(完整)人教版八年级数学上册因式分解专项练习.docx

合集下载

八年级数学上册《第十四章 因式分解》同步训练题及答案(人教版)

八年级数学上册《第十四章 因式分解》同步训练题及答案(人教版)

八年级数学上册《第十四章因式分解》同步训练题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列等式中,从左到右的变形是因式分解的是()A.x(x−2)=x2−2x B.(x−1)2=x2−2x−1C.x2−4=(x+2)(x−2)D.x2+3x+2=x(x+3)+22.用提公因式法分解因式4x3y3+6x3y−2xy2时,应提取的公因式是()A.2x3y3B.−2x3y2C.12x3y3D.2xy3.下列四个多项式中,能用提公因式法进行因式分解的是()①16x2﹣8x;②x2+6x+9;③4x2﹣1;④3a﹣9ab.A.①和②B.③和④C.①和④D.②和③4.将多项式x−x2因式分解正确的是( )A.x(1−x)B.x(x−1)C.x(1−x2)D.x(x2−1) 5.下列多项式中,能因式分解得到(x+y)(x﹣y)的是()A.x2+y2B.x2﹣y2C.﹣x2﹣y2D.-x2+y2 6.已知a、b、c是三角形的边长,那么代数式(a−b)2−c2的值是()A.小于零B.等于零C.大于零D.大小不确定7.已知:a+b=5,a−b=1则a2−b2=()A.5 B.4 C.3 D.28.下列各式中,代数式()是x3y+4x2y2+4xy3的一个因式.A.x2y2B.x+y C.x+2y D.x﹣y二、填空题9.分解因式:36x2−4=.10.将多项式−5a2+3ab提出公因式−a后,另一个因式为.11.分解因式:(x−3)2−2x+6=.12.在实数范围内分解因式:4x2+4xy−y2=.13.已知a−b=1,ab=2则a2b−ab2的值为.三、解答题14.分解因式(1)4a3b−2a2b2(2)x2−4x+4(3)2m2−18(4)a2+7a−1815.若△ABC的三边长分别为a、b、c,且b2+2ab=c2+2ac,判断△ABC的形状.16.如果n是正整数,求证:3n+2-2n+2+3n-2n能被10整除.17.已知,长方形的周长为30cm,两相邻的边长为x cm,y cm,且x3+x2y-4xy2-4y3=0,求长方形的对角线长和面积.18.阅读下列材料:材料1:将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m)(+n)的形式,如x2+4x+3=(x+1)(x+3);x2﹣4x﹣12=(x﹣6)(x+2)材料2:因式分解:(x+y)2+2(x+y)+1解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2,再将“A”还原,得原式=(x+y+1)2上述解题方法用到“整体思想”,“整体思想”是数学解题中常见的一种思想方法.请你解答下列问题:(1)根据材料1,把x2﹣6x+8分解因式;(2)结合材料1和材料2,完成下面小题:分解因式:(x﹣y)2+4(x﹣y)+3参考答案1.C2.D3.C4.A5.B6.A7.A8.C9.4(3x+1)(3x−1)10.5a−3b11.(x−3)(x−5)12.(2x+y+√2y)(2x+y−√2y)13.214.(1)解:4a3b−2a2b2=2a2b(2a−b)(2)解:x2−4x+4=(x−2)2(3)解:2m2−18=2(m2−9)=2(m+3)(m−3)(4)解:a2+7a−18=(a+9)(a−2)15.解:∵b2+2ab=c2+2ac∴b2−c2+2ab−2ac=(b+c)(b−c)+2a(b−c)=(b−c)(b+c+2a)=0∵△ABC的三边长分别为a、b、c∴b−c=0∴b=c∴△ABC是等腰三角形.16.证明:∵3n+2-2n+2+3n-2n=3n⋅ 32-2n⋅ 22+3n-2n=3n(32+1)-2n(22+1)=10 ⋅ 3n-10 ⋅ 2n-1=10(3n-2n-1).∴3n+2-2n+2+3n-2n能被10整除.17.∵长方形周长为30cm∴2(x+y)=30,化简得:x+y=15x3+x2y−4xy2−4y3= x2(x+y)−4y2(x+y)= (x+y)(x2−4y2)= (x+y)(x+2y)(x−2y)∵x3+x2y−4xy2−4y3=0(x+y)(x+2y)(x−2y)=0∵x>0∴(x+y)(x+2y)≠0则x−2y=0,即x=2y∵x+y=15∴3y=15,解得:y=5∴x=2y=10∴长方形的对角线长:√x2+y2=√102+52=√125=5√5(cm)长方形的面积:xy=10×5=50(cm2) .18.(1)解:∵8=(−4)×(−2),−6=(−4)+(−2)∴ x2﹣6x+8 =(x−4)(x−2)(2)解:令x−y=A∵3=1×3,4=1+3则(x﹣y)2+4(x﹣y)+3 =(A+3)(A+1)∴(x﹣y)2+4(x﹣y)+3 = (x−y+3)(x−y+1)。

人教版八年级上册数学 整式的乘法与因式分解单元练习(Word版 含答案)

人教版八年级上册数学 整式的乘法与因式分解单元练习(Word版 含答案)

人教版八年级上册数学 整式的乘法与因式分解单元练习(Word 版含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.248﹣1能被60到70之间的某两个整数整除,则这两个数是( ) A .61和63 B .63和65C .65和67D .64和67【答案】B 【解析】 【分析】248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1),即可求解. 【详解】解:248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1) =(224+1)(212+1)(26+1)(26﹣1) =(224+1)(212+1)(26+1)(23+1)(23﹣1) =(224+1)(212+1)×65×63, 故选:B . 【点睛】此题考察多项式的因式分解,将248﹣1利用平方差公式因式分解得到(224+1)(212+1)×65×63,即可得到答案2.下列能用平方差公式分解因式的是( ) A .21x - B .()21xx +C .21x +D .2x x -【答案】A 【解析】根据平方差公式:()()22a b a b a b -=+-,A 选项:()()2111x x x -=+-,可知能用平方差公式进行因式分解. 故选:A.3.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( ) A .1 B .-1C .2D .-2.【答案】A 【解析】 【分析】根据多项式相乘展开可计算出结果. 【详解】()()1x m x +-=x 2+(m-1)x-m ,而计算结果不含x 项,则m-1=0,得m=1.【点睛】本题考查多项式相乘展开系数问题.4.利用平方差公式计算(25)(25)x x ---的结果是 A .245x - B .2425x - C .2254x - D .2425x +【答案】C 【解析】 【分析】平方差公式是(a+b )(a-b )=a 2-b 2. 【详解】解:()()()()()2225252525425254x x x x x x ---=--+=--=-,故选择C. 【点睛】本题考查了平方差公式,应牢记公式的形式.5.化简()22x 的结果是( ) A .x 4 B .2x 2C .4x 2D .4x【答案】C 【解析】 【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可. 【详解】(2x)²=2²·x²=4x², 故选C. 【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.6.计算,得( )A .B .C .D .【答案】C 【解析】 【分析】直接提取公因式(-3)m-1,进而分解因式即可. 【详解】(-3)m +2×(-3)m-1 =(-3)m-1(-3+2) =-(-3)m-1. 故选C . 【点睛】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.7.下列计算正确的是( ) A .224a a a += B .352()a a =C .527a a a ⋅=D .2222a a -=【答案】C 【解析】 【详解】解:A. 222a a 2a +=,故A 错误; B. ()326a a =,故B 错误;C. 527a a a ⋅=,正确;D. 2222a a a -=,故D 错误; 故选C8.已知a ﹣b =2,则a 2﹣b 2﹣4b 的值为( ) A .2 B .4C .6D .8【答案】B 【解析】 【分析】原式变形后,把已知等式代入计算即可求出值. 【详解】 ∵a ﹣b =2,∴原式=(a +b )(a ﹣b )﹣4b =2(a +b )﹣4b =2a +2b ﹣4b =2(a ﹣b )=4. 故选:B . 【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.9.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++【答案】B 【解析】 【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案. 【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形; ()232S S x x +=++正方形小矩形; ()36S S x x +=++小矩形小矩形.故选:B. 【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握.10.观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x +a )(x +b )=x 2-7x +12,则a ,b 的值可能分别是( ) A .3-,4- B .3-,4C .3,4-D .3,4【答案】A 【解析】 【分析】根据题意可得规律为712a b ab +=-⎧⎨=⎩,再逐一判断即可. 【详解】根据题意得,a ,b 的值只要满足712a b ab +=-⎧⎨=⎩即可,A.-3+(-4)=-7,-3×(-4)=12,符合题意;B.-3+4=1,-3×4=-12,不符合题意;C.3+(-4)=-1,3×(-4)=-12,不符合题意;D.3+4=7,3×4=12,不符合题意. 故答案选A. 【点睛】本题考查了多项式乘多项式,解题的关键是根据题意找出规律.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知a 1•a 2•a 3•…•a 2007是彼此互不相等的负数,且M=(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2007),N=(a 1+a 2+…+a 2007)(a 2+a 3+…+a 2006),那么M 与N 的大小关系是M N .【答案】M >N 【解析】解:M ﹣N=(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2007)﹣(a 1+a 2+…+a 2007)(a 2+a 3+…+a 2006) =(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2006)+(a 1+a 2+…+a 2006)a 2007﹣(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2006)﹣a 2007(a 2+a 3+…+a 2006) =(a 1+a 2+…+a 2006)a 2007﹣a 2007(a 2+a 3+…+a 2006) =a 1a 2007>0 ∴M >N【点评】本题主要考查了整式的混合运算.12.将4个数a ,b ,c ,d 排列成2行、2列,两边各加一条竖直线记成a b c d,定义a b ad bc c d=-,上述记号就叫做2阶行列式.若11611x x x x --=-+,则x=_________.【答案】4 【解析】 【分析】根据题目中所给的新定义运算方法可得方程 (x-1)(x+1)- (x-1)2=6,解方程求得x 即可. 【详解】 由题意可得,(x-1)(x+1)- (x-1)2=6, 解得x=4. 故答案为:4. 【点睛】本题考查了新定义运算,根据新定义运算的运算方法列出方程是解本题的关键.13.(1)已知32m a =,33n b =,则()()332243mn m n m a b a b a +-⋅⋅=______.(2)对于一切实数x ,等式()()212x px q x x -+=+-均成立,则24p q -的值为______.(3)已知多项式2223286x xy y x y +--+-可以分解为()()22x y m x y n ++-+的形式,则3211m n +-的值是______.(4)如果2310x x x +++=,则232016x x x x +++⋅⋅⋅+=______.【答案】(1)5-; (2)9; (3)78-; (4)0. 【解析】 【分析】(1)根据积的乘方和幂的乘方,将32m a =整体代入即可; (2)将等式后面部分展开,即可求出p 、q 的值,代入即可;(3)根据多项式乘法法则求出()()22x y m x y n ++-+,即可得到关于m 、n 的方程组,解之即可求得m 、n 、的值,代入计算即可; (4)4个一组提取公因式,整体代入即可. 【详解】 (1)32m a =,33n a =,()()()()332222343333m n mn mm nm n ab ab aab ab ∴+-⋅⋅=+-22232343125=+-⨯=+-=-(2)222x px q x x -+=--对一切实数x 均成立,1p ∴=,2q =-249p q ∴-=(3)()()222223286x y m x y n x xy y x y ++-+=+--+-,()()22222322223286x xy y m n x n m y mn x xy y x y ∴+-+++-+=+--+-21,28,6,m n n m mn +=-⎧⎪∴-=⎨⎪=-⎩解得2,3.m n =-⎧⎨=⎩321718m n +∴=-- (4)2310x x x +++=,232016x x x x ∴+++⋅⋅⋅+()()2320132311x x x x x x x x =++++⋅⋅⋅++++000=+⋅⋅⋅+=故答案为: −5;9;78- ;0. 【点睛】本题主要考察幂的运算及整式的乘法,掌握其运算法则是关键.14.(m+n+p+q) (m-n-p-q)=(__________) 2-(__________) 2.【答案】m n+p+q【解析】(m+n+p+q)(m-n-p-q)=[m+(n+p+q)][m-(n+p+q)]=()22m n p q-++,故答案为(1)m,(2)n+p+q.点睛:本题主要考查了平方差公式,平方差公式是两个数的和与这两个数的差的积,等于这两个数的平方差,多项式与多项相乘时,要注意观察能否将其中符号相同的项结合成为一项后,再运用平方差公式运算.15.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a、b的代数式表示).【答案】ab【解析】【分析】【详解】设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,12122{2x x ax x b+=-=解得,122{4a bxa bx+=-=②的大正方形中未被小正方形覆盖部分的面积=(2a b+)2-4×(4a b-)2=ab.故答案为ab.16.已知ab=a+b+1,则(a﹣1)(b﹣1)=_____.【答案】2【解析】【分析】将(a﹣1)(b﹣1)利用多项式乘多项式法则展开,然后将ab=a+b+1代入合并即可得.【详解】(a﹣1)(b﹣1)= ab﹣a﹣b+1,当ab=a+b+1时, 原式=ab ﹣a ﹣b+1 =a+b+1﹣a ﹣b+1 =2, 故答案为2. 【点睛】本题考查了多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及整体代入思想的运用.17.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b )6= . 【答案】a 6+6a 5b+15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6. 【解析】 【分析】通过观察可以看出(a+b )6的展开式为6次7项式,a 的次数按降幂排列,b 的次数按升幂排列,各项系数分别为1、6、15、20、15、6、1. 【详解】通过观察可以看出(a+b )6的展开式为6次7项式,a 的次数按降幂排列,b 的次数按升幂排列,各项系数分别为1、6、15、20、15、6、1. 所以(a+b )6=a 6+6a 5b+15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6.18.若(2x ﹣3)x+5=1,则x 的值为________. 【答案】2或1或-5 【解析】(1)当2x −3=1时,x=2,此时()2+543-=1,等式成立; (2)当2x −3=−1时,x=1,此时()1523+-=1,等式成立;(3)当x+5=0时,x=−5,此时()0103--=1,等式成立. 综上所述,x 的值为:2,1或−5. 故答案为2,1或−5.19.因式分解:mn (n ﹣m )﹣n (m ﹣n )=_____.【答案】()()1n n m m -+ 【解析】mn(n-m)-n(m-n)= mn(n-m)+n(n-m)=n(n-m)(m+1), 故答案为n(n-m)(m+1).20.若=2m x ,=3n x ,则2m n x +的值为_____. 【答案】18 【解析】 【分析】先把x m+2n 变形为x m (x n )2,再把x m =2,x n =3代入计算即可. 【详解】 ∵x m =2,x n =3,∴x m+2n =x m x 2n =x m (x n )2=2×32=2×9=18; 故答案为18. 【点睛】本题考查同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.。

人教版八年级数学上册14.3因式分解 (培优) 专练(含答案解析)

 人教版八年级数学上册14.3因式分解 (培优) 专练(含答案解析)

