2018广州市中考数学试卷及答案.pdf

合集下载

广东省广州市2018年中考数学试题(有答案)-精品推荐

广东省广州市2018年中考数学试题(有答案)-精品推荐

2018年广州市初中毕业生学业考试 数学试题第一部分选择题(共30分)一、选择题(本大题共10一个小题,每小题3分)1. 四个数12中,无理数的是( )A. B. 1 C.12D.0 2.图1所示的五角星是轴对称图形,它的对称轴共有( ) A. 1条 B. 3条 C. 5条 D. 无数条3.图2所示的几何体是由4个相同的小正方体搭成的,它的主视图是( )4.下列计算正确的是( ) A. ()222a b a b +=+ B. 22423a a a += C. ()2210x y x y y÷=≠ D. ()32628x x -=-5.如图3,直线AD,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是( )A. ∠4,∠2B. ∠2,∠6C. ∠5,∠4D. ∠2,∠46.甲袋中装有2个相同的小球,分别写有数字1和2,乙袋中装有2个相同的小球,分别写有数字1和2,从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是( )A.12 B. 13 C. 14 D. 167.如图4,AB 是圆O 的弦,OC ⊥AB,交圆O 于点C ,连接OA,OB,BC,若∠ABC=20°,则∠AOB 的度数是( )A. 40°B. 50°C. 70°D. 80°8.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚黄金重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13辆(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x 辆,每枚白银重y 辆,根据题意的:( )A. ()()11910813x y y x x y =⎧⎪⎨+-+=⎪⎩B. 10891311y x x y x y +=+⎧⎨+=⎩C. ()()91181013x y x y y x =⎧⎪⎨+-+=⎪⎩D. ()()91110813x y y x x y =⎧⎪⎨+-+=⎪⎩9.一次函数y ax b =+和反比例函数a by x-=在同一直角坐标系中大致图像是( )10.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m ,其行走路线如图所示,第1次移动到1A ,第2次移动到2A ……,第n 次移动到n A ,则△220180A A 的面积是( )A. 5042m B.210092m C.210112m D. 21009m 第二部分(非选择题共120分)11. 已知二次函数2y x =,当x >0时,y 随x 的增大而____________(填“增大”或“减小”) 12.如图6,旗杆高AB=8m ,某一时刻,旗杆影子长BC=16m ,则tanC=____________13.方程146x x =+的解是_____________ 14.如图7,若菱形ABCD 的顶点A,B 的坐标分别为(3,0),(-2,0)点D 在y 轴上,则点C 的坐标是_____________15. 如图8,数轴上点A 表示的数为a ,化简:a =______________16.如图9,CE 是平行四边形ABCD 的边AB 的垂直平分线,垂足为点O,CE 与DA 的延长线交于点E,连接AC,BE,DO,DO 与AC 交于点F ,则下列结论:①四边形ACBE 是菱形;②∠ACD=∠BAE ③AF:BE=2:3 ④:23AFOE CODS S=:其中正确的结论有_______________-(填写所有正确结论的序号)三:解答题(本大题共9个小题,满分102分)17(本小题满分9分)解不等式组1+0213x x ⎧⎨-⎩><18(本题满分9分)如图10,AB 与CD 相交于点E ,AE=CE,DE=BE.求证:∠A=∠C19(本题满分10分) 已知()()229633a T a a a a -=+++(1)化简T(2)若正方形ABCD 的边长为a ,且它的面积为9,求T 的值。

