线性表的存储结构定义及基本操作
实验01 线性表的基本操作
实验01 线性表的基本操作一、实验目的1. 了解线性表的结构特点及有关概念;2. 理解线性表的存储结构;3. 掌握顺序表及单链表的基本操作算法。
二、实验内容1、编写程序实现顺序表的各种基本运算:初始化、插入、删除、取表元素、求表长、输出表、销毁、判断是否为空表、查找元素。
在此基础上设计一个主程序完成如下功能:(1)初始化顺序表L;(2)依次在表尾插入a,b,c,d,e五个元素;(3)输出顺序表L;(4)输出顺序表L的长度;(5)判断顺序表L是否为空;(6)输出顺序表L的第4个元素;(7)输出元素c的位置;(8)在第3个位置上插入元素f,之后输出顺序表L;(9)删除L的第2个元素,之后输出顺序表L;(10)销毁顺序表L。
2、编写程序实现单链表的各种基本运算:初始化、插入、删除、取表元素、求表长、输出表、销毁、判断是否为空表、查找元素。
在此基础上设计一个主程序完成如下功能:(1)初始化单链表L;(2)依次在表尾插入a,b,c,d,e五个元素;(3)输出单链表L;(4)输出单链表L的长度;(5)判断单链表L是否为空;(6)输出单链表L的第4个元素;(7)输出元素c的位置;(8)在第3个位置上插入元素f,之后输出单链表L;(9)删除L的第2个元素,之后输出单链表L;(10)销毁单链表L。
三、实验要点及说明一.顺序表1.顺序表初始化:(1)为顺序表L动态分配一个预定大小的数组空间,使elem 指向这段空间的基地址。
(2)将表的当前长度设为0.2.顺序表的取值:(1)判断指定的位置序号i值是否合理(1<=i<=L.length),若不合理则返回ERROR.(2)若i值合理,则将i个数据元素L.elem[i]赋给参数e,通过e返回第i个数据元素的传值。
3.顺序表的查找:(1)从第一个元素起,依次和e相比较,若找到与e相等的元素L.elem[i],则查找成功,返回该元素的序号i+1.(2)若查遍整个顺序表都没要找到,则查找失败,返回0.4.顺序表的插入:(1)判断插入位置i是否合法(i值的合法范围是1<=i<=n+1),若不合法则返回值ERROR.(2)判断顺序表的存储空间是否已满,若满则返回值ERROR(3)将第n个至第i个位置的元素依次向后移动一个位置,空出第i个位置(i=n+1时无需移动)。
数据结构 线性表
第1讲线性表本章主要掌握如下内容:线性表的定义和基本操作,线性表的实现,线性表的顺序存储结构及链式存储结构,线性表的应用。
知识点分析(一)线性表的定义和基本操作1.线性表基本概念1)定义:是由相同类型的结点组成的有限序列。
如:由n个结点组成的线性表(a1, a2, …, a n)a1是最前结点,a n是最后结点。
结点也称为数据元素或者记录。
2)线性表的长度:线性表中结点的个数称为其长度。
长度为0的线性表称为空表。
3)结点之间的关系:设线性表记为(a1,a2,…a i-1 , a i, a i+1 ,…a n),称a i-1是a i的直接前驱结点....(简称前驱),a i+1是a i的直接后继结点....(简称后继)。
4)线性表的性质:①线性表结点间的相对位置是固定..的,结点间的关系由结点在表中的位置确定。
②如果两个线性表有相同的数据结点,但它们的结点顺序不一致,该两个线性表也是不相等的。
注意:线性表中结点的类型可以是任何数据(包括简单类型和复杂类型),即结点可以有多个成分,其中能唯一标识表元的成分称为关键字(key),或简称键。
以后的讨论都只考虑键,而忽略其它成分,这样有利于把握主要问题,便于理解。
『经典例题解析』线性表的特点是每个元素都有一个前驱和一个后继。
( )【答案】错误。
【解析】线性表的第一个数据元素没有前驱,最后一个元素没有后继。
其余的所有元素都有一个前驱和后继。
2.线性表的抽象数据类型线性表是一个相当灵活的数据结构,其长度可以根据需要增加或减少。
从操作上讲,用户不仅可以对线性表的数据元素进行访问操作,还可以进行插入、删除、定位等操作。
1)线性表的基本操作假设线性表L有数据对象 D={ai | ai∈ElemSet,i=1,2,3,…,n,n>=0},数据元素之间的关系R={<ai-1,ai>|ai-1,ai∈D,i=1,2,…,n},则线性表L的基本操作如下所示:●InitList(&L):其作用是构造一个长度为0的线性表(空线性表);●DestoryList(&L):其作用是销毁当前的线性表L;●ClearList(&L):清空线性表L,使之成为空表;●ListLength(L):返回线性表L的长度,即线性表中数据元素的个数;●ListEmpty(L) :判断线性表L是否为空表,是则返回True,否则返回False;●GetElem(L,i,&e):将线性表L中第i个数据元素的值返回到变量e中;●LocateELem(L,e,compare( )) :判断线性表L中是否存在与e满足compare()条件的数据元素,有则返回第一个数据元素;●PriorElem(L,cur_e,&pri_e):返回线性表L中数据元素cur_e的前驱结点;●NextElem(L,cur_e,&next_e):返回线性表L中数据元素cur_e的后继结点;●ListInsert(&L,i,e):向线性表L的第i个位置之前插入一个数据元素,其值为e;●ListDelete(&L,i,&e):删除线性表L的第i个数据元素,并将该数据元素的值返回到e中;●ListTraverse(L,visit()):遍历线性表中的每个数据元素。
计算机二级公共基础部分:线性表及其顺序存储结构
计算机二级公共基础部分:线性表及其顺序存储结构:1.3.1线性表的基本概念:线性表:由n(n≥20)个相同类型数据元素构成的有限序列n定义为线性表的表长;n=时的线性表被称为空表。
称i为在线性表中的位序。
例如:英文大写字母表(A,B,C,D,E,F,...X,Y,Z)同一花色的13张扑克牌。
(2,3,4,5,6,7,8,9,10,J,Q,K,A)线性表的结构特征:数据元素在表中的位置由序号决定,数据元素之间的相对位置是线性的;对于一个非空线性表,有且只有一个根节点a1,它无前件,有且只有一个终端结点a n, 它无后件,除根结点与终端结点外,其他所有结点有且只有一个前件,也有且只有一个后件。
线性表的存储结构:顺序存储链式存储两个基本特点:线性表中所有元素所占的存储空间是连续的。
线性表中各数据元素在存储空间中是按逻辑顺序依次存放的。
该内容考点:重点:插入,删除,查找,排序难点:1分多分解,合并n合1,copy,逆转顺序表的插入和删除分析插入算法的分析假设线性表中含有n个数据元素,在进行插入操作时,若假定在n+1个位置上插入元素的可能性均等,则平均移动的元素个数为:E is=1n+1∑p i(n−i+1)=n2 n+1i=1删除算法的分析在进行删除操作时,若假定删除每个元素的可能性均等,则平均移动元素的个数为:E dl=1n∑p i(n−i)=n+12 ni=1分析结论顺序存储结构表示的线性表,在做插入或删除时,平均需要移动大约一半的数据元素。
当线性表的数据元素量较大,并且经常要对其做插入或删除操作时,这一点值得考虑。
第二章 线性表
(7)已知顺序表L中的元素有序递增,设计算法将元素x插入到L 种,并依旧保持其有序递增;设计一个高效的算法,删除顺序表 中所有值为x的元素,要求空间复杂度为O(1)。(基于顺序表基本 操作的运算) (8)(2010年13分)设将n(n>1)个整数存放到一维数组R中。试 设计一个在时间和空间两方面尽可能有效的算法,将R中保有的 序列循环左移P(0<p< n)个位置,即将R中的数据由(X0 X1 ……Xn-1)变换为(Xp Xp+1 ……Xn-1 X0 X1……Xp-1) 要求: (1)给出算法的基本设计思想。 (2)根据设计思想,采用C或C++或JAVA语言描述算法,关键之处 给出注释。 (3)说明你所设计算法的时间复杂度和空间复杂度
2 3 4 5 6
30 60 20 40
6 -1 3 1
h
10
20Βιβλιοθήκη 304050
60∧
8、例题: (1)链表不具有的特点是( )。 A.可随机访问任一元素 B.插入删除不需要移动元素 C.不必事先估计存储空间 D.所需空间与线性表长度成正比 (2)在具有n个结点的单链表中插入一个新结点并使链表仍然有 序的时间复杂度是( )。 A. O(1) B. O(n) C. O(nlog2n) D. O(n2) (3)对于由n个元素组成的线性表,创建一个有序单链表的时间 复杂度是( )。 A. O(1) B. O(n) C. O(nlog2n) D. O(n2)
(4)设A是一个线性表,采用顺序存储结构。在等概率情况下, 平均插入一个元素需要移动多少个元素?若元素插在ai和ai+1之 间的概率为(n-i)/n(n-1)/2,则平均插入一个元素需要移动多少 个元素? (5)以顺序表作为存储结构,实现线性表的就地逆置;判断回 文;设计一个时间复杂度为O(n)的算法,将顺序表中所有元素循 环左移k位;设计一个时间复杂度为O (n)的算法,将顺序表中所 有元素循环右移k位;(基于逆置操作的运算) (6)将顺序表中的元素调整为左右两部分,左边元素为奇数, 右边元素为偶数,要求算法的时间复杂度为O (n);将顺序表A拆 分为B 和C,其中B中的元素小于0,C中的元素大于0;将有序表A和 有序表B合并为C,合并后C依然是有序的。(基于对顺序表的拆分 和合并操作的运算)
线性表的存储结构定义及基本操作(实验报告)