人教版八年级数学上册:14.3因式分解(培优)专练习题一.选择题(共12小题)1.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于( )A.﹣1B.﹣1或﹣11C.1D.1或112.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为( )A.25B.20C.15D.103.将a3b﹣ab进行因式分解,正确的是( )A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)4.已知:a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,请你巧妙的求出代数式a2+b2+c2﹣ab﹣bc﹣ca的值( )A.3B.2C.1D.05.已知a+b=3,ab=1,则多项式a2b+ab2﹣a﹣b的值为( )A.﹣1B.0C.3D.66.已知496﹣1可以被60到70之间的某两个整数整除,则这两个数是( )A.61,63B.63,65C.65,67D.63,647.对于算式20183﹣2018,下列说法错误的是( )A.能被2016整除B.能被2017整除C.能被2018整除D.能被2019整除8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是( )A.0B.1C.2D.39.分解因式b2(x﹣3)+b(x﹣3)的正确结果是( )A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)10.多项式x2+7x﹣18因式分解的结果是( )A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)11.若k为任意整数,且993﹣99能被k整除,则k不可能是( )A.50B.100C.98D.9712.任何一个正整数n都可以写成两个正整数相乘的形式,我们把两个乘数的差的绝对值最小的一种分解n=p×q(p≤q)称为正整数n的最佳分解,并定义一个新运算.例如:12=1×12=2×6=3×4,则.那么以下结论中:①;②;③若n是一个完全平方数,则F(n)=1;④若n是一个完全立方数(即n=a3,a是正整数),则.正确的个数为( )A.1个B.2个C.3个D.4个二.填空题(共6小题)13.已知a=,b=,c=,则代数式2(a2+b2+c2﹣ab﹣bc﹣ac)的值是 .14.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc= .15.已知a,b,c满足a+b+c=1,a2+b2+c2=3,a3+b3+c3=5.则a4+b4+c4的值是 .16.已知ab=3,a+b=5,则a3b+2a2b2+ab3的值 .17.已知x,y,z是△ABC的三边,且满足2xy+x2=2yz+z2,则△ABC的形状是 .18.已知a2+a﹣1=0,则a3+2a2+2019= .三.解答题(共5小题)19.因式分解:a2﹣2ab+b2﹣1.20.因式分解.(1)a2(x+y)﹣4b2(x+y)(2)p2(a﹣1)+p(1﹣a)(3).21.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.22.观察下列各式.①4×1×2+1=(1+2)2;②4×2×3+1=(2+3)2;③4×3×4+1=(3+4)2…(1)根据你观察、归纳,发现的规律,写出4×2016×2017+1可以是哪个数的平方?(2)试猜想第n个等式,并通过计算验证它是否成立.(3)利用前面的规律,将4(x2+x)(x2+x+1)+1因式分解.23.定义:若数p可以表示成P=x2+y2﹣xy(x,y为自然数)的形式,则称P为“希尔伯特”数.例如:3=22+11﹣2×1,39=72+52﹣7×5,147=132+112﹣13×11…所以3,39,147是“希尔伯特”数.(1)请写出两个10以内的“希尔伯特”数.(2)像39,147这样的“希尔伯特”数都是可以用连续两个奇数按定义给出的运算表达出来,试说明所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)已知两个“希尔伯特”数,它们都可以用连续两个奇数按定义给出的运算表达出来,且它们的差是224,求这两个“希尔伯特”数.人教版八年级数学上册14.3因式分解培优专练习题参考答案与试题解析一.选择题(共12小题)1.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于( )A.﹣1B.﹣1或﹣11C.1D.1或11【解答】解:a2﹣ab﹣ac+bc=11(a2﹣ab)﹣(ac﹣bc)=11a(a﹣b)﹣c(a﹣b)=11(a﹣b)(a﹣c)=11∵a>b,∴a﹣b>0,a,b,c是正整数,∴a﹣b=1或11,a﹣c=11或1.故选:D.2.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为( )A.25B.20C.15D.10【解答】解法一:∵x2﹣2x﹣5=0,∴x2=2x+5,∴d=x4﹣2x3+x2﹣12x﹣5,=(2x+5)2﹣2x(2x+5)+x2﹣12x﹣5=4x2+20x+25﹣4x2﹣10x+x2﹣12x﹣5=x2﹣2x﹣5+25=25.解法二:∵x2﹣2x﹣5=0,∴x2﹣2x=5,∴d=x4﹣2x3+x2﹣12x﹣5=x2(x2﹣2x+1)﹣12x﹣5=6x2﹣12x﹣5=6(x2﹣2x)﹣5=6×5﹣5=25.故选:A.3.将a3b﹣ab进行因式分解,正确的是( )A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)【解答】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1),故选:C.4.已知:a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,请你巧妙的求出代数式a2+b2+c2﹣ab﹣bc﹣ca的值( )A.3B.2C.1D.0【解答】解:∵a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,∴a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,∴a2+b2+c2﹣ab﹣bc﹣ca======3,故选:A.5.已知a+b=3,ab=1,则多项式a2b+ab2﹣a﹣b的值为( )A.﹣1B.0C.3D.6【解答】解:a2b+ab2﹣a﹣b=(a2b﹣a)+(ab2﹣b)=a(ab﹣1)+b(ab﹣1)=(ab﹣1)(a+b)将a+b=3,ab=1代入,得原式=0.故选:B.6.已知496﹣1可以被60到70之间的某两个整数整除,则这两个数是( )A.61,63B.63,65C.65,67D.63,64【解答】解:利用平方式公式进行分解该数字:496﹣1=(448+1)(448﹣1)=(448+1)(424+1)(424﹣1)=(448+1)(424+1)(412+1)(46+1)(43+1)(43﹣1)=(448+1)(424+1)(412+1)(46+1)×65×63故选:B.7.对于算式20183﹣2018,下列说法错误的是( )A.能被2016整除B.能被2017整除C.能被2018整除D.能被2019整除【解答】解:20183﹣2018=2018(20182﹣1)=2018×(2018+1)(2018﹣1)=2018×2019×20172018×2019×2017能被2017、2018、2019整除,不能被2016整除.故选:A.8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是( )A.0B.1C.2D.3【解答】解:∵a=2018x+2018,b=2018x+2019,c=2018x+2020,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,∴a2+b2+c2﹣ab﹣ac﹣bc=====3,故选:D.9.分解因式b2(x﹣3)+b(x﹣3)的正确结果是( )A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)【解答】解:b2(x﹣3)+b(x﹣3),=b(x﹣3)(b+1).故选:B.10.多项式x2+7x﹣18因式分解的结果是( )A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)【解答】解:原式=(x﹣2)(x+9).故选:D.11.若k为任意整数,且993﹣99能被k整除,则k不可能是( )A.50B.100C.98D.97【解答】解:∵993﹣99=99×(992﹣1)=99×(99+1)×(99﹣1)=99×100×98,∴k可能是99、100、98或50,故选:D.12.任何一个正整数n都可以写成两个正整数相乘的形式,我们把两个乘数的差的绝对值最小的一种分解n=p×q(p≤q)称为正整数n的最佳分解,并定义一个新运算.例如:12=1×12=2×6=3×4,则.那么以下结论中:①;②;③若n是一个完全平方数,则F(n)=1;④若n是一个完全立方数(即n=a3,a是正整数),则.正确的个数为( )A.1个B.2个C.3个D.4个【解答】解:依据新运算可得①2=1×2,则,正确;②24=1×24=2×12=3×8=4×6,则,正确;③若n是一个完全平方数,则F(n)=1,正确;④若n是一个完全立方数(即n=a3,a是正整数),如64=43=8×8,则F(n)不一定等于,故错误.故选:C.二.填空题(共6小题)13.已知a=,b=,c=,则代数式2(a2+b2+c2﹣ab﹣bc﹣ac)的值是 6 .【解答】解:a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,2(a2+b2+c2﹣ab﹣bc﹣ac)=2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=(a﹣b)2+(a﹣c)2+(b﹣c)2=(﹣1)2+(﹣4)2+(﹣1)2=1+4+1=6故答案为6.14.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc= 3 .【解答】解:∵a=2005x+2006,b=2005x+2007,c=2005x+2008,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=3.故答案为:3.15.已知a,b,c满足a+b+c=1,a2+b2+c2=3,a3+b3+c3=5.则a4+b4+c4的值是 .【解答】解:∵(a+b+c)2=a2+b2+c2+2(ab+bc+ac),a+b+c=1,a2+b2+c2=3,∴1=3+2(ab+bc+ac),∴ab+bc+ac=﹣1,∵a3+b3+c3﹣3abc=(a+b+c)(a2+b2+c2﹣ab﹣bc﹣ac),a3+b3+c3=5∴5﹣3abc=3+1∴abc=,∵(ab+bc+ac)2=a2b2+b2c2+a2c2+2abc(a+b+c)∴1=a2b2+b2c2+a2c2+∴a2b2+b2c2+a2c2=∵(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)∴9=a4+b4+c4+∴a4+b4+c4=.故答案为:.16.已知ab=3,a+b=5,则a3b+2a2b2+ab3的值 75 .【解答】解:∵a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2又已知ab=3,a+b=5,∴原式=3×52=75故答案为:75.17.已知x,y,z是△ABC的三边,且满足2xy+x2=2yz+z2,则△ABC的形状是 等腰三角形 .【解答】解:∵2xy+x2=2yz+z2,∴2xy+x2﹣2yz﹣z2=0,因式分解得:(x﹣z)(x+z+2y)=0,∵x,y,z是△ABC的三边,∴x+z+2y≠0,∴x﹣z=0,∴x=z,∴△ABC是等腰三角形;故答案为:等腰三角形.18.已知a2+a﹣1=0,则a3+2a2+2019= 2020 .【解答】解:∵a2+a﹣1=0∴a2+a=1∴a3+a2=a又∵a3+2a2+2019=a3+a2+a2+2019=a+a2+2019=1+2019=2020∴a3+2a2+2019=2020三.解答题(共5小题)19.因式分解:a2﹣2ab+b2﹣1.【解答】解:a2﹣2ab+b2﹣1,=(a﹣b)2﹣1,=(a﹣b+1)(a﹣b﹣1).20.因式分解.(1)a2(x+y)﹣4b2(x+y)(2)p2(a﹣1)+p(1﹣a)(3).【解答】解:(1)原式=(x+y)(a2﹣4b2)=(x+y)(a+2b)(a﹣2b);(2)原式=(a﹣1)(p2﹣p)=p(a﹣1)(p﹣1);(3)原式===.21.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.【解答】解:∵a2c2﹣b2c2=a4﹣b4,∴a4﹣b4﹣a2c2+b2c2=0,∴(a4﹣b4)﹣(a2c2﹣b2c2)=0,∴(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=0,∴(a2+b2﹣c2)(a2﹣b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即△ABC为直角三角形或等腰三角形或等腰直角三角形.22.观察下列各式.①4×1×2+1=(1+2)2;②4×2×3+1=(2+3)2;③4×3×4+1=(3+4)2…(1)根据你观察、归纳,发现的规律,写出4×2016×2017+1可以是哪个数的平方?(2)试猜想第n个等式,并通过计算验证它是否成立.(3)利用前面的规律,将4(x2+x)(x2+x+1)+1因式分解.【解答】解:(1)根据观察、归纳、发现的规律,得到4×2016×2017+1=(2016+2017)2=40332;(2)猜想第n个等式为4n(n+1)+1=(2n+1)2,理由如下:∵左边=4n(n+1)+1=4n2+4n+1,右边=(2n+1)2=4n2+4n+1,∴左边=右边,∴4n(n+1)+1=(2n+1)2;(3)利用前面的规律,可知4(x2+x)(x2+x+1)+1=(x2+x+x2+x+1)2=(x2+2x+1)2=(x+1)4.23.定义:若数p可以表示成P=x2+y2﹣xy(x,y为自然数)的形式,则称P为“希尔伯特”数.例如:3=22+11﹣2×1,39=72+52﹣7×5,147=132+112﹣13×11…所以3,39,147是“希尔伯特”数.(1)请写出两个10以内的“希尔伯特”数.(2)像39,147这样的“希尔伯特”数都是可以用连续两个奇数按定义给出的运算表达出来,试说明所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)已知两个“希尔伯特”数,它们都可以用连续两个奇数按定义给出的运算表达出来,且它们的差是224,求这两个“希尔伯特”数.【解答】解:(1)∵0=02+02×0,1=12+02﹣1×0,3=22+11﹣2×1,4=22+02﹣2×0,7=22+32﹣2×3,9=32+02﹣3×0,∴10以内的“希尔伯特”数有0,1,3,4,7,9;(2)设“希尔伯特”数为(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1).(n为自然数)∵(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1)=4n2+3,∵4n2能被4整除,∴所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)设两个“希尔伯特”数分别为:(2m+1)2+(2m﹣1)2﹣(2m+1)(2m﹣1)和(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1).(m,n为自然数).由题意:(2m+1)2+(2m﹣1)2﹣(2m+1)(2m﹣1)﹣[(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1)]=224,∴m2﹣n2=56,∴(m+n)(m﹣n)=56,可得整数解:或,∴这两个“希尔伯特”数分别为:327和103或903和679.。

人教版八年级数学上册 整式的乘法与因式分解(篇)(Word版 含解析)

人教版八年级数学上册 整式的乘法与因式分解(篇)(Word版 含解析)