2018年广东省广州市中考数学试卷及答案解析

2018年广东省广州市中考数学试卷及答案解析

2018年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,有一项是符合题目要求的)1.(3分)四个数0,1,√2,12中,无理数的是( )A .√2B .1C .12D .02.(3分)如图所示的五角星是轴对称图形,它的对称轴共有( )A .1条B .3条C .5条D .无数条3.(3分)如图所示的几何体是由4个相同的小正方体搭成的,它的主视图是( )A .B .C .D .4.(3分)下列计算正确的是( ) A .(a +b )2=a 2+b 2 B .a 2+2a 2=3a 4 C .x 2y ÷1y =x 2(y ≠0)D .(﹣2x 2)3=﹣8x 65.(3分)如图,直线AD ,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是( )A .∠4,∠2B .∠2,∠6C .∠5,∠4D .∠2,∠46.(3分)甲袋中装有2个相同的小球,分别写有数字1和2;乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是( ) A .12B .13C .14D .167.(3分)如图,AB 是⊙O 的弦,OC ⊥AB ,交⊙O 于点C ,连接OA ,OB ,BC ,若∠ABC =20°,则∠AOB 的度数是( )A .40°B .50°C .70°D .80°8.(3分)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意得( ) A .{11x =9y (10y +x)−(8x +y)=13B .{10y +x =8x +y 9x +13=11yC .{9x =11y (8x +y)−(10y +x)=13D .{9x =11y (10y +x)−(8x +y)=139.(3分)一次函数y =ax +b 和反比例函数y =a−bx在同一平面直角坐标系中的大致图象是( )A .B .C .D .10.(3分)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n .则△OA 2A 2018的面积是( )A .504m 2B .10092m 2C .10112m 2D .1009m 2二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)已知二次函数y =x 2,当x >0时,y 随x 的增大而 (填“增大”或“减小”).12.(3分)如图,旗杆高AB =8m ,某一时刻,旗杆影子长BC =16m ,则tan C = .13.(3分)方程1x =4x+6的解是 .14.(3分)如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y 轴上,则点C 的坐标是 .15.(3分)如图,数轴上点A 表示的数为a ,化简:a +√a 2−4a +4= .16.(3分)如图,CE 是▱ABCD 的边AB 的垂直平分线,垂足为点O ,CE 与DA 的延长线交于点E .连接AC ,BE ,DO ,DO 与AC 交于点F ,则下列结论: ①四边形ACBE 是菱形; ②∠ACD =∠BAE ; ③AF :BE =2:3;④S 四边形AFOE :S △COD =2:3.其中正确的结论有 .(填写所有正确结论的序号)三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)解不等式组:{1+x>02x−1<3.18.(9分)如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.19.(10分)已知T=a2−9a(a+3)2+6a(a+3).(1)化简T;(2)若正方形ABCD的边长为a,且它的面积为9,求T的值.20.(10分)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.(1)这组数据的中位数是,众数是;(2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.21.(12分)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.22.(12分)设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数解析式,并画出这个函数的图象;(2)若反比例函数y2=kx的图象与函数y1的图象相交于点A,且点A的纵坐标为2.①求k的值;②结合图象,当y1>y2时,写出x的取值范围.23.(12分)如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.24.(14分)已知抛物线y=x2+mx﹣2m﹣4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⊙P上.①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C关于直线x=−m2的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r,求lr的值.25.(14分)如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.(1)求∠A+∠C的度数;(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度.2018年广东省广州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,有一项是符合题目要求的)1.(3分)四个数0,1,√2,12中,无理数的是( )A .√2B .1C .12D .0【解答】解:0,1,12是有理数, √2是无理数, 故选:A .2.(3分)如图所示的五角星是轴对称图形,它的对称轴共有( )A .1条B .3条C .5条D .无数条【解答】解:五角星的对称轴共有5条, 故选:C .3.(3分)如图所示的几何体是由4个相同的小正方体搭成的,它的主视图是( )A .B .C .D .【解答】解:从正面看第一层是三个小正方形,第二层右边一个小正方形, 故选:B .4.(3分)下列计算正确的是( )A .(a +b )2=a 2+b 2B .a 2+2a 2=3a 4C .x 2y ÷1y =x 2(y ≠0)D .(﹣2x 2)3=﹣8x 6【解答】解:(A )原式=a 2+2ab +b 2,故A 错误; (B )原式=3a 2,故B 错误; (C )原式=x 2y 2,故C 错误; 故选:D .5.(3分)如图,直线AD ,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是( )A .∠4,∠2B .∠2,∠6C .∠5,∠4D .∠2,∠4【解答】解:∠1的同位角是∠2,∠5的内错角是∠6, 故选:B .6.(3分)甲袋中装有2个相同的小球,分别写有数字1和2;乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是( ) A .12B .13C .14D .16【解答】解:如图所示:,一共有4种可能,取出的两个小球上都写有数字2的有1种情况, 故取出的两个小球上都写有数字2的概率是:14.故选:C .7.(3分)如图,AB 是⊙O 的弦,OC ⊥AB ,交⊙O 于点C ,连接OA ,OB ,BC ,若∠ABC =20°,则∠AOB 的度数是( )A .40°B .50°C .70°D .80°【解答】解:∵∠ABC =20°, ∴∠AOC =40°,∵AB 是⊙O 的弦,OC ⊥AB , ∴∠AOC =∠BOC =40°, ∴∠AOB =80°, 故选:D .8.(3分)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意得( ) A .{11x =9y (10y +x)−(8x +y)=13B .{10y +x =8x +y 9x +13=11yC .{9x =11y (8x +y)−(10y +x)=13D .{9x =11y (10y +x)−(8x +y)=13【解答】解:设每枚黄金重x 两,每枚白银重y 两,由题意得: {9x =11y (10y +x)−(8x +y)=13, 故选:D .9.(3分)一次函数y =ax +b 和反比例函数y =a−bx 在同一平面直角坐标系中的大致图象是( )A.B.C.D.【解答】解:图A、B直线y=ax+b经过第一、二、三象限,∴a>0、b>0,∵y=0时,x=−ba,即直线y=ax+b与x轴的交点为(−ba,0)由图A、B的直线和x轴的交点知:−ba>−1,即b<a,所以b﹣a<0∴a﹣b>0,此时双曲线在第一、三象限.故选项B 不成立,选项A 正确.图C 、D 直线y =ax +b 经过第二、一、四象限,∴a <0,b >0,此时a ﹣b <0,双曲线位于第二、四象限,故选项C 、D 均不成立;故选:A .10.(3分)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n .则△OA 2A 2018的面积是( )A .504m 2B .10092m 2C .10112m 2D .1009m 2【解答】解:由题意知OA 4n =2n ,∵2018÷4=504…2,∴OA 2017=20162+1=1009, ∴A 2A 2018=1009﹣1=1008,则△OA 2A 2018的面积是12×1×1008=504m 2, 故选:A .二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)已知二次函数y =x 2,当x >0时,y 随x 的增大而 增大 (填“增大”或“减小”).【解答】解:∵二次函数y =x 2,开口向上,对称轴为y 轴,∴当x >0时,y 随x 的增大而增大.故答案为:增大.12.(3分)如图,旗杆高AB =8m ,某一时刻,旗杆影子长BC =16m ,则tan C = 12 .【解答】解:∵旗杆高AB =8m ,旗杆影子长BC =16m ,∴tan C =AB BC =816=12,故答案为:12 13.(3分)方程1x =4x+6的解是 x =2 .【解答】解:去分母得:x +6=4x ,解得:x =2,经检验x =2是分式方程的解,故答案为:x =214.(3分)如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y轴上,则点C 的坐标是 (﹣5,4) .【解答】解:∵菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y 轴上,∴AB =5,∴AD =5,∴由勾股定理知:OD =√AD 2−OA 2=√52−32=4,∴点C 的坐标是:(﹣5,4).故答案为:(﹣5,4).15.(3分)如图,数轴上点A表示的数为a,化简:a+√a2−4a+4=2.【解答】解:由数轴可得:0<a<2,则a+√a2−4a+4=a+√(2−a)2=a+(2﹣a)=2.故答案为:2.16.(3分)如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:3;④S四边形AFOE:S△COD=2:3.其中正确的结论有①②④.(填写所有正确结论的序号)【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵EC垂直平分AB,∴OA=OB=12AB=12DC,CD⊥CE,∵OA∥DC,∴EAED =EOEC=OACD=12,∴AE=AD,OE=OC,∵OA=OB,OE=OC,∴四边形ACBE是平行四边形,∵AB ⊥EC ,∴四边形ACBE 是菱形,故①正确,∵∠DCE =90°,DA =AE ,∴AC =AD =AE ,∴∠ACD =∠ADC =∠BAE ,故②正确,∵OA ∥CD ,∴AF CF =OA CD =12, ∴AF AC =AF BE =13,故③错误, 设△AOF 的面积为a ,则△OFC 的面积为2a ,△CDF 的面积为4a ,△AOC 的面积=△AOE 的面积=3a ,∴四边形AFOE 的面积为4a ,△ODC 的面积为6a∴S 四边形AFOE :S △COD =2:3.故④正确,故答案为①②④.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)解不等式组:{1+x >02x −1<3. 【解答】解:{1+x >0①2x −1<3②, 解不等式①,得x >﹣1,解不等式②,得x <2,不等式①,不等式②的解集在数轴上表示,如图,原不等式组的解集为﹣1<x <2.18.(9分)如图,AB 与CD 相交于点E ,AE =CE ,DE =BE .求证:∠A =∠C .【解答】证明:在△AED 和△CEB 中,{AE =CE ∠AED =∠CEB DE =BE,∴△AED ≌△CEB (SAS ),∴∠A =∠C (全等三角形对应角相等).19.(10分)已知T =a 2−9a(a+3)2+6a(a+3). (1)化简T ;(2)若正方形ABCD 的边长为a ,且它的面积为9,求T 的值.【解答】解:(1)T =a 2−9a(a+3)2+6(a+3)a(a+3)2=(a+3)2a(a+3)2=1a ; (2)由正方形的面积为9,得到a =3,则T =13.20.(10分)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.(1)这组数据的中位数是 16 ,众数是 17 ;(2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.【解答】解:(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17,故答案是16,17;(2)110×(0+7+9+12+15+17×3+20+26)=14,答:这10位居民一周内使用共享单车的平均次数是14次;(3)200×14=2800(次)答:该小区居民一周内使用共享单车的总次数为2800次.21.(12分)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.【解答】解:设购买A型号笔记本电脑x台时的费用为w元,(1)当x=8时,方案一:w=90%a×8=7.2a,方案二:w=5a+(8﹣5)a×80%=7.4a,∴当x=8时,应选择方案一,该公司购买费用最少,最少费用是7.2a元;(2)∵若该公司采用方案二购买更合算,∴x>5,方案一:w=90%ax=0.9ax,方案二:当x>5时,w=5a+(x﹣5)a×80%=5a+0.8ax﹣4a=a+0.8ax,则0.9ax>a+0.8ax,x>10,∴x的取值范围是x>10.22.(12分)设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数解析式,并画出这个函数的图象;(2)若反比例函数y2=kx的图象与函数y1的图象相交于点A,且点A的纵坐标为2.①求k的值;②结合图象,当y1>y2时,写出x的取值范围.【解答】解:(1)由题意y1=|x|.函数图象如图所示:(2)①当点A在第一象限时,由题意A(2,2),∴2=k 2,∴k=4.同法当点A在第二象限时,k=﹣4,②观察图象可知:当k>0时,x>2时,y1>y2或x<0时,y1>y2.当k<0时,x<﹣2时,y1>y2或x>0时,y1>y2.23.(12分)如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.【解答】解:(1)如图,∠ADC的平分线DE如图所示.(2)①解法一:在DA上截取DG=CD,连接GE,由(1)知∠GDE=∠CDE,又DE=DE,∴△GDE≌△CDE,∴∠DGE=∠C=90°,∠DEC=∠DEC,在△AGE和△ABE中,∠AGE=∠ABE=90°,而AD=AG+DG=AB+CD,DG=CD,∴AG=AB,又AE=AE,∴Rt△AEG≌Rt△AEB∴∠AEG=∠AEB,∴∠DEG+∠AEG=∠DEC+∠AEB=90°,即∠AED=90°,故AE⊥DE.解法二:延长DE交AB的延长线于F.∵CD∥AF,∴∠CDE=∠F,∵∠CDE=∠ADE,∴∠ADF=∠F,∴AD=AF,∵AD=AB+CD=AB+BF,∴CD=BF,∵∠DEC=∠BEF,∴△DEC≌△FEB,∴DE =EF ,∵AD =AF ,∴AE ⊥DE .②作点B 关于AE 的对称点K ,连接EK ,作KH ⊥AB 于H ,DG ⊥AB 于G .连接MK .∵AD =AF ,DE =EF ,∴AE 平分∠DAF ,则△AEK ≌△AEB ,∴AK =AB =4,在Rt △ADG 中,DG =√AD 2−AG 2=4√2,∵KH ∥DG ,∴KH DG =AK AD , ∴4√2=46, ∴KH =8√23, ∵MB =MK ,∴MB +MN =KM +MN ,∴当K 、M 、N 共线,且与KH 重合时,KM +MN 的值最小,最小值为KH 的长, ∴BM +MN 的最小值为8√23.24.(14分)已知抛物线y=x2+mx﹣2m﹣4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⊙P上.①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C关于直线x=−m2的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r,求lr的值.【解答】解:(1)令y=0,∴x2+mx﹣2m﹣4=0,∴△=m2﹣4[﹣2m﹣4]=m2+8m+16,∵m>0,∴Δ>0,∴该抛物线与x轴总有两个不同的交点;(2)令y=0,∴x2+mx﹣2m﹣4=0,∴(x﹣2)[x+(m+2)]=0,∴x=2或x=﹣(m+2),∴A(2,0),B(﹣(m+2),0),∴OA=2,OB=m+2,令x=0,∴y=﹣2(m+2),∴C(0,﹣2(m+2)),∴OC=2(m+2),①通过定点(0,1)理由:如图,∵点A,B,C在⊙P上,∴∠OCB=∠OAF,在Rt△BOC中,tan∠OCB=OBOC=m+22(m+2)=12,在Rt△AOF中,tan∠OAF=OFOA=OF2=12,∴OF=1,∴点F的坐标为(0,1);②如图1,由①知,点F(0,1),∵D(0,1),∴点D在⊙P上,∵点E是点C关于抛物线的对称轴的对称点,∴∠DCE=90°,∵⊙P是△ABC的外接圆,∴点P在抛物线的对称轴上,∴点E在⊙P上,∴DE是⊙P的直径,∴∠DBE=90°,∵∠BED=∠OCB,∴tan∠BED=1 2,设BD=n,在Rt△BDE中,tan∠BED=BDBE=n BE=12,∴BE=2n,根据勾股定理得,DE=√BD2+BE2=√5n,∴l=BD+BE+DE=(3+√5)n,r=12DE=√52n,∴lr =√5)n√52n=10+6√55.25.(14分)如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.(1)求∠A+∠C的度数;(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度.【解答】解:(1)如图1中,在四边形ABCD中,∵∠A+∠B+∠C+∠D=360°,∠B=60°,∠D=30°,∴∠A+∠C=360°﹣60°﹣30°=270°.(2)如图2中,结论:DB2=DA2+DC2.理由:连接BD.以BD为边向下作等边三角形△BDQ.∵∠ABC=∠DBQ=60°,∴∠ABD=∠CBQ,∵AB=BC,DB=BQ,∴△ABD≌△CBQ(SAS),∴AD=CQ,∠A=∠BCQ,∵∠A+∠BCD=∠BCQ+∠BCD=270°,∴∠DCQ=90°,∴DQ2=DC2+CQ2,∵CQ=DA,DQ=DB,∴DB2=DA2+DC2.(3)如图3中,连接AC,将△ACE绕点A顺时针旋转60°得到△ABR,连接RE.则△AER是等边三角形,∵EA2=EB2+EC2,EA=RE,EC=RB,∴RE2=RB2+EB2,∴∠EBR=90°,∴∠RAE+∠RBE=150°,∴∠ARB+∠AEB=∠AEC+∠AEB=210°,∴∠BEC=150°,∴点E的运动轨迹在O为圆心的圆上,在⊙O上取一点K,连接KB,KC,OB,OC,∵∠K+∠BEC=180°,∴∠K=30°,∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=OC=BC=1,∴点E的运动路径=60⋅π⋅1180=π3.。

2018年广东省广州市中考数学试卷含答案解析(Word版)

2018年广东省广州市中考数学试卷含答案解析(Word版)

广东省广州市2018年中考数学试题一、选择题1.四个数0,1,,中,无理数的是()A.B.1C.D.02.如图所示的五角星是轴对称图形,它的对称轴共有()A.1条B.3条C.5条D.无数条3.如图所示的几何体是由4个相同的小正方体搭成的,它的主视图是()A. B. C. D.4.下列计算正确的是()A.B.C.D.5.如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是()A.∠4,∠2B.∠2,∠6C.∠5,∠4D.∠2,∠46.甲袋中装有2个相同的小球,分别写有数字1和2,乙袋中装有2个相同的小球,分别写有数字1和2,从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A. B. C. D.7.如图,AB是圆O的弦,OC⊥AB,交圆O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°8.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚黄金重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13辆(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x辆,每枚白银重y辆,根据题意得()A.B.C.D.9.一次函数和反比例函数在同一直角坐标系中大致图像是()A.B.C.D.10.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第1次移动到,第2次移动到……,第n次移动到,则△的面积是()A.504B.C.D.二、填空题11.已知二次函数,当x>0时,y随x的增大而________(填“增大”或“减小”)12.如图,旗杆高AB=8m,某一时刻,旗杆影子长BC=16m,则tanC=________。

(完整word版)2018年广东省广州市中考数学试卷(含答案解析)

(完整word版)2018年广东省广州市中考数学试卷(含答案解析)