线性表的存储结构定义及基本操作(实验报告)线性表的存储结构定义及基本操作一掌握线性表的逻辑特征掌握线性表顺序存储结构的特点熟练掌握顺序表的基本运算熟练掌握线性表的链式存储结构定义及基本操作理解循环链表和双链表的特点和基本运算加深对顺序存储数据结构的理解和链式存储数据结构的理解逐步培养解决实际问题的编程能力二一基本实验内容顺序表建立顺序表完成顺序表的基本操作初始化插入删除逆转输出销毁置空表求表长查找元素判线性表是否为空1 问题描述利用顺序表设计一组输入数据假定为一组整数能够对顺序表进行如下操作创建一个新的顺序表实现动态空间分配的初始化根据顺序表结点的位置插入一个新结点位置插入也可以根据给定的值进行插入值插入形成有序顺序表根据顺序表结点的位置删除一个结点位置删除也可以根据给定的值删除对应的第一个结点或者删除指定值的所有结点值删除利用最少的空间实现顺序表元素的逆转实现顺序表的各个元素的输出彻底销毁顺序线性表回收所分配的空间对顺序线性表的所有元素删除置为空表返回其数据元素个数按序号查找根据顺序表的特点可以随机存取直接可以定位于第 i 个结点查找该元素的值对查找结果进行返回按值查找根据给定数据元素的值只能顺序比较查找该元素的位置对查找结果进行返回判断顺序表中是否有元素存在对判断结果进行返回编写主程序实现对各不同的算法调用2 实现要求对顺序表的各项操作一定要编写成为C C 语言函数组合成模块化的形式每个算法的实现要从时间复杂度和空间复杂度上进行评价初始化算法的操作结果构造一个空的顺序线性表对顺序表的空间进行动态管理实现动态分配回收和增加存储空间位置插入算法的初始条件顺序线性表L已存在给定的元素位置为i且1≤i ≤ListLength L 1操作结果在L中第i个位置之前插入新的数据元素eL的长度加1位置删除算法的初始条件顺序线性表L已存在1≤i≤ListLength L 操作结果删除L的第i个数据元素并用e返回其值L的长度减1逆转算法的初始条件顺序线性表L已存在操作结果依次对L的每个数据元素进行交换为了使用最少的额外空间对顺序表的元素进行交换输出算法的初始条件顺序线性表L已存在操作结果依次对L的每个数据元素进行输出销毁算法初始条件顺序线性表L已存在操作结果销毁顺序线性表 L置空表算法初始条件顺序线性表L已存在操作结果将L重置为空表求表长算法初始条件顺序线性表L已存在操作结果返回L中数据元素个数按序号查找算法初始条件顺序线性表 L 已存在元素位置为 i且 1≤i≤ListLength L 操作结果返回 L 中第 i 个数据元素的值按值查找算法初始条件顺序线性表 L 已存在元素值为 e 操作结果返回 L 中数据元素值为 e 的元素位置判表空算法初始条件顺序线性表 L 已存在操作结果若 L 为空表则返回 TRUE否则返回 FALSE分析修改输入数据预期输出并验证输出的结果加深对有关算法的理解二基本实验内容单链表建立单链表完成链表带表头结点的基本操作建立链表插入删除查找输出求前驱求后继两个有序链表的合并操作其他基本操作还有销毁链表将链表置为空表求链表的长度获取某位置结点的内容搜索结点1 问题描述利用线性表的链式存储结构设计一组输入数据假定为一组整数能够对单链表进行如下操作初始化一个带表头结点的空链表创建一个单链表是从无到有地建立起一个链表即一个一个地输入各结点数据并建立起前后相互链接的关系又分为逆位序插在表头输入 n 个元素的值和正位序插在表尾输入 n 个元素的值插入结点可以根据给定位置进行插入位置插入也可以根据结点的值插入到已知的链表中值插入且保持结点的数据按原来的递增次序排列形成有序链表删除结点可以根据给定位置进行删除位置删除也可以把链表中查找结点的值为搜索对象的结点全部删除值删除输出单链表的内容是将链表中各结点的数据依次显示直到链表尾结点编写主程序实现对各不同的算法调用其它的操作算法描述略2 实现要求对链表的各项操作一定要编写成为 C C 语言函数组合成模块化的形式还要针对每个算法的实现从时间复杂度和空间复杂度上进行评价初始化算法的操作结果构造一个空的线性表 L产生头结点并使 L 指向此头结点建立链表算法初始条件空链存在操作结果选择逆位序或正位序的方法建立一个单链表并且返回完成的结果链表位置插入算法初始条件已知单链表 L 存在操作结果在带头结点的单链线性表 L 中第 i 个位置之前插入元素 e链表位置删除算法初始条件已知单链表 L 存在操作结果在带头结点的单链线性表 L 中删除第 i 个元素并由 e 返回其值输出算法初始条件链表 L 已存在操作结果依次输出链表的各个结点的值三扩展实验内容顺序表查前驱元素查后继元素顺序表合并等1 问题描述根据给定元素的值求出前驱元素根据给定元素的值求出后继元素对已建好的两个顺序表进行合并操作若原线性表中元素非递减有序排列要求合并后的结果还是有序有序合并对于原顺序表中元素无序排列的合并只是完成 A A∪B 无序合并要求同样的数据元素只出现一次修改主程序实现对各不同的算法调用2 实现要求查前驱元素算法初始条件顺序线性表 L 已存在操作结果若数据元素存在且不是第一个则返回前驱否则操作失败查后继元素算法初始条件顺序线性表 L 已存在操作结果若数据元素存在且不是最后一个则返回后继否则操作失败无序合并算法的初始条件已知线性表 La 和 Lb操作结果将所有在线性表 Lb 中但不在 La 中的数据元素插入到 La 中有序合并算法的初始条件已知线性表 La 和 Lb 中的数据元素按值非递减排列操作结果归并 La 和 Lb 得到新的线性表 LcLc 的数据元素也按值非递减排列四扩展实验内容链表1 问题描述求前驱结点是根据给定结点的值在单链表中搜索其当前结点的后继结点值为给定的值将当前结点返回求后继结点是根据给定结点的值在单链表中搜索其当前结点的值为给定的值将后继结点返回两个有序链表的合并是分别将两个单链表的结点依次插入到第 3 个单链表中继续保持结点有序2 实现要求求前驱算法初始条件线性表 L 已存在操作结果若 cur_e 是 L 的数据元素且不是第一个则用 pre_e 返回它的前驱求后继算法初始条件线性表 L 已存在操作结果若 cur_e 是 L 的数据元素且不是最后一个则用 next_e 返回它的后继两个有序链表的合并算法初始条件线性表单链线性表 La 和 Lb 的元素按值非递减排列操作结果归并 La 和 Lb 得到新的单链表三实验环境和实验步骤实验环境利用CodeBlocks1005集成开发环境进行本实验的操作实验步骤――顺序表的定义与操作1启动CodeBlocks1052按Create a new project 通过file 按CC source选择c然后GO储存文件D\c语言\顺序表c3进行编代码4编好之后搞ctrlshiftF9进行编译然后按ctrlF105如果编译出问题然后进行调试实验步骤――链表的定义与操作1启动CodeBlocks1052按Create a new project 通过file 按CC source选择c然后GO储存文件D\c语言\单链表c3进行编代码4编好之后搞ctrlshiftF9进行编译然后按ctrlF105如果编译出问题然后进行调试四 includeinclude "stdlibh"includedefine LIST_INIT_SIZE 100define ok 1define ERROR 0define OVERFLOW -1define Num 3typedef int DataTypetypedef int Statustypedef structDataType elemint Lengthint ListsizeSeqListSeqList LStatus InitSeqList SeqList LL- elem Da。
数据结构线性表
数据结构线性表一、引言数据结构是计算机存储、组织数据的方式,它决定了数据访问的效率和灵活性。
在数据结构中,线性表是一种最基本、最常用的数据结构。
线性表是由零个或多个数据元素组成的有限序列,其中数据元素之间的关系是一对一的关系。
本文将对线性表的概念、分类、基本操作及其应用进行详细阐述。
二、线性表的概念1.数据元素之间具有一对一的关系,即除了第一个和一个数据元素外,其他数据元素都是首尾相连的。
2.线性表具有唯一的第一个元素和一个元素,分别称为表头和表尾。
3.线性表的长度是指表中数据元素的个数,长度为零的线性表称为空表。
三、线性表的分类根据线性表的存储方式,可以将线性表分为顺序存储结构和链式存储结构两大类。
1.顺序存储结构:顺序存储结构是将线性表中的数据元素按照逻辑顺序依次存放在一组地质连续的存储单元中。
顺序存储结构具有随机访问的特点,可以通过下标快速访问表中的任意一个元素。
顺序存储结构的线性表又可以分为静态顺序表和动态顺序表两种。
2.链式存储结构:链式存储结构是通过指针将线性表中的数据元素连接起来,形成一个链表。
链表中的每个节点包含一个数据元素和一个或多个指针,指向下一个或前一个节点。
链式存储结构具有动态性,可以根据需要动态地分配和释放节点空间。
链式存储结构的线性表又可以分为单向链表、双向链表和循环链表等。
四、线性表的基本操作线性表作为一种数据结构,具有一系列基本操作,包括:1.初始化:创建一个空的线性表。
2.插入:在线性表的指定位置插入一个数据元素。
3.删除:删除线性表中指定位置的数据元素。
4.查找:在线性表中查找具有给定关键字的数据元素。
5.更新:更新线性表中指定位置的数据元素。
6.销毁:释放线性表所占用的空间。
7.遍历:遍历线性表中的所有数据元素,进行相应的操作。
8.排序:对线性表中的数据元素进行排序。
9.合并:将两个线性表合并为一个线性表。
五、线性表的应用1.程序语言中的数组:数组是一种典型的顺序存储结构的线性表,常用于存储具有相同类型的数据元素。
吉林大学数据结构_第二章 线性表