人教版八年级数学上册 整式的乘法与因式分解(篇)(Word 版 含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知n 16221++是一个有理数的平方,则n 不能取以下各数中的哪一个( ) A .30 B .32 C .18- D .9【答案】B【解析】【分析】分多项式的三项分别是乘积二倍项时,利用完全平方公式分别求出n 的值,然后选择答案即可.【详解】2n 是乘积二倍项时,2n +216+1=216+2×28+1=(28+1)2,此时n=8+1=9,216是乘积二倍项时,2n +216+1=2n +2×215+1=(215+1)2,此时n=2×15=30,1是乘积二倍项时,2n +216+1=(28)2+2×28×2-9+(2-9)2=(28+2-9)2,此时n=-18,综上所述,n 可以取到的数是9、30、-18,不能取到的数是32.故选B .【点睛】本题考查了完全平方式,难点在于要分情况讨论,熟记完全平方公式结构是解题的关键.2.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( ) A .a 2n -1与-b 2n -1 B .a 2n -1与b 2n -1 C .a 2n 与b 2n D .a n 与b n【答案】B【解析】已知a 与b 互为相反数且都不为零,可得a 、b 的同奇次幂互为相反数,同偶次幂相等,由此可得选项A 、C 相等,选项B 互为相反数,选项D 可能相等,也可能互为相反数,故选B.3.如果多项式29x kx -+能用公式法分解因式,那么k 的值是( )A .3B .6C .3±D .6±【答案】D【解析】由于可以利用公式法分解因式,所以它是一个完全平方式222a ab b ±+,所以236k =±⨯=±.故选D.4.若(x +y )2=9,(x -y )2=5,则xy 的值为( )A.-1 B.1 C.-4 D.4【答案】B【解析】试题分析:根据完全平方公式,两数和(或差)的平方,等于两数的平方和,加减两数积的2倍,分别化简可知(x+y)2=x2+2xy+y2=9①,(x﹣y)2= x2-2xy+y2=5②,①-②可得4xy=4,解得xy=1.故选B点睛:此题主要考查了完全平方公式的应用,解题关键是抓住公式的特点:两数和(或差)的平方,等于两数的平方和,加减两数积的2倍,然后比较各式的特点,直接进行计算,再两式相减即可求解..5.因式分解x2-ax+b,甲看错了a的值,分解的结果是(x+6)(x-1),乙看错了b的值,分解的结果为(x-2)(x+1),那么x2+ax+b分解因式正确的结果为()A.(x-2)(x+3) B.(x+2)(x-3) C.(x-2)(x-3) D.(x+2)(x+3)【答案】B【解析】【分析】【详解】因为(x+6)(x-1)=x2+5x-6,所以b=-6;因为(x-2)(x+1)=x2-x-2,所以a=1.所以x2-ax+b=x2-x-6=(x-3)(x+2).故选B.点睛:本题主要考查了多项式的乘法和因式分解,看错了a,说明b是正确的,所以将看错了a的式子展开后,可得到b的值,同理得到a的值,再把a,b的值代入到x2+ax+b 中分解因式.6.已知x-y=3,12x z-=,则()()22554y z y z-+-+的值等于()A.0 B.52C.52-D.25【答案】A【解析】【分析】此题应先把已知条件化简,然后求出y-z的值,代入所求代数式求值即可.【详解】由x-y=3,12x z-=得:()()x z x y y z---=-15322 =-=-;把52-代入原式,可得255252525255=0224424⎛⎫⎛⎫-+-+-+= ⎪ ⎪⎝⎭⎝⎭. 故选:A .【点睛】此题考查的是学生对代数式变形方法的理解,这一方法在求代数式值时是常用办法.7.设M=(x ﹣3)(x ﹣7),N=(x ﹣2)(x ﹣8),则M 与N 的关系为( )A .M <NB .M >NC .M=ND .不能确定【答案】B【解析】由于M=(x-3)(x-7)=x 2-10x+21,N=(x-2)(x-8)=x 2-10x+16,可以通过比较M 与N 的差得出结果.解:∵M=(x-3)(x-7)=x 2-10x+21,N=(x-2)(x-8)=x 2-10x+16, M-N=(x 2-10x+21)-(x 2-10x+16)=5, ∴M>N.故选B .“点睛”本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项,掌握多项式乘以多项式的法则是解题的关键.8.边长为a ,b 的长方形周长为12,面积为10,则a 2b +ab 2的值为( )A .120B .60C .80D .40【答案】B【解析】【分析】直接利用提取公因式法分解因式,进而求出答案.【详解】解:∵边长为a ,b 的长方形周长为12,面积为10,∴a +b =6,ab =10,则a 2b +ab 2=ab (a +b )=10×6=60.故选:B .【点睛】本题考查了提取公因式法分解因式,正确找出公因式是解题关键.9.若2149x kx ++是完全平方式,则实数k 的值为( ) A .43 B .13 C .43± D .13± 【答案】C【解析】【分析】本题是已知平方项求乘积项,根据完全平方式的形式可得出k的值.【详解】由完全平方式的形式(a±b)2=a2±2ab+b2可得:kx=±2•2x•13,解得k=±43.故选:C【点睛】本题关键是有平方项求乘积项,掌握完全平方式的形式(a±b)2=a2±2ab+b2是关键.10.已知a=96,b=314,c=275,则a、b、c的大小关系是( )A.a>b>c B.a>c>b C.c>b>a D.b>c>a【答案】C【解析】【分析】根据幂的乘方可得:a=69=312,c=527=315,易得答案.【详解】因为a=69=312,b=143,c=527=315,所以,c>b>a故选C【点睛】本题考核知识点:幂的乘方. 解题关键点:熟记幂的乘方公式.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知a1•a2•a3•…•a2007是彼此互不相等的负数,且M=(a1+a2+…+a2006)(a2+a3+…+a2007),N=(a1+a2+…+a2007)(a2+a3+…+a2006),那么M与N的大小关系是M N.【答案】M>N【解析】解:M﹣N=(a1+a2+…+a2006)(a2+a3+…+a2007)﹣(a1+a2+…+a2007)(a2+a3+…+a2006)=(a1+a2+…+a2006)(a2+a3+…+a2006)+(a1+a2+…+a2006)a2007﹣(a1+a2+…+a2006)(a2+a3+…+a2006)﹣a2007(a2+a3+…+a2006)=(a1+a2+…+a2006)a2007﹣a2007(a2+a3+…+a2006)=a1a2007>0∴M>N【点评】本题主要考查了整式的混合运算.12.已知212()02a b -++=,则20192020a b =__________. 【答案】12 【解析】【分析】先利用绝对值和平方的非负性求得a 、b 的值,然后将20192020a b 转化为20192019()ab b ⋅的形式可求得.【详解】 ∵212()02a b -++= ∴a -2=0,12b +=0 解得:a=2,12b =- 20192020a b =20192019()a b b ⋅=()2019112⎛⎫-⨯- ⎪⎝⎭=1 2故答案为:12【点睛】 本题考查绝对值和平方的非负性,解题关键是利用非负性,先得出a 、b 的值.13.设123,,a a a 是一列正整数,其中1a 表示第一个数,2a 表示第二个数,依此类推,n a 表示第n 个数(n 是正整数),已知11a =,2214(1)(1)nn n a a a ,则2018a =___________.【答案】4035【解析】 【分析】()()22n n 1n 4a a 1a 1+=---整理得()()22n n 1a 1a 1++=-,从而可得a n+1-a n =2或a n =-a n+1,再根据题意进行取舍后即可求得a n 的表达式,继而可得a 2018.【详解】∵()()22n n 1n 4a a 1a 1+=---,∴()()22n n n 14a a 1a 1++-=-,∴()()22n n 1a 1a 1++=-,∴a n +1=a n+1-1或a n +1=-a n+1+1,∴a n+1-a n =2或a n =-a n+1,又∵123a ,a ,a ⋯⋯是一列正整数,∴a n =-a n+1不符合题意,舍去,∴a n+1-a n =2,又∵a 1=1,∴a 2=3,a 3=5,……,a n =2n-1,∴a 2018=2×2018-1=4035,故答案为4035.【点睛】本题考查了完全平方公式的应用、平方根的应用、规律型题,解题的关键是通过已知条件推导得出a n+1-a n =2.14.分解因式2242xy xy x ++=___________【答案】22(1)x y +【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】原式=2x (y 2+2y +1)=2x (y +1)2,故答案为2x (y +1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b )6= .【答案】a 6+6a 5b+15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6.【解析】【分析】通过观察可以看出(a+b )6的展开式为6次7项式,a 的次数按降幂排列,b 的次数按升幂排列,各项系数分别为1、6、15、20、15、6、1.【详解】通过观察可以看出(a+b )6的展开式为6次7项式,a 的次数按降幂排列,b 的次数按升幂排列,各项系数分别为1、6、15、20、15、6、1.所以(a+b )6=a 6+6a 5b+15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6.16.因式分解:a 3﹣2a 2b+ab 2=_____.【答案】a (a ﹣b )2.【解析】【分析】先提公因式a ,然后再利用完全平方公式进行分解即可.【详解】原式=a (a 2﹣2ab+b 2)=a (a ﹣b )2,故答案为a (a ﹣b )2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.【答案】-12【解析】分析:对所求代数式进行因式分解,把2a b +=,3ab =-,代入即可求解.详解:2a b +=,3ab =-,()()23223222223212.a b a b ab ab a ab b ab a b ++=++=+=-⨯=- ,故答案为:12.-点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.18.若21x x +=,则433331x x x +++的值为_____.【答案】4【解析】【分析】把所求多项式进行变形,代入已知条件,即可得出答案.【详解】∵21x x +=,∴()43222233313313313()1314x x x xx x x x x x x +++=+++=++=++=+=; 故答案为:4.【点睛】本题考查了因式分解的应用;把所求多项式进行灵活变形是解题的关键.19.光的速度约为3×105 km/s,太阳系以外距离地球最近的一颗恒星(比邻星)发出的光需要4年的时间才能到达地球.若一年以3×107 s 计算,则这颗恒星到地球的距离是_______km.【答案】3.6×1013【解析】【分析】根据题意列出算式,再根据单项式的运算法则进行计算.【详解】依题意,这颗恒星到地球的距离为4×3×107×3×105,=(4×3×3)×(107×105),=3.6×1013km.故答案为:3.6×1013.【点睛】本题考查了根据实际问题列算式的能力,科学记数法相乘可以运用单项式相乘的法则进行计算.20.若m+n=3,则2m2+4mn+2n2-6的值为________.【答案】12【解析】原式=2(m2+2mn+n2)-6,=2(m+n)2-6,=2×9-6,=12.。

【八年级上册】因式分解专项训练(30道)(含答案)

【八年级上册】因式分解专项训练(30道)(含答案)

