2018-2019年高一上期中考试数学试卷及答案

合集下载

苏教版2018-2019学年高一(上)期中数学试卷(精品Word版,含答案解析)

苏教版2018-2019学年高一(上)期中数学试卷(精品Word版,含答案解析)

2018-2019学年高一(上)期中数学试卷一.选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是正确的)1.已知全集U={x|x≥2},集合M={x|x≥3},则∁U M=()A.{x|2≤x≤3}B.{x|2≤x<3}C.{x|x≤3}D.{x|x<2}2..设集合M={x|2x>3},N={x|(x﹣1)(x+3)<0},则()A.M=N B.M⊆N C.N⊆M D.M∩N=∅3.下列函数是偶函数,且在(0,+∞)是增函数的是()A.f(x)=x2+2x B.f(x)=x﹣2C.f(x)=|x|D.f(x)=lnx4.已知函数f(x)=的定义域为R,则实数k的取值范围是()A.k≠0B.0≤k≤4C.0≤k<4D.0<k<45.已知函数f(x)为偶函数,当x∈[0,+∞)时,f(x)=x﹣1,则f(x)<0的解集是()A.(0,1)B.(﹣1,1)C.(﹣1,0)D.(﹣∞,﹣1)∪(0,1)6.若(a+1)<(3﹣2a),则a的取值范围是()A.()B.()C.()D.()7.若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x﹣a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(﹣∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(﹣∞,a)和(c,+∞)内8.已知函数f(x)的定义域为(﹣1,1),则函数g(x)=f()+f(x﹣1)的定义域为()A.(1,2)B.(0,2)C.(0,1)D.(﹣1,1)9.已知a=2,b=log2,c=log23,d=log45.则()A.a>c<d>b B.b<a<c<d C.b<a<d<c D.c>a>d>b10.函数f(x)=log(x2﹣4x)的单调递增区间为()A.(﹣∞,2)B.(2,+∞)C.(﹣∞,4)D.(4,+∞)11.若方程x2﹣4|x|+3=m有四个互不相等的实数根,则m的取值范围是()A.(﹣∞,﹣1)B.(﹣1,3)C.(3,+∞)D.(﹣1.+∞)12.对于函数f(x)=(|x﹣2|+1)4,给出如下三个命题:①f(x+2)是偶函数;②f(x)在区间(﹣∞,2)上是减函数,在区间(2,+∞)上是增函数;③f(x)没有最小值.其中正确的个数为()A.1B.2C.3D.0二.填空题:(本题共4小题,每小题5分,共20分)13.函数y=的定义域为.14.函数f(x)=a+2(a>0且a≠1)的图象过定点;15.已知函数,则f(log23)=.16.已知函数f(x)=a(e x﹣e﹣x)+b+2,若f(lg3)=3,则f(lg)=.三.解答题:(本题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)计算下列各式:(1)(2)﹣(﹣9.6)0﹣(3)+(1.5)﹣2;(2)log3+lg25+lg4+7.18.(12分)已知集合A={x|x2﹣x﹣2<0},B={x|x2﹣(2a+1)x+a(a+1)<0},且B⊆A,求实数a的取值范围.19.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=2,f(x+1)﹣f(x)=2x﹣1(Ⅰ)求函数f(x)的解析式;(Ⅱ)当x∈[﹣1,2]时,求函数的最大值和最小值.(Ⅲ)若函数g(x)=f(x)﹣mx的两个零点分别在区间(﹣1,2)和(2,4)内,求m的取值范围.20.(12分)已知函数.(1)试判断f(x)的单调性,并证明你的结论;(2)若f(x)为定义域上的奇函数,求函数f(x)的值域.21.(12分)已知函数f(x)=log2x的定义域是[2,16].设g(x)=f(2x)﹣[f(x)]2.(1)求函数g(x)的解析式及定义域;(2)求函数g(x)的最值.22.(12分)定义在R上的函数y=f(x).对任意的a,b∈R.满足:f(a+b)=f(a)•f(b),当x>0时,有f(x)>1,其中f(1)=2.(1)求f(0),f(﹣1)的值;(2)判断该函数的单调性,并证明;(3)求不等式f(x+1)<4的解集.2018-2019学年黑龙江省哈师大附中高一(上)期中数学试卷参考答案与试题解析一.选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是正确的)1.已知全集U={x|x≥2},集合M={x|x≥3},则∁U M=()A.{x|2≤x≤3}B.{x|2≤x<3}C.{x|x≤3}D.{x|x<2}【分析】根据补集的定义,写出∁U M.【解答】解:全集U={x|x≥2},集合M={x|x≥3},则∁U M={x|2≤x<3}.故选:B.【点评】本题考查了补集的定义与应用问题,是基础题.2..设集合M={x|2x>3},N={x|(x﹣1)(x+3)<0},则()A.M=N B.M⊆N C.N⊆M D.M∩N=∅【分析】由2x>3,得x>log23,由(x﹣1)(x+3)<0,得﹣3<x<1即M=(log23,+∞),N=(﹣3,1),得M∩N=∅.【解答】解:∵2x>3∴x>log23,即M=(log23,+∞)又∵(x﹣1)(x+3)<0,∴﹣3<x<1∴N=(﹣3,1),又∵log23>1,∴M∩N=∅故选:D.【点评】本题考查了指数不等式与二次不等式的解法,属简单题.3.下列函数是偶函数,且在(0,+∞)是增函数的是()A.f(x)=x2+2x B.f(x)=x﹣2C.f(x)=|x|D.f(x)=lnx【分析】根据题意,依次分析选项,综合即可得答案.【解答】解:根据题意,依次分析选项:对于A,f(x)=x2+2x,不是偶函数,不符合题意;对于B,f(x)=x﹣2=,是偶函数,在(0,+∞)是减函数,不符合题意;对于C,f(x)=|x|=,是偶函数,且在(0,+∞)是增函数,符合题意;对于D,f(x)=lnx,不是偶函数,不符合题意;故选:C.【点评】本题考查函数的奇偶性与单调性的判断,关键是掌握常见函数的奇偶性与单调性,属于基础题.4.已知函数f(x)=的定义域为R,则实数k的取值范围是()A.k≠0B.0≤k≤4C.0≤k<4D.0<k<4【分析】根据f(x)的定义域为R,即可得出不等式kx2+kx+1≥0的解集为R,显然k=0时满足题意,而当k≠0时,则满足,解出k的范围即可.【解答】解:∵f(x)的定义域为R;∴不等式kx2+kx+1≥0的解集为R;①k=0时,1≥0恒成立,满足题意;②k≠0时,;解得0<k≤4;综上得,0≤k≤4.故选:B.【点评】考查函数定义域的概念及求法,以及一元二次不等式ax2+bx+c≥0的解集和判别式△取值的关系.5.已知函数f(x)为偶函数,当x∈[0,+∞)时,f(x)=x﹣1,则f(x)<0的解集是()A.(0,1)B.(﹣1,1)C.(﹣1,0)D.(﹣∞,﹣1)∪(0,1)【分析】由已知得f(x)在(﹣∞,0)单调递减,且f(﹣1)=0,结合简图易得结果.【解答】解:∵f(x)为偶函数,∴f(x)图象关于y轴对称,∵当x∈[0,+∞)时,f(x)=x﹣1,∴f(x)在[0,+∞)单调递增,且f(1)=0,∴f(x)在(﹣∞,0)单调递减,且f(﹣1)=0,∴f(x)<0的解集是(﹣1,1).故选:B.【点评】本题主要考查不等式的解法,利用函数的奇偶性和单调性之间的关系是解决本题的关键,综合考查函数性质的应用.6.若(a+1)<(3﹣2a),则a的取值范围是()A.()B.()C.()D.()【分析】用a=1排除A、D,由底数大于0,排除B.【解答】解:a=1时,2<1成立,排除A、D又3﹣2a>0得a<,排除B,故选:C.【点评】本题考查了其它不等式的解法,属基础题.7.若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x﹣a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(﹣∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(﹣∞,a)和(c,+∞)内【分析】由函数零点存在判定定理可知:在区间(a,b),(b,c)内分别存在一个零点;又函数f(x)是二次函数,最多有两个零点,即可判断出.【解答】解:∵a<b<c,∴f(a)=(a﹣b)(a﹣c)>0,f(b)=(b﹣c)(b﹣a)<0,f (c)=(c﹣a)(c﹣b)>0,由函数零点存在判定定理可知:在区间(a,b),(b,c)内分别存在一个零点;又函数f(x)是二次函数,最多有两个零点,因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内.故选:A.【点评】熟练掌握函数零点存在判定定理及二次函数最多有两个零点的性质是解题的关键.8.已知函数f(x)的定义域为(﹣1,1),则函数g(x)=f()+f(x﹣1)的定义域为()A.(1,2)B.(0,2)C.(0,1)D.(﹣1,1)【分析】根据f(x)的定义域,可看出,要使得函数g(x)有意义,则需满足,解出x的范围即可.【解答】解:∵f(x)的定义域为(﹣1,1);∴要使g(x)有意义,则;解得1<x<2;∴g(x)的定义域为(1,2).故选:A.【点评】考查函数定义域的概念及求法,已知f(x)定义域,求f[g(x)]定义域的方法.9.已知a=2,b=log2,c=log23,d=log45.则()A.a>c<d>b B.b<a<c<d C.b<a<d<c D.c>a>d>b【分析】直接利用对数的运算性质进行大小比较.【解答】解:∵0<a=2<20=1,b=log2<log21=0,c=log23>1,d=log45>1.且.∴b<a<d<c.故选:C.【点评】本题考查对数值的大小比较,考查对数的运算性质,是基础题.10.函数f(x)=log(x2﹣4x)的单调递增区间为()A.(﹣∞,2)B.(2,+∞)C.(﹣∞,4)D.(4,+∞)【分析】先求得函数的定义域,本提即求t=x2﹣4x在定义域内的增区间,再利用二次函数的性质得出结论.【解答】解:由函数f(x)=log(x2﹣4x),可得x2﹣4x>0,求得x<0,或x>4,故函数的定义域为{x|x<0,或x>4 },本题即求t=x2﹣4x在定义域内的增区间.