如何找指定位置的结点?
• 与顺序表不同,单链表无法直接访问指定 位置的结点,而是需要从哨位结点开始, 沿着next指针逐个结点计数,直至到达指定 位置。
操作
• • • • 存取 查找 删除 插入
存取算法
算法Find(k.item) /*将链表中第k个结点的字段值赋给item*/ F1. [k合法?] IF (k<1) THEN (PRINT “存取位置不合法”. RETURN.) F2. [初始化] p←head. i ←0. F3. [找第k个结点] WHILE (p ≠NULL AND i<k) DO (p←next(p). i ←i+1.) IF p=NULL THEN (PRINT “无此结点”. RETURN. ) item←data(p). ▍ 存取算法的时间复杂性分析。P30
插入算法
算法Insert(k,item) /*在链表中第k个结点后插入字段值为item的结点*/ I1.[k合法?] IF (k<0) THEN (PRINT “插入不合法”. RETURN) I2.[初始化] p←head. i ←0. I3.[p指向第k个结点] WHILE (p ≠NULL AND i<k) DO (p←next(p). i ←i+1.) IF p=NULL THEN (PRINT “插入不合法”. RETURN. ) I4.[插入] s<= AVAIL. data(s) ←item. next(s) ←next(p). next(p) ←s. ▍
删除算法
算法Delete(k.item) /*删除链表中第k个结点并将其字段值赋给item*/ D1.[k合法?] IF (k<1) THEN (PRINT “删除不合法”. RETURN.) D2.[初始化] p←head. i ←0. D3.[找第k-1结点] WHILE (p ≠NULL AND i<k-1) DO (p←next(p). i ←i+1.) IF p=NULL THEN (PRINT “无此结点”. RETURN. ) D4.[删除] q ← next(p). next(p) ← next(q) . item←data(q). AVAIL<=q.▍
湘潭大学 数据结构实验1 实验报告 源代码 线性表基本操作
“数据结构和算法II”课程实验报告实验名称:线性表的存储结构定义及基本操作班级姓名学号实验日期:实验机时:2 学时实验成绩:-------------------------------------------------------------------------------一.实验目的:1.掌握线性表的逻辑特征2.掌握线性表顺序存储结构的特点,熟练掌握顺序表的基本运算3.熟练掌握线性表的链式存储结构定义及基本操作4.理解循环链表和双链表的特点和基本运算5.加深对栈结构的理解,培养解决实际问题的编程能力。
6.加深对顺序存储数据结构的理解和链式存储数据结构的理解,逐步培养解决实际问题的编程能力二.实验内容:(1)基本实验内容:建立顺序表,完成顺序表的基本操作:初始化、插入、删除、逆转、输出、销毁, 置空表、求表长、查找元素、判线性表是否为空;建立单链表,完成链表(带表头结点)的基本操作:建立链表、插入、删除、查找、输出;其它基本操作还有销毁链表、将链表置为空表、求链表的长度、获取某位置结点的内容、搜索结点。
(2)扩展实验内容:查前驱元素、查后继元素、顺序表合并,两个有序单链表的合并操作等。
三.程序及注释:1.顺序表:#include<stdio.h>#include<stdlib.h>#define TRUE 1#define FALSE 0#define OK 1#define ERROR 0#define OVERFLOW -2#define LIST_INIT_SIZE 100#define LISTINCREMENT 10typedef int status ;typedef int ElemType ;typedef struct{ElemType *elem;int length,listsize;}SqList;status InitList(SqList &L)//初始化{L.elem=(ElemType *)malloc(LIST_INIT_SIZE*sizeof(ElemType));if(!L.elem) exit(OVERFLOW);L.listsize=LIST_INIT_SIZE;L.length=0;return OK;}status Build(SqList &L)//建立表{int i,n;printf("请输入元素个数n和n个元素\n");scanf("%d",&n);if(n>LIST_INIT_SIZE)//如果n大于当前空间{L.elem=(ElemType *)realloc(L.elem,(n+LISTINCREMENT)*sizeof(ElemType));if(!L.elem) exit(OVERFLOW);L.listsize=n+LISTINCREMENT;}for(i=0;i<n;i++)scanf("%d",L.elem+i);L.length=n;return OK;}void Print(SqList &L)//输出表中元素和长度{int i;for(i=0;i<L.length;i++)printf("%d ",*(L.elem+i));printf("\n长度为:%d\n\n",L.length);}void Tips()//提示函数{printf("请选择你的想要的操作:\n");printf("<1> 输出顺序表及顺序表的长度\n");printf("<2> 删除值为x的结点\n");printf("<3> 删除给定位置i的结点\n");printf("<4> 将顺序表逆置\n");printf("<5> 将顺序表按升序排序\n");printf("<6> 将x插入到顺序表的适当位置上\n");printf("<7> 将两个有序表合并\n");printf("<0> 退出\n\n");}status ListDelete1(SqList &L,int x)//删除值为X的元素{int i;for(i=0;i<L.length;i++)if(*(L.elem+i)==x)break;if(i==L.length)return ERROR;for(i++;i<L.length;i++)*(L.elem+i-1)=*(L.elem+i);L.length--;return OK;}status ListDelete2(SqList &L,int x)//删除第X个元素{int i;if(x<0||x>=L.length)return ERROR;for(i=x+1;i<L.length;i++)*(L.elem+i-1)=*(L.elem+i);L.length--;return OK;}void Inverse(SqList &L)//逆置函数{int i,t;for(i=0;i<L.length/2;i++){t=*(L.elem+i);*(L.elem+i)=*(L.elem+L.length-i-1);*(L.elem+L.length-i-1)=t;}}void Sort(SqList &L)//冒泡排序(升序){int i,j,t;for(i=1;i<L.length;i++)for(j=0;j<L.length-i;j++){if(*(L.elem+j)>*(L.elem+j+1)){t=*(L.elem+j);*(L.elem+j)=*(L.elem+j+1);*(L.elem+j+1)=t;}}printf("已按升序排列\n\n");}status ListInsert(SqList &L,int x)//将X插入,使仍然有序{int i,k;if(L.length>=L.listsize){L.elem=(ElemType *)realloc(L.elem,(L.listsize+LISTINCREMENT)*sizeof(ElemType)); if(!L.elem) exit(OVERFLOW);L.listsize+=LISTINCREMENT;}for(i=0;i<L.length;i++)if(x<*(L.elem+i))break;k=i;for(i=L.length;i>k;i--)*(L.elem+i)=*(L.elem+i-1);*(L.elem+k)=x;L.length++;return OK;}status Merger(SqList &L,SqList &Lb)//合并两个线性表{int i,j,k;SqList Lc;InitList(Lc);if(Lc.listsize<L.length+Lb.length){Lc.elem=(ElemType *)realloc(Lc.elem,(L.length+Lb.length+LISTINCREMENT)*sizeof(ElemType)); if(!L.elem) exit(OVERFLOW);Lc.listsize=L.length+Lb.length+LISTINCREMENT;}i=j=k=0;while(i<L.length && j<Lb.length){if(*(L.elem+i) < *(Lb.elem+j)){*(Lc.elem+k)=*(L.elem+i);k++;i++;}else{*(Lc.elem+k)=*(Lb.elem+j);k++;j++;}}while(i<L.length){*(Lc.elem+k)=*(L.elem+i);k++;i++;}while(j<Lb.length){*(Lc.elem+k)=*(Lb.elem+j);k++;j++;}Lc.length=L.length+Lb.length;L=Lc;return OK;}int main(){int op,x,flag;SqList L,Lb;InitList(L);Build(L);Tips();scanf("%d",&op);while(op){switch(op){case 1:Print(L);case 2:printf("请输入要删除的数据X:\n");scanf("%d",&x);flag=ListDelete1(L,x);if(flag)printf("删除成功!!