2018年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,有一项是符合题目要求的)1.(3分)(2018•广州)四个数0,1,,中,无理数的是()A .B.1 C .D.02.(3分)(2018•广州)如图所示的五角星是轴对称图形,它的对称轴共有()A.1条B.3条C.5条D.无数条3.(3分)(2018•广州)如图所示的几何体是由4个相同的小正方体搭成的,它的主视图是( )A .B .C .D .4.(3分)(2018•广州)下列计算正确的是( )A.(a+b)2=a2+b2B.a2+2a2=3a4C.x2y ÷=x2(y≠0)D.(﹣2x2)3=﹣8x6第1页(共45页)5.(3分)(2018•广州)如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是( )A.∠4,∠2 B.∠2,∠6 C.∠5,∠4 D.∠2,∠46.(3分)(2018•广州)甲袋中装有2个相同的小球,分别写有数字1和2:乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A .B .C .D .7.(3分)(2018•广州)如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°8.(3分)(2018•广州)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意第2页(共45页)思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )A .B .C .D .9.(3分)(2018•广州)一次函数y=ax+b和反比例函数y=在同一直角坐标系中的大致图象是()A .B .C .D .10.(3分)(2018•广州)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是()第3页(共45页)A.504m2B .m2 C .m2 D.1009m2二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)(2018•广州)已知二次函数y=x2,当x>0时,y随x 的增大而(填“增大”或“减小”).12.(3分)(2018•广州)如图,旗杆高AB=8m,某一时刻,旗杆影子长BC=16m,则tanC= .13.(3分)(2018•广州)方程=的解是.14.(3分)(2018•广州)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是.第4页(共45页)15.(3分)(2018•广州)如图,数轴上点A表示的数为a,化简:a+= .16.(3分)(2018•广州)如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:3;④S四边形AFOE :S△COD=2:3.其中正确的结论有.(填写所有正确结论的序号)三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)(2018•广州)解不等式组:.第5页(共45页)18.(9分)(2018•广州)如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.19.(10分)(2018•广州)已知T=+.(1)化简T;(2)若正方形ABCD的边长为a,且它的面积为9,求T的值.20.(10分)(2018•广州)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位第6页(共45页)居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.(1)这组数据的中位数是,众数是;(2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.21.(12分)(2018•广州)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.第7页(共45页)第8页(共45页)22.(12分)(2018•广州)设P(x ,0)是x 轴上的一个动点,它与原点的距离为y 1.(1)求y 1关于x 的函数解析式,并画出这个函数的图象;(2)若反比例函数y 2=的图象与函数y 1的图象相交于点A,且点A 的纵坐标为2.①求k 的值;②结合图象,当y 1>y 2时,写出x 的取值范围.23.(12分)(2018•广州)如图,在四边形ABCD 中,∠B=∠C=90°,AB>CD,AD=AB+CD .(1)利用尺规作∠ADC 的平分线DE ,交BC 于点E ,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.24.(14分)(2018•广州)已知抛物线y=x2+mx﹣2m﹣4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C 三点都在⊙P上.①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C关于直线x=﹣的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r ,求的值.第9页(共45页)25.(14分)(2018•广州)如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.(1)求∠A+∠C的度数;(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度.第10页(共45页)2018年广东省广州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分。

(真题)2018年广州市中考数学试卷(有答案)

(真题)2018年广州市中考数学试卷(有答案)

广东省广州市2018年中考数学试题一、选择题1.四个数0,1,,中,无理数的是()A.B.1C.D.02.如图所示的五角星是轴对称图形,它的对称轴共有()A.1条B.3条C.5条D.无数条3.如图所示的几何体是由4个相同的小正方体搭成的,它的主视图是()A. B. C. D.4.下列计算正确的是()A.B.C.D.5.如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是()A.∠4,∠2B.∠2,∠6C.∠5,∠4D.∠2,∠46.甲袋中装有2个相同的小球,分别写有数字1和2,乙袋中装有2个相同的小球,分别写有数字1和2,从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A. B. C. D.7.如图,AB是圆O的弦,OC⊥AB,交圆O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°8.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚黄金重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13辆(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x辆,每枚白银重y辆,根据题意得()A.B.C.D.9.一次函数和反比例函数在同一直角坐标系中大致图像是()A.B.C.D.10.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第1次移动到,第2次移动到……,第n次移动到,则△的面积是()A.504B.C.D.二、填空题11.已知二次函数,当x>0时,y随x的增大而________(填“增大”或“减小”)12.如图,旗杆高AB=8m,某一时刻,旗杆影子长BC=16m,则tanC=________。

2018年广东省广州市中考数学试卷(含答案解析)

2018年广东省广州市中考数学试卷(含答案解析)