再利用二次函数的性质可得t=x2﹣4x在定义域内的增区间为(4,+∞),故选:D.【点评】本题主要考查复合函数的单调性,对数函数、二次函数的性质,属于中档题.11.若方程x2﹣4|x|+3=m有四个互不相等的实数根,则m的取值范围是()A.(﹣∞,﹣1)B.(﹣1,3)C.(3,+∞)D.(﹣1.+∞)【分析】作出y=x2﹣4|x|+3的函数图象,根据图象得出m的范围.【解答】解:作出y=x2﹣4|x|+3的函数图象如图所示:∵程x2﹣4|x|+3=m有四个互不相等的实数根,∴直线y=m与y=x2﹣4|x|+3的函数图象有4个交点,∴﹣1<m<3.故选:B.【点评】本题考查了方程解的个数与函数图象的关系,属于中档题.12.对于函数f(x)=(|x﹣2|+1)4,给出如下三个命题:①f(x+2)是偶函数;②f(x)在区间(﹣∞,2)上是减函数,在区间(2,+∞)上是增函数;③f(x)没有最小值.其中正确的个数为()A.1B.2C.3D.0【分析】由奇偶性的定义可判断①;讨论x>2,x<2,求得f(x),以及导数,判断符号,即可判断②;由f(x)的单调性可判断③.【解答】解:函数f(x)=(|x﹣2|+1)4,设g(x)=f(x+2)=(|x|+1)4,g(﹣x)=g(x),可得g(x)是偶函数,故①正确;x>2时,f(x)=(x﹣1)4的导数为f′(x)=4(x﹣1)3>0;x<2时,f(x)=(3﹣x)4递,导数为f′(x)=4(x﹣3)3<0,可得f(x)在区间(﹣∞,2)上是减函数,在区间(2,+∞)上是增函数,故②正确;由②可得f(x)在x=2处取得最小值1,故③错误.故选:B.【点评】本题考查函数的奇偶性和单调性、最值的求法,考查导数的运用和奇偶性定义的应用,考查运算能力,属于基础题.二.填空题:(本题共4小题,每小题5分,共20分)13.函数y=的定义域为.【分析】函数y=有意义,可得0<5x﹣3≤1,解不等式即可得到所求定义域.【解答】解:函数y=有意义,可得,即为0<5x﹣3≤1,解得<x≤,则定义域为.故答案为:.【点评】本题考查函数的定义域的求法,注意运用对数的真数大于0,以及偶次根式被开方数非负,考查运算能力,属于基础题.14.函数f(x)=a+2(a>0且a≠1)的图象过定点(1,3);【分析】令幂指数等于零,求得x,y的值,可得函数的图象经过定点的坐标.【解答】解:对于函数f(x)=a+2(a>0且a≠1),令x2﹣2x+1=0,求得x=1,y =3,可得函数f(x)=a+2(a>0且a≠1)的图象过定点(1,3),故答案为:(1,3).【点评】本题主要考查指数函数的图象经过定点问题,属于基础题.15.已知函数,则f(log23)=.【分析】先判断出log23的范围,代入对应的解析式求解,根据解析式需要代入同一个式子三次,再把所得的值代入另一个式子求值,需要对底数进行转化,利用进行求解.【解答】解:由已知得,,且1<log23<2,∴f(log23)=f(log23+1)=f(log23+2)=f(log23+3)=f(log224)==.故答案为:.【点评】本题的考点是分段函数求值,对于多层求值按“由里到外”的顺序逐层求值,一定要注意自变量的值所在的范围,然后代入相应的解析式求解,此题利用了恒等式进行求值.16.已知函数f(x)=a(e x﹣e﹣x)+b+2,若f(lg3)=3,则f(lg)=1.【分析】f(lg3)=a(e lg3﹣e﹣lg3)+b+2=3,从而a(e lg3﹣e﹣lg3)+b=2,进而f(lg)=a(﹣)+g+3=﹣[a(e lg3﹣e﹣lg3)+b]+3,由此能求出结果.【解答】解:∵函数f(x)=a(e x﹣e﹣x)+b+2,f(lg3)=3,∴f(lg3)=a(e lg3﹣e﹣lg3)+b+2=3,∴a(e lg3﹣e﹣lg3)+b=2,∴f(lg)=a(﹣)+g+3=﹣[a(e lg3﹣e﹣lg3)+b]+3=﹣2+3=1.故答案为:1.【点评】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.三.解答题:(本题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)计算下列各式:(1)(2)﹣(﹣9.6)0﹣(3)+(1.5)﹣2;(2)log3+lg25+lg4+7.【分析】(1)根据指数幂的运算性质计算即可,(2)根据对数的运算性质计算即可.【解答】解:(1)原式=﹣1﹣+=,(2)原式=﹣+lg100+2=﹣+2+2=.【点评】本题考查了指数幂和对数的运算性质,属于基础题18.(12分)已知集合A={x|x2﹣x﹣2<0},B={x|x2﹣(2a+1)x+a(a+1)<0},且B⊆A,求实数a的取值范围.【分析】先确定A、B,由B⊆A得,得﹣1≤a≤1.【解答】解:A={x|﹣1<x<2},B={x|a<x<a+1},∵B⊆A,∴,∴﹣1≤a≤1.【点评】本题考查的知识点是集合的包含关系判断及应用,集合关系中的参数问题,难度中档.19.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=2,f(x+1)﹣f(x)=2x﹣1(Ⅰ)求函数f(x)的解析式;(Ⅱ)当x∈[﹣1,2]时,求函数的最大值和最小值.(Ⅲ)若函数g(x)=f(x)﹣mx的两个零点分别在区间(﹣1,2)和(2,4)内,求m的取值范围.【分析】(Ⅰ)利用f(0)=2,f(x+1)﹣f(x)=2x﹣1,直接求出a、b、c,然后求出函数的解析式.(Ⅱ)利用二次函数的对称轴与区间的关系,直接求解函数的最值.(Ⅲ)利用g(x)的两个零点分别在区间(﹣1,2)和(2,4)内,列出不等式组,即可求出M的范围.【解答】(本小题满分14分)解:(Ⅰ)由f(0)=2,得c=2,又f(x+1)﹣f(x)=2x﹣1得2ax+a+b=2x﹣1,故解得:a=1,b=﹣2,所以f(x)=x2﹣2x+2.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(a,b,c各(1分),解析式1分)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)f(x)=x2﹣2x+2=(x﹣1)2+1,对称轴为x=1∈[﹣1,2],故f min(x)=f(1)=1,又f(﹣1)=5,f(2)=2,所以f max(x)=f(﹣1)=5.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)(Ⅲ)g(x)=x2﹣(2+m)x+2,若g(x)的两个零点分别在区间(﹣1,2)和(2,4)内,则满足﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)解得:.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)【点评】本题考查二次函数的解析式的求法,二次函数的性质与最值的求法,零点判定定理的应用,考查计算能力.20.(12分)已知函数.(1)试判断f(x)的单调性,并证明你的结论;(2)若f(x)为定义域上的奇函数,求函数f(x)的值域.【分析】(1)f(x)是增函数,利用单调性的定义进行证明;(2)先求出a,再求函数f(x)的值域.【解答】解:(1)f(x)是增函数.证明如下:函数f(x)的定义域为(﹣∞,+∞),且,任取x1,x2∈(﹣∞,+∞),且x1<x2,则.∵y=2x在R上单调递增,且x1<x2,∴,∴f(x2)﹣f(x1)>0,即f(x2)>f(x1),∴f(x)在(﹣∞,+∞)上是单调增函数.(2)∵f(x)是定义域上的奇函数,∴f(﹣x)=﹣f(x),即对任意实数x恒成立,化简得,∴2a﹣2=0,即a=1.(也可利用f(0)=0求得a=1)∴,∵2x+1>1,∴,∴,∴.故函数f(x)的值域为(﹣1,1).【点评】本题考查函数的单调性与奇偶性,考查函数的值域,考查学生的计算能力,属于中档题.21.(12分)已知函数f(x)=log2x的定义域是[2,16].设g(x)=f(2x)﹣[f(x)]2.(1)求函数g(x)的解析式及定义域;(2)求函数g(x)的最值.【分析】第一步得到解析式和x的范围后注意整理;第二步换元时要注意新元的范围,为下面的函数求值域做好基础.【解答】解:(1)由题意可得g(x)=,且,进一步得:,且定义域为【2,8】,(2)令t=log2x,则t∈[1,3],h(t)=﹣t2+t+1,∵h(t)在【1,3】递减∴h(t)的值域为【h(3),h(1)】,即【﹣5,1】,∴当x=8时,g(x)有最小值﹣5,当x=2时,g(x)有最大值1.【点评】此题考查了求函数解析式的基础方法,确定定义域和换元需注意的地方,并综合考查了二次函数求最值,综合性较强,难度不大.22.(12分)定义在R上的函数y=f(x).对任意的a,b∈R.满足:f(a+b)=f(a)•f(b),当x>0时,有f(x)>1,其中f(1)=2.(1)求f(0),f(﹣1)的值;(2)判断该函数的单调性,并证明;(3)求不等式f(x+1)<4的解集.【分析】(1)根据题意,用特殊值法分析:令a=1,b=0,则f(1)=f(0)•f(1),可得f (0)的值,令a=1,b=﹣1,则f(0)=f(1)•f(﹣1),分析可得f(﹣1)的值;(2)任取x1,x2∈(﹣∞,+∞)且x1<x2,则有x2﹣x1>0,则f(x2﹣x1)>1,进而有f(x2)=f[(x2﹣x1)+x1]=f(x2﹣x1)•f(x1)>f(x1),结合单调性的定义分析可得结论;(3)根据题意,f(2)=f(1+1)=f(1)•f(1)=4,据此分析可得f(x+1)<4⇒f(x+1)<f(2)⇒x+1<2,解可得x的取值范围,即可得答案.【解答】解:(1)根据题意,对任意的a,b∈R,满足f(a+b)=f(a)•f(b);令a=1,b=0,则f(1)=f(0)•f(1),又由f(1)>1,则f(0)=1;令a=1,b=﹣1,则f(0)=f(1)•f(﹣1),又由f(1)=2,则;(2)f(x)在(﹣∞,+∞)上单调递增;任取x1,x2∈(﹣∞,+∞)且x1<x2,则有x2﹣x1>0,则f(x2﹣x1)>1,f(x2)=f[(x2﹣x1)+x1]=f(x2﹣x1)•f(x1)>f(x1),则f(x2)﹣f(x1)>0,即函数f(x)为增函数;(3)根据题意,f(2)=f(1+1)=f(1)•f(1)=4,则f(x+1)<4⇒f(x+1)<f(2)⇒x+1<2,解可得:x<1,即不等式的解集为(﹣∞,1).【点评】本题考查抽象函数的应用,涉及函数的奇偶性与单调性的证明与综合应用,注意用赋值法分析.。