\n\n");elseprintf("元素不存在,删除失败!!\n\n");break;case 3:printf("请输入要删除的位置i:\n");scanf("%d",&x);flag=ListDelete2(L,x-1);//第i个元素对应的下标为i-1 if(flag)printf("删除成功!!\n\n");elseprintf("元素不存在,删除失败!!\n\n");break;case 4:Inverse(L);break;case 5:Sort(L);break;case 6:printf("请输入要插入的数据X:\n");scanf("%d",&x);flag=ListInsert(L,x);if(flag)printf("插入成功!!\n\n");elseprintf("插入失败!!\n\n");break;case 7:printf("请输入Lb的内容:\n");InitList(Lb);Build(Lb);flag=Merger(L,Lb);if(flag)printf("合并成功!!\n\n");break;}Tips();scanf("%d",&op);}2.单链表typedef int ElementType;#ifndef _List_H#define _List_Hstruct Node;typedef struct Node *PtrToNode;typedef PtrToNode List;typedef PtrToNode Position;List MakeEmpty( List L );int IsEmpty( List L );int IsLast( Position P, List L );Position Find( ElementType X, List L );void Delete( ElementType X, List L );Position FindPrevious( ElementType X, List L );void Insert( ElementType X, List L, Position P );void DeleteList( List L );Position Header( List L );Position First( List L );Position Advance( Position P );ElementType Retrieve( Position P );#endif#include <stdio.h>#include <stdlib.h>#define Error( Str ) FatalError( Str )#define FatalError( Str ) fprintf( stderr, "%s\n", Str ), exit( 1 ) struct Node{ElementType Element;Position Next;};List MakeEmpty( List L ) //创建空链表{if( L != NULL )DeleteList( L );L = malloc( sizeof( struct Node ) );if( L == NULL )FatalError( "Out of memory!" );L->Next = NULL;return L;}int IsEmpty( List L )//判断链表是否为空{return L->Next == NULL;}int IsLast( Position P, List L ){return P->Next == NULL;}Position Find( ElementType X, List L )//精确查找函数{Position P;P = L->Next;while( P != NULL && P->Element != X ){P = P->Next;n++;}if(P==NULL)printf("查找的成员不存在!!\n\n");elseprintf("查找的成员位于链表第%d位\n\n",n); }void Delete( ElementType X, List L )//精确删除函数{Position P, TmpCell;P = FindPrevious( X, L );if( !IsLast( P, L ) ){TmpCell=P->Next;P->Next=TmpCell->Next;free( TmpCell );}}Position FindPrevious( ElementType X, List L )//前驱查找函数{Position P;P = L;while( P->Next != NULL && P->Next->Element != X )P = P->Next;return P;}void Insert( ElementType X, List L, Position P )//元素插入函数{Position TmpCell;TmpCell = malloc( sizeof( struct Node ) );if( TmpCell == NULL )FatalError( "Out of space" );TmpCell->Element = X;TmpCell->Next = P->Next;P->Next = TmpCell;}void DeleteList( List L )//清空链表函数{Position P, Tmp;P = L->Next;L->Next = NULL;while( P != NULL ){Tmp = P->Next;free( P );P = Tmp;}if(IsEmpty(L))printf("链表清空成功!\n\n");}Position Header( List L )//表头调用函数{return L;}Position First( List L )//首元素调用函数{return L->Next;}Position Advance( Position P )//元素递进函数{return P->Next;}void show(List L)//显示链表函数{if(!IsEmpty(L)){Position p;p=First(L);printf("当前链表成员如下:\n");while(p!=NULL){printf("%d ",p->Element);if(Advance(p))p=Advance(p);else{printf("\n\n");break;}}}elseprintf("当前链表为空!!\n\n"); }void join(List L) //插入函数调用函数{int x,n,i;Position p=Header(L);printf("请输入需要插入的成员:\n");scanf("%d",&x);printf("需要将成员插入到第几位呢?\n");scanf("%d",&n);for(i=1;i<n;i++){p=p->Next;}Insert(x,L,p);show(L);}void find(List L)//查找函数调用函数{printf("请输入需要查找的成员:\n");int x;scanf("%d",&x);Find(x,L);}void count(List L)//链表长度统计函数{Position p;p=First(L);int n=0;while(p!=NULL){n++;if(Advance(p))p=Advance(p);elsebreak;}printf("当前链表长度为:%d\n\n",n);}void direction(List L)//位置访问函数{int n,i;Position p=Header(L);printf("请输入n的值:\n");scanf("%d",&n);for(i=0;i<n;i++){p=p->Next;}printf("第%d位成员为:%d\n\n",n,p->Element);}void change(List L)//修改元素函数{printf("请输入n的值:\n");int x,n,i;scanf("%d",&n);printf("请输入修改后的值:\n");scanf("%d",&x);Position p=Header(L);for(i=0;i<n;i++){p=p->Next;}p->Element=x;show(L);}void deletion(List L)//删除函数调用函数{printf("你要删除的成员是:\n");int x;scanf("%d",&x);Delete(x,L);show(L);}void main(){ List L;L=MakeEmpty(NULL);printf("请输入需要插入的成员个数:\n");int n;scanf("%d",&n);printf("请输入需要插入的成员以空格隔开:\n");int i;Position p;p=Header(L);for(i=0;i<n;i++){int x;scanf("%d",&x);Insert(x,L,p);p=Advance(p);}show(L);printf("请选择需要进行的操作:\n 1.计算链表长度\n 2.取第n个位置成员\n 3.修改第n个位置成员\n 4.在第n位插入新成员\n 5.删除成员\n 6.搜索成员\n 7.销毁链表\n 8.退出\n你输入的选项是:");scanf("%d",&n);while(n!=8){switch(n){case 1:count(L);break;case 2:direction(L);break;case 3:change(L);break;case 4:join(L);break;case 5:deletion(L);break;case 6:find(L);break;case 7:DeleteList(L);break;}printf("请选择需要进行的操作:\n 1.计算链表长度\n 2.取第n个位置成员\n 3.修改第n个位置成员\n 4.在第n位插入新成员\n 5.删除成员\n 6.搜索成员\n 7.销毁链表\n 8.退出\n你输入的选项是:");scanf("%d",&n);}}四.运行结果:1.顺序表:3.单链表:五.实验心得:通过这次写实验报告,我深切的理解了这门课的本质。