2018年##省##市中考数学试卷一、选择题〔本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,有一项是符合题目要求的〕1.〔3分〕〔2018•##〕四个数0,1,√2,12中,无理数的是〔〕 A .√2B .1C .12D .0 2.〔3分〕〔2018•##〕如图所示的五角星是轴对称图形,它的对称轴共有〔〕A .1条B .3条C .5条D .无数条3.〔3分〕〔2018•##〕如图所示的几何体是由4个相同的小正方体搭成的,它的主视图是〔〕A .B .C .D .4.〔3分〕〔2018•##〕下列计算正确的是〔〕A .〔a +b 〕2=a 2+b 2B .a 2+2a 2=3a 4C .x 2y ÷1y =x 2〔y ≠0〕D .〔﹣2x 2〕3=﹣8x 65.〔3分〕〔2018•##〕如图,直线AD,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是〔〕A .∠4,∠2B .∠2,∠6C .∠5,∠4D .∠2,∠46.〔3分〕〔2018•##〕甲袋中装有2个相同的小球,分别写有数字1和2:乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是〔〕A .12B .13C .14D .167.〔3分〕〔2018•##〕如图,AB 是⊙O 的弦,OC ⊥AB,交⊙O 于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB 的度数是〔〕A .40°B .50°C .70°D .80°8.〔3分〕〔2018•##〕《九章算术》是我国古代数学的经典著作,书中有一个问题:"今有黄金九枚,##一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?".意思是:甲袋中装有黄金9枚〔每枚黄金重量相同〕,乙袋中装有##11枚〔每枚##重量相同〕,称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两〔袋子重量忽略不计〕.问黄金、##每枚各重多少两?设每枚黄金重x 两,每枚##重y 两,根据题意得〔〕A .{11x =9y (10y +x)−(8x +y)=13B .{10y +x =8x +y 9x +13=11yC .{9x =11y (8x +y)−(10y +x)=13D .{9x =11y (10y +x)−(8x +y)=139.〔3分〕〔2018•##〕一次函数y=ax +b 和反比例函数y=a−b x 在同一直角坐标系中的大致图象是〔〕 A .B .C .D .10.〔3分〕〔2018•##〕在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n .则△OA 2A 2018的面积是〔〕A .504m 2B .10092m 2C .10112m 2D .1009m 2 二、填空题〔本大题共6小题,每小题3分,满分18分.〕11.〔3分〕〔2018•##〕已知二次函数y=x 2,当x >0时,y 随x 的增大而〔填"增大"或"减小"〕.12.〔3分〕〔2018•##〕如图,旗杆高AB=8m,某一时刻,旗杆影子长BC=16m,则tanC=.13.〔3分〕〔2018•##〕方程1x =4x+6的解是. 14.〔3分〕〔2018•##〕如图,若菱形ABCD 的顶点A,B 的坐标分别为〔3,0〕,〔﹣2,0〕,点D 在y 轴上,则点C 的坐标是.15.〔3分〕〔2018•##〕如图,数轴上点A 表示的数为a,化简:a +√a 2−4a +4=.16.〔3分〕〔2018•##〕如图,CE 是▱ABCD 的边AB 的垂直平分线,垂足为点O,CE 与DA 的延长线交于点E .连接AC,BE,DO,DO 与AC 交于点F,则下列结论: ①四边形ACBE 是菱形;②∠ACD=∠BAE ;③AF :BE=2:3;④S 四边形AFOE :S △COD =2:3.其中正确的结论有.〔填写所有正确结论的序号〕三、解答题〔本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.〕17.〔9分〕〔2018•##〕解不等式组:{1+x >02x −1<3.18.〔9分〕〔2018•##〕如图,AB 与CD 相交于点E,AE=CE,DE=BE .求证:∠A=∠C .19.〔10分〕〔2018•##〕已知T=a 2−9a(a+3)2+6a(a+3). 〔1〕化简T ;〔2〕若正方形ABCD 的边长为a,且它的面积为9,求T 的值.20.〔10分〕〔2018•##〕随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.〔1〕这组数据的中位数是,众数是;〔2〕计算这10位居民一周内使用共享单车的平均次数;〔3〕若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.21.〔12分〕〔2018•##〕友谊商店A 型号笔记本电脑的售价是a 元/台.最近,该商店对A 型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A 型号笔记本电脑x 台.〔1〕当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元? 〔2〕若该公司采用方案二购买更合算,求x 的取值范围.22.〔12分〕〔2018•##〕设P 〔x,0〕是x 轴上的一个动点,它与原点的距离为y 1. 〔1〕求y 1关于x 的函数解析式,并画出这个函数的图象;〔2〕若反比例函数y 2=k x的图象与函数y 1的图象相交于点A,且点A 的纵坐标为2. ①求k 的值;②结合图象,当y1>y2时,写出x的取值范围.23.〔12分〕〔2018•##〕如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.〔1〕利用尺规作∠ADC的平分线DE,交BC于点E,连接AE〔保留作图痕迹,不写作法〕;〔2〕在〔1〕的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.24.〔14分〕〔2018•##〕已知抛物线y=x2+mx﹣2m﹣4〔m>0〕.〔1〕证明:该抛物线与x轴总有两个不同的交点;〔2〕设该抛物线与x轴的两个交点分别为A,B〔点A在点B的右侧〕,与y轴交于点C,A,B,C三点都在⊙P上.①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C关于直线x=﹣m2的对称点为点E,点D〔0,1〕,连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r,求lr的值.25.〔14分〕〔2018•##〕如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.〔1〕求∠A+∠C的度数;〔2〕连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;〔3〕若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度.2018年##省##市中考数学试卷参考答案与试题解析一、选择题〔本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,有一项是符合题目要求的〕1.〔3分〕〔2018•##〕四个数0,1,√2,12中,无理数的是〔〕 A .√2B .1C .12D .0 [考点]26:无理数;22:算术平方根.[专题]511:实数.[分析]分别根据无理数、有理数的定义即可判定选择项.[解答]解:0,1,12是有理数, √2是无理数,故选:A .[点评]此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√6,0.8080080008…〔每两个8之间依次多1个0〕等形式.2.〔3分〕〔2018•##〕如图所示的五角星是轴对称图形,它的对称轴共有〔〕A .1条B .3条C .5条D .无数条[考点]P3:轴对称图形.[专题]1 :常规题型.[分析]根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.[解答]解:五角星的对称轴共有5条,故选:C .[点评]此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.3.〔3分〕〔2018•##〕如图所示的几何体是由4个相同的小正方体搭成的,它的主视图是〔〕A.B.C.D.[考点]U2:简单组合体的三视图.[专题]55F:投影与视图.[分析]根据从正面看得到的图形是主视图,可得答案.[解答]解:从正面看第一层是三个小正方形,第二层右边一个小正方形,故选:B.[点评]本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.〔3分〕〔2018•##〕下列计算正确的是〔〕A.〔a+b〕2=a2+b2B.a2+2a2=3a4C.x2y÷1y=x2〔y≠0〕D.〔﹣2x2〕3=﹣8x6[考点]6B:分式的加减法;35:合并同类项;47:幂的乘方与积的乘方;4C:完全平方公式.[专题]11 :计算题.[分析]根据相关的运算法则即可求出答案.[解答]解:〔A〕原式=a2+2ab+b2,故A错误;〔B〕原式=3a2,故B错误;〔C〕原式=x2y2,故C错误;故选:D.[点评]本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.5.〔3分〕〔2018•##〕如图,直线AD,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是〔〕A .∠4,∠2B .∠2,∠6C .∠5,∠4D .∠2,∠4[考点]J6:同位角、内错角、同旁内角.[专题]55:几何图形.[分析]根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线〔截线〕的同旁,则这样一对角叫做同位角进行分析即可.根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线〔截线〕的两旁,则这样一对角叫做内错角进行分析即可.[解答]解:∠1的同位角是∠2,∠5的内错角是∠6,故选:B .[点评]此题主要考查了三线八角,关键是掌握同位角的边构成"F"形,内错角的边构成"Z"形,同旁内角的边构成"U"形.6.〔3分〕〔2018•##〕甲袋中装有2个相同的小球,分别写有数字1和2:乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是〔〕A .12B .13C .14D .16[考点]X6:列表法与树状图法.[专题]1 :常规题型.[分析]直接根据题意画出树状图,再利用概率公式求出答案.[解答]解:如图所示:,一共有4种可能,取出的两个小球上都写有数字2的有1种情况,故取出的两个小球上都写有数字2的概率是:1 4.故选:C.[点评]此题主要考查了树状图法求概率,正确得出所有的结果是解题关键.7.〔3分〕〔2018•##〕如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是〔〕A.40°B.50°C.70°D.80°[考点]M5:圆周角定理;M2:垂径定理.[专题]55:几何图形.[分析]根据圆周角定理得出∠AOC=40°,进而利用垂径定理得出∠AOB=80°即可.[解答]解:∵∠ABC=20°,∴∠AOC=40°,∵AB是⊙O的弦,OC⊥AB,∴∠AOC=∠BOC=40°,∴∠AOB=80°,故选:D.[点评]此题考查圆周角定理,关键是根据圆周角定理得出∠AOC=40°.8.〔3分〕〔2018•##〕《九章算术》是我国古代数学的经典著作,书中有一个问题:"今有黄金九枚,##一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?".意思是:甲袋中装有黄金9枚〔每枚黄金重量相同〕,乙袋中装有##11枚〔每枚##重量相同〕,称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两〔袋子重量忽略不计〕.问黄金、##每枚各重多少两?设每枚黄金重x 两,每枚##重y 两,根据题意得〔〕A .{11x =9y (10y +x)−(8x +y)=13B .{10y +x =8x +y 9x +13=11yC .{9x =11y (8x +y)−(10y +x)=13D .{9x =11y (10y +x)−(8x +y)=13[考点]99:由实际问题抽象出二元一次方程组.[专题]1 :常规题型.[分析]根据题意可得等量关系:①9枚黄金的重量=11枚##的重量;②〔10枚##的重量+1枚黄金的重量〕﹣〔1枚##的重量+8枚黄金的重量〕=13两,根据等量关系列出方程组即可.[解答]解:设每枚黄金重x 两,每枚##重y 两,由题意得:{9x =11y (10y +x)−(8x +y)=13, 故选:D .[点评]此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.9.〔3分〕〔2018•##〕一次函数y=ax +b 和反比例函数y=a−b x 在同一直角坐标系中的大致图象是〔〕A.B.C.D.[考点]G2:反比例函数的图象;F3:一次函数的图象.[专题]1 :常规题型.[分析]先由一次函数的图象确定a、b的正负,再根据a﹣b判断双曲线所在的象限.能统一的是正确的,矛盾的是错误的.[解答]解:当y=ax+b经过第一、二、三象限时,a>0、b>0,由直线和x轴的交点知:﹣ba>﹣1,即b<a,∴a﹣b>0,所以双曲线在第一、三象限.故选项B不成立,选项A正确.当y=ax+b经过第二、一、四象限时,a<0,b>0,此时a﹣b<0,双曲线位于第二、四象限,故选项C、D均不成立;故选:A.[点评]本题考查了一次函数、反比例函数的性质.解决本题用排除法比较方便.10.〔3分〕〔2018•##〕在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到A n.则△OA2A2018的面积是〔〕A .504m 2B .10092m 2C .10112m 2D .1009m 2 [考点]D2:规律型:点的坐标.[专题]2A :规律型;531:平面直角坐标系.[分析]由OA 4n =2n 知OA 2018=20162+1=1009,据此得出A 2A 2018=1009﹣1=1008,据此利用三角形的面积公式计算可得.[解答]解:由题意知OA 4n =2n,∵2018÷4=504…2,∴OA 2018=20162+1=1009, ∴A 2A 2018=1009﹣1=1008,则△OA 2A 2018的面积是12×1×1008=504m 2, 故选:A .[点评]本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.二、填空题〔本大题共6小题,每小题3分,满分18分.〕11.〔3分〕〔2018•##〕已知二次函数y=x 2,当x >0时,y 随x 的增大而 增大 〔填"增大"或"减小"〕.[考点]H3:二次函数的性质.[专题]1 :常规题型.[分析]根据二次函数的二次项系数a 以与对称轴即可判断出函数的增减性.[解答]解:∵二次函数y=x 2,开口向上,对称轴为y 轴,∴当x >0时,y 随x 的增大而增大.故答案为:增大.[点评]本题主要考查了二次函数的性质,解答本题的关键是求出二次函数的对称轴为y 轴,开口向上,此题难度不大.12.〔3分〕〔2018•##〕如图,旗杆高AB=8m,某一时刻,旗杆影子长BC=16m,则tanC=12. [考点]T8:解直角三角形的应用;U5:平行投影.[专题]55:几何图形.[分析]根据直角三角形的性质解答即可.[解答]解:∵旗杆高AB=8m,旗杆影子长BC=16m,∴tanC=AB BC =816=12, 故答案为:12[点评]此题考查解直角三角形的应用,关键是根据正切值是对边与邻边的比值解答.13.〔3分〕〔2018•##〕方程1x =4x+6的解是 x=2 . [考点]B3:解分式方程.[专题]11 :计算题;522:分式方程与应用.[分析]分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.