因式分解专项训练(30道)1.(拱墅区校级期中)因式分解(1)﹣a2+1;(2)2x3y+4x2y2+2xy3;(3)4(x+2y)2﹣25(x﹣y)2;(4)(a2+a)2﹣8(a2+a)+12.2.(拜泉县期中)因式分解(1)6x2﹣3x;(2)16m3﹣mn2;(3)25m2﹣10mn+n2;(4)9a2(x﹣y)+4b2(y﹣x).3.(浠水县月考)分解因式:(1)3pq3+15p3q;(2)ab2﹣a;(3)4xy2﹣4x2y﹣y3;(4)(a2+1)2﹣4a2.4.(绿园区校级月考)把下列多项式分解因式.(1)3x2﹣3y2.(2)a2b+2ab2+b3.(3)(m﹣1)(m﹣3)+1.(4)2a2+4ab+2b2.5.(2021春•东昌府区期末)把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣15;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.6.(2021春•南山区校级期中)分解因式:(1)12ab2﹣6ab;(2)a2﹣6ab+9b2;(3)x4﹣1;(4)n2(m﹣2)+(2﹣m).7.(2021春•邗江区期中)分解因式:(1)2x2﹣12x+18;(2)a3﹣a;(3)4ab2﹣4a2b﹣b3;(4)m3(a﹣2)+m(2﹣a).8.(2020秋•丛台区期末)因式分解(1)(a﹣b)2+4ab;(2)x2﹣2x﹣8;(3)x4﹣6x3+9x2﹣16;(4)(x2+3x+5)(x2+3x+1)+3.9.(2021春•江北区校级期中)因式分解:(1)﹣8ab2+6a2b﹣2ab;(2)4a2﹣(a2+1)2;(3)x4﹣8x2﹣9;(4)(2﹣x2)2+2x(x2﹣2)+x2.10.(2021春•福田区校级期中)因式分解:(1)ab2﹣a;(2)2xy2﹣12x2y+18x3;(3)a4﹣8a2+16;(4)(x﹣4)(x+1)+3x.11.(2021秋•姜堰区月考)因式分解:(1)a4﹣1;(2)x3﹣2x2y+xy2.12.(2021春•平山区校级期中)分解因式:(1)x2(m﹣n)+y2(n﹣m);(2)3x2﹣18xy+27y2.13.(2021春•鄄城县期末)因式分解:(1)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);(2)(x2+1)2﹣4x2.14.(2021春•福田区校级期中)分解因式:(1)4x2﹣(x2+1)2;(2)3(x﹣1)2﹣18(x﹣1)+27.15.(2021春•凤翔县期末)分解因式:(1)9a2(x﹣y)+y﹣x;(2)(x2﹣2xy+y2)+(﹣2x+2y)+1.16.(2021春•沈北新区期末)因式分解:(1)﹣10a2bc+15bc2﹣20ab2c;(2)(x2+1)2﹣4x2.17.(2021春•平顶山期末)把下列各式因式分解:(1)x2+2xy+y2﹣c2;(2)b2(a﹣2)+b(2﹣a).18.(2021春•覃塘区期末)因式分解:(1)3x3﹣12x;(2)1﹣2x+2y+(x﹣y)2.19.(2021春•江宁区月考)分解因式:(1)4x2(x﹣y)+(y﹣x);(2)(x2﹣5)2+8(x2﹣5)+16.20.(2021春•汉寿县期中)分解因式:3x2﹣xy﹣2y2﹣x+y.21.(2020秋•浦东新区期末)因式分解(1)5x2+6y﹣15x﹣2xy;(2)(1+ab)2﹣(a+b)2.22.(2020春•市南区校级期中)因式分解:4(x+y)2﹣16(x﹣y)2.23.(2020秋•宝山区期末)分解因式:2x3﹣2x2y+8y﹣8x.24.(2020秋•上海期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.25.(2020秋•松江区期末)因式分解:x3+3x2y﹣4x﹣12y.26.(2020秋•浦东新区期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.27.(2020秋•浦东新区期末)因式分解:(x2+2x)2﹣7(x2+2x)﹣8.28.(2021秋•浦东新区校级期中)分解因式:(x2+x+1)(x2+x+2)﹣12.29.(2020秋•海淀区校级期中)因式分解:64a6﹣48a4b2+12a2b4﹣b6.30.(2020秋•海淀区校级期中)请用两种方法对多项式x3﹣4x2+6x﹣4进行因式分解.(拆添项算一种方法)因式分解专项训练(30道)【答案版】1.(2021春•拱墅区校级期中)因式分解(1)﹣a2+1;(2)2x3y+4x2y2+2xy3;(3)4(x+2y)2﹣25(x﹣y)2;(4)(a2+a)2﹣8(a2+a)+12.【解题思路】(1)逆用平方差公式进行因式分解.(2)先逆用平方差公式,再提公因式.(3)先逆用平方差公式,再提公因式.(4)运用十字相乘法进行因式分解,注意分解彻底.【解答过程】解:(1)﹣a2+1=(1+a)(1﹣a).(2)2x3y+4x2y2+2xy3=2xy(x2+2xy+y2)=2xy(x+y)2.(3)4(x+2y)2﹣25(x﹣y)2=[2(x+2y)+5(x﹣y)][2(x+2y)﹣5(x﹣y)]=(2x+4y+5x﹣5y)(2x+4y﹣5x+5y)=(7x﹣y)(﹣3x+9y)=﹣3(7x﹣y)(x﹣3y).(4)(a2+a)2﹣8(a2+a)+12=(a2+a﹣2)(a2+a﹣6)=(a+2)(a﹣1)(a+3)(a﹣2).2.(2021秋•拜泉县期中)因式分解(1)6x2﹣3x;(2)16m3﹣mn2;(3)25m2﹣10mn+n2;(4)9a2(x﹣y)+4b2(y﹣x).【解题思路】(1)原式提取公因式3x,分解即可;(2)原式提取公因式m,再利用平方差公式分解即可;(3)原式利用完全平方公式分解即可;(4)原式变形后,提取公因式(x﹣y),再利用平方差公式分解即可.【解答过程】解:(1)6x2﹣3x=3x(2x﹣1);(2)16m3﹣mn2=m(16m2﹣n2)=m(4m+n)(4m﹣n);(3)25m2﹣10mn+n2=(5m﹣n)2;(4)9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).3.(2021秋•浠水县月考)分解因式:(1)3pq3+15p3q;(2)ab2﹣a;(3)4xy2﹣4x2y﹣y3;(4)(a2+1)2﹣4a2.【解题思路】(1)原式提取公因式3pq即可;(2)原式提取公因式a,再利用平方差公式分解即可;(3)原式提取公因式﹣y,再利用完全平方公式分解即可;(4)原式利用平方差公式,以及完全平方公式分解即可.【解答过程】解:(1)3pq3+15p3q=3pq(q2+5p2);(2)ab2﹣a=a(b2﹣1)=a(b+1)(b﹣1);(3)4xy2﹣4x2y﹣y3=﹣y(y2+4x2﹣4xy)=﹣y(2x﹣y)2;(4)(a2+1)2﹣4a2=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.4.(2021秋•绿园区校级月考)把下列多项式分解因式.(1)3x2﹣3y2.(2)a2b+2ab2+b3.(3)(m﹣1)(m﹣3)+1.(4)2a2+4ab+2b2.【解题思路】(1)先提公因式,再利用平方差公式即可;(2)先提公因式,再利用完全平方公式即可;(3)先计算多项式乘多项式,整理后,再利用完全平方公式即可;(4)先提公因式,再利用完全平方公式即可;【解答过程】解:(1)原式=3(x2﹣y2)=3(x+y)(x﹣y);(2)原式=b(a2+2ab+b2)=b(a+b)2;(3)原式=m2﹣4m+4=(m﹣2)2;(4)原式=2(a2+2ab+b2)=2(a+b)2.5.(2021春•东昌府区期末)把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣15;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.【解题思路】(1)直接提取公因式;(2)先加上负括号,再利用十字相乘法;(3)先提取公因式2mn,再利用完全平方公式;(4)利用平方差公式因式分解.【解答过程】解:(1)2(x﹣y)﹣(x﹣y)2=(x﹣y)[2﹣(x﹣y)]=(x﹣y)(2﹣x+y);(2)﹣x2+8x﹣15=﹣(x2﹣8x+15)=﹣(x﹣5)(x﹣3);(3)8m3n+40m2n2+50mn3=2mn(4m2+20mn+25n2)=2mn(2m+5n)2;(4)a4﹣b4=(a2+b2)(a2﹣b2)=(a2+b2)(a+b)(a﹣b).6.(2021春•南山区校级期中)分解因式:(1)12ab2﹣6ab;(2)a2﹣6ab+9b2;(3)x4﹣1;(4)n2(m﹣2)+(2﹣m).【解题思路】(1)直接提取公因式6ab,进而分解因式即可;(2)直接利用完全平方公式分解因式得出答案;(3)直接利用平方差公式分解因式得出答案;(4)直接提取公因式(m﹣2),再利用平方差公式分解因式即可.【解答过程】解:(1)12ab2﹣6ab=6ab(2b﹣1);(2)a2﹣6ab+9b2=(a﹣3b)2;(3)x4﹣1=(x2+1)(x2﹣1)=(x2+1)(x﹣1)(x+1);(4)n2(m﹣2)+(2﹣m)=n2(m﹣2)﹣(m﹣2)=(m﹣2)(n2﹣1)=(m﹣2)(n+1)(n﹣1).7.(2021春•邗江区期中)分解因式:(1)2x2﹣12x+18;(2)a3﹣a;(3)4ab2﹣4a2b﹣b3;(4)m3(a﹣2)+m(2﹣a).【解题思路】(1)首先提公因式2,再利用完全平方公式进行分解即可;(2)首先提公因式a,再利用平方差公式进行分解即可;(3)首先提公因式﹣b,再利用完全平方公式进行分解即可;(4)首先提公因式m(a﹣2),再利用平方差公式进行分解即可.【解答过程】解:(1)原式=2(x2﹣6x+9)=2(x﹣3)2;(2)原式=a(a2﹣1)=a(a+1)(a﹣1);(3)原式=﹣b(b2﹣4ab+4a2)=﹣b(b﹣2a)2;(4)原式=m(a﹣2)(m2﹣1)=m(a﹣2)(m﹣1)(m+1).8.(2020秋•丛台区期末)因式分解(1)(a﹣b)2+4ab;(2)x2﹣2x﹣8;(3)x4﹣6x3+9x2﹣16;(4)(x2+3x+5)(x2+3x+1)+3.【解题思路】(1)先根据完全平方公式展开,再根据完全平方公式分解因式即可;(2)根据十字相乘法分解因式即可;(3)先分组,根据完全平方公式进行计算,再根据平方差公式分解因式,最后根据“十字相乘法”分解因式即可;(4)把x2+3x当作一个整体展开,再根据“十字相乘法”分解因式即可.【解答过程】解:(1)(a﹣b)2+4ab=a2﹣2ab+b2+4ab=a2+2ab+b2=(a+b)2;(2)x2﹣2x﹣8=(x﹣4)(x+2);(3)x4﹣6x3+9x2﹣16=(x4﹣6x3+9x2)﹣16=x2(x﹣3)2﹣42=[x(x﹣3)+4][x(x﹣3)﹣4]=(x2﹣3x+4)(x2﹣3x﹣4)=(x2﹣3x+4)(x﹣4)(x+1);(4)(x2+3x+5)(x2+3x+1)+3=(x2+3x)2+6(x2+3x)+5+3=(x2+3x)2+6(x2+3x)+8=(x2+3x+2)(x2+3x+4)=(x+1)(x+2)(x2+3x+4).9.(2021春•江北区校级期中)因式分解:(1)﹣8ab2+6a2b﹣2ab;(2)4a2﹣(a2+1)2;(3)x4﹣8x2﹣9;(4)(2﹣x2)2+2x(x2﹣2)+x2.【解题思路】(1)原式提取﹣2ab,利用提公因式法因式分解即可;(2)原式利用平方差公式化简,再利用完全平方公式分解即可;(3)原式利用十字相乘法分解,再利用平方差公式分解即可;(4)利用完全平方公式变形,再利用提公因式分解即可.【解答过程】解:(1)原式=﹣2ab(4b﹣3a+1);(2)原式(2a)2﹣(a2+1)2=(2a+a2+1)(2a﹣a2﹣1)=﹣(a+1)2(a﹣1)2;(3)原式=(x2+1)(x2﹣9)=(x2+1)(x+3)(x﹣3);(4)原式=(x2﹣2)2+2x(x2﹣2)+x2=(x2+x﹣2)2=(x+2)2(x﹣1)2.10.(2021春•福田区校级期中)因式分解:(1)ab2﹣a;(2)2xy2﹣12x2y+18x3;(3)a4﹣8a2+16;(4)(x﹣4)(x+1)+3x.【解题思路】(1)提公因式后再利用平方差公式即可;(2)提公因式后再利用完全平方公式即可;(3)利用完全平方公式后再利用平方差公式;(4)根据多项式乘法计算,再利用平方差公式.【解答过程】解:(1)ab2﹣a=a(b2﹣1)=a(b+1)(b﹣1);(2)原式=2x(y2﹣6xy+9x2)=2x(y﹣3x)2;(3)原式=(a2﹣4)2=(a﹣2)2(a+2)2;(4)原式=x2﹣3x﹣4+3x=x2﹣4=(x+2)(x﹣2).11.(2021秋•姜堰区月考)因式分解:(1)a4﹣1;(2)x3﹣2x2y+xy2.【解题思路】(1)原式利用平方差公式分解即可;(2)原式提取公因式x,再利用完全平方公式分解即可.【解答过程】解:(1)原式=(a2+1)(a2﹣1)=(a2+1)(a+1)(a﹣1);(2)原式=x(x2﹣2xy+y2)=x(x﹣y)2.12.(2021春•平山区校级期中)分解因式:(1)x2(m﹣n)+y2(n﹣m);(2)3x2﹣18xy+27y2.【解题思路】(1)首先提取公因式(m﹣n),然后利用平方差公式继续进行因式分解;(2)先提取公因式,再利用完全平方公式把原式进行因式分解即可.【解答过程】解:(1)x2(m﹣n)+y2(n﹣m)=(m﹣n)(x2﹣y2)=(m﹣n)(x+y)(x﹣y);(2)3x2﹣18xy+27y2=3(x2﹣6xy+9y2)=3(x﹣3y)2.13.(2021春•鄄城县期末)因式分解:(1)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);(2)(x2+1)2﹣4x2.【解题思路】(1)用提取公因式法分解因式;(2)用平方差公式、完全平方公式分解因式.【解答过程】解:(1)原式=(a﹣b)(x﹣y)+(a﹣b)(x+y)=(a﹣b)[(x﹣y)+(x+y)]=2x(a﹣b),(2)原式=(x2+1)2﹣(2x)2=(x2+1+2x)(x2+1﹣2x)=(x+1)2(x﹣1)2.14.(2021春•福田区校级期中)分解因式:(1)4x2﹣(x2+1)2;(2)3(x﹣1)2﹣18(x﹣1)+27.【解题思路】(1)先选择平方差公式分解因式,再运用完全平方公式进行因式分解;(2)先运用提取公因式法分解因式,再运用完全平方公式分解因式.【解答过程】解:(1)原式=(2x)2﹣(x2+1)2=(2x+x2+1)(2x﹣x2﹣1)=﹣(x+1)2(x﹣1)2;(2)原式=3[(x﹣1)2﹣6(x﹣1)+9]=3[(x﹣1)﹣3]2=3(x﹣4)2.15.(2021春•凤翔县期末)分解因式:(1)9a2(x﹣y)+y﹣x;(2)(x2﹣2xy+y2)+(﹣2x+2y)+1.【解题思路】(1)原式变形后,提取公因式,再利用平方差公式分解即可;(2)原式整理后,利用完全平方公式分解即可.【解答过程】解:(1)原式=9a2(x﹣y)﹣(x﹣y)=(x﹣y)(9a2﹣1)=(x﹣y)(3a+1)(3a﹣1);(2)原式=(x﹣y)2﹣2(x﹣y)+1=(x﹣y﹣1)2.16.(2021春•沈北新区期末)因式分解:(1)﹣10a2bc+15bc2﹣20ab2c;(2)(x2+1)2﹣4x2.【解题思路】(1)直接提公因式﹣5bc即可;(2)先利用平方差公式,将原式化为(x2+1+2x)(x2+1﹣2x),再利用完全平方公式得出答案.【解答过程】解:(1)原式=﹣5bc(2a2﹣3c+4ab);(2)原式=(x2+1+2x)(x2+1﹣2x)=(x+1)2(x﹣1)2.17.(2021春•平顶山期末)把下列各式因式分解:(1)x2+2xy+y2﹣c2;(2)b2(a﹣2)+b(2﹣a).【解题思路】(1)先分组,再分解.(2)先将b2(a﹣2)+b(2﹣a)变形为b2(a﹣2)﹣b(a﹣2),再运用提公因式法.【解答过程】解:(1)x2+2xy+y2﹣c2=(x+y)2﹣c2=(x+y+c)(x+y﹣c).(2)b2(a﹣2)+b(2﹣a)=b2(a﹣2)﹣b(a﹣2)=b(a﹣2)(b﹣1).18.(2021春•覃塘区期末)因式分解:(1)3x3﹣12x;(2)1﹣2x+2y+(x﹣y)2.【解题思路】(1)先提公因式,再用公式法进行因式分解.(2)先将1﹣2x+2y+(x﹣y)2变形为=1﹣(2x﹣2y)+(x﹣y)2,再用公式法进行因式分解.【解答过程】解:(1)3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2).(2)1﹣2x+2y+(x﹣y)2=1﹣(2x﹣2y)+(x﹣y)2=1﹣2(x﹣y)+(x﹣y)2=[1﹣(x﹣y)]2=(1﹣x+y)2.19.(2021春•江宁区月考)分解因式:(1)4x2(x﹣y)+(y﹣x);(2)(x2﹣5)2+8(x2﹣5)+16.【解题思路】(1)可先将(y﹣x)变形为﹣(x﹣y),再根据因式分解的步骤进行分解即可;(2)将(x2﹣5)看作一个整体,利用完全平方公式进行因式分解,最后再利用平方差公式因式分解即可.【解答过程】解:(1)4x2(x﹣y)+(y﹣x)=4x2(x﹣y)﹣(x﹣y)=(x﹣y)(4x2﹣1)=(x﹣y)(2x+1)(2x﹣1);(2)(x2﹣5)2+8(x2﹣5)+16=(x2﹣5+4)2=(x2﹣1)2=(x+1)2(x﹣1)2.20.(2021春•汉寿县期中)分解因式:3x2﹣xy﹣2y2﹣x+y.【解题思路】先将3x2﹣xy﹣2y2﹣x+y分组整理,然后利用公式即可解答.【解答过程】解:原式=(3x2﹣xy﹣2y2)﹣(x﹣y)=(3x+2y)(x﹣y)﹣(x﹣y)=(x﹣y)(3x+2y﹣1).21.(2020秋•浦东新区期末)因式分解(1)5x2+6y﹣15x﹣2xy;(2)(1+ab)2﹣(a+b)2.【解题思路】(1)将原式分为两组:(5x2﹣15x)、﹣(2xy﹣6y),然后利用提取公因式法进行因式分解;(2)利用平方差公式进行因式分解.【解答过程】解:(1)原式=(5x2﹣15x)﹣(2xy﹣6y)=5x(x﹣3)﹣2y(x﹣3)=(x﹣3)(5x﹣2y);(2)原式=(1+ab﹣a﹣b)(1+ab+a+b)=[(1﹣a)﹣b(1﹣a)][(1+a)+b(1+a)]=(1﹣a)(1﹣b)(1+a)(1+b).22.(2020春•市南区校级期中)因式分解:4(x+y)2﹣16(x﹣y)2.【解题思路】首先提公因式4,再利用平方差公式进行分解即可.【解答过程】解:4(x+y)2﹣16(x﹣y)2=4[(x+y)2﹣4(x﹣y)2]=4(x+y+2x﹣2y)(x+y﹣2x+2y)=4(3x﹣y)(3y﹣x).23.(2020秋•宝山区期末)分解因式:2x3﹣2x2y+8y﹣8x.【解题思路】两两分组:先分别提取公因式2x2,8;再提取公因式2(y﹣x)进行二次分解;最后利用平方差公式再次进行因式分解即可求得答案.【解答过程】解:原式=2x2(x﹣y)﹣8(x﹣y)=2(x﹣y)(x2﹣4)=2(x﹣y)(x+2)(x﹣2).24.(2020秋•上海期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.【解题思路】先利用分组分解法进行恰当的分组,再利用提公因式法和公式法进行因式分解即可.【解答过程】解:原式=(a4﹣a2b2)﹣(4a2c2﹣4b2c2)=a2(a2﹣b2)﹣4c2(a2﹣b2)=(a2﹣b2)(a2﹣4c2)=(a+b)(a﹣b)(a+2c)(a﹣2c).25.(2020秋•松江区期末)因式分解:x3+3x2y﹣4x﹣12y.【解题思路】分为两组:(x3+3x2y)和(﹣4x﹣12y),然后运用完全平方公式和平方差公式进行因式分解.【解答过程】解:x3+3x2y﹣4x﹣12y=(x3+3x2y)﹣(4x+12y)=x2(x+3y)﹣4(x+3y)=(x+3y)(x2﹣4)=(x+3y)(x+2)(x﹣2).26.(2020秋•浦东新区期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.【解题思路】利用加法的结合律和交换律,把整式的第一项和第三项,第四项和第二项分组,提取公因式后再利用公式.【解答过程】解:原式=(a4﹣a2b2)﹣(4a2c2﹣4b2c2)=a2(a2﹣b2)+4c2(a2﹣b2)=(a2﹣b2)(a2﹣4c2)=(a+b)(a﹣b)(a+2c)(a﹣2c).27.(2020秋•浦东新区期末)因式分解:(x2+2x)2﹣7(x2+2x)﹣8.【解题思路】原式利用十字相乘法分解后,再利用完全平方公式分解即可.【解答过程】解:原式=(x2+2x﹣8)(x2+2x+1)=(x﹣2)(x+4)(x+1)2.28.(2021秋•浦东新区校级期中)分解因式:(x2+x+1)(x2+x+2)﹣12.【解题思路】将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.【解答过程】解:设x2+x=y,则原式=(y+1)(y+2)﹣12=y2+3y﹣10=(y﹣2)(y+5)=(x2+x﹣2)(x2+x+5)=(x﹣1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如令x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.故答案为(x﹣1)(x+2)(x2+x+5)29.(2020秋•海淀区校级期中)因式分解:64a6﹣48a4b2+12a2b4﹣b6.【解题思路】先利用分组分解法分解,再分别利用公式法和提取公因式法分解即可得出答案.【解答过程】解:64a6﹣48a4b2+12a2b4﹣b6=(64a6﹣b6)﹣(48a4b2﹣12a2b4)=(8a3+b3)(8a3﹣b3)﹣12a2b2(4a2﹣b2)=(2a+b)(4a2﹣2ab+b2)(2a﹣b)(4a2+2ab+b2)﹣12a2b2(2a+b)(2a﹣b)=(2a+b)(2a﹣b)[(4a2﹣2ab+b2)(4a2+2ab+b2)﹣12a2b2]=(2a+b)(2a﹣b)[(4a2+b2)2﹣4a2b2﹣12a2b2]=(2a+b)(2a﹣b)[(4a2+b2)2﹣16a2b2]=(2a+b)(2a﹣b)(4a2﹣b2)2=(2a+b)3(2a﹣b)3.30.(2020秋•海淀区校级期中)请用两种方法对多项式x3﹣4x2+6x﹣4进行因式分解.(拆添项算一种方法)【解题思路】分别利用拆添项及配方法和提取公因式法进行分解即可.【解答过程】解:方法一:x3﹣4x2+6x﹣4=(x3﹣2x2)﹣(2x2﹣4x)+(2x﹣4)=x2(x﹣2)﹣2x(x﹣2)+2(x﹣2)=(x﹣2)(x2﹣2x+2);方法二:x3﹣4x2+6x﹣4=x(x2﹣4x2+4+2)﹣4=x(x﹣2)2+2x﹣4=(x﹣2)(x2﹣2x+2).。