数据结构--实验报告 线性表的基本操作
数据结构--实验报告线性表的基本操作数据结构--实验报告线性表的基本操作一、引言本实验报告旨在通过实际操作,掌握线性表的基本操作,包括初始化、插入、删除、查找等。
线性表是最基本的数据结构之一,对于理解和应用其他数据结构具有重要的作用。
二、实验目的1·了解线性表的定义和基本特性。
2·掌握线性表的初始化操作。
3·掌握线性表的插入和删除操作。
4·掌握线性表的查找操作。
5·通过实验巩固和加深对线性表的理解。
三、线性表的基本操作1·初始化线性表线性表的初始化是将一个线性表变量设置为空表的过程。
具体步骤如下:(1)创建一个线性表的数据结构,包括表头指针和数据元素的存储空间。
(2)将表头指针指向一个空的数据元素。
2·插入元素插入元素是向线性表中指定位置插入一个元素的操作。
具体步骤如下:(1)判断线性表是否已满,如果已满则无法插入元素。
(2)判断插入位置是否合法,如果不合法则无法插入元素。
(3)将插入位置及其后面的元素都向后移动一个位置。
(4)将待插入的元素放入插入位置。
3·删除元素删除元素是从线性表中删除指定位置的元素的操作。
具体步骤如下:(1)判断线性表是否为空,如果为空则无法删除元素。
(2)判断删除位置是否合法,如果不合法则无法删除元素。
(3)将删除位置后面的元素都向前移动一个位置。
(4)删除最后一个元素。
4·查找元素查找元素是在线性表中查找指定元素值的操作。
具体步骤如下:(1)从线性表的第一个元素开始,逐个比较每个元素的值,直到找到目标元素或遍历完整个线性表。
(2)如果找到目标元素,则返回该元素的位置。
(3)如果未找到目标元素,则返回找不到的信息。
四、实验步骤1·初始化线性表(1)定义线性表的数据结构,包括表头指针和数据元素的存储空间。
(2)将表头指针指向一个空的数据元素。
2·插入元素(1)判断线性表是否已满。
数据结构线性表实验报告
数据结构线性表实验报告数据结构线性表实验报告实验目的:本次实验主要是为了学习和掌握线性表的基本操作和实现方式。
通过实验,我们可以加深对线性表的理解,并能够熟悉线性表的基本操作。
实验设备与环境:本次实验所需的设备包括计算机和编程环境。
我们选择使用C语言来实现线性表的操作,并在Visual Studio Code编程软件中进行编写和调试。
实验内容:1.线性表的定义和基本操作1.1 线性表的定义:线性表是一种有序的数据结构,其中的元素按照一定的顺序存储,可以插入、删除和访问元素。
1.2 线性表的基本操作:1.2.1 初始化线性表:创建一个空的线性表。
1.2.2 判断线性表是否为空:判断线性表是否不含有任何元素。
1.2.3 获取线性表的长度:返回线性表中元素的个数。
1.2.4 在线性表的指定位置插入元素:在线性表的第i个位置插入元素x,原第i个及其之后的元素依次后移。
1.2.5 删除线性表中指定位置的元素:删除线性表中第i个位置的元素,原第i+1个及其之后的元素依次前移。
1.2.6 获取线性表中指定位置的元素:返回线性表中第i个位置的元素的值。
1.2.7 清空线性表:将线性表中的元素全部删除,使其变为空表。
2.线性表的顺序存储结构实现2.1 线性表的顺序存储结构:使用数组来实现线性表的存储方式。
2.2 线性表的顺序存储结构的基本操作:2.2.1 初始化线性表:创建一个指定长度的数组,并将数组中的每个元素初始化为空值。
2.2.2 判断线性表是否为空:判断线性表的长度是否为0。
2.2.3 获取线性表的长度:返回线性表数组的长度。
2.2.4 在线性表的指定位置插入元素:将要插入的元素放入指定位置,并将原位置及其之后的元素依次后移。
2.2.5 删除线性表中指定位置的元素:将指定位置的元素删除,并将原位置之后的元素依次前移。
2.2.6 获取线性表中指定位置的元素:返回指定位置的元素的值。
2.2.7 清空线性表:将线性表数组中的每个元素赋空值。
线性表 定义顺序存储结构基本操作两种特殊的线性表栈队列
Void SetNode(Node *front) { front->next=NULL; }
} …
Test1.c
…
#include “node.h” Void main() {
int i,j; Node front,*prevptr,*ptr; SetNode(&front); ptr=&front; for(i=1;i<5;i++)
} 线性结构
结点可以不连续存储,表可扩充
单向链表的存贮映像
指针操作
LNode *p,*q; p->data;p->next; q=new LNode; q=p; q=p->next; (q指向后继) p=p->next; (指针移动) p->next=q; (链指针改接) p->next= q->next; (?)
链表结点的基本运算
Void SetNode(LNode *front);//构造函数,结点 的next置NULL
Node *NextNode(LNode *ptr);//返回后继指针 Void InsertAfter(LNode *ptr,Datatype item);//
在结点*ptr插入 Void DeleteAfter(LNode *ptr);//删除结点后的
ptr=NextNode(ptr); ptr->data=item
}
循环链表
循环链表是单链表的变形。 循环链表最后一个结点的link指针不为NULL,
而是指向了表的前端 为简化操作,在循环链表中往往加入表头结点。 循环链表的特点是:只要知道表中某一结点的
地址,就可搜寻到所有其他结点的地址。
实验1线性表的基本操作
实验一线性表的基本操作一、线性结构的顺序表基本操作实验目的1.学会定义单链表的结点类型、线性表的顺序存储类型,实现C程序的基本结构,对线性表的一些基本操作和具体的函数定义。
2.掌握顺序表的基本操作,实现顺序表的插入、删除、查找以及求并集等运算。
3.掌握对多函数程序的输入、编辑、调试和运行过程。
实验要求1.预习C语言中结构体的定义与基本操作方法。
2.对顺序表的每个基本操作用单独的函数实现。
3.编写完整程序完成下面的实验内容并上机运行。
实验内容1.编写程序实现顺序表的下列基本操作:(1)初始化顺序表La。
(2)将La置为空表。
(3)销毁La。
(4)在La中插入一个新的元素。
(5)删除La中的某一元素。
(6)在La中查找某元素,若找到,则返回它在La中第一次出现的位置,否则返回0。
(7)打印输出La中的元素值。
2.(选做)编写程序完成下面的操作:(1)构造两个顺序线性表La和Lb,其元素都按值非递减顺序排列。
(2)实现归并La和Lb得到新的顺序表Lc,Lc的元素也按值非递减顺序排列。
(3)假设两个顺序线性表La和Lb分别表示两个集合A和B,利用union_Sq操作实现A=A∪B。
二、单链表基本操作(选做)实验目的1. 学会定义单链表的结点类型、线性表的链式存储类型,实现对单链表的一些基本操作和具体的函数定义,了解并掌握单链表的类定义以及成员函数的定义与调用。
2. 掌握单链表基本操作及两个有序表归并、单链表逆置等操作的实现。
实验要求1.预习C语言中结构体的定义与基本操作方法。
2.对单链表的每个基本操作用单独的函数实现。
3.编写完整程序完成下面的实验内容并上机运行。
实验内容1.编写程序完成单链表的下列基本操作:(1)初始化单链表La。
(2)在La中插入一个新结点。
(3)删除La中的某一个结点。
(4)在La中查找某结点并返回其位置。
(5)打印输出La中的结点元素值。
2.构造一个单链表L,其头结点指针为head,编写程序实现将L逆置。
1.3 线性表及其顺序存储结构
1.3 线性表及其顺序存储结构1.3.1 线性表的基本概念1.线性表的定义在数据结构中,线性表(Linear List)是最简单也是最常用的一种数据结构。
线性表是由n(n≥0)个数据元素a1, a2, …, a n组成的有限序列。
其中,数据元素的个数n定义为表的长度。
当n=0时称为空表,记作( )或 ,若线性表的名字为L,则非空的线性表(n>0)记作:L=(a1,a2,…,a n)这里a i(i=1,2,…,n)是属于数据对象的元素,通常也称其为线性表中的一个结点。