[解答]解:去分母得:x +6=4x,解得:x=2,经检验x=2是分式方程的解,故答案为:x=2[点评]此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.14.〔3分〕〔2018•##〕如图,若菱形ABCD的顶点A,B的坐标分别为〔3,0〕,〔﹣2,0〕,点D在y轴上,则点C的坐标是〔﹣5,4〕.[考点]L8:菱形的性质;D5:坐标与图形性质.[专题]556:矩形菱形正方形.[分析]利用菱形的性质以与勾股定理得出DO的长,进而求出C点坐标.[解答]解:∵菱形ABCD的顶点A,B的坐标分别为〔3,0〕,〔﹣2,0〕,点D在y轴上,∴AB=5,∴AD=5,∴由勾股定理知:OD=√AD2−OA2=√52−32=4,∴点C的坐标是:〔﹣5,4〕.故答案为:〔﹣5,4〕.[点评]此题主要考查了菱形的性质以与坐标与图形的性质,得出DO的长是解题关键.15.〔3分〕〔2018•##〕如图,数轴上点A表示的数为a,化简:a+√a2−4a+4=2.[考点]73:二次根式的性质与化简;29:实数与数轴.[专题]1 :常规题型.[分析]直接利用二次根式的性质以与结合数轴得出a的取值范围进而化简即可.[解答]解:由数轴可得:0<a<2,则a+√a2−4a+4=a+√(2−a)2=a+〔2﹣a〕=2.故答案为:2.[点评]此题主要考查了二次根式的性质与化简,正确得出a的取值范围是解题关键.16.〔3分〕〔2018•##〕如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE 与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:3;④S四边形AFOE :S△COD=2:3.其中正确的结论有①②④.〔填写所有正确结论的序号〕[考点]S9:相似三角形的判定与性质;KG:线段垂直平分线的性质;L5:平行四边形的性质;LA:菱形的判定与性质.[专题]555:多边形与平行四边形.[分析]根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可;[解答]解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵EC 垂直平分AB,∴OA=OB=12AB=12DC,CD ⊥CE, ∵OA ∥DC,∴EA ED =EO EC =OA CD =12, ∴AE=AD,OE=OC,∵OA=OB,OE=OC,∴四边形ACBE 是平行四边形,∵AB ⊥EC,∴四边形ACBE 是菱形,故①正确,∵∠DCE=90°,DA=AE,∴AC=AD=AE,∴∠ACD=∠ADC=∠BAE,故②正确,∵OA ∥CD,∴AF CF =OA CD =12, ∴AF AC =AF BE =13,故③错误, 设△AOF 的面积为a,则△OFC 的面积为2a,△CDF 的面积为4a,△AOC 的面积=△AOE 的面积=3a,∴四边形AFOE 的面积为4a,△ODC 的面积为6a∴S 四边形AFOE :S △COD =2:3.故④正确,故答案为①②④.[点评]本题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考常考题型.三、解答题〔本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.〕17.〔9分〕〔2018•##〕解不等式组:{1+x>02x−1<3.[考点]CB:解一元一次不等式组.[专题]524:一元一次不等式<组>与应用.[分析]根据不等式组的解集的表示方法:大小小大中间找,可得答案.[解答]解:{1+x>0①2x−1<3②,解不等式①,得x>﹣1,解不等式②,得x<2,不等式①,不等式②的解集在数轴上表示,如图,原不等式组的解集为﹣1<x<2.[点评]本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.18.〔9分〕〔2018•##〕如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.[考点]KD:全等三角形的判定与性质.[专题]552:三角形.[分析]根据AE=EC,DE=BE,∠AED和∠CEB是对顶角,利用SAS证明△ADE≌△CBE 即可.[解答]证明:在△AED和△CEB中,{AE=CE∠AED=∠CEB DE=BE,∴△AED≌△CEB〔SAS〕,∴∠A=∠C〔全等三角形对应角相等〕.[点评]此题主要考查学生对全等三角形的判定与性质这一知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.19.〔10分〕〔2018•##〕已知T=a2−9a(a+3)2+6a(a+3).〔1〕化简T;〔2〕若正方形ABCD的边长为a,且它的面积为9,求T的值.[考点]6D:分式的化简求值.[专题]11 :计算题;513:分式.[分析]〔1〕原式通分并利用同分母分式的加法法则计算即可求出值;〔2〕由正方形的面积求出边长a的值,代入计算即可求出T的值.[解答]解:〔1〕T=a2−9a(a+3)2+6(a+3)a(a+3)2=(a+3)2a(a+3)2=1a;〔2〕由正方形的面积为9,得到a=3,则T=1 3.[点评]此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.〔10分〕〔2018•##〕随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.〔1〕这组数据的中位数是16,众数是17;〔2〕计算这10位居民一周内使用共享单车的平均次数;〔3〕若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.[考点]W5:众数;V5:用样本估计总体;W4:中位数.[专题]11 :计算题;541:数据的收集与整理.[分析]〔1〕将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;〔2〕根据平均数的概念,将所有数的和除以10即可;〔3〕用样本平均数估算总体的平均数.[解答]解:〔1〕按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是〔15+17〕÷2=16,17出现3次最多,所以众数是17,故答案是16,17;〔2〕110×(0+7+9+12+15+17×3+20+26)=14,答:这10位居民一周内使用共享单车的平均次数是14次;〔3〕200×14=2800答:该小区居民一周内使用共享单车的总次数为2800次.[点评]本题考查了中位数、众数、平均数的概念以与利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.21.〔12分〕〔2018•##〕友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x 台.〔1〕当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?〔2〕若该公司采用方案二购买更合算,求x的取值范围.[考点]C9:一元一次不等式的应用.[专题]12 :应用题.[分析]〔1〕根据两个方案的优惠政策,分别求出购买8台所需费用,比较后即可得出结论;〔2〕根据购买x台时,该公司采用方案二购买更合算,即可得出关于x的一元一次不等式,解之即可得出结论.[解答]解:设购买A型号笔记本电脑x台时的费用为w元,〔1〕当x=8时,方案一:w=90%a×8=7.2a,方案二:w=5a+〔8﹣5〕a×80%=7.4a,∴当x=8时,应选择方案一,该公司购买费用最少,最少费用是7.2a元;〔2〕∵若该公司采用方案二购买更合算,∴x>5,方案一:w=90%ax=0.9ax,方案二:当x>5时,w=5a+〔x﹣5〕a×80%=5a+0.8ax﹣4a=a+0.8ax,则0.9ax>a+0.8ax,x >10,∴x 的取值范围是x >10.[点评]本题考查了一元一次不等式的应用,解题的关键是:〔1〕根据优惠方案,列式计算;〔2〕找准不等量关系,正确列出一元一次不等式.22.〔12分〕〔2018•##〕设P 〔x,0〕是x 轴上的一个动点,它与原点的距离为y 1. 〔1〕求y 1关于x 的函数解析式,并画出这个函数的图象;〔2〕若反比例函数y 2=k x的图象与函数y 1的图象相交于点A,且点A 的纵坐标为2. ①求k 的值;②结合图象,当y 1>y 2时,写出x 的取值范围.[考点]G6:反比例函数图象上点的坐标特征;G4:反比例函数的性质.[专题]534:反比例函数与其应用.[分析]〔1〕写出函数解析式,画出图象即可;〔2〕①分两种情形考虑,求出点A 坐标,利用待定系数法即可解决问题; ②利用图象法分两种情形即可解决问题;[解答]解:〔1〕由题意y 1=|x |.函数图象如图所示:〔2〕①当点A 在第一象限时,由题意A 〔2,2〕,∴2=k 2, ∴k=4.同法当点A 在第二象限时,k=﹣4,②观察图象可知:①当k >0时,x >2时,y 1>y 2或x <0时,y 1>y 2.②当k<0时,x<﹣2时,y1>y2或x>0时,y1>y2.[点评]本题考查反比例函数图象上点的特征,正比例函数的应用等知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.23.〔12分〕〔2018•##〕如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.〔1〕利用尺规作∠ADC的平分线DE,交BC于点E,连接AE〔保留作图痕迹,不写作法〕;〔2〕在〔1〕的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.[考点]N2:作图—基本作图;PA:轴对称﹣最短路线问题.[专题]555:多边形与平行四边形.[分析]〔1〕利用尺规作出∠ADC的角平分线即可;〔2〕①延长DE交AB的延长线于F.只要证明AD=AF,DE=EF,利用等腰三角形三线合一的性质即可解决问题;②作点B关于AE的对称点K,连接EK,作KH⊥AB于H,DG⊥AB于G.连接MK.由MB=MK,推出MB+MN=KM+MN,根据垂线段最短可知:当K、M、N共线,且与KH 重合时,KM+MN的值最小,最小值为GH的长;[解答]解:〔1〕如图,∠ADC的平分线DE如图所示.〔2〕①延长DE交AB的延长线于F.∵CD∥AF,∴∠CDE=∠F,∵∠CDE=∠ADE,∴∠ADF=∠F,∴AD=AF,∵AD=AB +CD=AB +BF,∴CD=BF,∵∠DEC=∠BEF,∴△DEC ≌△FEB,∴DE=EF,∵AD=AF,∴AE ⊥DE .②作点B 关于AE 的对称点K,连接EK,作KH ⊥AB 于H,DG ⊥AB 于G .连接MK . ∵AD=AF,DE=EF,∴AE 平分∠DAF,则△AEK ≌△AEB,∴AK=AB=4,在Rt △ADG 中,DG=√AD 2−AG 2=4√2,∵KH ∥DG,∴KH DG =AK AD, ∴4√2=46, ∴KH=8√23, ∵MB=MK,∴MB +MN=KM +MN,∴当K 、M 、N 共线,且与KH 重合时,KM +MN 的值最小,最小值为GH 的长,∴BM +MN 的最小值为8√33. [点评]本题考查作图﹣基本作图,轴对称最短问题,全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用轴对称解决最短问题,属于中考常考题型.24.〔14分〕〔2018•##〕已知抛物线y=x 2+mx ﹣2m ﹣4〔m >0〕.〔1〕证明:该抛物线与x 轴总有两个不同的交点;〔2〕设该抛物线与x 轴的两个交点分别为A,B 〔点A 在点B 的右侧〕,与y 轴交于点C,A,B,C 三点都在⊙P 上.①试判断:不论m 取任何正数,⊙P 是否经过y 轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C 关于直线x=﹣m 2的对称点为点E,点D 〔0,1〕,连接BE,BD,DE,△BDE 的周长记为l,⊙P 的半径记为r,求l r的值. [考点]HF :二次函数综合题.[专题]15 :综合题.[分析]〔1〕令y=0,再求出判别式,判断即可得出结论;〔2〕先求出OA=2,OB=m +2,OC=2〔m +2〕,①判断出∠OCB=∠OAF,求出tan ∠OCB=12,即可求出OF=1,即可得出结论; ②先设出BD=m,再判断出∠DCE=90°,得出DE 是⊙P 的直径,进而求出BE=2m,DE=√5m,即可得出结论.[解答]解:〔1〕令y=0,∴x 2+mx ﹣2m ﹣4=0,∴△=m2﹣4[﹣2m﹣4]=m2+8m+16,∵m>0,∴△>0,∴该抛物线与x轴总有两个不同的交点;〔2〕令y=0,∴x2+mx﹣2m﹣4=0,∴〔x﹣2〕[x+〔m+2〕]=0,∴x=2或x=﹣〔m+2〕,∴A〔2,0〕,B〔﹣〔m+2〕,0〕,∴OA=2,OB=m+2,令x=0,∴y=﹣2〔m+2〕,∴C〔0,﹣2〔m+2〕〕,∴OC=2〔m+2〕,①通过定点〔0,1〕理由:如图,∵点A,B,C在⊙P上,∴∠OCB=∠OAF,在Rt△BOC中,tan∠OCB=OBOC=m+22(m+2)=12,在Rt△AOF中,tan∠OAF=OFOA=OF2=12,∴OF=1,∴点F 的坐标为〔0,1〕;②如图1,由①知,点F 〔0,1〕,∵D 〔0,1〕,∴点D 在⊙P 上,∵点E 是点C 关于抛物线的对称轴的对称点,∴∠DCE=90°,∴DE 是⊙P 的直径,∴∠DBE=90°,∵∠BED=∠OCB,∴tan ∠BED=12, 设BD=m,在Rt △BDE 中,tan ∠BED=BD BE =m BE =12, ∴BE=2m,根据勾股定理得,DE=√BD 2+BE 2=√5m,∴l=BD +BE +DE=〔3+√5〕m,r=12DE=√52m, ∴l r =√5)m √52m =10+6√55. [点评]此题是二次函数综合题,主要考查了一元二次方程的根的判别式,圆周角定理,锐角三角函数,勾股定理,对称性,求出点A,B,C 的坐标是解本题的关键.25.〔14分〕〔2018•##〕如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.〔1〕求∠A+∠C的度数;〔2〕连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;〔3〕若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度.[考点]LO:四边形综合题.[专题]152:几何综合题.[分析]〔1〕利用四边形内角和定理计算即可;〔2〕连接BD.以BD为边向下作等边三角形△BDQ.想办法证明△DCQ是直角三角形即可解决问题;〔3〕如图3中,连接AC,将△ACE绕点A顺时针旋转60°得到△ABR,连接RE.想办法证明∠BEC=150°即可解决问题;[解答]解:〔1〕如图1中,在四边形ABCD中,∵∠A+∠B+∠C+∠D=360°,∠B=60°,∠C=30°,∴∠A+∠C=360°﹣60°﹣30°=270°.〔2〕如图2中,结论:DB2=DA2+DC2.理由:连接BD.以BD为边向下作等边三角形△BDQ.∵∠ABC=∠DBQ=60°,∴∠ABD=∠CBQ,∵AB=BC,DB=BQ,∴△ABD≌△CBQ,∴AD=CQ,∠A=∠BCQ,∵∠A+∠BCD=∠BCQ+∠BCD=270°,∴∠DCQ=90°,∴DQ2=DC2+CQ2,∵CQ=DA,DQ=DB,∴DB2=DA2+DC2.〔3〕如图3中,连接AC,将△ACE绕点A顺时针旋转60°得到△ABR,连接RE.则△AER是等边三角形,∵EA2=EB2+EC2,EA=RE,EC=RB,∴RE2=RB2+EB2,∴∠EBR=90°,∴∠RAE+∠RBE=150°,∴∠ARB+∠AEB=∠AEC+∠AEB=210°,∴∠BEC=150°,∴点E的运动轨迹在O为圆心的圆上,在⊙O上取一点K,连接KB,KC,OB,OC,∵∠K+∠BEC=180°,∴∠K=30°,∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴点E的运动路径=60⋅π⋅1 180=π3.[点评]本题考查四边形综合题、等边三角形的判定和性质、勾股定理以与逆定理、弧长公式等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