人教版数学八年级上册:因式分解练习题附答案

人教版数学八年级上册:因式分解练习题附答案

因式分解练习题一、选择题1.下列等式从左到右的变形,属于因式分解的是( )A. x 2+2x−1=x(x +2)+1B. (a +b)(a−b)=a 2−b 2C. x 2+4x +4=(x +2)2D. ax 2−a =a(x 2−1)2.下列各式由左边到右边的变形中,是分解因式的为( )A. 8(x +y)=8x +8yB. (x−y )2=x 2−2xy +y 2C. 10x 2+5x =5x(2x +1)D. x 2−4+3x =(x +2)(x−2)+3x 3.因式分解(x +y )2−2(x 2−y 2)+(x−y )2的结果为( )A. 4(x−y )2B. 4x 2C. 4(x +y )2D. 4y 24.多项式36a 2bc−48ab 2c +24abc 中的各项的公因式是 ( )A. 12a 2b 2c 2B. 6 abcC. 12 abcD. 36a 2b 2c 25.多项式8a 3b 2+12a 3bc−4a 2b 中,各项的公因式是( )A. a 2bB. 4a 2bC. −4a 2bD. −a 2b 6.下列各式中,不能用完全平方公式分解的有( ) ①x 2−10x +25; ②4a 2+4a−1; ③x 2−2x−1; ④−m 2+m−14; ⑤4x 4−x 2+14.A. 1个B. 2个C. 3个D. 4个7.多项式a 2+2a−b 2−2b 分解因式的结果是( )A. (a−b)(a +2)(b +2)B. (a−b)(a +b +2)C. (a−b)(a +b)+2D. (a 2−2b)(b 2−2a)8.下列多项式中不能用平方差公式因式分解的是( )A. a 2−b 2B. 49x 2−y 2z 2C. −x 2−y 2D. 16m 2n 2−25p 29.因式分解b 2(a−3)+b(a−3)的正确结果是( )A. (a−3)(b2+b)B. b(a−3)(b+1)C. (a−3)(b2−b)D. b(a−3)(b−1)10.多项式x2−mxy+9y2能用完全平方公式因式分解,则m的值是().A. 3B. 6C. ±3D. ±611.已知a−b=3,a+c=−1,则代数式ac−bc+a2−ab的值为( )A. 4B. 3C. −3D. −412.已知{3x−1<a2x>6−b的解集为−1<x<2,则a2−b2的值为( )A. −39B. −3C. 3D. 39二、填空题13.分解因式:(2a−1)2+8a=________.14.因式分解:a2b−4ab+4b=______.15.若a+b=2,ab=−3,则式子a3b+2a2b2+ab3的值为_______.16.多项式−ab(a−b)2+a(b−a)2−ac(a−b)2因式分解时,所提取的公因式应是.三、计算题17.把下列各式分解因式:(1)a2−5a;(2)ab+ac;(3)4a3b2−10ab3c;(4)−3ma3+6ma2−12ma;(5)6p(p+q)−4q(p+q).四、解答题18.先分解因式,然后计算求值:(x+y)(x2+3xy+y2)−5xy(x+y),其中x=6.6,y=−3.4.19.已知a=12m+1,b=12m+2,c=12m+3,求a2+2ab+b2−2ac+c2−2bc的值(用含m的代数式表示).20.老师在黑板上写了三个算式:52−32=8×2,92−72=8×4,152−32=8×27.王华接着又写了两个具有同样规律的算式:112−52=8×12,152−72=8×22,….(1)请你再写出两个(不同于上面的算式)具有上述规律的算式;(2)用文字写出上述算式反映的规律;(3)证明这个规律的正确性.答案和解析1.【答案】C【解析】【分析】本题考查了因式分解的意义,解答本题的关键是掌握因式分解的意义即因式分解后右边是整式积的形式,且每一个因式都要分解彻底.根据因式分解的意义分别进行判断,即可得出答案.【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、符合因式分解的定义,故本选项正确;D、右边分解不彻底,不是因式分解,故本选项错误;故选:C2.【答案】C【解析】【分析】此题主要考查了因式分解的意义,正确把握定义是解题关键.直接利用分解因式的定义分析得出答案.【解答】解:A.8(x+y)=8x+8y,是整式乘法运算,故此选项错误;B.(x−y)2=x2−2xy+y2,是整式乘法运算,故此选项错误;C.10x2+5x=5x(2x+1),是分解因式,符合题意;D.x2−4+3x=(x+2)(x−2)+3x,不符合分解因式的定义,故此选项错误.故选C.3.【答案】D【解析】解:原式=[(x+y)−(x−y)]2,=(x+y−x+y)2,=4y2,故选:D.利用完全平方进行分解即可.此题主要考查了公式法分解因式,关键是掌握完全平方公式a2±2ab+b2=(a±b)2.4.【答案】C【解析】【分析】此题主要考查了公因式的确定,根据公因式的定义确定是解决问题的关键,根据公因式的定义,找出数字的最大公约数,找出相同字母的最低次数,直接找出每一项中公共部分即可.【解答】解:多项式36a2bc−48ab2c+24abc各项的公因式是:12 abc.故选C.5.【答案】B【解析】【分析】本题考查了多项式,能熟记多项式的公因式的定义是解此题的关键.根据公因式的定义得出即可.【解答】解:多项式8a3b2+12a3bc−4a2b中各项的公因式是4a2b,故答案选B.6.【答案】C【解析】【分析】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.分别利用完全平方公式分解因式得出即可.【解答】 ①x2−10x+25=(x−5)2,不符合题意; ②4a2+4a−1不能用完全平方公式分解; ③x2−2x−1不能用完全平方公式分解; ④−m2+m−14=−(m2−m+14)=−(m−12)2,不符合题意; ⑤4x4−x2+14不能用完全平方公式分解.故选C.7.【答案】B【解析】【分析】本题考查用分组分解法、提取公因式法与公式法的综合运用.难点是采用两两分组还是三一分组.当被分解的式子是四项时,应考虑运用分组分解法进行分解.多项式a2+2a−b2−2b先变形为a2−b2+2a−2b可分成前后两组来分解.前两项组合利用平方差公式,后两项组合利用提公因式法,最后再次提公因式(a−b)即可.【解答】解:a2+2a−b2−2b=(a2−b2)+(2a−2b)=(a+b)(a−b)+2(a−b)=(a−b)(a+b+2).故选B.8.【答案】C【解析】【分析】此题主要考查了公式法分解因式,关键是掌握平方差公式:a2−b2=(a+b)(a−b).根据能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反进行分析即可.【解答】解:A.a2−b2=(a+b)(a−b),能用平方差公式分解,故此选项不合题意;B.49x2−y2z2=(7x+yz)(7x−yz),能用平方差公式分解,故此选项不合题意;C.−x2−y2不能用平方差公式分解,故此选项符合题意;D.16m2n2−25p2=(4mn−5p)(4mn+5p),能用平方差公式分解,故此选项不合题意;故选C.9.【答案】B【解析】【分析】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.直接提取公因式b(a−3)即可.【解答】解:原式=b(a−3)(b+1).故选B.10.【答案】D【解析】【分析】本题考查因式分解的应用,完全平方公式.由多项式x2−mxy+9y2能用完全平方公式因式分解,得x2−mxy+9y2=(x±3y)2,再用完全平方公式展开,即可得x2−mxy+9 y2=x2±6xy+9y2,最后由多项式对应项系数相等即可得出答案.【解答】解:由题意,得x2−mxy+9y2=(x±3y)2,∴x2−mxy+9y2=x2±6xy+9y2,∴−m=±6,∴m=±6,故选D.11.【答案】C【解析】【分析】本题考查了因式分解的应用:用因式分解解决求值问题,利用因式分解简化计算问题.本题的关键是把所求代数式分解因式.先利用分组分解的方法把ac−bc+a2−ab因式分解为(a−b)(c+a),再利用整体代入的方法计算.【解答】解:∵ac−bc+a2−ab,=c(a−b)+a(a−b),=(a−b)(c+a),∵a−b=3,a+c=−1,∴ac−bc+a2−ab=3×(−1)=−3.故选C.12.【答案】A【解析】【分析】此题考查了因式分解−运用公式法,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.表示出不等式组的解集,确定出a与b的值,即可求出所求.【解答】解:{3x−1<a2x>6−b,解得:{x<a+13x>6−b2,∵不等式的解集为为−1<x<2,∴6−b2=−1,a+13=2,解得:a=5,b=8,则原式=(a+b)(a−b)=13×(−3)=−39,故选A.13.【答案】(2a+1)2【解析】【分析】本题主要考查运用完全平方公式分解因式,先利用完全平方公式展开整理成多项式的一般形式是解题的关键.先根据完全平方公式展开,合并同类项后,再利用完全平方式分解因式即可.【解答】解:(2a−1)2+8a=4a2−4a+1+8a=4a2+4a+1=(2a+1)2.故答案为(2a+1)2.14.【答案】b(a−2)2【解析】【分析】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.原式提取b,再利用完全平方公式分解即可.【解答】解:原式=b(a2−4a+4)=b(a−2)2.故答案为:b(a−2)2.15.【答案】−12【解析】【分析】本题考查了因式分解的应用以及完全平方式的转化,注意因式分解各种方法的灵活运用是解题的关键.根据a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,结合已知数据即可求出代数式a3b+2a2b2+ab3的值.【解答】解:∵a+b=2,ab=−3,∴a3b+2a2b2+ab3=ab(a2+2ab+b2),=ab(a+b)2,=−3×4,=−12.故答案为:−12.16.【答案】−a(a−b)2【解析】【分析】此题主要考查了提公因式法分解因式,注意偶次幂时,交换被减数和减数的位置,值不变;奇次幂时,交换被减数和减数的位置,应加上负号.首先把可把(b−a)2变成(a−b)2,再直接提取公因式−a(a−b)2即可.【解答】解:−ab(a−b)2+a(a−b)2−ac(a−b)2=−a(a−b)2(b+1−c),故答案为−a(a−b)2.17.【答案】解:(1)a2−5a=a(a−5);(2)ab+ac=a(b+c);(3)4a3b2−10ab3c=2ab2(2a2−5bc);(4)−3ma3+6ma2−12ma=−3ma(a2−2a+4);(5)6p(p+q)−4q(p+q)=2(p+q)(3p−2q).【解析】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.(1)提取公因式a,即可得出答案;(2)提取公因式a,即可得出答案;(3)提取公因式2ab2,即可得出答案;(4)提取公因式−3ma,即可得出答案;(5)提取公因式2(p+q),即可得出答案.18.【答案】(x+y)(x2+3xy+y2)−5xy(x+y)=(x+y)(x2+3xy+y2−5xy)=(x+y)(x2−2xy+y2)=(x+y)(x−y)2当x=6.6,y=−3.4时,原式=3.2×102=320.【解析】本题考查求代数式的值,关键是对待求式进行因式分解,然后将x与y的值代入计算即可19.【答案】解:a2+2ab+b2−2ac+c2−2bc=(a+b)2−2c(a+b)+c2=(a+b−c)2∵a =12m +1,b =12m +2,c =12m +3∴原式=(a +b )2−2c(a +b)+c 2=(a +b−c )2将a ,b ,c 的值代入得=[(12m +1)+(12m +2)−(12m +3)]2=14m 2【解析】此题考查代数式求值,注意利用完全平方公式因式分解,简化计算的方法与步骤.首先把代数式a 2+2ab +b 2−2ac−2bc +c 2利用完全平方公式因式分解,再代入求得数值即可.20.【答案】解:(1)112−92=8×5,132−112=8×6.(2)规律:任意两个奇数的平方差等于8的倍数.(3)证明:设m ,n 为整数,两个奇数可表示2m +1和2n +1,则(2m +1)2−(2n +1)2=4(m−n)(m +n +1).当m ,n 同是奇数或偶数时,(m−n)一定为偶数,所以4(m−n)一定是8的倍数.当m ,n 一奇一偶时,则(m +n +1)一定为偶数,所以4(m +n +1)一定是8的倍数所以,任意两奇数的平方差是8的倍数.【解析】通过观察可知,等式左边一直是两个奇数的平方差,右边总是8乘以一个数.根据平方差公式,把等式左边进行计算,即可得出结论任意两个奇数的平方差等于8的倍数.本题为规律探究题,考查学生探求规律解决问题的思维能力.。

人教版八年级数学上册《因式分解》练习题(含知识点)

人教版八年级数学上册《因式分解》练习题(含知识点)
5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.
6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.
7.分式的四则运算:
⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:
⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分
15、xn=5,yn=3,则(xy)2n=若2x=m,2y=n,则8x+y=.
16、已知x+y=1,那么 的值为_______.
17、在多项式4x2+1中添加,可使它是完全平方式(填一个即可),然后将得到的三项式分解因式是
18、若 且 , ,则 的值为______
19.计算: .(-2a)·( a3)=______
⑶经过分析,找出由已知推出求证的途径,写出证明过程.
第十三章 轴对称
一、知识框架:
二、知识概念:
1.基本概念:
⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相
重合,这个图形就叫做轴对称图形.
⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一
个图形重合,那么就说这两个图形关于这条直线对称.
A. B. C. D.
10、计算1002-2×100×99+992的结果是( )
A、1 B、-1 C、2 D、-2
(二)填空题:
11、计算:(-x3y)2=(x2)3÷x5=
12、分解因式: x2+y2-2xy=
13、计算:(-8)2004(-0.125)2003=,22005-22004=.
14、若A=3x-2,B=1-2x,C=-5x,则A·B+A·C=.