线性表的相邻元素之间存在着前后顺序关系,其中第一个元素无前驱,最后一个元素无后继,其他每个元素有且仅有一个直接前驱和一个直接后继。
可见,线性表是一种线性结构。
例如,英文字母表(A, B, C, …, Z)就是一个长度为26的线性表,表中的每一个英文字母是一个数据元素,四季(春、夏、秋、冬)是一个长度为4的线性表,其中每一个季节是一个数据元素。
矩阵也是一个线性表,只不过它是一个比较复杂的线性表。
在矩阵中,既可以把每一行看成一个数据元素(既每一行向量为一个数据元素),也可以把每一列看成一个数据元素(即每一列向量为一个数据元素)。
其中每一个数据元素(一个行向量或者一个列向量)实际上又是一个简单的线性表。
在复杂的线性表中,一个数据元素由若干数据项组成,此时,把数据元素称为记录(record),而由多个记录构成的线性表又称为文件(file)。
例如,一个按照姓名的拼音字母为序排列的通信录就是一个复杂的线性表,见表1-4,表中每个联系人的情况为一个记录,它由姓名、性别、电话号码、电子邮件和住址5个数据项组成。
表1-4 复杂线性表2.非空线性表的特征非空线性表具有以下一些结构特征:●有且只有一个根结点,它无前件;●有且只有一个终端结点,它无后件;●除根结点与终端结点外,其他所有结点有且只有一个前件,也有且只有一个后件。
结点个数n称为线性表的长度,当n=0时,称为空表。
第3章线性表概要
链式存储的几种形式
单链表 循环链表 双向链表
单链表的定义
typedef int DataType; class Item { public: DataType data; Item * next; Item(){next=NULL;} };
class Link { public: Item *head; Link(){head=NULL;} ~Link(){DeleteAll();} void Initiate(); void DeleteAll(); void HeadCreate(int n); void TailCreate(int n); void HeadCreateWithHead(int n); void TailCreateWithHead(int n); int Length(); Item *Locatex(DataType x); Item *Locatei(int i); DataType Get(int i); bool Insert(DataType x,int i); bool Deleted(int i); void Print(); };
Ein P i (n i 1)
i 1
n 1
在等概率情况下,Pi=1/(n+1),则
1 n1 n Ein P (n i 1) i (n i 1) n 1 i 1 2 i 1
n 1
时间复杂度为O(n)
典型操作的算法实现
3. 删除运算
线性表的删除运算是指将表中第i个元素从线性表中删除, 使原表长为n的线性表(a1,a2,…,ai-1,ai,ai+1,…, an)变成表长为n-1的线性表 (a1,a2,…,ai-1,ai+1,…,an) i的取值范围为1≤i≤n。
实验1 线性表的基本操作
实验一线性表的基本操作一、实验目的(1)掌握线性表顺序存储和链式存储的方法及基本运算的实现。
(2)掌握将算法在VC++6.0语言环境下实现的过程。
二、实验准备(1)复习线性表的定义,掌握顺序存储、链式存储的方法及操作。
(2)复习C语言中指针与结构体的概念、定义方式。
(3)掌握链表的C语言的实现。
(4)实验的计算机中安装了Microsoft VC++ 6.0。
三、实验内容顺序表1)首先创建一个顺序表:从键盘读入一组整数(长度小于等于20),按输入顺序放入顺序表,输入以-1结束(注意-1不放到顺序表内);将创建好的顺序表元素依次输出到屏幕上。
2)在已创建好的顺序表中插入一个元素:从键盘读入需插入的元素值和插入位置,调用插入函数完成插入操作;然后将顺序表元素依次输出到屏幕上。
3)在已创建好的顺序表中删除一个元素:从键盘读入欲删除的元素位置(序号),调用删除函数完成删除操作;然后将顺序表元素依次输出到屏幕上。
算法提示:➢需求分析:1.功能(1)建立一顺序表(2)显示顺序表中每个元素(3)在上述的顺序表中的指定位置插入指定的元素,并输出顺序表中所有数据。
(4)在上述的顺序表中的指定位置删除指定的元素,并输出顺序表中所有数据。
2.输入要求从键盘输入顺序表中所有数据,输入以-1结束(注意-1不放到顺序表内);需插入的数据元素的位置、值;要删除的数据元素的位置(序号)。
3. 测试数据顺序表中所有数据:15,26,58,27,9插入的数据元素的位置、值:1,28;6,28;0,28要删除的数据元素的位置:3➢概要设计:1.数据结构:提示:相关常量和顺序表数据类型定义#define MAXNUM 20#define true 1#define false 0typedef struct{int data[MAXNUM];int length;}list_type;2.模块划分:a)建立顺序表的createlist函数;b)显示输出顺序中每个结点的数据的showlist函数;c)insertlist函数:插入函数。
实验1 线性表的基本操作
ElemType *p=L.elem+1;
while(i<=L.length&&*p!=cur_e)
{
p++;
i++;
}
if(i>L.length)
return*--p;
return 1;
}
}
int NextElem(SqList L,ElemType cur_e,ElemType &next_e)
int i;
p=L.elem;
for(i=1;i<=L.length;i++)
vi(*p++);
cout<<endl;
return 1;
} void print(ElemType &c) {
printf("%d ",c); } // 线性表的单链表存储结构 struct LNode { ElemType data; LNode *next; }; typedef LNode *LinkList; // 另一种定义LinkList的方法 // 操作结果:构造一个空的线性表L Status InitList(LinkList &L) { L=(LinkList)malloc(sizeof(LNode)); // 产生头结点,并使L指向此头结点 if(!L) // 存储分配失败
// 操作结果:用e返回L中第i个数据元素的值 if(i<1||i>L.length)
exit(1); e=*(L.elem+i-1); return 1; } int equal(ElemType c1,ElemType c2) { // 判断是否相等的函数,Union()用到 if(c1==c2)
2.2 线性表及其顺序存储结构
一般情况下,要删除第i (1≤i≤n )个 元素,需要从第i+1 个元素开始,直到第n 个元素之间,共有n-i 个元素依次向前移动 了一个位置。删除结束后,顺序表的长度就 缩小了1。在平均情况下,要在顺序表中删 除一个元素,需要移动表中一半的元素。
在顺序表L中删除第i个元素并用x 返回其 值的算法DeleteList描述如下:
void DeleteList(SeqList *L,int i, ElemType *x) {
int j,n=L->length; if(i<1||i>n) {
printf(" \n i值不合法!"); exit(1); }
在顺序表中删除一个元素,平均约移动表 中一半的元素。平均时间复杂度为O(n)。最 好的情况是当i=n,即在表尾删除时,不需要 移动元素;最坏的情况是当i=1,即在表头删 除时,需要移动表中n-1个元素。
栈和队列是两种特殊的线性表,它们的逻 辑结构和线性表相同,只是运算规则较线 性表有更多的限制 。
在表中插入一个元素,平均要移动一半的元 素,平均时间复杂度为O(n)。最好的情况是
在表尾插入时,不需要移动元素;最坏的情况 是在表头插入时,需要移动表中n个元素。
假设,在长度为n的顺序表的任意位置i (1≤i≤n)删除该位置元素的概率为qi=1/n, 所需移动元素的次数为n-i,那么,每删除一 个元素,所需移动元素的次数的平均值为: Ade = (n-1)/2
ElemType GetElem(SeqList *L,int i) {/*取表中第i个数据元素*/
数据结构实验报告1线性表的顺序存储结构
数据结构实验报告1线性表的顺序存储结构一、实验目的本次实验的主要目的是深入理解线性表的顺序存储结构,并通过编程实现其基本操作,包括创建线性表、插入元素、删除元素、查找元素以及输出线性表等。
通过实际操作,掌握顺序存储结构的特点和优势,同时也了解其在不同情况下的性能表现。
二、实验环境本次实验使用的编程语言为C++,编译环境为Visual Studio 2019。
三、实验原理1、线性表的定义线性表是由 n(n≥0)个数据元素组成的有限序列。
在顺序存储结构中,线性表的元素存储在一块连续的存储空间中,通过数组来实现。
2、顺序存储结构的特点存储密度高,无需额外的指针来表示元素之间的关系。
可以随机访问表中的任意元素,时间复杂度为 O(1)。
插入和删除操作需要移动大量元素,平均时间复杂度为 O(n)。