2018年广东省广州市中考数学试卷真题(附答案)

2018年广东省广州市中考数学试卷真题(附答案)

2018年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,有一项是符合题目要求的)1.(3分)四个数0,1,,中,无理数的是()A.B.1C.D.02.(3分)如图所示的五角星是轴对称图形,它的对称轴共有()A.1条B.3条C.5条D.无数条3.(3分)如图所示的几何体是由4个相同的小正方体搭成的,它的主视图是()A.B.C.D.4.(3分)下列计算正确的是()A.(a+b)2=a2+b2B.a2+2a2=3a4C.x2y÷=x2(y≠0)D.(﹣2x2)3=﹣8x65.(3分)如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是()A.∠4,∠2B.∠2,∠6C.∠5,∠4D.∠2,∠46.(3分)甲袋中装有2个相同的小球,分别写有数字1和2;乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A.B.C.D.7.(3分)如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC =20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°8.(3分)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.B.C.D.9.(3分)一次函数y=ax+b和反比例函数y=在同一直角坐标系中的大致图象是()A.B.C.D.10.(3分)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到A n.则△OA2A2018的面积是()A.504m2B.m2C.m2D.1009m2二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)已知二次函数y=x2,当x>0时,y随x的增大而(填“增大”或“减小”).12.(3分)如图,旗杆高AB=8m,某一时刻,旗杆影子长BC=16m,则tan C=.13.(3分)方程=的解是.14.(3分)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y 轴上,则点C的坐标是.15.(3分)如图,数轴上点A表示的数为a,化简:a+=.16.(3分)如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:3;④S四边形AFOE:S△COD=2:3.其中正确的结论有.(填写所有正确结论的序号)三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)解不等式组:.18.(9分)如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.19.(10分)已知T=+.(1)化简T;(2)若正方形ABCD的边长为a,且它的面积为9,求T的值.20.(10分)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.(1)这组数据的中位数是,众数是;(2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.21.(12分)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.22.(12分)设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数解析式,并画出这个函数的图象;(2)若反比例函数y2=的图象与函数y1的图象相交于点A,且点A的纵坐标为2.①求k的值;②结合图象,当y1>y2时,写出x的取值范围.23.(12分)如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.24.(14分)已知抛物线y=x2+mx﹣2m﹣4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⊙P上.①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C关于直线x=﹣的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r,求的值.25.(14分)如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.(1)求∠A+∠C的度数;(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度.2018年广东省广州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,有一项是符合题目要求的)1.(3分)四个数0,1,,中,无理数的是()A.B.1C.D.0【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(3分)如图所示的五角星是轴对称图形,它的对称轴共有()A.1条B.3条C.5条D.无数条【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.3.(3分)如图所示的几何体是由4个相同的小正方体搭成的,它的主视图是()A.B.C.D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(3分)下列计算正确的是()A.(a+b)2=a2+b2B.a2+2a2=3a4C.x2y÷=x2(y≠0)D.(﹣2x2)3=﹣8x6【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.5.(3分)如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是()A.∠4,∠2B.∠2,∠6C.∠5,∠4D.∠2,∠4【点评】此题主要考查了三线八角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.6.(3分)甲袋中装有2个相同的小球,分别写有数字1和2;乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A.B.C.D.【点评】此题主要考查了树状图法求概率,正确得出所有的结果是解题关键.7.(3分)如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC =20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°【点评】此题考查圆周角定理,关键是根据圆周角定理得出∠AOC=40°.8.(3分)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.B.C.D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.9.(3分)一次函数y=ax+b和反比例函数y=在同一直角坐标系中的大致图象是()A.B.C.D.【点评】本题考查了一次函数、反比例函数的性质.解决本题用排除法比较方便.10.(3分)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到A n.则△OA2A2018的面积是()A.504m2B.m2C.m2D.1009m2【点评】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)已知二次函数y=x2,当x>0时,y随x的增大而增大(填“增大”或“减小”).【点评】本题主要考查了二次函数的性质,解答本题的关键是求出二次函数的对称轴为y 轴,开口向上,此题难度不大.12.(3分)如图,旗杆高AB=8m,某一时刻,旗杆影子长BC=16m,则tan C=.【点评】此题考查解直角三角形的应用,关键是根据正切值是对边与邻边的比值解答.13.(3分)方程=的解是x=2.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.14.(3分)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y 轴上,则点C的坐标是(﹣5,4).【点评】此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.15.(3分)如图,数轴上点A表示的数为a,化简:a+=2.【点评】此题主要考查了二次根式的性质与化简,正确得出a的取值范围是解题关键.16.(3分)如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:3;④S四边形AFOE:S△COD=2:3.其中正确的结论有①②④.(填写所有正确结论的序号)【点评】本题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考常考题型.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)解不等式组:.【点评】本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.18.(9分)如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.【点评】此题主要考查学生对全等三角形的判定与性质这一知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.19.(10分)已知T=+.(1)化简T;(2)若正方形ABCD的边长为a,且它的面积为9,求T的值.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(10分)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.(1)这组数据的中位数是16,众数是17;(2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.【点评】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.21.(12分)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.【点评】本题考查了一元一次不等式的应用,解题的关键是:(1)根据优惠方案,列式计算;(2)找准不等量关系,正确列出一元一次不等式.22.(12分)设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数解析式,并画出这个函数的图象;(2)若反比例函数y2=的图象与函数y1的图象相交于点A,且点A的纵坐标为2.①求k的值;②结合图象,当y1>y2时,写出x的取值范围.【点评】本题考查反比例函数图象上点的特征,正比例函数的应用等知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.23.(12分)如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.【点评】本题考查作图﹣基本作图,轴对称最短问题,全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用轴对称解决最短问题,属于中考常考题型.24.(14分)已知抛物线y=x2+mx﹣2m﹣4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⊙P上.①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C关于直线x=﹣的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r,求的值.【点评】此题是二次函数综合题,主要考查了一元二次方程的根的判别式,圆周角定理,锐角三角函数,勾股定理,对称性,求出点A,B,C的坐标是解本题的关键.25.(14分)如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.(1)求∠A+∠C的度数;(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度.【点评】本题考查四边形综合题、等边三角形的判定和性质、勾股定理以及逆定理、弧长公式等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

2018年广东省广州市中考数学试卷(带解析答案)

2018年广东省广州市中考数学试卷(带解析答案)
∵OA∥DC, ∴ = = =,
∴AE=AD,OE=OC, ∵OA=OB,OE=OC, ∴四边形 ACBE 是平行四边形, ∵AB⊥EC, ∴四边形 ACBE 是菱形,故①正确, ∵∠DCE=90°,DA=AE, ∴AC=AD=AE, ∴∠ACD=∠ADC=∠BAE,故②正确, ∵OA∥CD, ∴ = =,
故答案为:增大.
第 5页(共 18页)
12.(3 分)如图,旗杆高 AB=8m,某一时刻,旗杆影子长 BC=16m,则 tanC= .
【考点】T
8:解直角三角形的应用;U5
:平行投影. 菁优网版
权所有
【解答】解:∵旗杆高 AB=8m,旗杆影子长 BC=16m,
∴tanC=

故答案为:
13.(3 分)方程 = 的解是 x=2 . 【考点】B3:解分式方程.菁优网版权所有 【解答】解:去分母得:x+6=4x, 解得:x=2, 经检验 x=2 是分式方程的解, 故答案为:x=2
+

(1)化简 T; (2)若正方形 ABCD 的边长为 a,且它的面积为 9,求 T 的值. 【考点】6D:分式的化简求值.菁优网版权所有
【解答】解:(1)T=
+
=
=;
(2)由正方形的面积为 9,得到 a=3, 则 T= .
20.(10 分)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为
第 2页(共 18页)
两个小球上都写有数字 2 的概率是( ) A. B. C. D. 【考点】X6:列表法与树状图法.菁优网版权所有 【解答】解:如图所示:
, 一共有 4 种可能,取出的两个小球上都写有数字 2 的有 1 种情况, 故取出的两个小球上都写有数字 2 的概率是: . 故选:C.

2018年广州市中考数学试卷及答案(word解析版)

2018年广州市中考数学试卷及答案(word解析版)