一中2018-2019学年高一上学期期中考试数学试卷含答案

一中2018-2019学年高一上学期期中考试数学试卷含答案

= a ; ② ( a 2 - 2a - 3 )0= 1 ; ③ 3 - 3 = 6 - 3 2 ;⎧ x + 3 (x < 0)6.设 f x = ⎨ (( ) f x - 2)(x ≥ 0)⎩应 县 一 中 高 一 年 级 期 中 考 试数学试题2018.10时间:120 分钟满分:150 分 命题人:一.选择题(本大题共 12 小题,每小题 5 分,共 60 分.在每个题给出的四个选 项中,有且只有一项是符合题目要求的,请将答案填写在答卷纸上) .1.log [log (log 81)]的值为( 6 4 3).A .-1B .1C .0D .22. 函数 y = 1 - 3x 的定义域是().A . (-∞,0]B . [1,+∞ )C . [0, +∞)D . (-∞, +∞)3.下列函数在区间(0,+ ∞ )上是增函数的是 ().A . y =1xB . f(x)= e xC . 1y = ( ) x3D . y = x 2 - 2 x - 154. 如果偶函数 f ( x ) 在区间 [a ,b ]上有最大值 M ,那么 f ( x ) 在区间 [- b , - a ] 上().A .有最小值-MB .没有最小值C .有最大值 MD .没有最大值5 .下列各式:①n a n( )④ log 18 - log 2 = 2 .其中正确的个数是() 33A .3B .2C .1D .0,则 f ( log 3 )的值为 ( ).2A . log 3B . log 6C . log 3 + 3D .0 2227.函数 y = a x + b (a > 0且a ≠ 1)与 y = ax + b 的图象有可能是() .()A .(- ∞ , )B .( ,+ ∞ )C .(-1, ]D .[ ,a 3 ⎪ ,c = f ⎪ ,则 a ,b ,c 的大小关系是(8.函数 y = lg 4 + 3x - x 2 的单调增区间为().333322224)9.设集合 A= { , b , c },B= {0,1}.则从 A 到 B 的映射共有().A .3 个B .6 个C .8 个D .9 个10.已知 f (x )是定义在 R 上的偶函数,且在(0,+∞)上是增函数,设 a =f (-3),b = f ⎛ log ⎝ 1 ⎫ ⎛ 4 ⎫2 ⎭ ⎝3 ⎭).A .a <c <bB .b <a <cC .c <b <aD .b <c <a11.能够把圆 O (圆心在坐标原点,半径为r 的圆)的周长和面积同时分为相等的两部分的函数称为圆 O 的“和谐函数”,下列函数① f (x )= 3x ;② y = x | x | ; ③f ( x ) = 4 x 3 + x ;④ f (x )= 2 x - 2- x 是圆 O 的“和谐函数”的是().A .①②③④B .①②③C .①②D .①12.若函数 f ( x ) = log (m - x ) 在区间 [4,5]上的最大值比最小值大 1 ,则实数 m = m().5 ± 55- 5A .3 ± 5B .3 ± 5 或C .3 + 5 或D .3 + 5224( 3(1) (0.25) 2- [-2 ⨯ ( )二.填空题(本大题共 4 小题,每小题 5 分,共 20 分, 请将答案填写在答卷纸上) 13. 函数 y = a x + 3 (a > 0且a ≠ 1)恒过定点.14. 若 log a 3< 1 ,则 a 的取值范围是 .15. 若集合 M = { y | y = 2x } , N = { y | y = x 2} ,则下列结论①M N = {(2,2 ), (4,16)};② M⑥ MN = {2,4} ;③ M N = {4,16};④ M = N ;⑤ M N ;N = [0, +∞) .其中正确的结论的序号为_____________.16. 已知 f (x )= x 2 + 2(a -1)x + 2 在 [1,5] 上的最大值为 f1),则 a 的取值范围是.三、解答题:(本大题共 6 个小题,共 70 分.解答应写出文字说明,证明过程或演算步骤. 把答案填在答题卷上)取值范围 17.(本小题满分 10 分)计算题:1 74 1 0 ]2 ⨯ [(-2) 3 ] 3 + ( 2 - 1) -1 - 2 2 ;(2)已知 log 3 2 = a , 3b = 5 ,用 a 、 b 表示 log330.18. (本小题满分 12 分) 已知函数 2f ( x ) = 1 - .x(1)若 g ( x ) = f ( x ) - a 为奇函数,求 a 的值;(2)试判断 f ( x ) 在 (0, +∞ ) 内的单调性,并用定义证明.19.(本小题满分 12 分)二次函数 f (x )的最小值为 1,且 f (0)=f (2)=3.(1)求 f (x )的解析式;(2)若 f (x )在区间[2a ,a +1]上不单调,求 a 的取值集合.( ) (2)作出函数 f (x )的图象,并指出其单调区间.,20.(本小题满分 12 分)已知 y =f (x )是定义在 R 上的偶函数,当 x ≥ 0 时,f (x )= log x + 1 .2(1)求当 x <0 时,f (x )的解析式;yox21. (本小题满分 12 分) 设 a >0 且 a ≠1,函数 y =a 2x +2a x -1 在[-1,1]上的最大值是 14,求 a 的值.22 . ( 本 小 题 满 分 12 分 ) f (x ) 是 定 义 在 R 上 的 函 数 , 对 x , y ∈ R 都 有f (x + y )= f (x )+ f (y ),且当 x >0 时, f (x )<0,且 (1)求 f (0) f (- 2)的值;(2)求证: f (x )为奇函数;(3)求 f (x )在[-2,4]上的最值.f (-1)=1.6.B [解析] 当 n 为偶数时, a n =|a |,故①错;a =-1 或 3 时,( a 2 - 2a - 3 )0 无意义,10.D 解析a =f(- 3)=f( 3),b =f(log 1)=f(log 2),c = f ⎛ ⎫⎪ .∵0<log 2<1,1< < 3,∴ 3> >log 2.∵f (x )在(0,+∞)上是增函⎝ 3 ⎭13.(0,4)14.0, ⎪ (1,+∞ ) 15.③,⑤3 30 = log 302 (log 5 + log 2 + 1) = (a + b + 1) ……………………10 分= 22高一期中数学答案 2018.101—5 CABCC 6—10 BDCCD 11-12 AD1.因为 B = {x | x 2 > 1} = {x | x < -1或x > 1} ,所以 A B = {x |1 < x ≤ 2}.选 C .n故②错;63 33 3 2= 3, -3=- 3,故③错;④对.8.D [解析] x = (log 3)-1 + (log 3)-1 = log 2 + log 5 = log 10 , 2 5333log 9 < log 10 < log 27 . 3 3332 34 4 4 3 3 3 3数,∴a >c >b .12.D 显然 m - x > 0 ,而 x ∈ [4,5] ,则 m > 5 ,得[4,5] 是函数 f ( x ) = log (m - x )m的递减区间∴f ( x )max= log (m - 4) , f ( x )mmin= log (m - 5) ,m即 log (m - 4) - log (m - 5) = 1 ,得 m 2 - 6m + 4 = 0 ,mmm = 3 ± 5 ,而 m > 1,则 m = 3 + 5⎛ 3 ⎫ ⎝ 4 ⎭16. ( - ∞,-2]15.解析: M = { y | y = 2x > 0} = (0, +∞) ; N = { y | y = x 2 ≥ 0} = [0, +∞)17.解:(1) - 1252……………………5 分(2)∵ 3b = 5 , b = log 5 ∴ log 3 131 13 318.解:(Ⅰ)由已知 g ( x ) = f ( x ) - a 得: g ( x ) = 1 - a - 2x,= -(1- a - 1 2 x x则 2a <1<a +1,∴0<a < .1∴a 的取值集合为 ⎨a 0 < a < ⎬ ……………………12 分⎧或写成 a ∈ (0, )(∴当 x <0 时,f (x ) = log 1 - x . ……………6 分⎧l o g (x + 1)(x ≥ 0) (2) 由 (1) 知 , f x = ⎨ (∵ g ( x ) 是奇函数,∴ g (- x ) = - g ( x ) 对定义域任意 x 成立,即1 - a -22) ,(- x )x解得 a = 1. ……………………6 分(Ⅱ)设 0 < x < x , 则 f ( x ) - f ( x ) = 1 - 1 2 1 2 2 2 2( x - x )- (1- ) =. x x x x1 2 1 2∵ 0 < x < x ,∴ x - x < 0, x x > 0 ,从而 2( x 1 - x 2 ) < 0 ,12121 21 2即 f ( x ) < f ( x ) .所以函数 f ( x ) 在 (0, +∞) 内是单调增函数. (12)12分19.解:(1)∵f (x )为二次函数且 f (0)=f (2), ∴对称轴为 x =1.又∵f (x )最小值为 1,∴可设 f (x )=a (x -1)2+1 (a >0)∵f (0)=3,∴a =2,∴f (x )=2(x -1)2+1,即 f (x )=2x 2-4x +3. ……………………6 分(2)由(1)知抛物线的对称轴是 x = 1 ,∴要使 f (x )在区间[2a ,a +1]上不单调,21 ⎫⎩2 ⎭1220.解:(1)当 x <0 时,-x >0,y∴f (-x )= log2[(- x )+ 1]= log 1 - x ),2又 f (x )是定义在 R 上的偶函数,∴f (-x )=f (x ),ox( ) 2( ) 2⎩l o g1 - x )(x < 0) 作 出 f(x) 的 图 象 如 图 所221.【答案】a = 或 3当 0<a <1 时,x∈[-1,1],t =a x ∈ ⎢a , ⎥ ,此时 f(t)在 ⎢a , ⎥ 上为增函数.所以 f(t)max =f⎪ = ⎛ 1+ 1⎪ 2-2=14.-1所以 ⎛ 1 + 1⎪ 2=16,所以 a =- 1 或 a = .②当 a >1 时,x∈[-1,1],t =a x ∈ ⎢ , a ⎥ ,此时 f(t)在 ⎢, a ⎥ 上是增函数.示:…………10 分由图得函数 f (x )的递减区间是(-∞,0],递增区间是[0,+∞).……………12 分1 3解:令 t =a x (a >0 且 a ≠1),则原函数化为 y =(t +1)2-2(t>0), 在 t ∈ (- ∞, )上是增函数,在 t ∈ (-1,+∞)上是减函数.……………………4 分⎡ 1 ⎤ ⎣ a ⎦⎡ 1 ⎤ ⎣ a ⎦⎛ 1 ⎫ ⎝ a ⎭ ⎝ a ⎭⎫ ⎝ a⎭ 1 5 3又因为 0<a <1,所以 a =13.……………………8 分⎡ 1 ⎤ ⎣ a⎦⎡ 1 ⎤ ⎣ a⎦所以 f(t)max =f(a )=(a +1)2-2=14,解得 a =3(a =-5 舍去).综上得 a = 13或 3. ……………………12 分22. [解析] (1)f (x )的定义域为 R ,令 x =y =0,则 f (0)=f (0)+f (0),∴f (0)=0,∵f (-1)=1,∴f (-2)=f (-1)+f (-1)=2,……………………3 分(2)令 y =-x ,则 f (x -x )=f (x )+f (-x ), ∴f (-x )+f (x )=f (0)=0,∴f (-x )=-f (x ),∴f (x )是奇函数.……………………6 分 (3)设 x 2> x 1,f (x )-f (x )=f (x )+f (-x )=f (x -x )212121∵x -x >0,∴f (x -x )<0,2121∴f (x )-f (x )<0,21即 f (x )<f (x ),21∴f (x )在 R 上为减函数.…………………10 分 ∵f (x )为奇函数,∴f (2)=-f (-2)=-2,∴f (4)=f (2)+f (2)=-4,∵f (x )在[-2,4]上为减函数,∴f (x ) =f (-2)=2,maxf (x ) =f (4)=-4. …………………12 分min。

2018-2019学年高一上学期期中数学试卷含答案

2018-2019学年高一上学期期中数学试卷含答案

4 ,则实数 a
(
)
A. 4, 2,2
B. 4, 2
C. 4,2
D. 2,2
6. 若偶函数 f ( x) 在 , 1 上是增函数,则下列关系式中成立的是(

A. f ( 1.5) f ( 1) f (2)
B. f ( 1) f ( 1.5) f (2)
C. f (2) f ( 1) f ( 1.5)
A. 奇函数
B. 偶函数
C. 既是奇函数又是偶函数
D. 非奇非偶函数。
4. 若全集 U
2
{ x | x 10x 9
0} , M
{1,9} , N
{x| x 1
2} , 则 CU M
N(
)
A. 1,3 B. 1,9 C. (1,3)
D.
1,3
x, x 0
5.设函数 f ( x)
x2, x
,若 f ( a) 0
17.(本题满分 12 分):
(I) 计算: 4 4 x( 34 x ) (
3y
6) x 3 y2
(II) 计算: (log 3 4 log 3 8)(log 2 3 log 2 9)
2
18.(本题满分 12 分): 已知 y f ( x) 是一次函数,且 f (2) 4, f ( 1) 5 ,
(I) 求函数 f ( x) 的解析式 . (II) 若 2x f (x ) 2 ,求实数 x 的值 .
D. f (2) f ( 1.5) f ( 1)
7. 已知 a 0.80.7 , b 0.80.9, c 1.20.7 ,则 a 、 b 、 c 的关系为:
A. c a b B.
c b a C.
a c b D.

江苏省徐州市2018-2019高一上学期期中考试数学试卷(扫描版)

江苏省徐州市2018-2019高一上学期期中考试数学试卷(扫描版)

2018~2019学年度第一学期期中考试高一数学试题参考答案与评分标准二、填空题(本大题共4小题,每小题5分,计20分)13.(0,1﹞ 14. 3()f x x = 15. 60 16 . ①②③ 三、解答题:本大题共6小题共计70分,请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分10分)解:(1)原式1132322564119274--⎛⎫⎛⎫⎛⎫=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1132322325411332--⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=--+⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦531834=--+ 9512=(或写成11712). ………………………………………………5分 (2)原式2log 311lg522lg2(lg2lg5)2-=++⋅++11(lg5lg2)322=+++⨯ 13122=++ 3=. ……………………………………………10分18.(本小题满分12分) 解:(1){}|16A x x =-≤≤,当3m =时,{}|48B x x =≤≤, …………………………………………2分{}|46A B x x =≤≤. ……………………………………………5分 (2)当B =∅时,131m m +>-,所以1m <满足题意 ;………………………………7分 当B =∅时,由题意13111316m m m m +-⎧⎪+-⎨⎪-⎩≤≥≤,解得713m ≤≤.………………………………… 10分综上知:实数m 的取集合7|3C m m ⎧⎫=⎨⎬⎩⎭≤. ………………………………… 12分19.(本小题满分12分)解(1)当0x <时,0x ->,则22()()4()242f x x x x x -=--+--=---, ∵()f x 为奇函数,∴2()()42f x f x x x -=-=---, ∴2()42f x x x =++,∴当0x <时,函数()f x 的解析式为2()42f x x x =++.…………………………………4分 (2)7…………………………………………8分由图得()g x 单调增区间为(2,6)-,单调减区间(4,2)--,……………………………… 10分 值域为[2,2]-. ……………………………… 12分 20.(本小题满分12分)解:(1)()f x 是奇函数, …………………………………… 1分 证明如下:()f x 的定义域为R ,关于原点对称,21()21x x f x -=+,∴211221()()211221x x x xx x f x f x ------===-=-+++, 所以()f x 为奇函数. …………………………………… 4分 (2)()f x 在(,)-∞+∞上为增函数. …………………………………… 5分 证明:任取1x ,2(0,)x ∈+∞,且12x x <, 则12211212222(22)()()2121(21)(21)x x x x x x f x f x --=-=++++, ∵1x ,2(,)x ∈-∞+∞,且12x x <, ∴12220x x -<,1210x +>,2210x +>, ∴12()()0f x f x -<即12()()f x f x <,∴()f x 在(,)-∞+∞上为增函数, …………………………………… 8分 ∵()f x 在(,)-∞+∞上为增函数且2(3)(22)f x x f x +<+,∴2322x x x +<+, …………………………………… 10分 ∴21x -<<,即2(3)(22)f x x f x +<+的解集为{}|21x x -<<.…………………………………… 12分21.(本小题满分12分) 解:(1)设投资为x 万元,A 产品的利润为f (x )万元,B 产品的利润为g (x )万元, 由题意知f (x )=k 1x ,, …………………………………… 2分由图可知f (2)=1,,g (4)=4,k 2=2从而……………………………………3分…………………………………… 4分(2)设A 产品投入x 万元,则B 产品投入(10﹣x )万元,设企业利润为y 万元.… 5分 则, ………………………… 7分(无定义域扣1分) 令,则,……………………………… 9分 当t=2时,y max =7,此时x=10﹣4=6(万元) ………………………………11分 所以当A 产品投入6万元,B 产品投入4万元时,企业获得最大利润为7万元……… 12分22.(本小题满分12分)解:(1)1m =时,函数2()24f x x x =--在(2,1)-上是减函数,在(1,2)上是增函数,…………………………………………… 2分所以当2x =-时,()f x 有最大值,且max ()(2)4f x f =-=, …………………………… 3分 当1x =时,()f x 有最小值,且min ()(1)5f x f ==-. …………………………… 4分 (2)不等式()1f x >-,即2(13)30mx m x +-->,当0m =时,解得3x >, …………………………………… 5分 当0m ≠时,(3)(1)0x mx -+=的两根为3和1m-, 当0m >时,13m-<,不等式的解集为:1{|x x m <-或3}x >,………………………… 6分当0m <时,13133m m +⎛⎫--= ⎪⎝⎭,所以当13m <-时,13m -<,不等式的解集为:1|3x x m ⎧⎫-<<⎨⎬⎩⎭, ……………………7分当13m =-时,不等式的解集为:∅, …………………………… 8分当103m -<<时,13m <-,不等式的解集为:1|3x x m ⎧⎫<<-⎨⎬⎩⎭,综上所述:当0m >时,13m-<,不等式的解集为:1{|x x m <-或3}x >;当0m =时,不等式的解集为:{}|3x x >;当103m -<<时,13m <-,不等式的解集为:1|3x x m ⎧⎫<<-⎨⎬⎩⎭;当13m =-时,不等式的解集为:∅;当13m <-时,不等式的解集为:1|3x x m ⎧⎫-<<⎨⎬⎩⎭.…………………………………… 9分(五种情况各一分,最后不进行总结不扣分)(3)0m <时2()(13)4f x mx m x =+--,m ∈R 为开口向下的抛物线, 抛物线的对称轴为13311222m x m m-=-=->, ………………………… 10分 若存在0(1,)x ∈+∞,使得0()0f x >,则2(13)160m m -+>,………………………… 11分 即291010m m ++>,解得1m <-或109m -<<,综上所述:m 的取值范围是1(,1),09⎛⎫-∞-- ⎪⎝⎭. …………………………12分。