人教版八年级上册 因式分解专项练习14.3.1提公因式法(含答案)

人教版八年级上册 因式分解专项练习14.3.1提公因式法(含答案)

人教版八年级上册因式分解专项练习-提公因式法(含答案)1.请把下列各式分解因式(1)x(x-y)-y(y-x) (2)-12x3+12x2y-3xy2(3)(x+y)2+mx+my (4)a(x-a)(x+y)2-b(x-a)2(x+y)(5)15×(a-b)2-3y(b-a)(6)(a-3)2-(2a-6)(7)(m+n)(p-q)-(m+n)(q+p)2.因式分解:(1)3x2﹣6xy+x;(2)﹣4m3+16m2﹣28m;(3)18(a﹣b)2﹣12(b﹣a)3.3.因式分解:-2m3+8m2-12m;4.用提公因式法分解多项式:3223048x y x yz -+5.分解因式:(1) (2)(3) (4)(5) ,求 的值 6.分解因式:3210()5()ab a b b b a ---7.把下列各式分解因式:(1)4x 3-6x 2; (2)2a 2b+5ab+b ; (3)6p(p+q)-4q(p+q);(4) (x-1)2-x+1; (5)-3a 2b +6ab 2-3ab.8.把下列各式分解因式:(1)236x y xy - (2)2332525x y x y -(4)3241626m m m -+- (4)22(3)3a a --+(5)23()2()m x y y x --- (6)2318()12()b a b a b ---(7)1532223520x y x y x y +- (8)6x(x+y)-4y(x+y)(8)()()()a x a b a x c x a -+--- (10)()()()()m n p q m n p q ++-+-9.把下列各式分解因式:(1)a(b -c)+c -b ; (2)15b(2a -b)2+25(b -2a)2.10.()()x x y y y x ---11.把下列各式分解因式:(1)2x 2-xy ; (2)-4m 4n +16m 3n -28m 2n.12.分解因式① -49a 2bc-14ab 2c+7ab ②(2a+b)(2a-3b)-8a(2a+b)13.分解因式:a(x +y -z)-b(z -x -y)-c(x -z +y).14.因式分解:(y ﹣x )(a ﹣b ﹣c )+(x ﹣y )(b ﹣a ﹣c )15.因式分解:12a 2b(x-y)-4ab(y-x).16.因式分解: 53242357a b c a b c a bc +-17.因式分解:26()2()()x y x y x y +-+-18.计算:(1)a (a+b )﹣b (a ﹣b ); (2)(x ﹣2y )(2y+x )+(2y+x )2﹣2x (x+2y )19.因式分解(1)-3x 2+6xy-3y 2 (2)a 2(x-y)+16(y-x)20.用提取公因式法将下列各式分解因式:(1)6xyz-3xz2;(2)x4y-x3z;(3)x(m-x)(m-y)-m(x-m)(y-m).参考答案1.(1)(x-y)(x+y);(2)-3x(2x-y)2;(3)(x+y)(x+y+m);(4)(x-a)(x+y)(ax+ay-bx+ab);(5)3(a-b)(5ax-5bx+y);(6)(a-3)(a-5);(7)-2q(m+n)【解析】试题分析:(1)运用提取公因式法因式分解即可;(2)运用提取公因式法因式分解即可,注意先提取负号;(3)先分组,提公因式,再利用整体法运用提取公因式法因式分解即可;(4)运用提取公因式法因式分解即可,注意整体思想的应用;(5)根据a-b与b-a互为相反数,利用整体法提取公因式法因式分解即可;(6)运用提取公因式法因式分解即可;(7)运用提取公因式法因式分解即可,注意符号变化.试题解析:(1)x(x-y)-y(y-x)=(x-y)(x+y)(2)-12x3+12x2y-3xy2=-3x(4x2-4xy+y2)=-3x(2x-y)2(3)(x+y)2+mx+my=(x+y)2+m(x+y)=(x+y)(x+y+m)(4)a(x-a)(x+y)2-b(x-a)2(x+y)=(x-a)(x+y)[a(x+y)-b(x-a)]=(x-a)(x+y)(ax+ay-bx+ab)(5)15x(a-b)2-3y(b-a)=15x(a-b)2+3y(a-b)=3(a-b)(5ax-5bx+y);(6)(a-3)2-(2a-6)=(a-3)2-2(a-3)=(a-3)(a-5);(7)(m+n)(p-q)-(m+n)(q+p)=(m+n)(p-q-q-p)=-2q(m+n)2.(1)x(3x﹣6y+1);(2)﹣4m(m2﹣4m+7);(3)6(a﹣b)2(3+2a﹣2b).【解析】【分析】(1)利用提取公因式法分解因式得出即可;(2)利用提取公因式法分解因式得出即可;(3)利用提取公因式法分解因式得出即可. 【详解】(1)解:3x 2﹣6xy+x=x (3x ﹣6y+1)(2)解:﹣4m 3+16m 2﹣28m=﹣4m (m 2﹣4m+7)(3)解:18(a ﹣b )2﹣12(b ﹣a )3=6(a ﹣b )2(3+2a ﹣2b )【点睛】考查因式分解,熟练掌握提取公因式法是解题的关键. 3.-2m(m 2-4m+6) 【解析】 【分析】直接运用提公因式法.即提出公因式-2m 即可. 【详解】解:-2m 3+8m 2-12m=-2m (m 2-4m+6)【点睛】本题考核知识点:因式分解. 解题关键点:找出公因式. 4.()2658x y xy z --【解析】试题分析:根据提公因式法--因式分解,确定公因式后提取公因式即可. 试题解析:()32223048658x y x yz x y xy z -+=--.5.(1)-2b (2a+4b-5);(2)(n-m )(2n-m );(3)3y (a-b )[5a-5b+1];(4)6(n-m )2(m-n-2);(5)0【解析】【分析】(1)直接提取公因式﹣2b 分解即可;(2)首先把 变为− ,再提取公因式n-m 分解即可; (3)首先把 变为−(a-b ),再提取公因式a-b 分解即可;(4)首先把 变为− ,再提取公因式 分解即可;(5)首先把 变为 ,再把 代入即可; 【详解】(1) = -2b (2a+4b-5);(2) =(n-m )(2n-m );(3) ) (4) = = (5) = 【点睛】本题主要考查了提取公因式法分解因式,正确找出公因式是解题关键. 6.225()(221)b a b a ab --- 【解析】分析:提取公因式法进行因式分解即可. 详解:原式()()32105,ab a b b a b =---()()2521.b a b a a b ⎡⎤=---⎣⎦()()225221.b a b a ab =---点睛:本题主要考查因式分解,常见的因式分解的方法有:提取公因式法,公式法,十字相乘法.注意:分解一定要彻底.7.(1)2x 2(2x-3);(2)b(2a 2+5a+1);(3)2(p+q)(3p-2q);(4)(x-1)(x-2);(5)-3ab(a -2b +1). 【解析】 【分析】(1)直接利用提取公因式法,提取公因式2x 2,进而分解因式得出答案;(2)直接利用提取公因式法,提取公因式b ,进而分解因式得出答案; (3)直接利用提取公因式法,提取公因式2(p +q ),进而分解因式得出答案; (4)直接利用提取公因式法,提取公因式(x ﹣1),进而分解因式得出答案. (5)直接利用提取公因式法,提取公因式﹣3ab ,进而分解因式得出答案. 【详解】(1)原式=222223x x x ⋅-⋅=22(23)x x -;(2)原式= b •2a 2+ b •5a + b •1=b (2a 2+5a +1);(3)原式=2(p +q )•3p -2(p +q )•2q =2(p +q )(3p -2q );(4)原式=(x -1)2-(x -1)=(x -1)(x -1-1)= (x -1)(x -2);(5)原式=-3ab •a +(-3ab )•(-2b )+(-3ab )•1=-3ab (a -2b +1). 【点睛】本题考查了提取公因式法分解因式,正确找出公因式是解题的关键.8.(1)3xy(x-2); (2)225(5)x y y x -; (3)22(2813m m m --+); (4)3)(27)a a --(; (5)()(322)x y m x y --+; (6)26()(52a b b a --);(7) 225314)x y xy y +-(;(8)2(x+y)(3x-2y); (9)()()x a a b c ---; (10)2()q m n +.试题分析:都利用提公因式法分解因式即可.试题解析:(1)原式=3xy(x-2);(2)原式=()2255x y y x -;(3)原式=22(2813m m m --+);(4)()3)27a a =--原式(; (5)原式=()()322x y m x y --+;(6)原式=()26(52a b b a --);(7)原式= 225314)x y xy y +-(;(8)原式=2(x+y)(3x-2y);(9)原式=()()x a a b c ---;(10)原式=()2q m n +.9.(1)(b -c)(a -1)(2) 5(2a -b)2(3b +5)【解析】试题分析:(1)先确定公因式是(b -c ),将公因式(b -c )提到括号外,可得(b -c )(a -1) , (2)先确定公因式是5(2a-b )2,将公因式5(2a -b )2提到括号外,可得5(2a -b )2(3b +5). 试题解析:(1)原式=a (b -c )-(b -c )=(b -c )(a -1),(2)原式=15b (2a -b )2+25(2a -b )2=5(2a -b )2(3b +5).10.()()x y x y -+试题分析:后一项变号后,提取公因式(x-y)即可.试题解析:解:原式=x(x-y)+y(x-y)=(x-y)(x+y).11.(1) x(2x-y)(2)-4m2n(m2-4m+7)【解析】试题分析:(1)先确定公因式,将公因式提到括号外,括号里为原多项式中每一项除以公因式所得结果, (2)先确定公因式,将公因式提到括号外,括号里为原多项式中每一项除以公因式所得结果.试题解析:(1)原式=x(2x-y),(2)原式=-4m2n(m2-4m+7).12.①-7ab(7ac+2bc-1);②-3(2a+b)2【解析】试题分析:本题考查了因式分解.①直接用提公因式-7ab即可;②把(2a+b)作为一个整体提取.①原式=-7ab(7ac+2bc-1)②原式=(2a+b)(2a-3b-8a)=(2a+b)(-6a-3b)=-3(2a+b) 213.(x+y-z)(a+b-c)【解析】试题分析:先确定公因式(x+y-z),提公因式可得: (x+y-z) (a+b-c),试题解析:原式=a(x+y-z)+b(x+y-z)-c(x+y-z)=(x+y-z) (a+b-c).14.2(y﹣x)(a﹣b)【解析】试题分析:先提取公因式(y-x)后,再提取公因式2即可.试题解析:原式=(y ﹣x )(a ﹣b ﹣c )﹣(y ﹣x )(b ﹣a ﹣c )=(y ﹣x )(a ﹣b ﹣c ﹣b+a+c )=2(y ﹣x )(a ﹣b ).15.4ab(x-y)(3a+1)【解析】【分析】直接提取公因式4ab (x-y ),即可求得答案.【详解】原式=12a 2b(x-y)+4ab(x-y)=4ab(x-y)(3a+1)【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.16.a 3bc (a 2b 2c+5ab-7)【解析】【分析】根据题意提取公因式即可.【详解】解:原式=322(57)a bc a b c ab +-【点睛】本题主要考查提取公因式,根据每个字母的最低次数提取即可.17.4(x +y )(x +2y ).【解析】首先提公因式2(x+y),再整理括号里面的3(x+y)﹣(x﹣y),再提公因式2即可.【详解】原式=2(x+y)[3(x+y)﹣(x﹣y)]=2(x+y)(2x+4y)=4(x+y)(x+2y).【点睛】本题考查了提公因式法分解因式,关键是公因式提取要彻底.18.(1)a2+b2;(2)0.【解析】【分析】(1)(2)按照先去括号,后合并同类项的步骤化简即可;【详解】解:(1)原式=a2+ab﹣ab+b2=a2+b2(2)法一:原式=x2﹣4y2+x2+4xy+4y2﹣2x2﹣4xy=(x2+x2﹣2x2)+(﹣4y2+4y2)+(4xy﹣4xy)=0法二:原式=(x+2y)(x﹣2y+2y+x﹣2x)=(x+2y)×0=0本题考查平方差公式、完全平方公式、提公因式等知识,解题的关键是灵活运用所学知识解决问题,记住平方差公式、完全平方公式.19.(1)(2)【解析】试题分析:(1)先提取公因式-3,再对余下的多项式利用完全平方公式继续分解;(2)先提取公因式(x-y),再对余下的多项式利用完全平方公式继续分解.试题解析:(1)原式==(2)原式===【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.20.(1) 3xz(2y-z);(2) x3(xy-z);(3)-(m-x)2(m-y).【解析】【分析】分别提取公因式3xz,x3,(m-x)(m-y)即可得答案,注意符号.【详解】解:(1)6xyz-3xz2=3xz(2y-z).(2)x4y-x3z=x3(xy-z).(3)x(m-x)(m-y)-m(x-m)(y-m)=x(m-x)(m-y)-m(m-x)(m-y)=(m-x)(m-y)(x-m)=-(m-x)2(m-y).【点睛】本题考查的知识点是提公因式,解题的关键是熟练的掌握提公因式.。

2022-2023学年人教版八年级数学上册《第14章整式乘法与因式分解》解答专项练习题(附答案)

2022-2023学年人教版八年级数学上册《第14章整式乘法与因式分解》解答专项练习题(附答案)