2018年广州市初中毕业生学业考试第一部分选择题(共30分)一、选择题:1.(2018年广州市)比0大的数是()A -1 B12C 0D 1分析:比0的大的数一定是正数,结合选项即可得出答案解:4个选项中只有D选项大于0.故选D.点评:本题考查了有理数的大小比较,注意掌握大于0的数一定是正数2.(2018年广州市)图1所示的几何体的主视图是()(A)(B) (C) (D)正面分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解:从几何体的正面看可得图形.故选:A.点评:从几何体的正面看可得图形.故选:A..3.(2018年广州市)在6×6方格中,将图2—①中的图形N平移后位置如图2—②所示,则图形N的平移方法中,正确的是()A 向下移动1格B 向上移动1格C 向上移动2格D 向下移动2格分析:根据题意,结合图形,由平移的概念求解解:观察图形可知:从图1到图2,可以将图形N向下移动2格.故选D.点评:本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后图形的位置.4.(2018年广州市)计算:()23m n的结果是( )A 6m nB 62m nC 52m nD 32m n分析:根据幂的乘方的性质和积的乘方的性质进行计算即可解:(m 3n )2=m 6n 2.故选:B .点评:此题考查了幂的乘方,积的乘方,理清指数的变化是解题的关键,是一道基础题 5、(2018年广州市)为了解中学生获取资讯的主要渠道,设置“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查的方式是( ),图3中的a 的值是( )A 全面调查,26B 全面调查,24C 抽样调查,26D 抽样调查,24分析:根据关键语句“先随机抽取50名中学生进行该问卷调查,”可得该调查方式是抽样调查,调查的样本容量为50,故6+10+6+a+4=50,解即可解:该调查方式是抽样调查,a=50﹣6﹣10﹣6﹣4=24,故选:D .点评:此题主要考查了条形统计图,以及抽样调查,关键是读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据6.(2018年广州市)已知两数x,y 之和是10,x 比y 的3倍大2,则下面所列方程组正确的是( ) A 1032x y y x +=⎧⎨=+⎩ B 1032x y y x +=⎧⎨=-⎩ C 1032x y x y +=⎧⎨=+⎩ D 1032x y x y +=⎧⎨=-⎩分析:根据等量关系为:两数x ,y 之和是10;x 比y 的3倍大2,列出方程组即可 解:根据题意列方程组,得:.故选:C .点评:此题主要考查了由实际问题抽象出二元一次方程组,要注意抓住题目中的一些关键性词语“x 比y 的3倍大2”,找出等量关系,列出方程组是解题关键.7.(2018年广州市)实数a 在数轴上的位置如图4所示,则 2.5a -=( )A 2.5a -B 2.5a -C 2.5a +D 2.5a --分析:首先观察数轴,可得a <2.5,然后由绝对值的性质,可得|a ﹣2.5|=﹣(a ﹣2.5),则可求得答案 解:如图可得:a <2.5,即a ﹣2.5<0,则|a ﹣2.5|=﹣(a ﹣2.5)=2.5﹣a .故选B .点评:此题考查了利用数轴比较实数的大小及绝对值的定义等知识.此题比较简单,注意数轴上的任意两个数,右边的数总比左边的数大. 8.(2018有意义,则实数x 的取值范围是( ) A 1x ≠ B 0x ≥ C 0x > D 01x x ≥≠且分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围 解:根据题意得:,解得:x ≥0且x ≠1.故选D .点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数9.(2018年广州市)若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( ) A 没有实数根 B 有两个相等的实数根 C 有两个不相等的实数根 D 无法判断分析:根据已知不等式求出k 的范围,进而判断出根的判别式的值的正负,即可得到方程解的情况 解:∵5k+20<0,即k <﹣4,∴△=16+4k <0,则方程没有实数根.故选 A图3点评:此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.10.(2018年广州市)如图5,四边形ABCD 是梯形,AD ∥BC ,CA 是BCD ∠的平分线,且,4,6,AB AC AB AD ⊥==则tan B =( )A114分析:先判断DA=DC ,过点D 作DE ∥AB ,交AC 于点F ,交BC 于点E ,由等腰三角形的性质,可得点F 是AC 中点,继而可得EF 是△CAB 的中位线,继而得出EF 、DF 的长度,在Rt △ADF 中求出AF ,然后得出AC ,tanB 的值即可计算. 解:∵CA 是∠BCD 的平分线,∴∠DCA=∠ACB ,又∵AD ∥BC ,∴∠ACB=∠CAD ,∴∠DAC=∠DCA ,∴DA=DC , 过点D 作DE ∥AB ,交AC 于点F ,交BC 于点E , ∵AB ⊥AC ,∴DE ⊥AC (等腰三角形三线合一的性质), ∴点F 是AC 中点,∴AF=CF ,∴EF 是△CAB 的中位线,∴EF=AB=2,∵==1,∴EF=DF=2, 在Rt △ADF 中,AF==4,则AC=2AF=8,tanB===2.故选B .点评:本题考查了梯形的知识、等腰三角形的判定与性质、三角形的中位线定理,解答本题的关键是作出辅助线,判断点F 是AC 中点,难度较大.第二部分 非选择题(共120分)二.填空题(本大题共6小题,每小题3分,满分18分)11. (2018年广州市)点P 在线段AB 的垂直平分线上,P A =7,则PB =______________ . 分析:根据线段垂直平分线的性质得出PA=PB ,代入即可求出答案解:∵点P 在线段AB 的垂直平分线上,PA=7,∴PB=PA=7,故答案为:7.点评:本题考查了对线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等 12. (2018年广州市)广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为___________ . 分析:科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解:将5250000用科学记数法表示为:5.25×106.故答案为:5.25×106.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 13. (2018年广州市)分解因式:=+xy x 2_______________. 分析:直接提取公因式x 即可 解:x 2+xy=x (x+y )点评:本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解14. (2018年广州市)一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________ . 分析:根据图象的增减性来确定(m+2)的取值范围,从而求解解:∵一次函数y=(m+2)x+1,若y 随x 的增大而增大,∴m+2>0, 解得,m >﹣2.故答案是:m >﹣2.点评:本题考查了一次函数的图象与系数的关系.函数值y 随x 的增大而减小⇔k <0;函数值y 随x 的增大而增大⇔k >0.15. (2018年广州市)如图6,ABC Rt ∆的斜边AB =16, ABC Rt ∆绕点O 顺时针旋转后得到C B A Rt '''∆,则C B A Rt '''∆的斜边B A ''上的中线D C '的长度为_____________ .分析:根据旋转的性质得到A ′B ′=AB=16,然后根据直角三角形斜边上的中线性质求解即可 解:∵Rt △ABC 绕点O 顺时针旋转后得到Rt △A ′B ′C ′,∴A ′B ′=AB=16,∵C ′D 为Rt △A ′B ′C ′的斜边A ′B ′上的中线, ∴C ′D=A ′B ′=8.故答案为8.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了直角三角形斜边上的中线性质.16. (2018年广州市)如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为 ____________.分析:过点P 作PD ⊥x 轴于点D ,连接OP ,先由垂径定理求出OD 的长,再根据勾股定理求出PD 的长,故可得出答案.解:过点P 作PD ⊥x 轴于点D ,连接OP , ∵A (6,0),PD ⊥OA ,∴OD=OA=3, 在Rt △OPD 中, ∵OP=,OD=3, ∴PD===2,∴P (3,2). 故答案为:(3,2).点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键三.解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分9分)(2018年广州市)解方程:09102=+-x x .分析:分解因式后得出两个一元一次方程,求出方程的解即可解:x 2﹣10x+9=0, (x ﹣1)(x ﹣9)=0, x ﹣1=0,x ﹣9=0, x 1=1,x 2=9.点评:本题啊扣除了解一元一次方程和解一元二次方程的应用,关键是能把解一元二次方程转化成解一元一次方程. 18.(本小题满分9分)(2018年广州市)如图8,四边形ABCD 是菱形,对角线AC 与BD 相交于O,AB =5,AO =4,求BD 的长.分析:根据菱形的性质得出AC ⊥BD ,再利用勾股定理求出BO 的长,即可得出答案解:∵四边形ABCD 是菱形,对角线AC 与BD 相交于O , ∴AC ⊥BD ,DO=BO , ∵AB=5,AO=4, ∴BO==3,∴BD=2BO=2×3=6.点评:此题主要考查了菱形的性质以及勾股定理,根据已知得出BO 的长是解题关键 19.(本小题满分10分)(2018年广州市)先化简,再求值:yx y y x x ---22,其中.321,321-=+=y x 分析:分母不变,分子相减,化简后再代入求值解:原式===x+y=1+2+1﹣2=2.点评:本题考查了分式的化简求值和二次根式的加减,会因式分解是解题的 题的关键 20.(本小题满分10分)(2018年广州市)已知四边形ABCD 是平行四边形(如图9),把△ABD 沿对角线BD 翻折180°得到△A ˊBD. (1) 利用尺规作出△A ˊBD .(要求保留作图痕迹,不写作法);(2)设D A ˊ 与BC 交于点E ,求证:△BA ˊE ≌△DCE . 分析:(1)首先作∠A ′BD=∠ABD ,然后以B 为圆心,AB 长为半径画弧,交BA ′于点A ′,连接BA ′,DA ′,即可作出△A ′BD .(2)由四边形ABCD 是平行四边形与折叠的性质,易证得:∠BA ′D=∠C ,A ′B=CD ,然后由AAS 即可判定:△BA ′E ≌△DCE . 解:(1)如图:①作∠A ′BD=∠ABD ,②以B 为圆心,AB 长为半径画弧,交BA ′于点A ′,③连接BA ′,DA ′, 则△A ′BD 即为所求;(2)∵四边形ABCD 是平行四边形, ∴AB=CD ,∠BAD=∠C ,由折叠的性质可得:∠BA ′D=∠BAD ,A ′B=AB , ∴∠BA ′D=∠C ,A ′B=CD , 在△BA ′E 和△DCE 中,,∴△BA ′E ≌△DCE (AAS ).点评:此题考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.21.(本小题满分12分)(2018年广州市)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 82 8 10 17 6 13 7 5 7 312 10 7 11 3 6 8 14 15 12(1)求样本数据中为A级的频率;(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数;(3)从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率. 分析:(1)由抽取30个符合年龄条件的青年人中A级的有15人,即可求得样本数据中为A级的频率;(2)根据题意得:1000个18~35岁的青年人中“日均发微博条数”为A级的人数为:1000×=500;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽得2个人的“日均发微博条数”都是3的情况,再利用概率公式求解即可求得答案.解:(1)∵抽取30个符合年龄条件的青年人中A级的有15人,∴样本数据中为A级的频率为:=;(2)1000个18~35岁的青年人中“日均发微博条数”为A级的人数为:1000×=500;(3)C级的有:0,2,3,3四人,画树状图得:∵共有12种等可能的结果,抽得2个人的“日均发微博条数”都是3的有2种情况,∴抽得2个人的“日均发微博条数”都是3的概率为:=.点评:本题考查的是用列表法或画树状图法求概率、频数与频率的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比22.(本小题满分12分)(2018年广州市)如图10,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP的距离为30海里.(1)求船P到海岸线MN的距离(精确到0.1海里);(2)若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.分析:(1)过点P作PE⊥AB于点E,在Rt△APE中解出PE即可;(2)在Rt△BPF中,求出BP,分别计算出两艘船需要的时间,即可作出判断解:(1)过点P作PE⊥AB于点E,由题意得,∠PAE=32°,AP=30海里,在Rt△APE中,PE=APsin∠PAE=APsin32°≈15.9海里;(2)在Rt△PBE中,PE=15.9海里,∠PBE=55°,则BP=≈19.4,A船需要的时间为:=1.5小时,B船需要的时间为:=1.3小时,故B船先到达.点评:本题考查了解直角三角形的应用,解答本题的关键是理解仰角的定义,能利用三角函数值计算有关线段,难度一般.23.(本小题满分12分)(2018年广州市)如图11,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数kyx(x>0,k≠0)的图像经过线段BC的中点D.(1)求k的值;(2)若点P(x,y)在该反比例函数的图像上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围。

广东省广州市2018年中考数学试题(有答案)

广东省广州市2018年中考数学试题(有答案)

2018年广州市初中毕业生学业考试数学试题第一部分选择题(共30分)一、选择题(本大题共10一个小题,每小题3分)1. 四个数10,1,2,2中,无理数的是( ) A. 2 B. 1 C.12D.02.图1所示的五角星是轴对称图形,它的对称轴共有( ) A. 1条 B. 3条 C. 5条 D. 无数条3.图2所示的几何体是由4个相同的小正方体搭成的,它的主视图是( )4.下列计算正确的是( )A. ()222a b a b +=+ B. 22423a a a += C. ()2210x y x y y÷=≠ D. ()32628x x -=- 5.如图3,直线AD,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是( )A. ∠4,∠2B. ∠2,∠6C. ∠5,∠4D. ∠2,∠46.甲袋中装有2个相同的小球,分别写有数字1和2,乙袋中装有2个相同的小球,分别写有数字1和2,从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是( ) A.12 B. 13 C. 14 D. 167.如图4,AB 是圆O 的弦,OC ⊥AB,交圆O 于点C ,连接OA,OB,BC,若∠ABC=20°,则∠AOB 的度数是( )A. 40°B. 50°C. 70°D. 80°8.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚黄金重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13辆(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x 辆,每枚白银重y 辆,根据题意的:( )A. ()()11910813x y y x x y =⎧⎪⎨+-+=⎪⎩B. 10891311y x x y x y +=+⎧⎨+=⎩C. ()()91181013x y x y y x =⎧⎪⎨+-+=⎪⎩D. ()()1110813y y x x y =⎧⎪⎨+-+=⎪⎩9.一次函数y ax b =+和反比例函数a b y x-=在同一直角坐标系中大致图像是( )10.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m ,其行走路线如图所示,第1次移动到1A ,第2次移动到2A ……,第n 次移动到n A ,则△220180A A 的面积是( )A. 5042m B.210092m C.210112m D. 21009m第二部分(非选择题共120分)11. 已知二次函数2y x =,当x >0时,y 随x 的增大而____________(填“增大”或“减小”) 12.如图6,旗杆高AB=8m ,某一时刻,旗杆影子长BC=16m ,则tanC=____________13.方程146x x =+的解是_____________ 14.如图7,若菱形ABCD 的顶点A,B 的坐标分别为(3,0),(-2,0)点D 在y 轴上,则点C 的坐标是_____________15. 如图8,数轴上点A 表示的数为a ,化简:244a a a +-+=______________16.如图9,CE 是平行四边形ABCD 的边AB 的垂直平分线,垂足为点O,CE 与DA 的延长线交于点E,连接AC,BE,DO,DO 与AC 交于点F ,则下列结论:①四边形ACBE 是菱形;②∠ACD=∠BAE ③AF:BE=2:3 ④:23AFOE CODS S=:其中正确的结论有_______________-(填写所有正确结论的序号) 三:解答题(本大题共9个小题,满分102分)17(本小题满分9分)解不等式组1+0213x x ⎧⎨-⎩><18(本题满分9分)如图10,AB 与CD 相交于点E ,AE=CE,DE=BE.求证:∠A=∠C19(本题满分10分) 已知()()229633a T a a a a -=+++(1)化简T(2)若正方形ABCD 的边长为a ,且它的面积为9,求T 的值。