北京市101中学2018-2019学年高一(上)期中考试数学试题(解析版)

北京市101中学2018-2019学年高一(上)期中考试数学试题(解析版)

2018-2019学年北京市101中学高一(上)期中数学试卷一、选择题(本大题共8小题,共40.0分)1.设集合M={x|x<1},N={x|0<x≤1},则M∪N=( )A. B. C. D.【答案】C【解析】【分析】对集合M和N取并集即可得到答案.【详解】∵M={x|x<1},N={x|0<x≤1};∴M∪N={x|x≤1}.故选:C.【点睛】本题考查集合的并集运算.2.下列函数中,在(-1,+∞)上为减函数的是( )A. B. C. D.【答案】D【解析】【分析】根据题意,依次分析选项中函数的单调性,即可得答案.【详解】根据题意,依次分析选项:对于A,y=3x,为指数函数,在R上为增函数,不符合题意;对于B,y=x2-2x+3=(x-1)2+2,在(1,+∞)上为增函数,不符合题意;对于C,y=x,为正比例函数,在R上为增函数,不符合题意;对于D,y=-x2-4x+3=-(x+2)2+7,在(-2,+∞)上为减函数,符合题意;故选:D.【点睛】本题考查指数函数和二次函数的单调性,关键是掌握常见函数的单调性,属于基础题.3.计算log416+等于( )A. B. 5 C. D. 7【答案】B【解析】【分析】利用指数与对数运算性质即可得出.【详解】log416+=2+3=5.【点睛】本题考查指数与对数运算性质,属于基础题.4.函数=+的定义域为().A.B.C.D.【答案】A【解析】试题分析:由题,故选考点:函数的定义域。

5.函数y=的单调增区间是( )A. B. C. D.【答案】D【解析】【分析】利用复合函数的单调性进行求解即可.【详解】令t=-x2+4x+5,其对称轴方程为x=2,内层二次函数在[2,+∞)上为减函数,而外层函数y=为减函数,∴函数y=的单调增区是[2,+∞).故选:D.【点睛】本题考查指数型复合函数的单调性,复合函数的单调性满足同增异减,是基础题.6.已知偶函数f(x)在区间[0,+∞)上是减函数,则满足f(2x-1)>f()的x的取值范围是( )A. B.C. D.【答案】C【解析】【分析】由函数为偶函数得f(|2x-1|)>f(),由函数的单调性可得|2x-1|<,解不等式即可得答案.【详解】根据题意,偶函数f(x)在区间[0,+∞)上是减函数,则f(2x-1)>f()⇒f(|2x-1|)>f()⇒|2x-1|<,解可得:<x<,即x的取值范围为;故选:C.【点睛】本题考查函数的奇偶性与单调性的综合应用,涉及不等式的解法,属于基础题.7.若函数f(x)=a|x+1|(a>0.a≠1)的值域为[1,+∞),则f(-4)与f(0)的关系是( )A. B. C. D. 不能确定【答案】A【解析】【分析】由函数f(x)的值域可得a>1,然后利用单调性即可得到答案.【详解】∵|x+1|≥0,且f(x)的值域为[1,+∞);∴a>1;又f(-4)=a3,f(0)=a;∴f(-4)>f(0).故选:A.【点睛】本题考查指数函数的单调性,并且会根据单调性比较函数值的大小.8.对于实数a和b定义运算“*”:a•b=,设f(x)=(2x-1)•(x-2),如果关于x的方程f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则m的取值范是( )【答案】C【解析】【分析】画出函数f(x)的图象,由题知y=f(x)与y=m恰有3个交点,观察图像即可得到答案.【详解】由已知a•b=得f(x)=(2x-1)•(x-2)= ,其图象如下:因为f(x)=m恰有三个互不相等实根,则y=m与y=f(x)图像恰有三个不同的交点,所以0<m<,故选:C.【点睛】本题考查函数与方程的综合运用,属中档题.二、填空题(本大题共6小题,共30.0分)9.已知全集U=R,集合A={x|x2-4x+3>0},则∁U A=___.【答案】{x|1≤x≤3}【解析】【分析】求出集合A,然后取补集即可得到答案.【详解】A={x|x<1或x>3};∴∁U A={x|1≤x≤3}.故答案为:{x|1≤x≤3}.【点睛】本题考查集合的补集的运算,属基础题.10.若0<a<1,b<-1,则函数f(x)=a x+b的图象不经过第___象限.【答案】一【解析】利用指数函数的单调性和恒过定点,再结合图像的平移变换即可得到答案.【详解】函数y=a x(0<a<1)是减函数,图象过定点(0,1),在x轴上方,过一、二象限,函数f(x)=a x+b的图象由函数y=a x的图象向下平移|b|个单位得到,∵b<-1,∴|b|>1,∴函数f(x)=a x+b的图象与y轴交于负半轴,如图,函数f(x)=a x+b的图象过二、三、四象限.故答案为:一.【点睛】本题考查指数函数的图象和性质,考查图象的平移变换.11.已知log25=a,log56=b,则用a,b表示1g6=______.【答案】【解析】【分析】先由lg2+lg5=1结合log25=a,解出lg5,然后利用换底公式log56=进行计算整理即可得到答案.【详解】∵log25=a=,解得lg5=.log56=b=,∴lg6=blg5=.故答案为:.【点睛】本题考查了对数运算性质,重点考查对数换底公式的应用,考查推理能力与计算能力,属于基础题.12.函数y=(x≤0)的值域是______.【答案】(-∞,2]∪(3,+∞)【解析】【分析】先对函数进行分离常数,然后利用函数单调性即可求出值域.【详解】y=∴该函数在(-2,0],(-∞,-2)上单调递增;∴x∈(-2,0]时,y≤2;x∈(-∞,-2)时,y>3;∴原函数的值域为(-∞,2]∪(3,+∞).故答案为:(-∞,2]∪(3,+∞).【点睛】考查函数值域的概念及求法,分离常数法的运用,反比例函数值域的求法,属基础题.13.已知a>0且a≠1,函数f(x)=满足对任意不相等的实数x1,x2,都有(x1-x2)[f(x1)-f(x2)]>0,成立,则实数a的取值范围______.【答案】(2,3]【解析】【分析】根据已知条件(x1-x2)[f(x1)-f(x2)]>0得到函数f(x)的单调性,然后利用分段函数的单调性列不等式组即可得到答案.【详解】对任意实数x1≠x2,都有(x1-x2)[f(x1)-f(x2)]>0成立,可得f(x)在R上为单调递增,则即解得a的取值范围为:2<a≤3.故答案为:(2,3].【点睛】已知函数的单调性确定参数的值或范围要注意以下几点:(1)若函数在区间[a,b]上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围. 14.设函数f(x)=a x+b x-c x,其中c>a>0,c>b>0.若a,b,c是△ABC的三条边长,则下列结论正确的是______(写出所有正确结论的序号)①对任意的x∈(-∞,1),都有f(x)>0;②存在x∈R,使a x,b x,c x不能构成一个三角形的三条边长;③若△ABC是顶角为120°的等腰三角形,则存在x∈(1,2),使f(x)=0.【答案】①②③【解析】【分析】在①中,利用不等式的性质分析即可,在②中,举例a=2,b=3,c=4进行说明,在③中,利用零点存在性定理分析即可.【详解】在①中,∵a,b,c是△ABC的三条边长,∴a+b>c,∵c>a>0,c>b>0,∴0<<1,0<<1,当x∈(-∞,1)时,f(x)=a x+b x-c x=c x[()x+()x-1]>c x(+-1)=c x•>0,故①正确;在②中,令a=2,b=3,c=4,则a,b,c可以构成三角形,但a2=4,b2=9,c2=16不能构成三角形,故②正确;在③中,∵c>a>0,c>b>0,若△ABC顶角为120°的等腰三角形,∴a2+b2-c2<0,∵f(1)=a+b-c>0,f(2)=a2+b2-c2<0,根据函数零点存在性定理可知在区间(1,2)上存在零点,即∃x∈(1,2),使f(x)=0,故③正确.故答案为:①②③.【点睛】本题考查命题真假的判断,考查指数函数单调性、零点存在性定理和不等式性质的运用.三、解答题(本大题共5小题,共50.0分)15.已知函数f(x)=a x-1(x≥0).其中a>0,a≠1.(1)若f(x)的图象经过点(,2),求a的值;(2)求函数y=f(x)(x≥0)的值域.【答案】(1)4 ;(2)见解析.【解析】【分析】(1)将点(,2)代入函数解析式,即可得到a值;(2)按指数函数的单调性分a>1和0<a<1两种情况,分类讨论,求得f(x)的值域.【详解】(1)∵函数f(x)=a x-1(x≥0)的图象经过点(,2),∴=2,∴a=4.(2)对于函数y=f(x)=a x-1,当a>1时,单调递增,∵x≥0,x-1≥-1,∴f(x)≥a-1=,故函数的值域为[,+∞).对于函数y=f(x)=a x-1,当0<a<1时,单调递减,∵x≥0,x-1≥-1,∴f(x)≤a-1=,又f(x)>0,故函数的值域为.综上:当a>1时,值域为[,+∞).当0<a<1时,值域为.【点睛】本题考查指数函数图像和性质的应用,主要考查函数的单调性和函数值域问题.16.设集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.【答案】(1)a=-3或a=1;(2){a|a≤-3或a>或a=-2或a=-}.【解析】【分析】(1)根据A∩B={2},可知B中有元素2,带入求解a即可;(2)根据A∪B=A得B⊆A,然后分B=∅和B≠∅两种情况进行分析可得实数a的取值范围.【详解】(1)集合A={x|x2-3x+2=0}={x|x=1或x=2}={1,2},若A∩B={2},则x=2是方程x2+(a-1)x+a2-5=0的实数根,可得:a2+2a-3=0,解得a=-3或a=1;(2)∵A∪B=A,∴B⊆A,当B=∅时,方程x2+(a-1)x+a2-5=0无实数根,即(a-1)2-4(a2-5)<0解得:a<-3或a>;当B≠∅时,方程x2+(a-1)x+a2-5=0有实数根,若只有一个实数根,x=1或x=2,则△=(a-1)2-4(a2-5)=0解得:a=-3或a=,∴a=-3.若只有两个实数根,x=1、x=2,△>0,则-3<a<;则(a-1)=-3,可得a=-2,a2-5=2,可得a=综上可得实数a的取值范围是{a|a≤-3或a>或a=-2或a=-}【点睛】本题考查并,交集及其运算,考查数学分类讨论思想.17.函数f(x)=是定义在R上的奇函数,且f(1)=1.(1)求a,b的值;(2)判断并用定义证明f(x)在(+∞)的单调性.【答案】(1)a=5,b=0;(2)见解析.【解析】【分析】(1)根据函数为奇函数,可利用f(1)=1和f(-1)=-1,解方程组可得a、b值,然后进行验证即可;(2)根据函数单调性定义利用作差法进行证明.【详解】(1)根据题意,f(x)=是定义在R上的奇函数,且f(1)=1,则f(-1)=-f(1)=-1,则有,解可得a=5,b=0;经检验,满足题意.(2)由(1)的结论,f(x)=,设<x1<x2,f(x1)-f(x2)=-=,又由<x1<x2,则(1-4x1x2)<0,(x1-x2)<0,则f(x1)-f(x2)>0,则函数f(x)在(,+∞)上单调递减.【点睛】本题考查函数的奇偶性与单调性的综合应用,属于基础题.18.已知二次函数满足,.求函数的解析式;若关于x的不等式在上恒成立,求实数t的取值范围;若函数在区间内至少有一个零点,求实数m的取值范围【答案】(1)f(x)=2x2-6x+2;(2)t>10;(3)m<-10或m≥-2.【解析】【分析】(1)用待定系数法设二次函数表达式,再代入已知函数方程化简即可得答案;(2)分离参数后求f(x)的最大值即可;(3)先求无零点时m的范围,再求补集.【详解】(1)设二次函数f(x)=ax2+bx+2,(a≠0)∴a(x+1)2+b(x+1)+2-ax2-bx-2=4x-4∴2ax+a+b=4x-4,∴a=2,b=-6∴f(x)=2x2-6x+2;(2)依题意t>f(x)=2x2-6x+2在x∈[-1,2]上恒成立,而2x2-6x+2的对称轴为x=∈[-1,2],所以x=-1时,取最大值10,t>10;(3)∵g(x)=f(x)-mx=2x2-6x+2-mx=2x2-(6+m)x+2在区间(-1,2)内至少有一个零点,当g(x)在(-1,2)内无零点时,△=(6+m)2-16<0或或,解得:-10≤m<-2,因此g(x)在(-1,2)内至少有一个零点时,m<-10或m≥-2.【点睛】本题考查利用待定系数法求函数解析式,考查恒成立问题的解法以及二次函数的零点问题,属于基础题.19.设a为实数,函数f(x)=+a+a.(1)设t=,求t的取值范图;(2)把f(x)表示为t的函数h(t);(3)设f (x)的最大值为M(a),最小值为m(a),记g(a)=M(a)-m(a)求g(a)的表达式.【答案】(1)[,2];(2)h(t)=at+,≤t≤2;(3)g(a)=..【解析】【分析】(1)将t=两边平方,结合二次函数的性质可得t的范围;(2)由(1)可得=,可得h(t)的解析式;(3)求得h(t)=(t+a)2-1-a2,对称轴为t=-a,讨论对称轴与区间[,2]的关系,结合单调性可得h(t)的最值,即可得到所求g(a)的解析式.【详解】(1)t=,可得t2=2+2,由0≤1-x2≤1,可得2≤t2≤4,又t≥0可得≤t≤2,即t的取值范围是[,2];(2)由(1)可得=,即有h(t)=at+,≤t≤2;(3)由h(t)=(t+a)2-1-a2,对称轴为t=-a,当-a≥2即a≤-2时,h(t)在[,2]递减,可得最大值M(a)=h()=a;最小值m(a)=h(2)=1+2a,则g(a)=(-2)a-1;当-a≤即a≥-时,h(t)在[,2]递增,可得最大值M(a)=h(2)=1+2a;最小值m(a)=h()=a,则g(a)=(2-)a+1;当<-a<2即-2<a<-时,h(t)的最小值为m(a)=h(-a)=-1-a2,若-1-≤a<-,则h(2)≥h(),可得h(t)的最大值为M(a)=h(2)=1+2a,可得g(a)=2+2a+a2;若-2<a<-1-,则h(2)<h(),可得h(t)的最大值为M(a)=h()=a,可得g(a)=a+1+a2;综上可得g(a)=.【点睛】本题考查函数的最值求法,注意运用换元法和二次函数在闭区间上的最值求法,考查分类讨论思想方法和化简整理运算能力,属于中档题.。