2022-2023学年人教版八年级数学上册《第14章整式乘法与因式分解》解答专项练习题(附答案)1.因式分解:(1)(x+3y)2﹣x﹣3y;(2)(a2+4)2﹣16a2.2.因式分解:(1)ax2﹣4ax+4a;(2)x2(m﹣n)+y2(n﹣m);(3)(x+2)(x+4)﹣3;(4)9(a+b)2﹣(a﹣b)2.3.计算:(1)(x2y)3•(﹣2xy3)2;(2)(x n y3n)2+(x2y6)n;(3)(x2y3)4+(﹣x)8•(y6)2;(4)a•a2•a3+(﹣2a3)2﹣(﹣a)6.4.计算:a•a2•a3+(﹣2a3)2﹣(2a4)2÷a2.5.规定a*b=3a×3b,求:(1)求1*2;(2)若2*(x+1)=81,求x的值.6.(1)已知:4m=5,8n=3,计算22m+3n的值.(2)已知:3x+5y=8,求8x•32y的值.7.回答下列问题:(1)计算:①(x+2)(x+3);②(x+8)(x﹣10);③(x﹣7)(x﹣9).(2)由(1)的结果,直接写出下列计算的结果:①(x+1)(x+4)=;②(x﹣6)(x﹣3)=;③(x+10)(x﹣15)=;(3)总结公式:(x+a)(x+b)=.(4)已知a,b,n均为整数,且(x+a)(x+b)=x2+nx+8,求n的所有可能值.8.【初试锋芒】若x+y=8,x2+y2=40,求xy的值;【再展风采】已知4a2+b2=57,ab=6,求2a+b的值;【尽显才华】若(20﹣x)(x﹣30)=10,则(20﹣x)2+(x﹣30)2的值是.9.定义:如果2m=n(m,n为正数),那么我们把m叫做n的D数,记作m=D(n).(1)根据D数的定义,填空:D(2)=,D(16)=.(2)D数有如下运算性质:D(s•t)=D(s)+D(t),D()=D(q)﹣D(p),其中q>p.根据运算性质,计算:①若D(a)=1,求D(a3);②若已知D(3)=2a﹣b,D(5)=a+c,试求D(30),的值(用含a、b、c的代数式表示).10.用乘法公式计算:(1)20212﹣2023×2019;(2)(2x+y+z)(2x﹣y﹣z).11.已知x+y=﹣5,xy=﹣3.(1)求x2+y2的值;(2)求(x﹣y)2的值.12.已知ab=1,因为(a+b)2=a2+2ab+b2=a2+b2+2①(a﹣b)2=a2﹣2ab+b2=a2+b2﹣2②所以由①得a2+b2=(a+b)2﹣2.由②得a2+b2=(a﹣b)2+2.试根据上面公式的变形解答下列问题:(1)已知a﹣b=2,ab=1,则下列等式成立的是.①a2+b2=6;②a4+b4=38;③(a+b)2=8.(2)已知a+b=2,ab=1.①求代数式a2+b2的值;②求代数式a4+b4的值;③猜想代数式a2n+b2n(n为正整数)的值,直接写出答案,不必说明理由.13.阅读材料:若x满足(9﹣x)(x﹣4)=4,求(4﹣x)2+(x﹣9)2的值.设9﹣x=a,x﹣4=b,则(9﹣x)(x﹣4)=ab=4,a+b=(9﹣x)+(x﹣4)=5,∴(4﹣x)2+(x﹣9)2=(9﹣x)2+(x﹣4)2=a2+b2=(a+b)2﹣2ab=52﹣2×4=17.请仿照上面的方法求解下面问题:已知m满足(2m﹣5)2+(4﹣2m)2=5.(1)求(5﹣2m)(4﹣2m)的值;(2)求4m﹣9的值.14.如图,在一个边长为2a+b的大正方形纸片中,剪去一个长为2a+b、宽为a﹣b的长方形和一个边长为a﹣b的小正方形.(1)用含a、b的式子表示阴影部分的面积;(结果化为最简)(2)当a=5,b=2时,求阴影部分的面积.15.乘法公式的探究及应用:数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B 种纸片是边长为b的正方形,C种纸片是长为b、宽为a的长方形.并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法表示图2大正方形的面积.方法1:;方法2:;(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的数量关系:;(3)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=21,求ab的值;②已知(2022﹣a)2+(a﹣2020)2=10,求(2022﹣a)(a﹣2020)的值.16.计算:|(2x+y)(2x﹣y)﹣5x(x+2y)+(x+2y)2|÷(﹣3y).17.【观察发现】从边长为a的正方形中剪掉一个边长为b的正方形(如图①),然后将剩余部分剪开并拼成一个长方形(如图②).【归纳结论】(1)上述操作,能验证的等式是;(直接写结果)【问题解决】(2)利用(1)中的结论,计算:.18.阅读下列解答过程:已知二次三项式x2﹣4x+m有一个因式是x+3,求另一个因式及m的值.解:设另一个因式为x+a则x2﹣4x+m=(x+3)(x+a)=x2+ax+3x+3a=x2+(a+3)x+3a,∴,∴,∴另一个因式为x﹣7,m的值为﹣21.请依照以上方法解答下面问题:已知二次三项式x2+5x+k有一个因式是x﹣2,求另一个因式及k的值.19.小红准备完成题目:计算(x2x+2)(x2﹣x).她发现第一个因式的一次项系数被墨水遮挡住了.(1)她把被遮住的一次项系数猜成3,请你完成计算:(x2+3x+2)(x2﹣x);(2)老师说:“你猜错了,这个题目的正确答案是不含三次项的.”请通过计算说明原题中被遮住的一次项系数是多少?20.阅读理解:若x满足(30﹣x)(x﹣10)=160,求(30﹣x)2+(x﹣10)2的值.解:设30﹣x=a,x﹣10=b,则(30﹣x)(x﹣10)=ab=160,a+b=(30﹣x)+(x﹣10)=20,(30﹣x)2+(x﹣10)2=a2+b2=(a+b)2﹣2ab=202﹣2×160=80解决问题:(1)若x满足(2020﹣x)(x﹣2016)=2,则(2020﹣x)2+(x﹣2016)2=;(2)若x满足(x﹣2022)2+(x﹣2018)2=202,求(x﹣2022)(x﹣2018)的值;(3)如图,在长方形ABCD中,AB=16,BC=12,点E.F是BC、CD上的点,且BE =DF=x,分别以FC、CE为边在长方形ABCD外侧作正方形CFGH和CEMN,若长方形CEPF的面积为100平方单位,则图中阴影部分的面积和为平方单位.21.下面是某同学对多项式(x2﹣2x﹣1)(x2﹣2x+3)+4进行因式分解的过程,解:设x2﹣2x=y原式=(y﹣1)(y+3)+4(第一步)=y2+2y+1(第二步)=(y+1)2(第三步)=(x2﹣2x+1)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了.A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?(填“彻底”或者“不彻底”)若不彻底.请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2﹣4x)(x2﹣4x+8)+16进行因式分解.22.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2﹣2xy+y2﹣16;(2)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.参考答案1.解:(1)原式=(x+3y)2﹣(x+3y)=(x+3y)(x+3y﹣1);(2)原式=(a2+4)2﹣(4a)2=(a2+4+4a)(a2+4﹣4a)=(a+2)2(a﹣2)2.2.解:(1)原式=a(x2﹣4x+4)=a(x﹣2)2;(2)原式=x2(m﹣n)﹣y2(m﹣n)=(m﹣n)(x2﹣y2)=(m﹣n)(x+y)(x﹣y);(3)原式=x2+6x+8﹣3=x2+6x+5=(x+1)(x+5);(4)原式=[3(a+b)+(a﹣b)][3(a+b)﹣(a﹣b]=(4a+2b)(2a+4b)=4(2a+b)(a+2b).3.解:(1)原式=x6y3•4x2y6=4x8y9;(2)原式=x2n y6n+x2n y6n=2x2n y6n;(3)原式=x8y12+x8y12=2x8y12;(4)原式=a6+4a6﹣a6=4a6.4.解:a•a2•a3+(﹣2a3)2﹣(2a4)2÷a2=a6+4a6﹣4a8÷a2=a6+4a6﹣4a6=a6.5.解:(1)∵a*b=3a×3b,∴1*2=31×32=3×9=27;(2)∵2*(x+1)=81,∴32×3x+1=34,则2+x+1=4,解得:x=1.6.解:(1)∵4m=22m=5,8n=23n=3,∴22m+3n=22m•23n=5×3=15;(2)∵3x+5y=8,∴8x•32y=23x•25y=23x+5y=28=256.7.解:(1)①(x+2)(x+3)=x2+2x+3x+6=x2+5x+6,②原式=x2﹣10x+8x﹣80=x2﹣2x﹣80.③原式=x2﹣9x﹣7x+63.(2)①原式=x2+4x+x+4=x2+5x+4.②原式=x2﹣3x﹣6x+18=x2﹣9x+18.③原式=x2﹣15x+10x﹣150=x2﹣5x﹣150.故答案为:①x2+5x+4.②x2﹣9x+18.③x2﹣5x﹣150.(3)由(2)得:(x+a)(x+b)=x2+(a+b)x+ab,故答案为:x2+(a+b)x+ab,(4)∵(x+a)(x+b)=x2+nx+8,∴n=a+b,8=ab.∵8=1×8=(﹣1)×(﹣8)=2×4=(﹣2)×(﹣4).∴n=1+8=9或n=﹣1+(﹣8)=﹣9或n=2=4=6或n=﹣2+(﹣4)=﹣6.∴n=±6或n=±9.8.解:(1)x+y=8,x2+y2=40,xy=[(x+y)2﹣x2﹣y2]×=(82﹣40)×=12;(2)4a2+b2=57,ab=6,(2a+b)2=4a2+b2+4ab=81,∴2a+b=±9;(3)设a=20﹣x,b=x﹣30,则(20﹣x)(x﹣30)=ab=10,a+b=(20﹣x)+(x﹣30)=﹣10,所以(20﹣x)2+(x﹣30)2=a2+b2=(a+b)2﹣2ab=(﹣10)2﹣2×10=80.9.解:(1)∵21=2,∴D(2)=1,∵24=16,∴D(16)=4,故答案为:1,4;(2)①∵D(a)=1,∴D(a3)=D(a•a•a)=D(a)+D(a)+D(a)=3;②∵D(2)=1,D(3)=2a﹣b,D(5)=a+c,∴D(30)=D(2×3×5)=D(2)+D(3)+D(5)=1+2a﹣b+a+c=3a﹣b+c+1,∴=D(25)﹣D(12)=2D(5)﹣2D(2)﹣D(3)=2(a+c)﹣2×1﹣(2a﹣b)=b+2c﹣2.10.解:(1)20212﹣2023×2019=20212﹣(2021+2)×(2021﹣2)=20212﹣20212+4=4;(2)(2x+y+z)(2x﹣y﹣z)=[2x+(y+z)][2x﹣(y+z)]=4x2﹣(y+z)2=4x2﹣y2﹣2yz+z2.11.解:(1)∵x+y=﹣5,xy=﹣3,∴x2+y2=(x+y)2﹣2xy=(﹣5)2﹣2×(﹣3)=25+6=31;(2)∵xy=﹣3,x2+y2=31,∴(x﹣y)2=x2+y2﹣2xy=31﹣2×(﹣3)=37.12.解:(1)①a2+b2=(a﹣b)2+2ab=22+2×1=6,故该选项正确;②a4+b4=(a2+b2)2﹣2a2b2=62﹣2(ab)2=36﹣2×12=34,故该选项错误;③(a+b)2=(a﹣b)2+4ab=22+4×1=8,故该选项正确.故答案为:①③;(2)①a2+b2=(a+b)2﹣2ab=22﹣2×1=2;②a4+b4=(a2+b2)2﹣2a2b2=22﹣2(ab)2=22﹣2×12=2;③∵①②的答案都是2,∴猜想:a2n+b2n=2.13.解:设2m﹣5=x,4﹣2m=y,∴(5﹣2m)(4﹣2m)=﹣xy,4m﹣9=2m﹣5﹣(4﹣2m)=x﹣y,2m﹣5+4﹣2m=x+y=﹣1,(1)∵(2m﹣5)2+(4﹣2m)2=5.∴x2+y2=5,∴(x+y)2=x2+2xy+y2,∴1=5+2xy,∴xy=﹣2,∴(5﹣2m)(4﹣2m)=﹣xy=2.(2)∵(x﹣y)2=x2+y2﹣2xy,∴(x﹣y)2=5+4=9,∴x﹣y=±3.14.解:(1)阴影部分的面积为:(2a+b)2﹣(2a+b)(a﹣b)﹣(a﹣b)2=4a2+4ab+b2﹣(2a2﹣2ab+ab﹣b2)﹣(a2﹣2ab+b2)=4a2+4ab+b2﹣2a2+2ab﹣ab+b2﹣a2+2ab﹣b2=a2+7ab+b2;(2)当a=5,b=2时,原式=25+7×5×2+4=99,即阴影部分的面积为99.15.解:(1)方法1:大正方形的边长为(a+b),∴S=(a+b)2;方法2:大正方形=各个部分相加之和,∴S=a2+2ab+b2.故答案为:(a+b)2,a2+2ab+b2.(2)由图2可得总面积减掉两个小矩形面积等于两个正方形面积之和,即(a+b)2﹣2ab=a2+b2.故答案为:(a+b)2=a2+b2+2ab.(3)①∵a+b=5,∴(a+b)2=25,a2+b2=21,∴2ab=(a+b)2﹣(a2+b2)=25﹣21=4,∴ab=2.②设m=2022﹣a,n=a﹣2020,则m+n=2,m2+n2=(2022﹣a)2+(a﹣2020)2=10,由(m+n)2=m2+n2+2mn得,4=10+2mn,∴mn=﹣3,(2022﹣a)(a﹣2020)=mn=﹣3,即(2022﹣a)(a﹣2020)的值为﹣3.16.解:原式=|4x2﹣y2﹣5x2﹣10xy+x2+4xy+4y2|÷(﹣3y)=|3y2﹣6xy|÷(﹣3y)当3y2﹣6xy>0时,原式=(3y2﹣6xy)÷(﹣3y)=﹣y+2x;当3y2﹣6xy<0时,原式=(﹣3y2+6xy)÷(﹣3y)=y﹣2x.17.解:(1)图①阴影部分的面积可以看作两个正方形的面积差,即a2﹣b2,图②是长为a+b,宽为a﹣b的长方形,因此面积为(a+b)(a﹣b),所以有(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b)=a2﹣b2;(2)原式=(1﹣)(1+)(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)(1﹣)(1+)=××××××…××××=×=.18.解:设另一个因式为(x+m),由题意,得:x2+5x+k=(x﹣2)(x+m),则x2+5x+k=x2+(m﹣2)x﹣2m,∴,解得,∴另一个因式为x﹣7,k的值为﹣14.19.解:(1)(x2+3x+2)(x2﹣x)=x4﹣x3+3x3﹣3x2+2x2﹣2x=x4+2x3﹣x2﹣2x;(2)(x2+□x+2)(x2﹣x)=x4﹣x3+□x3﹣□x2+2x2﹣2x,∵这个题目的正确答案是不含三次项,∴﹣1+□=0,∴□=1,∴原题中被遮住的一次项系数是1.20.解:(1)设2020﹣x=a,x﹣2016=b,则(2020﹣x)(x﹣2016)=ab=2,a+b=(2020﹣x)+(x﹣2016)=4,(2020﹣x)2+(x﹣2016)2=a2+b2=(a+b)2﹣2ab=42﹣2×2=12;故答案为:12;(2)设x﹣2022=a,x﹣2018=b,则(x﹣2022)2+(x﹣2018)2=a2+b2=202,a﹣b=(x﹣2022)﹣(x﹣2018)=﹣4,(x﹣2022)(x﹣2018)=ab=﹣[(a﹣b)2﹣(a2+b2)]=[(﹣4)2﹣202]=93;(3)根据题意可得,CF=CD﹣DF=16﹣x,CE=BC﹣BE=12﹣x,(16﹣x)(12﹣x)=100,设16﹣x=a,12﹣x=b,则(16﹣x)(12﹣x)=ab=100,a﹣b=(16﹣x)﹣(12﹣x)=4,S阴=(16﹣x)2+(12﹣x)2=a2+b2=(a﹣b)2+2ab=42+2×100=216.图中阴影部分的面积和为216平方单位.故答案为:216.21.解:(1)运用了两数和的完全平方公式,故选:C;(2)原式=[(x﹣1)2]2=(x﹣1)4,故答案为:不彻底,(x﹣1)4;(3)设x2﹣4x=y,原式=y(y+8)+16=y2+8y+16=(y+4)2=(x2﹣4x+4)2=(x﹣2)4,即(x2﹣4x)(x2﹣4x+8)+16=(x﹣2)4.22.解:(1)x2﹣2xy+y2﹣16=(x﹣y)2﹣42=(x﹣y+4)(x﹣y﹣4);(2)∵a2﹣ab﹣ac+bc=0∴a(a﹣b)﹣c(a﹣b)=0,∴(a﹣b)(a﹣c)=0,∴a=b或a=c,∴△ABC的形状是等腰三角形.。