四、实验内容及步骤1、定义线性表的数据结构```cppdefine MAX_SIZE 100 //定义线性表的最大长度typedef struct {int dataMAX_SIZE; //存储线性表元素的数组int length; //线性表的当前长度} SeqList;```2、初始化线性表```cppvoid InitList(SeqList L) {L>length = 0; //初始时线性表长度为 0}```3、判断线性表是否为空```cppbool ListEmpty(SeqList L) {return (Llength == 0);}```4、求线性表的长度```cppint ListLength(SeqList L) {return Llength;}```5、按位查找操作```cppint GetElem(SeqList L, int i) {if (i < 1 || i > Llength) {printf("查找位置不合法!\n");return -1;}return Ldatai 1;}```6、按值查找操作```cppint LocateElem(SeqList L, int e) {for (int i = 0; i < Llength; i++){if (Ldatai == e) {return i + 1;}}return 0; //未找到返回 0}```7、插入操作```cppbool ListInsert(SeqList L, int i, int e) {if (L>length == MAX_SIZE) {//表已满printf("表已满,无法插入!\n");return false;}if (i < 1 || i > L>length + 1) {//插入位置不合法printf("插入位置不合法!\n");return false;}for (int j = L>length; j >= i; j) {//移动元素L>dataj = L>dataj 1;}L>datai 1 = e; //插入元素L>length++;//表长加 1return true;}```8、删除操作```cppbool ListDelete(SeqList L, int i) {if (L>length == 0) {//表为空printf("表为空,无法删除!\n");return false;}if (i < 1 || i > L>length) {//删除位置不合法printf("删除位置不合法!\n");return false;}for (int j = i; j < L>length; j++){//移动元素L>dataj 1 = L>dataj;}L>length; //表长减 1return true;}```9、输出线性表```cppvoid PrintList(SeqList L) {for (int i = 0; i < Llength; i++){printf("%d ", Ldatai);}printf("\n");}```10、测试用例```cppint main(){SeqList L;InitList(&L);ListInsert(&L, 1, 10);ListInsert(&L, 2, 20);ListInsert(&L, 3, 30);ListInsert(&L, 4, 40);ListInsert(&L, 5, 50);printf("线性表的长度为:%d\n", ListLength(L));printf("查找第 3 个元素:%d\n", GetElem(L, 3));int loc = LocateElem(L, 30);if (loc) {printf("元素 30 的位置为:%d\n", loc);} else {printf("未找到元素 30\n");}ListDelete(&L, 3);printf("删除第 3 个元素后的线性表:");PrintList(L);return 0;}```五、实验结果及分析1、实验结果成功创建并初始化了线性表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验目的:. 掌握线性表的逻辑特征. 掌握线性表顺序存储结构的特点,熟练掌握顺序表的基本运算. 熟练掌握线性表的链式存储结构定义及基本操作. 理解循环链表和双链表的特点和基本运算. 加深对顺序存储数据结构的理解和链式存储数据结构的理解,逐步培养解决实际问题的编程能力二、实验内容:(一)基本实验内容(顺序表):建立顺序表,完成顺序表的基本操作:初始化、插入、删除、逆转、输出、销毁, 置空表、求表长、查找元素、判线性表是否为空;1.问题描述:利用顺序表,设计一组输入数据(假定为一组整数),能够对顺序表进行如下操作:. 创建一个新的顺序表,实现动态空间分配的初始化;. 根据顺序表结点的位置插入一个新结点(位置插入),也可以根据给定的值进行插入(值插入),形成有序顺序表;. 根据顺序表结点的位置删除一个结点(位置删除),也可以根据给定的值删除对应的第一个结点,或者删除指定值的所有结点(值删除);. 利用最少的空间实现顺序表元素的逆转;. 实现顺序表的各个元素的输出;. 彻底销毁顺序线性表,回收所分配的空间;. 对顺序线性表的所有元素删除,置为空表;. 返回其数据元素个数;. 按序号查找,根据顺序表的特点,可以随机存取,直接可以定位于第i 个结点,查找该元素的值,对查找结果进行返回;. 按值查找,根据给定数据元素的值,只能顺序比较,查找该元素的位置,对查找结果进行返回;. 判断顺序表中是否有元素存在,对判断结果进行返回;. 编写主程序,实现对各不同的算法调用。
2.实现要求:对顺序表的各项操作一定要编写成为C(C++)语言函数,组合成模块化的形式,每个算法的实现要从时间复杂度和空间复杂度上进行评价;. “初始化算法”的操作结果:构造一个空的顺序线性表。
对顺序表的空间进行动态管理,实现动态分配、回收和增加存储空间;. “位置插入算法”的初始条件:顺序线性表L 已存在,给定的元素位置为i,且1≤i≤ListLength(L)+1 ;操作结果:在L 中第i 个位置之前插入新的数据元素e,L 的长度加1;. “位置删除算法”的初始条件:顺序线性表L 已存在,1≤i≤ListLength(L) ;操作结果:删除L 的第i 个数据元素,并用e 返回其值,L 的长度减1 ;. “逆转算法”的初始条件:顺序线性表L 已存在;操作结果:依次对L 的每个数据元素进行交换,为了使用最少的额外空间,对顺序表的元素进行交换;. “输出算法”的初始条件:顺序线性表L 已存在;操作结果:依次对L 的每个数据元素进行输出;. “销毁算法”初始条件:顺序线性表L 已存在;操作结果:销毁顺序线性表L;. “置空表算法”初始条件:顺序线性表L 已存在;操作结果:将L 重置为空表;. “求表长算法”初始条件:顺序线性表L 已存在;操作结果:返回L 中数据元素个数;. “按序号查找算法”初始条件:顺序线性表L 已存在,元素位置为i,且1≤i≤ListLength(L)操作结果:返回L 中第i 个数据元素的值. “按值查找算法”初始条件:顺序线性表L 已存在,元素值为e;操作结果:返回L 中数据元素值为e 的元素位置;. “判表空算法”初始条件:顺序线性表L 已存在;操作结果:若L 为空表,则返回TRUE,否则返回FALSE;分析: 修改输入数据,预期输出并验证输出的结果,加深对有关算法的理解。
(二)基本实验内容(链表):建立单链表,完成链表(带表头结点)的基本操作:建立链表、插入、删除、查找、输出、求前驱、求后继、两个有序链表的合并操作。
其他基本操作还有销毁链表、将链表置为空表、求链表的长度、获取某位置结点的内容、搜索结点。
1.问题描述:利用线性表的链式存储结构,设计一组输入数据(假定为一组整数),能够对单链表进行如下操作:. 初始化一个带表头结点的空链表;. 创建一个单链表是从无到有地建立起一个链表,即一个一个地输入各结点数据,并建立起前后相互链接的关系。
又分为逆位序(插在表头)输入n 个元素的值和正位序(插在表尾)输入n 个元素的值;. 插入结点可以根据给定位置进行插入(位置插入),也可以根据结点的值插入到已知的链表中(值插入),且保持结点的数据按原来的递增次序排列,形成有序链表。
. 删除结点可以根据给定位置进行删除(位置删除),也可以把链表中查找结点的值为搜索对象的结点全部删除(值删除);. 输出单链表的内容是将链表中各结点的数据依次显示,直到链表尾结点;. 编写主程序,实现对各不同的算法调用。
其它的操作算法描述略。
2.实现要求:对链表的各项操作一定要编写成为C(C++)语言函数,组合成模块化的形式,还要针对每个算法的实现从时间复杂度和空间复杂度上进行评价。
. “初始化算法”的操作结果:构造一个空的线性表L,产生头结点,并使L 指向此头结点;. “建立链表算法”初始条件:空链存在;操作结果:选择逆位序或正位序的方法,建立一个单链表,并且返回完成的结果;. “链表(位置)插入算法”初始条件:已知单链表L 存在;操作结果:在带头结点的单链线性表L 中第i 个位置之前插入元素e;. “链表(位置)删除算法”初始条件:已知单链表L 存在;操作结果:在带头结点的单链线性表L 中,删除第i 个元素,并由e 返回其值;. “输出算法”初始条件:链表L 已存在;操作结果:依次输出链表的各个结点的值;(三)扩展实验内容(顺序表)查前驱元素、查后继元素、顺序表合并等.1.问题描述:. 根据给定元素的值,求出前驱元素;. 根据给定元素的值,求出后继元素;. 对已建好的两个顺序表进行合并操作,若原线性表中元素非递减有序排列,要求合并后的结果还是有序(有序合并);对于原顺序表中元素无序排列的合并只是完成A=A∪B(无序合并),要求同样的数据元素只出现一次。
. 修改主程序,实现对各不同的算法调用。