【数学解析】统考2018-2019学年高一第一学期期中考试

【数学解析】统考2018-2019学年高一第一学期期中考试

8 2 log 2 【答案】 (1)证明见解析(2) , 3 3 【难度】中 【考点】函数图象,对数运算
【解析】 (1)由题意得 AC 平行与 y 轴时, x1 x2 ,
y1 y2 f x1 g x2 log 2 4 x log 2 x log 2 4 log 2 x log 2 x 2
) D.
A.
1,1,5
B.
5, 1
C.
1
1,1
【答案】C 【难度】易 【考点】一元二次方程,集合运算 4. 已知函数 f x log 2 x ,且 f a 2 ,则 a ( A. 4 【答案】A 【难度】易 【考点】对数运算 5. 已知集合 A 0,1 ,若 B A A ,则满足该条件的集合 B 的个数是( A. 1 B. 2 C. 3 ) D. 4 B. 2 ) C.
1 1 ,解之得 a 1 ,得 f x x ; 3 x2 2 1 ,则函数 g x 在区间上的值域为 y 3, 1 . x x
(2)由题意得 g x
20. (本小题满分 10 分)说明:请同学们在(A) 、 (B)两个小题中任选一题作答. (A)已知函数 f x x 2 2ax a 在区间 , 2 上有最小值, (1)求实数 a 的取值范围; (2)当 a 1 时,设函数 g x ,证明 g x 在区间 1, 为增函数. x 【答案】 (1) a 2 (2)证明见解析 【难度】中 【考点】二次函数单调性,函数单调性的证明 b 2a a ,而函数在区间 , 2 上有最小值,意味着函数 【解析】 (1)由题意得函数对称轴为 2a 2 的对称轴在区间内部可得 a 2 ; ( 2) a 1 g x

苏教版2018-2019学年高一(上)期中数学试卷(精品Word版,含答案解析) (3)

苏教版2018-2019学年高一(上)期中数学试卷(精品Word版,含答案解析) (3)

2018-2019学年高一(上)期中数学试卷一、选择题(本大题共12小题,共60.0分)1.已知全集2,3,4,5,,集合,,则A. B. 3,5,C. 3,4,D. 2,3,4,5,【答案】A【解析】【分析】进行并集、补集的运算即可.【详解】P∪Q={1,3,4,5};∴∁U(P∪Q)={2,6}.故选:A.【点睛】考查列举法表示集合的概念,并集、补集的运算,属于基础题.2.函数的定义域为A. RB.C.D.【答案】D【解析】【分析】要使得f(x)有意义,显然需满足,这样解该不等式组即可求出f(x)的定义域.【详解】要使f(x)有意义,则;解得2<x<4;∴f(x)的定义域为(2,4).故选:D.【点睛】本题考查函数定义域的概念及求法,对数函数的定义域,对数的真数大于0,属于基础题.3.已知,,,则A. B. C. D.【解析】【分析】利用对数函数的单调性比较b与c,再与常数0和1比较,得出结果.【详解】因为=log>1>0>且所以故选:C【点睛】本题考查的是利用对数函数的单调性比较b与c,再与常数0和1比较大小,这是常用的方法.4.已知幂函数在单调递增,则实数m的值为A. B. 3 C. 或3 D. 1或【答案】B【解析】【分析】根据幂函数的定义与性质,列方程求出m的值,再判断m是否满足条件.【详解】幂函数y=在(0,+∞)单调递增,∴m2﹣2m﹣2=1,解得m=3或m=﹣1;又m2+m﹣1>0,∴m=3时满足条件,则实数m的值为3.故选:B.【点睛】本题考查了幂函数的定义与性质的应用问题,是基础题.5.在空间四边形ABCD中,,顺次连接它的各边中点E、F、G、H,所得四边形EFGH的形状是A. 梯形B. 矩形C. 正方形D. 菱形【答案】D【解析】【分析】作出如图的空间四边形,连接AC,BD可得一个三棱锥,将四个中点连接,得到一个四边形,可证明其是一个【详解】如图所示,空间四边形ABCD中,连接AC,BD可得一个三棱锥,将四个中点连接,得到四边形EFGH,由中位线的性质知,EH∥FG,EF∥HG;∴四边形EFGH是平行四边形,又AC=BD,∴HG=AC=BD=EH,∴四边形EFGH是菱形.故选:D.【点睛】本题考查了空间中直线与直线位置关系的应用问题,也考查了线线平行、中位线的性质应用问题,是基础题.6.已知函数在上为增函数,则实数m的取值范围是A. B. C. D.【答案】A【解析】【分析】若函数f(x)=2x2﹣mx+3在[﹣2,+∞)上为增函数,则,解得答案.【详解】若函数f(x)=2x2﹣mx+3在[﹣2,+∞)上为增函数,则,解得:m∈(﹣∞,﹣8],故选:A.【点睛】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.7.方程的解的个数是A. 0B. 1C. 2D. 3【答案】C方程的解的个数等于函数和图像交点的个数,如图所示,可知函数和图像有两个交点.8.函数的单调递增区间是A. B. C. D.【答案】C【解析】【分析】先求对数函数的定义域,再求t=﹣x2+2x+3在定义域内的增区间,再利用二次函数得性质得出结论.【详解】由函数f(x)=log2(﹣x2+2x+3),可得﹣x2+2x+3>0,求得﹣1<x<3,故函数的定义域为{x|﹣1<x<3 }.函数f(x)=log2(﹣x2+2x+3)的单调递增区间,即t=﹣x2+2x+3在定义域内的增区间.而t=﹣x2+2x+3在定义域内的增区间为(﹣1,1),故选:C.【点睛】本题主要考查复合函数的单调性,二次函数、对数函数的性质,属于中档题.9.有一长方体木块,其顶点为,,,,一小虫从长方体木块的一顶点A绕其表面爬行到另一顶点,则小虫爬行的最短距离为A. B. C. D.【答案】B【解析】【分析】分三种情况,将两个平面展成一个平面后,对角线长最短,比较谁更小,即可.【详解】分三种情况:①当小虫沿表面经过棱BB1时,将平面A1ABB1和平面B1BCC1展成一个平面,则小虫沿对角线AC1爬,最短.此时最短距离为;爬,最短距离为:3;③当小虫沿着表面经过棱BC时,将平面ABCD和平面1BBCC1展成一个平面,则小虫沿对角线AC1爬,最短距离为:2,比较的大小可知,3最小.故选:B.【点睛】本题考查了多面体和旋转体表面上的最短距离,把两个平面展开成一个平面.属中档题.10.已知函数是偶函数,且在上是增函数,若,则的取值范围是()A. B. C. D.【答案】C【解析】由偶函数的性质可得不等式即:,结合在上是增函数脱去符号可得:,求解对数不等式可得:,表示为区间形式即.本题选择C选项.点睛:对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为解不等式(组)的问题,若f(x)为偶函数,则f(-x)=f(x)=f(|x|).11.函数的图象大致为A. B. C. D.【答案】A【解析】【分析】先根据条件判断函数的奇偶性,结合图象对称关系进行排除,然后利用特殊值的符号是否对应进行判断即可.【详解】f(﹣x)=﹣xln|﹣x|=﹣xlnx=﹣f(x),则函数f(x)是奇函数,图象关于原点对称,排除B,D,当x=时,f()=ln||=ln<0,排除C,【点睛】本题主要考查函数图象的识别和判断,利用函数奇偶性和特殊值的符号的对应性是否一致进行排除是解决本题的关键.12.已知是定义在上的奇函数,且,当a,,且时,成立,若对任意的恒成立,则实数m的取值范围是A. B.C. D.【答案】B【解析】【分析】先利用函数的奇偶性将已知不等式化为:a,b∈[﹣1,1]时,且a≠﹣b时,成立,根据增函数定义得函数f(x)在[﹣1,1]上是增函数,从而求得最大值为f(1)=1,然后将已知不等式先对x恒成立,再对a恒成立,就可以求出m的范围.【详解】∵f(x)是定义在[﹣1,1]上的奇函数,∴当a,b∈[﹣1,1],且a≠﹣b时,有>0 成立,∴f(x)是定义在[﹣1,1]上的增函数,∴f(x)max=f(1)=1,∴f(x)<m2﹣2am+1对任意的x∈[﹣1,1]恒成立⇔f(x)max<m2﹣2am+1,∴1<m2﹣2am+1,即2am﹣m2<0对任意的a∈[﹣1,1]恒成立.令g(a)=2am﹣m2,则2am﹣m2<0对任意的a∈[﹣1,1]恒成立转化为:解得:m<﹣2 或m>2.故选:B.【点睛】本题考查了函数的奇偶性和单点调性、含三个变量的不等式对2个变量恒成立求第三个变量取值范围的问题.解决办法是按顺序先对一个字母恒成立,转化为最值,再对另一个字母恒成立,转化为最值即可.属难题.二、填空题(本大题共4小题,共20.0分)13.函数的图象恒过定点P,则点P坐标为______.【答案】【解析】【分析】【详解】函数y=log a(2x﹣1)+2,令2x﹣1=1,求得x=1,y=2,可得函数y=log a(2x﹣1)+2的图象恒过定点P(1,2),故答案为:(1,2).【点睛】本题主要考查对数函数的图象经过定点问题,属于基础题.14.已知函数,则的值是__________.【答案】5【解析】由题意,得,,则.15.已知函数是定义在R上的奇函数,当时,,则______【答案】【解析】【分析】根据题意,由函数为奇函数可得f(0)=0可求c,根据所求函数解析式可先求f(2),再根据f(﹣2)=﹣f (2)即可求解.【详解】根据题意,函数f(x)是定义在R上的奇函数,且x≥0时,f(x)=2x﹣c,∴f(0)=1﹣c=0,∴c=1,又由当x≥0时,f(x)=2x﹣1,∴f(2)=3,又由函数为奇函数,则f(﹣2)=﹣f(2)=﹣3,故答案为:﹣3.【点睛】本题考查函数奇偶性的性质,关键是充分利用奇函数的性质.16.定义区间,,,的长度均为,其中已知函数的定义域为,值域为,则区间长度的最大值与最小值的差______.【答案】1【解析】【分析】函数的图象,如图所示,y=|2x﹣1|=,x=﹣1或,求出区间[a,b]长度的最大值与最小值,即可得出结论.【详解】函数的图象,如图所示,y=|2x﹣1|=,x=﹣1或,故[a,b]的长度的最大值为﹣(﹣1)=+1,最小值为﹣0=,则区间[a,b]的长度的最大值与最小值的差为1,故答案为:1.【点睛】考查学生理解掌握指数函数定义域和值域的能力,运用指数函数图象增减性解决数学问题的能力.三、解答题(本大题共6小题,共70.0分)17.计算下列各式的值:;已知,求和的值.【答案】(1);(2)【解析】【分析】(1)利用对数的性质、运算法则直接求解.(2)利用指数的性质、运算法则直接求解.【详解】解:.,,,.【点睛】本题考查指数式、对数式化简求值,考查指数、对数性质、运算法则等基础知识,考查运算求解能力,是基础题.18.已知函数,,且.1判断并证明函数的奇偶性;2求满足的实数x的取值范围.【答案】(1)见解析;(2)当时x的取值范围是;当时x的取值范围是.【解析】【分析】(Ⅰ)根据题意,先求出函数的定义域,进而结合函数的解析式可得f(﹣x)=﹣f(x),即可得结论;(Ⅱ)根据题意,f(x)>0即log a(2+x)>log a(2﹣x),分a>1与0<a<1两种情况讨论可得x的取值范围,综合即可得答案.【详解】解:1根据题意,,则有,解可得,则函数的定义域为,又由,则是奇函数;2由得当时,,解得;当时,,解得;当时x的取值范围是;当时x的取值范围是.【点睛】本题考查函数的单调性与奇偶性的应用,注意判断奇偶性要先求出函数的定义域,属于中档题.19.如图,圆柱的底面半径为,球的直径与圆柱底面的直径和圆柱的高相等,圆锥的顶点为圆柱上底面的圆心,圆锥的底面是圆柱的下底面.(Ⅰ) 计算圆柱的表面积;(Ⅱ)计算图中圆锥、球、圆柱的体积比.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(1)根据圆柱侧面积加两个底面积得圆柱表面积,(2)根据圆锥、球、圆柱的体积公式计算,再求比值.【详解】(Ⅰ)已知圆柱的底面半径为,则圆柱和圆锥的高为,圆锥和球的底面半径为,则圆柱的表面积为;(Ⅱ)由(Ⅰ)知,,【点睛】本题考查圆柱侧面积以及圆锥、球、圆柱的体积公式,考查基本求解能力.20.如图所示,在正方体中,S,E,G分别是,BC,SC的中点.求证:直线平面.求直线EG与所成角的正切值.【答案】(1)见解析;(2)【解析】【分析】(1)连接SB,则EG∥SB,由此能证明直线EG∥平面BDD1B1.(2)取BD的中点O,连接SO,则SO∥DD1,EG∥SB,从而∠BSO为直线EG与DD1所成角,由此能求出直线EG与DD1所成角的正切值.【详解】证明:如图,连接SB,、G分别是BC、SC的中点,∴,又平面,EG 平面,直线EG ∥平面解:取BD的中点O,连接SO ,则,由知,则为直线EG 与所成角,设,则,,,,直线EG 与所成角的正切值为【点睛】本题考查线面平行的证明和线面角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.21.我国加入WTO时,根据达成的协议,某产品的市场供应量P与市场价格x的关系近似满足其中t 为关税的税率,且,x为市场价格,b、k 为正常数当时的市场供应量曲线如图所示.1根据图象求b、k的值当关税的税率时,求市场供应量P不低于1024时,市场价格至少为多少?【答案】(1),;(2)市场供应量P不低于1024时,市场价格至少为1024【解析】【分析】(1)根据待定系数法即可求出k,b的值,(2)根据指数函数的图象和性质可得≥10,解得即可【详解】解:由图可知,解得,解得,,由可得,设,当时,,市场供应量P不低于1024时,,解得,,解得故市场供应量P不低于1024时,市场价格至少为1024.【点睛】本题考查了指数函数在实际生活中的应用和分析问题,解决问题的能力,属于中档题.22.已知二次函数满足,且的最小值是.求的解析式;若关于x 的方程在区间上有唯一实数根,求实数m的取值范围;函数,对任意,都有恒成立,求实数t的取值范围.【答案】(1)(2) (3)【解析】试题分析:(1)因,故对称轴为,故可设,再由得.(2)有唯一实数根可以转化为与有唯一的交点去考虑.(3),任意都有1不等式成立等价于,分、、和四种情形讨论即可.解析:(1)因,对称轴为,设,由得,所以.(2)由方程得,即直线与函数的图象有且只有一个交点,作出函数在的图象.易得当或时函数图象与直线只有一个交点,所以的取值范围是.(3)由题意知.假设存在实数满足条件,对任意都有成立,即,故有,由.当时,在上为增函数,,所以;当时,,.即,解得,所以.当时,即解得.所以.当时,,即,所以,综上所述,,所以当时,使得对任意都有成立.点睛:(1)求二次函数的解析式,一般用待定系数法,有时也需要根据题设的特点合理假设二次函数的形式(如双根式、顶点式、一般式);(2)不等式对任意的恒成立可以等价转化为恒成立.1。