八年级上册数学《因式分解》专项练习(word版 有答案)

八年级上册数学《因式分解》专项练习(word版  有答案)

《因式分解》专项练习一、选择1.下列各式由左到右变形中,是因式分解的是( )A.a(x-y)=ax+ayB. x 2+4x+1=x(x+4)+1C. 10x 2-5x=5x(2x-1)D. x 2-16+3x=(x-4)(x+4)+3x3.多项式6x 3y 2-3x 2y 2-18x 2y 3分解因式时,应提取的公因式是( )A. 3x 2yB.3xy 2C. 3x 2y 2D.3x 3y 34.多项式x 3+x 2提取公因式后剩下的因式是( )A. x+1B.x 2C. xD. x 2+15.下列变形错误的是( )A.-x-y=-(x+y)B.(a-b)(b-c)= - (b-a)(b-c)C. –x-y+z=-(x+y+z)D.(a-b)2=(b-a)26.下列各式中能用平方差公式因式分解的是( )A. x 2y 2B.x 2+y 2C.-x 2+y 2D.x-y7.下列分解因式错误的是( )A. 1-16a 2=(1+4a)(1-4a)B. x 3-x=x(x 2-1)C.a 2-b 2c 2=(a+bc)(a-bc)D.m 2-0.01=(m+0.1)(m-0.1)8.下列多项式中,能用公式法分解因式的是( )A.x 2+2xyB. x 2-xyC. x 2-y 2D. x 2+y 2三、解答18.因式分解:(1)x x x2416423-+- (2)32)(12)(8a b b a a ---(3)11242-+-+m m m a a a (m 为正整数) (4)2a 2b 2-4ab+2(5).(x 2+y 2)2-4x 2y 2 (6)(x+y)2-4(x+y-1)19.若a +b =-3,ab =1.求32232121ab b a b a ++ 的值。

20、已知,2x 2-Ax+B=2(x 2+4x-1),请问A 、B 的值是多少?21、若2x 2+mx-1能分解为(2x+1)(x-1),求m 的值。

人教版八年级上册数学第14章整式的乘法与因式分解 单元测试卷(Word版,含答案)

人教版八年级上册数学第14章整式的乘法与因式分解 单元测试卷(Word版,含答案)

人教版八年级上册数学第14章整式的乘法与因式分解单元测试卷题号一二三四总分得分一、选择题(本大题共10小题,共30分。

在每小题列出的选项中,选出符合题目的一项)1.下列各式由左到右的变形中,属于分解因式的是( )A. a(m+n)=am+anB. a2−b2−c2=(a−b)(a+b)−c2C. 10x2−5x=5x(2x−1)D. x2−16+6x=(x+4)(x−4)+6x2.下列各式计算结果为a5的是( )A. a3+a2B. a3×a2C. (a2)3D. a10÷a23.下列等式中,从左到右的变形是因式分解的是( )A. x(x−2)=x2−2xB. (x+1)2=x2+2x+1) D. x2−4=(x+2)(x−2)C. x+2=x(1+2x4.下列等式中,从左到右的变形属于因式分解的是( )A. a(a+2)=a2+2aB. a2−b2=(a+b)(a−b)C. m2+m+3=m(m+1)+3D. a2+6a+3=(a+3)2−65.一个正整数若能表示为两个正整数的平方差,则称这个正整数为“创新数”,例如27=62−32,63=82−12,故27,63都是“创新数”,下列各数中,不是“创新数”的是( )A. 31B. 41C. 16D. 546.代数式yz(xz+2)−2y(3xz2+z+x)+5xyz2的值( )A. 只与x、y有关B. 只与y、z有关C. 与x、y、z都无关D. 与x、y、z都有关7.如图,将一张边长为x的正方形纸板按图中虚线裁剪成三块长方形,观察图形表示阴影部分的面积,则表示错误的是( )A. (x−1)(x−2)B. x2−3x+2C. x2−(x−2)−2xD. x2−38.下列运算正确的是( )A. a⋅a2=a3B. a6÷a2=a3C. 2a2−a2=2D. (3a2)2=6a49.若4x2−(k+1)x+9能用完全平方公式因式分解,则k的值为( )A. ±6B. ±12C. −13或11D. 13或−1110.若x,y,z满足(x−z)2−4(x−y)(y−z)=0,则下列式子一定成立的是 ( )A. x+y+z=0B. x+y−2z=0C. y+z−2x=0D. z+x−2y=0二、填空题(本大题共8小题,共24分)11.分解因式:x2y−4y=.12.计算:(a−b)3⋅(b−a)⋅(a−b)5=.13.若x2+kx+25=(x±5)2,则k=.14.已知(ka m−n b m+n)2=4a4b8,则k+m+n=.15.若x m=3,x n=2,则x2m+3n=______⋅16.已知a2+b2=13,(a−b)2=1,则(a+b)2=.17.如图1,将边长为x的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示长方形.这两个图能解释一个等式是.18.在计算(x+y)(x−3y)−my(nx−y)(m、n均为常数)的值,在把x、y的值代入计算时,粗心的小明把y的值看错了,其结果等于9,细心的小红把正确的x、y的值代入计算,结果恰好也是9,为了探个究竟,小红又把y的值随机地换成了2018,结果竟然还是9,根据以上情况,探究其中的奥妙,计算mn=______.三、计算题(本大题共2小题,共12分)19.计算:(1)(x−1)(x2+x+1);(2)(3a−2)(a−1)−(a+1)(a+2);(3)(x−2)(x2+2x)+(x+2)(x2−2x).20.把下列各式分解因式:(1)8a 3b 2−12ab 3c +6a 3b 2c; (2)5x(x −y)2+10(y −x)3;(3)(a +b)2−9(a −b)2; (4)−4ax 2+8axy −4ay 2; (5)(x 2+2)2−22(x 2+2)+121.四、解答题(本大题共7小题,共54分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级上册数学因式分解专项练习一、填空题:x 2 y 2y 2;1、2、 3 a 2 6 a33、 2x2- 4xy -2x =(x- 2y- 1)4、 4a3b2- 10a2b3 = 2a 2b2 ()5、 (1 - a)mn+a- 1=()(mn- 1)6、 m(m- n) 2- (n - m)2=()()7、 x2- ()+ 16y2 =()28、 a2- 4(a - b) 2=()· ()9、 16(x - y) 2-9(x + y) 2 =()·()10、 (a + b) 3- (a + b)=(a+ b) · ()·()11、 x 2+ 3x +2=()()12、已知 x2+ px+ 12=(x - 2)(x - 6) ,则 p=a 2b 2 2 b 1 0,则 a, b =。

13、若14、若 x 2mx16x42,那么 m=15、如果xy0 ,xy7 ,则x2y xy2,x2y2。

a13 a 2116、已知a,则 a 2的值是17、如果 2a+3b=1, 那么 3-4a-6b=18、若 x 2mx n是一个完全平方式,则m 、 n的关系是19、分解因式:a21 b2 2 ab20、如果 2a 2b 1 2a 2b 163,那么 ab的值为二、选择题:21、下列各式从左到右的变形中,是因式分解的为............()A、 x( a b ) ax bxB、x2 1 y 2( x 1)( x 1) y 2C、 x 2 1 ( x 1)( x 1)D、 ax bx c x( a b) c22、一个多项式分解因式的结果是(b32)(2b3),那么这个多项式是 .................................................()A、b64 B 、4 b6 C 、b64D、b6423、下列各式是完全平方式的是...........................()x 2x1B 、1x2C 、xxy 1 D、x22x 1A、424、把多项式 m 2 ( a 2)m ( 2a )分解因式等于 ...............()A、(a2)(m 2m)B、 (a2)(m 2m)C、 m(a-2)(m-1)D、 m(a-2)(m+1)25、9(ab ) 212 ( a 2 b 2 )4( a b) 2因式分解的结果是 .........()A、 (5a b) 2B、 (5a b) 2C、 (3a2b)(3a2b)D、 (5a2b) 226、下列多项式中,含有因式( y 1)的多项式是 .............()A、 y 22xy3x2B、C、 ( y 1) 2( y21)D、( y1)2( y1) 2 ( y1)22( y1) 127、分解因式 x 4 1 得....................................()A、 (x 21)( x 21)B、 ( x 1) 2 ( x 1) 2C、 (x 1)( x 1)( x 21)D、 (x 1)( x 1)328 、已知多项式2 x2bx c 分解因式为2 ( x3 )( x1) ,则 b, c 的值为.................................................()A、b3,c1B、b6, c2C、b6, c4D、b4,c629、 a、b、c 是△ABC的三边,且a2 b 2 c 2ab ac bc,那么△ ABC 的形状是.............................................()A、直角三角形B、等腰三角形C、等腰直角三角形D、等边三角形30、x a x 2ax a 2的计算结果是....................()(A)、 x32ax2a3(B)、 x3a3(C)、 x32a2 x a3(D)、 x22ax22a2a331 、用提提公因式法分解因式 5a(x - y) - 10b · (x- y) ,提出的公因式应当为...........................................()A、 5a- 10bB、 5a+ 10bC、 5(x - y)D、 y- x32、把- 8m3+ 12m2+ 4m分解因式,结果是 ..................()A、- 4m(2m2- 3m)B、-4m(2m2+3m-1)C、- 4m(2m2- 3m-1)D、-2m(4m2-6m+2)33、把 16- x4 分解因式,其结果是..........................()A、 (2 - x)4B、(4+x2)( 4-x2)C、 (4 + x2)(2 + x)(2 - x)D、(2+x) 3(2-x)34、把 a4- 2a2b2+ b4 分解因式,结果是......................()A、 a2 (a 2- 2b2) + b4B、(a 2-b2) 2C、 (a - b)4D、(a+b) 2(a-b) 2135、把多项式 2x2- 2x +2分解因式,其结果是 ..............()1111A、 (2x -2) 2 B、 2(x -2) 2 C 、(x -2) 2D、2(x - 1) 236、若 9a2+ 6(k - 3)a + 1 是完全平方式,则k 的值是 .........()A、± 4B、± 2C、3D、4 或 237、-( 2x- y) (2x + y) 是下列哪个多项式分解因式的结果... ()A、 4x2- y2 B 、 4x2+ y2 C 、- 4x 2- y2 D、- 4x2+ y238、多项式x2 +3x- 54 分解因式为 ........................()A、 (x + 6)(x- 9)B、 (x - 6)(x + 9)C、 (x + 6)(x+ 9)D、 (x - 6)(x - 9)39 、若 a 、 b 、 c为一个三角形的三边,则代数式( a - c ) 2 - b2 的值为 .................................................()A、一定为正数 B 、一定为负数C、可能为正数,也可能为负数D、可能为零40、下列分解因式正确的是..............................()(A) x3x x( x21) .(B)m2m 6(m 3)( m2) .(C) (a4)( a 4)a216 .(D)x2y2(x y)( x y) .41、如图:矩形花园ABCD中,AB a , AD b ,花园中建有一条矩形道路LMPQ及一条平行四边形道路RSTK。

若LM RS c,则花园中R SA DL QM PB K T C可绿化部分的面积为..................................()(A) bc ab ac b2.(B)a2ab bc ac .(C) ab bc ac c2.(D)b2bc a2ab .42、在边长为 a 的正方形中挖掉一个边长为 b 的小正方形( a>b)。

把余下的部分剪拼成一个矩形(如图)。

通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是 ...........()A、 a 2 b 2( a b)( a b)B、(ab)2 a 22ab b 2C、(ab)2 a 22ab b 2D、 a 2ab a(a b)三、将下列各式分解因式1、 x2- 2x32、 3y3- 6y2+3y3、 a2(x - 2a) 2- a(x - 2a) 24、 (x - 2) 2- x+25、 25m2- 10mn+ n26、 12a2b(x - y) - 4ab(y - x)7、 (x - 1) 2(3x - 2) + (2 - 3x)8、 a2+5a+69、 x2- 11x+ 2410、 y2- 12y -2811、 x2+ 4x- 512、y4- 3y3-28y213、 8( a- b)2- 12( b- a).14、( a+2b)2- a2- 2ab.15、- 2( m- n)2+3216、 x(x- 5)2+x(x- 5)( x+5)17、 2a( x21)22ax 22x 22x118、219、a2b24a 4b20、x2y2 1 2xy21、2m(a-b)-3n(b-a)22、( a b)(3a b)2(a 3b)2(b a)四、计算、化简、求值x2 y21、已知 x( x-1)-( x2-y) =- 2,求2-xy的值.12、已知: x+ y= 2 ,xy=1. 求 x3y+2x 2y2+ xy 3的值。

3、已知a b2 , ab1 a3b a2b2 1 ab32,求 22的值。

x x 2 y 2xy y ( x 2x 3 y ) 3 x 2 y4、计算:五、解答题1、已知:m2n 2, n2m 2 m n,求: m32mn n3的值.2、已知 a+ b=0,求 a3- 2b3+ a2b- 2ab2的值.3、求证:四个连续自然数的积再加上1,一定是一个完全平方数.4、证明: (ac -bd) 2+ (bc +ad)2=(a 2+ b2)(c 2+ d2) .5、已知 a=k+ 3, b=2k + 2, c=3k - 1,求 a2+b2+ c2+ 2ab-2bc - 2ac 的值.6、若 x2+ mx+n=(x - 3)(x + 4) ,求 (m+ n) 2的值.7、当 a 为何值时,多项式x2+ 7xy + ay2- 5x+ 43y - 24 可以分解为两个一次因式的乘积.8、已知三个连续奇数的平方和为251,求这三个奇数。

9、已知a、b、c是△ ABC 的三边的长,且满足a22b 2 c 22b( a c) 0 ,试判断此三角形的形状。

10、大正方形的周长比小正方形的周长长96 厘米,它们的面积相差960 平方厘米。

求这两个正方形的边长。

相关文档
最新文档