法与各种方法的特点

纳米微粒一般是指一次颗粒,它的尺度一般在1~100nm之间,是介于原子、分子和固体体相之间的物质状态。

由于纳米微粒具有尺寸小、比表面积大和量子尺寸效应,使它具有不同于常规固体的新的特性。

在纳米态下,颗粒尺寸更是对其性质有着强烈的影响,纳米材料的颗粒度的大小是衡量纳米材料最重要的参数之一。

因此,在纳米材料的研究中准确测量纳米颗粒的大小是很重要的。

目前可用于测定纳米颗粒粒径的方法有:透射电镜观察法(TEM观察法)、X射线衍射线宽法(谢乐公式)、X射线小角散射法、BET比表面积法、离心沉降法、动态光散射法等6种。

1.1透射电子显微镜(transmissionelectronmicroscopeTEM)。

其原理是:以高能电子(一般为50-200keV)穿透样品,根据样品不同位置的电子透过强度不同或电子透过晶体样品的衍射方向不同,经后面电磁透镜的放大后,在荧光屏上显示出图像。

TEM分辨率达0.3nm,晶格分辨率达到0.1nm~0.2nm,其样品可放在直径2mm~3mm的铜网上进行测试。

用电镜测量粒径首先应尽量多拍摄有代表性的纳米微粒形貌像,然后由这些电镜照片来测量粒径。

该方法是颗粒度观察测定的绝对方法,因而具有高可靠性和直观性。

用这种方法可以观察到纳米粒子的平均直径或粒径分布。

电镜观察法的缺点一是由于观察用的粉末极少,使得测量结果缺乏统计性;二是因为在制备超微粒子的电镜观察样品时,首先需用超声波分散法使超微粉末分散在载液中,有时候很难使它们全部分散成一次颗粒,特别是纳米粒子很难分散,往往使测得的颗粒粒径是团聚体的粒径。

1.2 X射线衍射线宽法(谢乐公式)由衍射原理可知,物质的X射线衍射峰(花样)与物质内部的晶体结构有关。

每种结晶物质都有其特定的结构参数(包括晶体结构类型,晶胞大小,晶胞中原子、离子或分子的位置和数目等)。

因此,没有两种不同的结晶物质会给出完全相同的衍射峰。

通过分析待测试样的X 射线衍射峰,不仅可以知道物质的化学成分,还能知道它们的存在状态,即能知道某元素是以单质存在或者以化合物、混合物及同素异构体存在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

粒径分布测定法
本方法基于激光静态散射(衍射)原理测定中药粉末粒径分布情况。

来自He-Ne激光器的激光束经扩束、滤波,汇聚后照射到测量区,测量区的待测颗粒群在激光的照射下产生散射谱(散射谱的强度空间分布与被测颗粒群的大小有关),被光电探测器阵列所接收,转换成电信号后经放大和A/D转换通过工作站进行数据处理。

本法适用于中药超微粉末及超微饮片粒径分布测定。

一、仪器设备
干粉激光粒度分析仪主要技术参数:
测量范围为0.6-300μm,颗粒分级不少于32级;
频率:50Hz±2.5Hz;
主机功率:小于100VA;
准确度:工作标准物质的D50十次测定平均值与标准值的误差小于3%。

二、分散介质:压缩空气
三、试验条件
实验室温度10℃-30℃,相对湿度小于60%。

四、进样方式:干法进样。

五、试验步骤
1、供试品处理
供试品水分应在6.0%以下,高于6.0%的样品采用烘干法干燥,于60℃干燥2小后测定水分,如仍高于6.0%,重复操作,直至符合要求。

2、测定法
2.1 测定前:激光粒度分析仪开机遇热30分钟以上。

2.2 进样:将进样粒斗插入干粉进样器的进样口中,在进样槽中加入超微粉或经复粉
碎后的超微饮片样品3-5g,单击操作键,激光粒度分析仪将测定约20个测量数据,在测量的数据中,遮光比应控制在0.5-3之间,剔除遮光比不符合要求的数据,以第一个符合要求的数据起,选择连续的10个数据进行处理,工作站自动测量出小于75μm粒径颗粒的累计百分率。

3、结果判断:符合下述条件者,可判为符合规定:
3.1 连续三次取样测定,累计百分率均不低于75%;
3.2 三次的测量数据中,如有一次低于75%,但不低于65%,且三次平均值不低于75%。

六、注意事项
仪器校准有下列情况之一者需进行仪器校准。

——首次使用前;
——停用半年后;
——仪器维修后;
——测定50个样品后。

仪器的校准采用量值传递的方法进行,取校准用金刚砂标准物质,用干粉激光粒度分析仪检测10次,比较标准物质测量的D50与其标称值的误差,调节校准系数,直到测量值与标称值相对误差小于3.0%。

相关文档
最新文档