2018-2019学年山东省潍坊市高一(上)期中数学试卷(解析版)

2018-2019学年山东省潍坊市高一(上)期中数学试卷(解析版)

2018-2019学年山东省潍坊市高一(上)期中数学试卷一、选择题(本大题共12小题,共60.0分)1.设集合A={x∈N|-2<x<2}的真子集的个数是()A. 8B. 7C. 4D. 32.下列函数中,既是奇函数又是增函数的是()A. B. C. D.3.已知f(x)=,则f[f(2)]=()A. 5B.C.D. 24.a=40.9、b=80.48、c=()-1.5的大小关系是()A. B. C. D.5.已知函数f(x+1)=2x-3,若f(m)=4,则m的值为()A. B. C. D.6.函数f(x)=a x-(a>0,a≠1)的图象可能是()A. B.C. D.7.设f(x)是(-∞,+∞)上的减函数,则()A. B. C. D.8.下列变化过程中,变量之间不是函数关系的为()A. 地球绕太阳公转的过程中,二者间的距离与时间的关系B. 在银行,给定本金和利率后,活期存款的利息与存款天数的关系C. 某地区玉米的亩产量与灌溉次数的关系D. 近年来,中国高速铁路迅猛发展,中国高铁年运营里程与年份的关系9.已知实数a,b满足等式2017a=2018b,下列关系式不可能成立的是()A. B. C. D.10.一次社会实践活动中,数学应用调研小组在某厂办公室看到该厂5年来某种产品的总产量y与时间x(年)的函数图象(如图),以下给出了关于该产品生产状况的几点判断:①前三年的年产量逐步增加;②前三年的年产量逐步减少;③后两年的年产量与第三年的年产量相同;④后两年均没有生产.其中正确判断的序号是()A. B. C. D.11.已知函数f(x)=,若函数g(x)=f(x)-m恰有一个零点,则实数m的取值范围是()A. B.C. ,D. ,12.已知f(x)是定义域为R的奇函数,满足f(1-x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+f(4)=()A. 10B. 2C. 0D. 4二、填空题(本大题共4小题,共20.0分)13.计算(2)×(3)=______.14.如图所示,图中的阴影部分可用集合U,A,B,C表示为______.15.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)=______.16.已知函数f(x)=(t>0)的最大值为M,最小值为N,且M+N=4,则实数t的值为______.三、解答题(本大题共6小题,共70.0分)17.已知函数f(x)=+的定义域为集合M.(1)求集合M;(2)若集合N={x|2a-1≤x≤a+1},且M∩N={2},求N.18.已知函数f(x)=(a∈R).(1)若f(x)为奇函数,求实数a的值;(2)当a=0时,判断函数f(x)的单调性,并用定义证明.19.已知四个函数f(x)=2x,g(x)=()x,h(x)=3x,p(x)=()x,若y=f(x),y=g(x)的图象如图所示.(1)请在如图坐标系中画出y=h(x),y=p(x)的图象,并根据这四个函数的图象抽象出指数函数具有哪些性质?(2)举出在实际情境能够抽象出指数函数的一个实例并说明理由.20.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的一年收益与投资额成正比,其关系如图①;投资股票等风险型产品的一年收益与投资额的算术平方根成正比,其关系如图②.(注:收益与投资额单位:万元)(Ⅰ)分别写出两种产品的一年收益与投资额的函数关系;(Ⅱ)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使一年的投资获得最大收益,其最大收益是多少万元?21.已知函数f(x)是定义在R上的增函数,且满足f(x+y)=f(x)•f(y),且f(2)=.(1)求f(4)的值;(2)当x∈[,]时,f(kx2)<2f(2x-5)恒成立,求实数k的取值范围.22.对于区间[a,b](a<b),若函数y=f(x)同时满足:①f(x)在[a,b]上是单调函数;②函数y=f(x),x∈[a,b]的值域是[a,b],则称区间[a,b]为函数f(x)的“保值”区间.(1)求函数y=x2的所有“保值”区间;(2)函数y=x2+m(m≠0)是否存在“保值”区间?若存在,求出m的取值范围;若不存在,说明理由.答案和解析1.【答案】D【解析】解:∵集合A={x∈N|-2<x<2}={0,1},∴集合A的真子集的个数是:22-1=3.故选:D.先求出集合A={0,1},由此能求出集合A的真子集的个数.本题考查集合的真子集的个数的求法,考查子集定义等基础知识,考查运算求解能力,是基础题.2.【答案】D【解析】解:根据题意,依次分析选项:对于A,y=是奇函数但不是增函数,不符合题意;对于B,y=x-1,不是奇函数,不符合题意;对于C,y=-x2,为偶函数不是奇函数,不符合题意;对于D,y=2x是正比例函数,既是奇函数又是增函数,符合题意;故选:D.根据题意,依次分析选项中函数的奇偶性以及单调性,综合即可得答案.本题考查函数奇偶性、单调性的判定,关键是掌握常见函数的奇偶性、单调性,属于基础题.3.【答案】D【解析】解:f(2)=-2×2+3=-1,所以f[f(2)]=f(-1)=(-1)2+1=2.故选D.根据所给解析式先求f(2),再求f[f(2)].本题考查分段函数求值问题,属基础题,关键看清所给自变量的值所在范围.4.【答案】D【解析】解:∵a=40.9=21.8,b=80.48=21.44,c==21.5,∵y=2x为单调增函数,而1.8>1.5>1.44,∴a>c>b.故选:D.利用有理指数幂的运算性质将a,b,c均化为2x的形式,利用y=2x的单调性即可得答案.本题考查不等关系与不等式,考查有理数指数幂的化简求值,属于中档题.5.【答案】B【解析】解:∵函数f(x+1)=2x-3,f(m)=4由2x-3=4,得x=,∴m=x+1=.故选:B.由2x-3=4,得x=,再由m=x+1,能求出结果.本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.6.【答案】D【解析】解:当0<a<1时,函数f(x)=a x-,为减函数,当a>1时,函数f(x)=a x-,为增函数,且当x=-1时f(-1)=0,即函数恒经过点(-1,0),故选:D.先判断函数的单调性,再判断函数恒经过点(-1,0),问题得以解决.本题主要考查了函数的图象和性质,求出函数恒经过点是关键,属于基础题.7.【答案】D【解析】解:f(x)是(-∞,+∞)上的减函数,当a>0时,a<2a,f(a)>f(2a),当a≤0时,a≥2a,f(a)≤f(2a),故A错误;当a=0,则a2=a,则f(a2)=f(a),故B错误;当a=0,a2+a=a,则f(a2+a)=f(a),故C错误;由a2+1>a,则f(a2+1)<f(a).故选:D.采用排除法,根据a的取值范围,根据导数与函数单调性的关系,即可求得答案.本题考查导数与函数的单调性的关系,属于基础题.8.【答案】C【解析】解:根据函数的定义得:某地区玉米的亩产量与灌溉次数的关系不是函数关系,故选:C.根据函数的定义对各个选项分别判断即可.本题考查了函数的定义,考查对应关系,是一道基础题.9.【答案】A【解析】解:分别画出y=2017x,y=2018x,实数a,b满足等式2017a=2018b,可得:a>b>0,a<b<0,a=b=1.而0<a<b成立.故选:A.分别画出y=2017x,y=2018x,根据实数a,b满足等式2017a=2018b,即可得出.本题考查了函数的单调性、不等式的性质,考查了推理能力与计算能力,属于基础题.10.【答案】B【解析】解:由该厂5年来某种产品的总产量y与时间x(年)的函数图象,得:前三年的年产量逐步减少,故错误,正确;后两年均没有生产,故错误,正确.故选:B.利用该厂5年来某种产品的总产量y与时间x(年)的函数图象直接求解.本题考查命题真假的判断,考查该厂5年来某种产品的总产量y与时间x(年)的函数图象的性质等基础知识,考查数形结合思想,是基础题.11.【答案】D【解析】解:令g(x)=0得f(x)=m,作出y=f(x)的函数图象如图所示:由图象可知当m<0或m≥1时,f(x)=m只有一解.故选:D.作出f(x)的函数图象,根据图象判断m的值.本题考查了函数的零点与函数图象的关系,属于中档题.12.【答案】C【解析】解:∵f(x)是定义域为R的奇函数,满足f(1-x)=f(1+x),∴f(2+x)=f(1-(x+1))=f(-x)=-f(x),f(x+4)=-f(x+2)=f(x),∵f(1)=2,∴f(1)+f(2)+f(3)+f(4)=f(1)+f(0)+f(-1)+f(0)=0.故选:C.推导出f(2+x)=f(1-(x+1))=f(-x)=-f(x),f(x+4)=-f(x+2)=f(x),从而f(1)+f(2)+f(3)+f(4)=f(1)+f(0)+f (-1)+f(0),由此能求出结果.本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.13.【答案】1【解析】解:(2)×(3)===.故答案为:1.化带分数为假分数,再由有理指数幂的运算性质化简求值.本题考查有理指数幂的运算性质,是基础的计算题.14.【答案】(A∩B)∩(∁U C)【解析】解:如图所示,图中的阴影部分可用集合U,A,B,C表示为:(A∩B)∩(∁U C).故答案为:(A∩B)∩(∁U C).利用维恩图直接求解.本题考查集合的交集的求法,考查维恩图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.15.【答案】1【解析】解:由f(x)-g(x)=x3+x2+1,将所有x替换成-x,得f(-x)-g(-x)=-x3+x2+1,∵f(x),g(x)分别是定义在R上的偶函数和奇函数,∴f(x)=f(-x),g(-x)=-g(x),即f(x)+g(x)=-x3+x2+1,再令x=1,得f(1)+g(1)=1.故答案为:1.将原代数式中的x替换成-x,再结合着f(x)和g(x)的奇偶性可得f(x)+g(x),再令x=1即可.本题考查利用函数奇偶性求值,本题中也可以将原代数式中的x直接令其等于-1也可以得到计算结果,属于基础题.16.【答案】2【解析】解:由题意,f(x)==+t,显然函数g(x)=是奇函数,∵函数f(x)最大值为M,最小值为N,且M+N=4,∴M-t=-(N-t),即2t=M+N=4,∴t=2,故答案为:2.