2018年广州市中考数学试卷(含答案)

2018年广州市中考数学试卷(含答案)

广东省广州市2018年中考数学试题一、选择题1。

四个数0,1,,中,无理数的是( )A.B。

1C. D.02。

如图所示的五角星是轴对称图形,它的对称轴共有()A。

1条B.3条C.5条D。

无数条3。

如图所示的几何体是由4个相同的小正方体搭成的,它的主视图是( )A. B. C。

D.4。

下列计算正确的是()A。

B。

C. D.5。

如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是()A.∠4,∠2B.∠2,∠6C。

∠5,∠4D。

∠2,∠46。

甲袋中装有2个相同的小球,分别写有数字1和2,乙袋中装有2个相同的小球,分别写有数字1和2,从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A。

B。

C. D.7。

如图,AB是圆O的弦,OC⊥AB,交圆O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是( )A。

40°B.50°C.70°D。

80°8。

《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚黄金重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13辆(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x 辆,每枚白银重y辆,根据题意得()A。

B。

C。

D。

9.一次函数和反比例函数在同一直角坐标系中大致图像是()A。

B。

C。

D.10.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第1次移动到,第2次移动到……,第n次移动到,则△的面积是()A.504B.C。

D。

二、填空题11.已知二次函数,当x>0时,y随x的增大而________(填“增大”或“减小”)12。

广东省广州市2018年中考数学(pdf版%2C含小题解析)

广东省广州市2018年中考数学(pdf版%2C含小题解析)


三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤.)
17. 解方程组:
5 2311
x y
x y
+=


+=⎩
解析:(1)×3,得:=15,减去(2),得x=4
3x+3y
解得:4
1
x y =⎧⎨=⎩18. 如图10,点在上,.
,E F AB ,,AD BC A B AE BF =∠=∠=求证: .
ADF BCE ∆≅
∆证明:因为AE =BF ,所以,AE +EF =BF +EF ,即AF =BE ,
在△ADF 和△BCE 中,
AD BC A B
AF BE =⎧⎪∠=∠⎨⎪=⎩
所以,ADF BCE
∆≅∆19.某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间(单t 位:小时),将学生分成五类: 类( ),类(),类(),类A 02t ≤≤B 24t <≤C 46t <≤D (),类(),绘制成尚不完整的条形统计图如图11.
68t <≤E 8t
>根据以上信息,解答下列问题:
(1) 类学生有_________人,补全条形统计图;
E
24.如图13,矩形的对角线,相交于点,关于的对称图形为ABCD AC BD O COD ∆CD .
CED ∆
25.如图14,是的直径,,连接.AB O e »
»,2AC BC AB ==AC
(1)求证:;0
45CAB ∠=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)设该抛物线与 x 轴的两个交点分别为 A,B(点 A 在点 B 的右侧),与 y 轴交于点 C,A,B,C 三点都在圆
P 上。①试判断:不论 m 取任何正数,圆 P 是否经过 y 轴上某个定点?若是,求出该定点的坐标,若称点为点 E,点 D(0,1),连接 BE,BD,DE,△BDE 的周长记为 ,圆 P 的
(1)利用尺规作∠ADC 的平分线 DE,交 BC 于点 E,连接 AE(保留作图痕迹,不写作法) (2)在(1)的条件下,①证明:AE⊥DE;
②若 CD=2,AB=4,点 M,N 分别是 AE,AB 上的动点,求 BM+MN 的最小值。
24.已知抛物线

(1)证明:该抛物线与 x 轴总有两个不同的交点。
三、解答题
17.解不等式组
18.如图,AB 与 CD 相交于点 E,AE=CE,DE=BE.求证:∠A=∠C。
19.已知
(1)化简 T。 (2)若正方形 ABCD 的边长为 a,且它的面积为 9,求 T 的值。
20.随着移动互联网的快速发展,基于互联网的共享单车应运而生,为了解某小区居民使用共享单车的情况,某研究 小组随机采访该小区的 10 位居民,得到这 10 位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0, 7,26,17,9. (1)这组数据的中位数是________,众数是________. (2)计算这 10 位居民一周内使用共享单车的平均次数; (3)若该小区有 200 名居民,试估计该小区居民一周内使用共享单车的总次数。
A.
B.
C.
D.
9.一次函数
和反比例函数
在同一直角坐标系中大致图像是( )
A.
B.
C.
D.
10.在平面直角坐标系中,一个智能机器人接到如下指令,从原点 O 出发,按向右,向上,向右,向下的方向依次
不断移动,每次移动 1m,其行走路线如图所示,第 1 次移动到 ,第 2 次移动到 ……,第 n 次移动到 ,
21.友谊商店 A 型号笔记本电脑的售价是 a 元/台,最近,该商店对 A 型号笔记本电脑举行促销活动,有两种优惠方 案,方案一:每台按售价的九折销售,方案二:若购买不超过 5 台,每台按售价销售,若超过 5 台,超过的部分每 台按售价的八折销售,某公司一次性从友谊商店购买 A 型号笔记本电脑 x 台。 (1)当 x=8 时,应选择哪种方案,该公司购买费用最少?最少费用是多少元? (2)若该公司采用方案二方案更合算,求 x 的范围。
C.
D.
4.下列计算正确的是( )
A.
B.
C.
D.
5.如图,直线 AD,BE 被直线 BF 和 AC 所截,则∠1 的同位角和∠5 的内错角分别是( )
A.∠4,∠2 B.∠2,∠6 C.∠5,∠4
D.∠2,∠4
6.甲袋中装有 2 个相同的小球,分别写有数字 1 和 2,乙袋中装有 2 个相同的小球,分别写有数
一枚,称之重适等,交易其一,金轻十三两,问金、银各重几何?”意思是:甲袋中装有黄 金 9 枚(每枚黄金重量相同),乙袋中装有白银 11 枚(每枚黄金重量相同),称重两袋相
等,两袋互相交换 1 枚后,甲袋比乙袋轻了 13 辆(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚
黄金重 x 辆,每枚白银重 y 辆,根据题意得( )
一、<b >选择题</b> 1.【答案】A 【考点】实数及其分类,无理数的认识 【解析】【解答】解:A. 属于无限不循环小数,是无理数,A 符合题意; B.1 是整数,属于有理数,B 不符合题意; C. 是分数,属于有理数,C 不符合题意; D.0 是整数,属于有理数,D 不符合题意; 故答案为:A. 【分析】无理数:无限不循环小数,由此即可得出答案. 2.【答案】C 【考点】轴对称图形 【解析】【解答】解:五角星有五条对称轴. 故答案为:C. 【分析】轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线叫做对称 轴。由此定义即可得出答案. 3.【答案】B 【考点】简单几何体的三视图 【解析】【解答】解:∵从物体正面看,最底层是三个小正方形,第二层最右边一个小正方形, 故答案为:B. 【分析】主视图:从物体正面观察所得到的图形,由此即可得出答案. 4.【答案】D 【考点】实数的运算 【解析】【解答】解:A.∵(a+b)2=a2+2ab+b2 , 故错误,A 不符合题意; B.∵a2+2a2=3a2 , 故错误,B 不符合题意; C.∵x2y÷ =x2y×y=x2y2 , 故错误,C 不符合题意; D.∵(-2x2)3=-8x6 , 故正确,D 符合题意; 故答案为 D:. 【分析】A.根据完全平方和公式计算即可判断错误; B.根据同类项定义:所含字母相同,相同字母指数也相同,再由合并同类项法则计算即可判断错误;
22.设 P(x,0)是 x 轴上的一个动点,它与原点的距离为 。 (1)求 关于 x 的函数解析式,并画出这个函数的图像
(2)若反比例函数
的图像与函数 的图像交于点 A,且点 A 的横坐标为 2.①求 k 的值
②结合图像,当
时,写出 x 的取值范围。
23.如图,在四边形 ABCD 中,∠B=∠C=90°,AB>CD,AD=AB+CD.
字 1 和 2,从两个口袋中各随机取出 1 个小球,取出的两个小球上都写有数字 2 的概率是( )
A.
B.
C.
D.
7.如图,AB 是圆 O 的弦,OC⊥AB,交圆 O 于点 C,连接 OA,OB,BC,若∠ABC=20°,
则∠AOB 的度数是( )
A.40° B.50° C.70°
D.80°
8.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十
则△
的面积是( )
A.504
B.
C.
D.
二、填空题 11.已知二次函数
,当 x>0 时,y 随 x 的增大而
________(填“增大”或“减小”)
12.如图,旗杆高 AB=8m,某一时刻,旗杆影子长 BC=16m,则 tanC=________。
13.方程
的解是________
14.如图,若菱形 ABCD 的顶点 A,B 的坐标分别为(3,0),(-2,0)点 D 在 y 轴上, 则点 C 的坐标是________。 15.如图,数轴上点 A 表示的数为 a,化简:
半径记为 ,求 的值。
25.如图,在四边形 ABCD 中,∠B=60°,∠D=30°,AB=BC.
(1)求∠A+∠C 的度数。
(2)连接 BD,探究 AD,BD,CD 三者之间的数量关系,并说明理由。
(3)若 AB=1,点 E 在四边形 ABCD 内部运动,且满足
,求点 E 运动路径的长度。
答案解析部分
=________
16.如图 9,CE 是平行四边形 ABCD 的边 AB 的垂直平分线,垂足为点 O,CE 与 DA 的延长线交于点 E,连接 AC, BE,DO,DO 与 AC 交于点 F,则下列结论: ①四边形 ACBE 是菱形;②∠ACD=∠BAE ③AF:BE=2:3 ④ 其中正确的结论有________。(填写所有正确结论的序号)
一、选择题
广东省广州市 2018 年中考数学试题
1.四个数 0,1, , 中,无理数的是( )
A.
B.1 C.
D.0
2.如图所示的五角星是轴对称图形,它的对称轴共有( ) A.1 条 B.3 条 C.5 条 D.无数条 3.如图所示的几何体是由 4 个相同的小正方体搭成的,它的主视图是( )
A.
B.
相关文档
最新文档