2.实现要求:. “查前驱元素算法”初始条件:顺序线性表L 已存在;操作结果:若数据元素存在且不是第一个,则返回前驱,否则操作失败;. “查后继元素算法”初始条件:顺序线性表L 已存在;操作结果:若数据元素存在且不是最后一个,则返回后继,否则操作失败;. “无序合并算法”的初始条件:已知线性表La 和Lb;操作结果:将所有在线性表Lb 中但不在La 中的数据元素插入到La 中;. “有序合并算法”的初始条件:已知线性表La 和Lb 中的数据元素按值非递减排列;操作结果:归并La 和Lb 得到新的线性表Lc,Lc 的数据元素也按值非递减排列;(四)扩展实验内容(链表)1.问题描述:. 求前驱结点是根据给定结点的值,在单链表中搜索其当前结点的后继结点值为给定的值,将当前结点返回;. 求后继结点是根据给定结点的值,在单链表中搜索其当前结点的值为给定的值,将后继结点返回;. 两个有序链表的合并是分别将两个单链表的结点依次插入到第3 个单链表中,继续保持结点有序;2.实现要求:. “求前驱算法”初始条件: 线性表L 已存在;操作结果: 若cur_e 是L 的数据元素,且不是第一个,则用pre_e 返回它的前驱;. “求后继算法”初始条件: 线性表L 已存在;操作结果: 若cur_e 是L 的数据元素,且不是最后一个,则用next_e 返回它的后继;. “两个有序链表的合并算法”初始条件: 线性表单链线性表La 和Lb 的元素按值非递减排列;操作结果:归并La 和Lb 得到新的单链表。
线性表的顺序存储结构的定义及其基本操作的参考程序(顺序表)(1) 文件1:pubuse. h 是公共使用的常量定义和系统函数调用声明,以后每个实验中几乎都涉及到此文件。
#include<string. h>#include<ctype. h>#include<malloc. h> /* malloc()等*/#include<limits. h> /* INT_MAX 等*/#include<stdio. h> /* EOF(=^Z 或F6),NULL */#include<stdlib. h> /* atoi() */#include<io. h> /* eof() */#include<math. h> /* floor(),ceil(),abs() */#include<process. h> /* exit() *//* 函数结果状态代码*/#define TRUE 1#define FALSE 0#define OK 1#define ERROR 0#define INFEASIBLE -1/* #define OVERFLOW -2 因为在math. h 中已定义OVERFLOW 的值为3,故去掉此行*/ typedef int Status; /* Status 是函数的类型,其值是函数结果状态代码,如OK 等*/ typedef int Boolean; /* Boolean 是布尔类型,其值是TRUE 或FALSE */(2) 文件2:seqlistDef. h 进行线性表的动态分配顺序存储结构的表示#define LIST_INIT_SIZE 10 /* 线性表存储空间的初始分配量*/#define LISTINCREMENT 2 /* 线性表存储空间的分配增量*/typedef struct{ElemType *elem; /* 存储空间基址*/int length; /* 当前长度*/int listsize; /* 当前分配的存储容量(以sizeof(ElemType)为单位) */}SqList;(3)文件3:seqlistAlgo. h 进行线性表顺序存储结构的基本实验算法定义Status ListInit_Sq(SqList &L) /* 算法2. 3 */{ /* 操作结果:构造一个空的顺序线性表*/L. elem=(ElemType*)malloc(LIST_INIT_SIZE*sizeof(ElemType));if(!L. elem)exit(OVERFLOW); /* 存储分配失败*/L. length=0; /* 空表长度为0 */L. listsize=LIST_INIT_SIZE; /* 初始存储容量*/return OK;}Status ListInsert_Sq(SqList &L,int i,ElemType e) /* 算法2. 4 */{ /* 初始条件:顺序线性表L 已存在,1≤i≤ListLength(L)+1 *//* 操作结果:在L 中第i 个位置之前插入新的数据元素e,L 的长度加1 */ElemType *newbase,*q,*p;if(i<1||i>L. length+1) /* i 值不合法*/return ERROR;if(L. length>=L. listsize) /* 当前存储空间已满,增加分配*/{newbase=(ElemType *)realloc(L. elem,(L. listsize+LISTINCREMENT)*sizeof(ElemType));if(!newbase)exit(OVERFLOW); /* 存储分配失败*/L. elem=newbase; /* 新基址*/L. listsize+=LISTINCREMENT; /* 增加存储容量*/}q=L. elem+i-1; /* q 为插入位置*/for(p=L. elem+L. length-1;p>=q;--p) /* 插入位置及之后的元素右移*/*(p+1)=*p;*q=e; /* 插入e */++L. length; /* 表长增1 */return OK;}Status ListDelete_Sq(SqList &L,int i,ElemType *e) /* 算法2. 5 */{ /* 初始条件:顺序线性表L 已存在,1≤i≤ListLength(L) *//* 操作结果:删除L 的第i 个数据元素,并用e 返回其值,L 的长度减1 */ElemType *p,*q;if(i<1||i>L. length) /* i 值不合法*/return ERROR;p=L. elem+i-1; /* p 为被删除元素的位置*/*e=*p; /* 被删除元素的值赋给e */q=L. elem+L. length-1; /* 表尾元素的位置*/for(++p;p<=q;++p) /* 被删除元素之后的元素左移*/*(p-1)=*p;L. length--; /* 表长减1 */return OK;}Status ListReverse_Sq(SqList &L){ /* 初始条件:顺序线性表L 已存在*//* 操作结果:依次对L 的数据元素成对交换*/ElemType t;int i;for(i=0;i<L. length/2;i++){t=L. elem[i]; L. elem[i]= L. elem[L. length-i-1]; L. elem[L. length-i-1]=t; } printf("\n");return OK;}Status ListPrint_Sq(SqList L){ /* 初始条件:顺序线性表L 已存在*//* 操作结果:依次对L 的数据元素输出*/int i;printf("\n");for(i=0;i<L. length;i++)printf("%d ", L. elem[i]);return OK;}(4)文件4:seqlistUse. cpp 进行线性表顺序存储结构的基本算法验证#include"pubuse. h" /* 实现通用常量的定义,常用系统函数的声明*/typedef int ElemType; /*实现一组整数的操作,将int 型特定义为通用的ElemType 类型名*/ #include"seqlistDef. h" /* 采用线性表的动态分配顺序存储结构定义*/#include"seqlistAlgo. h" /* 采用顺序表的基本算法定义*/void main(){SqList L;Status i;int j;ElemType t;/* 首先一定要初始化顺序表*/i=ListInit_Sq(L);if(i==1) /* 创建空表L 成功*/for(j=1;j<=5;j++) /* 在表L 中插入5 个元素,每个元素的值分别为2,4,6,8,10 */i=ListInsert_Sq(L,j,2*j);ListPrint_Sq(L); /*检验一下插入的结果,输出表L 的内容*/ListInsert_Sq(L,2,20);/* 随机指定插入点位置,假设在第二个元素前插入新的元素,其值为20 */ ListDelete_Sq(L,4,&t);/* 随机指定删除点位置,假设对第四个元素进行删除*/printf("\n The Deleted value is %d",t);/* 检验一下删除点元素的值*/ListPrint_Sq(L);/* 检验一下插入和删除后的结果,输出表La 的内容*/ListReverse_Sq(L);/* 将顺序表La 的所有元素进行逆序*/ListPrint_Sq(L);/* 检验一下逆序的结果,输出表L 的内容*/}三、实验结果四、实验分析1)for(p=L. elem+L. length-1;p>=q;--p) /* 插入位置及之后的元素右移*/在此处应该填上代码:*(p+1)=*p;2)for(++p;p<=q;++p) /* 被删除元素之后的元素左移*/在此处应该填上代码:*(p-1)=*p;五、实验总结此次试验比较难,考察了线性表的逻辑特征,线性表顺序存储结构的特点,线性表的链式存储结构定义及基本操作,循环链表和双链表的特点和基本运算。