由题意f(x)=t+g(x),其中g(x)是奇函数,从而2t=4,即可求出实数t的值.本题考查函数的最大值、最小值,考查函数是奇偶性,考查学生分析解决问题的能力,属于中档题.17.【答案】解:(1)要使函数f(x)=有意义,则需;解得-3<x≤2;∴函数f(x)的定义域M=(-3,2];(2)∵M∩N={2},且M=(-3,2];∴2∈N;∴ ;解得;∴ ,.【解析】(1)要使得函数f(x)有意义,则需满足,从而求出M=(-3,2];(2)根据M∩N={2},便可得出2∈N,从而得出2a-1=2,求出a即可得出集合N.考查函数定义域的概念及求法,指数函数的单调性,交集的概念,元素与集合的关系.18.【答案】解:(1)函数f(x)的定义域是R,且f(-x)==,由y=f(x)是奇函数,得对任意的x都有f(x)=-f(-x),故=-,得2x(a-1)=1-a,解得:a=1;(2)由a=0得:f(x)=1-,任取x1,x2∈R,设x1<x2,则f(x2)-f(x1)=-=,∵y=2x在R递增且x1<x2,∴ ->0,又(+1)(+1)>0,故f(x2)-f(x1)>0即f(x2)>f(x1),故f(x)在R递增.【解析】(1)根据函数的奇偶性的定义求出a的值即可;(2)根据函数的单调性的定义证明即可.本题考查了函数的奇偶性和函数的单调性问题,考查单调性的证明,是一道中档题.19.【答案】解:(1)画出y=h(x),y=p(x)的图象如图所示:4个函数都是y=a x(a>0,a≠1)的形式,它们的性质有:①定义域为R;②值域为(0,+∞);③都过定点(0,1);④当a>1时,函数在定义域内单调递增,0<a<1时,函数在定义域内单调递减;⑤a>1时,若x<0,则0<y<1,若x>0,则y>1.0<a<1时,若x>0,则0<y<1,若x<0,则y>1;⑥对于函数y=a x(a>0,a≠1),y=b x(b>0,b≠1),当a>b>1时,若x<0,则0<a x<b x<1;若x=0,则a x=b x=1;若x>0,则a x>b x>1.当0<a<b<1时,若x<0,则a x>b x>1;若x=0,则a x=b x=1;若x>0,则0<a x<b x<1.(2)举例:原来有一个细胞,细胞分裂的规则是细胞由一个分裂成2个,则经过x次分裂,细胞个数y,则y=2x,是一个指数函数.【解析】(1)根据指数函数的图象性质,得出结论.(2)举细胞分裂的例子,抽象出指数函数的一个实例.本题主要考查指数函数的性质,指数函数的应用,属于中档题.20.【答案】解:(Ⅰ)f(x)=k1x,g(x)=k2,∴f(1)==k1,g(1)=k2=,∴f(x)=x(x≥0),g(x)=(x≥0)(Ⅱ)设:投资债券类产品x万元,则股票类投资为20-x万元.y=f(x)+g(20-x)=+(0≤x≤20)令t=,则y==-(t-2)2+3所以当t=2,即x=16万元时,收益最大,y max=3万元.【解析】(Ⅰ)由投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比,结合函数图象,我们可以利用待定系数法来求两种产品的收益与投资的函数关系;(Ⅱ)由(Ⅰ)的结论,我们设设投资债券类产品x万元,则股票类投资为20-x万元.这时可以构造出一个关于收益y的函数,然后利用求函数最大值的方法进行求解.函数的实际应用题,我们要经过析题→建模→解模→还原四个过程,在建模时要注意实际情况对自变量x取值范围的限制,解模时也要实际问题实际考虑.将实际的最大(小)化问题,利用函数模型,转化为求函数的最大(小)是最优化问题中,最常见的思路之一.21.【答案】解:(1)令x=y=2,得:f(2+2)=f(2)•f(2),即f(4)═2(2)2f(2x-5)=f(4),f(2x-5)=f(2x-1)所以f(kx2)<2f(2x-5)化为:f(kx2)<f(2x-1),因为函数f(x)是定义在R上的增函数,所以kx2<2x-1在x∈[,]时恒成立,即k<在x∈[,]时恒成立,令y===-()2+1,x∈[,],∈[,],y有最小值为0.所以,k<0.【解析】(1)利用赋值法,x=y=2求解即可.(2)利用已知条件化简不等式为f(kx2)<f(2x-1),利用函数的单调性,分离变量,通过二次函数的性质求解闭区间上的最值即可.本题考查函数与方程的应用,函数的单调性以及二次函数的性质的应用,考查转化思想以及计算能力.22.【答案】解:(1)因为函数y=x2的值域是[0,+∞),且y=x2在[a,b]的值域是[a,b],所以[a,b]⊆[0,+∞),所以a≥0,从而函数y=x2在区间[a,b]上单调递增,或故有解得或又a<b,所以所以函数y=x2的“保值”区间为[0,1].…(3分)(2)若函数y=x2+m(m≠0)存在“保值”区间,则有:①若a<b≤0,此时函数y=x2+m在区间[a,b]上单调递减,所以消去m得a2-b2=b-a,整理得(a-b)(a+b+1)=0.因为a<b,所以a+b+1=0,即a=-b-1.又所以<.因为<,所以<.…(6分)②若b>a≥0,此时函数y=x2+m在区间[a,b]上单调递增,所以消去m得a2-b2=a-b,整理得(a-b)(a+b-1)=0.因为a<b,所以a+b-1=0,即b=1-a.又所以<.因为<,所以<.因为m≠0,所以<<.…(9分)综合①、②得,函数y=x2+m(m≠0)存在“保值”区间,此时m的取值范围是,,.…(10分)【解析】(1)由已知中保值”区间的定义,结合函数y=x2的值域是[0,+∞),我们可得[a,b]⊆[0,+∞),从而函数y=x2在区间[a,b]上单调递增,则,结合a<b即可得到函数y=x2的“保值”区间.(2)根据已知中保值”区间的定义,我们分函数y=x2+m在区间[a,b]上单调递减,和函数y=x2+m在区间[a,b]上单调递增,两种情况分类讨论,最后综合讨论结果,即可得到答案.本题考查的知识点是函数单调性,函数的值,其中正确理解新定义的含义,并根据新定义构造出满足条件的方程(组)或不等式(组)将新定义转化为数学熟悉的数学模型是解答本题的关键.。

2018-2019学年高一上学期期中考试数学试题(附解析)(20190907123243)

2018-2019学年高一上学期期中考试数学试题(附解析)(20190907123243)

2018-2019学年度第一学期高一年级期中考试试题数学注意事项:1.本次考试的试卷分为试题卷和答题卷,本卷为试题卷,请将答案和解答写在答题卷指定的位置,在试题卷和其它位置解答无效.2.本试卷满分150分,考试时间120分钟.一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列关系正确..的是()A. B. C. D.【答案】A【解析】由集合与元素的关系可得:,由集合与集合的关系可得:,结合所给选项可知只有A选项正确.本题选择A选项.2.集合的子集中,含有元素的子集共有A. 2个B. 4个C. 6个D. 8个【答案】B【解析】试题分析:中含有元素的子集有:,共四个,故选 B.考点:集合的子集.3.已知则=()A. 3B. 13C. 8D. 18【答案】C【解析】.4.若则当取最小值时,此时x,y分别为( )A. 4,3B. 3,3C. 3,4D. 4,4【答案】C【解析】【分析】根据题意,分析可得y=x(x﹣2)2,由基本不等式的性质可得y=(x﹣2)2≥22=4,同时可得x的值,即可得答案.【详解】根据题意,y=x(x﹣2)2,又由x>2,则y=(x﹣2)2≥22=4,当且仅当x﹣2=1时,即x=3时等号成立,即x=3,y=4;故选:C.【点睛】本题考查了基本不等式的性质,关键是掌握基本不等式的形式.5.不等式对于恒成立,那么的取值范围是( )A. B. C. D.【答案】B【解析】【分析】分当a=2时,符合题意与a≠2时,则a需满足:,解得a的范围即可.【详解】当a=2时,﹣4<0,∴符合题意;a≠2时,则a需满足:,解得﹣2<a<2;∴﹣2<a≤2;故选 B.【点睛】考查二次函数的最大值的计算公式,注意讨论二次项的系数是否为0的情况,注意结合二次函数图象,属于中等题.。

2018-2019学年高一上学期期中考试数学试题Word版含答案

2018-2019学年高一上学期期中考试数学试题Word版含答案

2018-2019学年高一上学期期中考试数学试题试卷分为两卷,卷(Ⅰ)100分,卷(Ⅱ)50分,共计150分。

考试时间:120分钟。

卷(Ⅰ)一、选择题:本大题共10小题,每小题5分,共50分1. 如果A=(-1,+∞),那么正确的结论是( )A. 0⊆AB. {0}∈AC. {0}⊂≠AD. A ∈Φ 2. 函数f (x )=22-x ,则)21(f =( ) A. 0 B. -2 C. 22 D. -22 3. 与函数y=lg (x-1)的定义域相同的函数是( )A. y=x-1B. y=|x-1|C. y=11-xD. y=1-x 4. 若函数f (x )=x x -+33与g (x )= x x --33的定义域均为R ,则( )A. f (x )与g (x )均为偶函数B. f (x )为奇函数,g (x )为偶函数C. f (x )与g (x )均为奇函数D. f (x )为偶函数,g (x )为奇函数5. 设a=lg 0.2,b=2log 3,c=215,则( )A. a<b<cB. b<c<aC. c<a<bD. c<b<a 6. 若指数函数y=x a )1(+在(-∞,+∞)上是减函数,那么( )A. 0<a<1B. -1<a<0C. a=-1D. a<-1 7. 设函数y=x 3与y=x )21(的图象的交点为(x 0,y 0),则x 0所在的区间是( )A. (0,1)B. (1,2)C. (2,3)D. (3,4)8. 已知函数f (x )是R 上的偶函数,当x ≥0时f (x )=2x -2,则f (x )<0的解集是( )A. (-1,0)B. (0,1)C. (-1,1)D. (-∞,-1)⋃(1,+∞)9. 某商店卖出两套不同品牌的西服,售价均为1680元。

以成本计算,一套盈利20%,另一套亏损20%,此时商店( )A. 不亏不盈B. 盈利372元C. 亏损140元D. 盈利140元10. 设函数f (x )在(-∞,+∞)上是减函数,则( )A. )2()(a f a f >B. )()(2a f a f <C. )()(2a f a a f <+D. )()1(2a f a f <+二、填空题:本大题共4小题,每小题5分,共20分 11. 326689log 4log -+=_______。

2018-2019学年度第一学期高一数学期中七校联考试卷解析

2018-2019学年度第一学期高一数学期中七校联考试卷解析

2018~2019学年度第一学期期中七校联考高一数学参考答案第Ⅰ卷(选择题,共40分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 1,2221>>=x y x x 所以是单调递增,指数函数,{}|1B x x =∈>R ,{|1}B x R x =∈≤R ð {}02A x x =∈<<R ,()A B =R ð{|01}x R x ∈<≤,故选D 选项 【考查集合的运算】2. 函数定义域要求开偶次方时被开方数为非负数,所以021≥-x ,即02>-x ,2>x ,故选A 选项【考查函数定义域】3. 由函数单调性性质可知,)(x f 在(0,)+∞单调递减。

23()log f x x x=- 23(1)log 1=301f =->,231(2)log 2=22f =-,223(3)log 3=1-log 303f =-<,0)3()2(<⋅f f ,由零点存在性定理得,()f x 的零点所在的区间是(2,3),故选C 选项【考查函数零点存在性定理】4. 221log =-log 313a =<-,ln 3ln 1b e =>=,0110()133c ⎛⎫<=<= ⎪⎝⎭,故选B 选项 【考查指数、对数比较大小】5. 因为()f x 是定义在R 上的奇函数,所以21111()-()2224f f ⎛⎫-==-=- ⎪⎝⎭,故选A 选项【考查函数奇偶性的性质】6. 幂函数21x y =在[)∞+,0上单调递增,由11221)(32)m m -<-(,得m m 2310-<-≤,也即341<≤m ,故选C 选项 【考查幂函数的单调性】7. ()f x 是定义在R 上的偶函数,()f x 在[0,)+∞单调递增,则()f x 在()0-,∞单调递减。

由3(log )(1)f a f <,结合()f x 函数图像可知1log 1-3<<a ,也即331<<a ,故选B 选项【考查函数奇偶性的性质】8. 二次函数2()2f x x ax =+,开口向上,对称轴a x -=当1-≥a 时,即1-≤a ,()f x 在[]2,1x ∈-上的最小值a f 211+=)(,由题意得1)1(-=f ,此时1-=a ,符合题意当22--≥≤a a ,即,()f x 在[]2,1x ∈-上的最小值a f 4-42-=)(,由题意得1)2-(-=f ,此时45=a ,此时与2≥a 矛盾,故不符合题意 当211-2<<-<<-a a ,即,()f x 在[]2,1x ∈-上的最小值2222-a a a a f -=-=)(,由题意得,1)-(-=a f ,此时1=a ,或(舍)1-=a综上可知1=a ,或1-=a ,故选A 选项 【考查二次函数轴动区间定的最值问题】9. 由(2)f x +为偶函数,可知(2)f x +的对称轴为0=x ,()f x 的对称轴为2=x 。

2018-2019学年高一(上)期中数学试卷

2018-2019学年高一(上)期中数学试卷

一、单选题1.已知集合A={x|﹣2<x <4},B={x|y=lg(x ﹣2)},则A∩(∁R B)= A .(2,4) B .(﹣2,4) C .(﹣2,2) D .(﹣2,2] 2.已知 ,则A .B .C .D .3.已知 是定义在 上的偶函数,且在区间 上是增函数,设,,,则 的大小关系是 A . B . C . D .4.已知0.430.43,0.4,log 3a b c ===,则A .b a c <<B .c a b <<C .a c b <<D .c b a << 5.如果点()sin ,cos P θθ位于第四象限,那么角θ所在的象限是. A .第一象限 B .第二象限 C .第三象限 D .第四象限6.设()f x 是定义在实数集R 上的函数,满足条件()1y f x =+是偶函数,且当1x ≥时,()112xf x ⎛⎫=- ⎪⎝⎭,则()()3log 2,,3a f b f c f ⎛==-= ⎝的大小关系是 A .a b c >> B .b c a >> C .b a c >> D .c b a >> 7.函数的值域为A .[﹣1,0)B .[﹣1,+∞)C .(0,1]D .[1,+∞)8.当1a >时,在同一平面直角坐标系中,函数xy a =与1log ay x =的图象可能为A .B .C .D .9.已知函数()22xxa f x a -=+是奇函数,则()f a 的值等于A .13-B .3C .13-或3D .13或3 10.函数 的定义域为 A . B . C . D .11.已知集合M={(x ,y)|y=f(x)},若对于任意实数对(x 1,y 1)∈M ,存在(x 2,y 2)∈M ,使x 1x 2+y 1y 2=0成立,则称集合M 具有∟性,给出下列四个集合:①M={(x ,y)|y=x 3﹣2x 2+3}; ②M={(x ,y)|y=log 2(2﹣x)}; ③M={(x ,y)|y=2﹣2x}; ④M={(x ,y)|y=1﹣sinx};其中具有∟性的集合的个数是A .1B .2C .3D .412.已知,则使 成立的 的取值范围是A .B .C .D .二、解答题 13.计算: (1)(2)lg125+lg8 (3)(4)cos0°+sin90°﹣tan45°﹣2cos60°. 14.已知(1)化简(2)若 是第二象限角,且,求 的值.15.为纪念重庆黑山谷晋升国家5A 级景区五周年,特发行黑山谷纪念邮票,从2017年11月1日起开始上市.通过市场调查,得到该纪念邮票在一周内每1张的市场价y(单位:元)与上市时间x(单位:天)的数据如下:(Ⅰ)分析上表数据,说明黑山谷纪念邮票的市场价y(单位:元)与上市时间x(单位:天)的变化关系,并判断y与x满足下列哪种函数关系,①一次函数;②二次函数;③对数函数,并求出函数的解析式;(Ⅱ)利用你选取的函数,求黑山谷纪念邮票市场价最低时的上市天数及最低的价格.16.已知关于x的方程的两根为sinθ和cosθ (0<θ<π).(1)求m的值;(2)计算的值.17.已知函数f(x)=.(1)若f(x)的值域为R,求实数a的取值范围;(2)若函数f(x)在(﹣∞,1)上为增函数,求实数a的取值范围.18.函数在只有一个零点,求m取值范围.三、填空题19.函数f(x)=a2x﹣1+1(a>0,a≠1)的图象恒过定点P,则P点的坐标是_____.20.已知一个扇形的弧长为,其圆心角为,则这扇形的面积为______.21.若是定义在上的周期为3的函数,且,则的值为_________.22.已知函数f(x)=x|2x﹣a|﹣1.①当a=0时,不等式f(x)+1>0的解集为_____;②若函数f(x)有三个不同的零点,则实数a的取值范围是_____.参考答案 1.D 【解析】 【分析】先求得集合B,再进行补集和交集的运算即可. 【详解】 B ={x |x >2}; ∴∁R B ={x |x ≤2}; ∴A ∩(∁R B )=(﹣2,2]. 故选:D . 【点睛】本题考查描述法表示集合,交集和补集的运算. 2.A【解析】分析:原式分子利用同角三角函数间的基本关系化简,分子分母除以 ,再利用同角三角函数间的基本关系弦化切后,将 的值代入计算即可求出值.详解:原式=sin cos cos sin cos sin cos cos故选A..点睛:本题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键. 3.B 【解析】试题分析:∵已知 是定义在 上的偶函数,且在区间 上是增函数,∴ 在上单调递减,∴,,又∵,,∴,∴.考点:1.偶函数的性质;2.指对数的运算性质. 4.D 【解析】3x y =是定义域上的增函数, 0.4331∴>=0.4x y =是定义域上的减函数,3000.40.41∴<<=0.4log y x =是定义域上的减函数, 0.40.4log 3log 10∴<=c b a ∴<<故选D 5.B【解析】∵点()sin ,cos P θθ位于第四象限,∴0{ 0sin cos θθ><,∴角θ所在的象限是第二象限. 故选:B . 6.C【解析】∵y=f(x+1)是偶函数,∴f(-x+1)=f(x+1),即函数f(x)关于x=1对称.∵当x≥1时, ()112x f x ⎛⎫=- ⎪⎝⎭为减函数,∵f(log 32)=f(2-log 32)= f(923log )且12-=34,log 34<923log <3,∴b >a >c , 故选:C7.B 【解析】 【分析】由二次函数的性质,我们易求出1+2x ﹣x 2的值域,进而根据对数函数的性质,即可得到函的值域.【详解】∵1+2x ﹣x 2=﹣(x ﹣1)2+2≤2∴1故函数的值域为[﹣1,+∞).故选:B .【点睛】本题考查的知识点是对数函数的值域,其中熟练掌握对数函数的单调性是关键. 8.C【解析】当1a >时, x y a =单调递增, 1ay log x =单调递减故选C 9.C【解析】函数为奇函数,则: ()()f x f x -=-,即:2222x xx xa a a a ----=-++恒成立, 整理可得: 212212x x x xa a a a ⋅--+=⋅++,即21a =恒成立, 1a ∴=±, 当1a =时,函数的解析式为: ()1212x x f x -=+, ()()111211123f a f -===-+, 当1a =-时,函数的解析式为: ()1212x x f x --=-+, ()()11121312f a f ----=-==-+, 综上可得: ()f a 的值等于13-或3. 本题选择C 选项.点睛:正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域关于原点对称是函数f (x )为奇函数或偶函数的必要非充分条件;(2)f (-x )=-f (x )或f (-x )=f (x )是定义域上的恒等式.10.A 【解析】 【分析】要使得 有意义,则需满足,解该不等式组即可得出 的定义域.【详解】要使 有意义,则,解得 ; 的定义域为 . 故选:A . 【点睛】考查函数定义域的定义及求法,对数的真数大于0,以及对数函数的单调性. 11.D 【解析】 【分析】条件等价于:对于M 中任意点P (x 1,y 1),在M 中存在另一个点P ′(x 2,y 2),使OP ⊥OP ′.作出函数图象,验证即可.【详解】分别作出①②③④的图象如图:, y=x 3﹣2x 2+3的图象y=log 2(2﹣x)的图象:y=2﹣2x 的图象:y=1﹣sinx 的图象:由题意知:对于M中任意点P(x1,y1),在M中存在另一个点P′(x2,y2),使,即OP⊥OP′,即过原点任作一条直线与函数图象相交,都能过原点作另一条直线与此直线垂直,对上述图象一一验证,都成立,故选:D.【点睛】本题考查集合的表示方法、函数图象及其应用,属于中档题.12.D【解析】】∵,成立∴∴或或∴或或故选D.13.(1);(2)3 ;(3);(4)0 .【解析】【分析】(1)利用分数指数幂的运算法则,化简所给的式子,可得结果.(2)和(3)都是利用对数的运算法则化简所给的式子,可得结果.(4)利用特殊角的三角函数值求得结果.【详解】(1).(2)lg125+lg8=lg1000=3.(3).(4)cos0°+sin90°﹣tan45°﹣2cos60°=1+1﹣1﹣=0.【点睛】本题主要考查对数的运算法则、分数指数幂的运算法则的应用,考查了特殊角的三角函数值,属于基础题.14.(1)(2)【解析】试题分析:(1)根据诱导公式对进行化简即可.(2)先由求得,再根据(1)的结论及同角三角函数关系式求解.试题解析:(1).(2),,∵是第二象限角,∴,.15.(1)f(x)=x2﹣6x+10(x≥0);(2)黑山谷纪念邮票市场价最低时的上市为第3天,最低的价格为1元.【解析】【分析】(Ⅰ)根据y的变化趋势可知函数不单调,从而选择②,利用待定系数法求出解析式,(Ⅱ)根据二次函数的性质得出最小值及其对应的时间;【详解】(Ⅰ)由于市场价y随上市时间x的增大先减小后增大,而模型①③均为单调函数,不符合题意,故选择二次函数模型②,设f(x)=ax2+bx+c由表中数据可知,解得a=1,b=﹣6,c=10,∴f(x)=x2﹣6x+10(x≥0),(Ⅱ)由(Ⅰ)知f(x)=x2﹣6x+10=(x﹣3)2+1,当x=3时,黑山谷纪念邮票市场价最低,最低为1元,故黑山谷纪念邮票市场价最低时的上市为第3天,最低的价格为1元【点睛】本题考查了函数模型的选择和应用,二次函数的性质与应用,属于中档题.16.(1);(2).【解析】【分析】(1)利用韦达定理表示出sinθ+cosθ与sinθcosθ,利用同角三角函数间的基本关系化简即可求出m的值;(2)由(1)求得sinθ﹣cosθ的值,然后化切为弦整理可得的值.【详解】(1)∵方程2x2﹣(﹣1)x+m=0的两根为sinθ和cosθ,θ∈(0,π),∴sinθ+cosθ ,sinθcosθ ,∵(sinθ+cosθ)2 1+2sinθcosθ,∴=1+m,则m=;(2)由(1)得sinθ+cosθ ,sinθcosθ ,∵0<θ<π,则sinθ﹣cosθ .所以【点睛】本题考查了同角三角函数基本关系的运用,以及三角函数的化简求值,熟练掌握基本关系是解本题的关键,是中档题.17.(1)或;(2)[1,2].【解析】【分析】(1)根据题意,设t=x2﹣2ax+3,则y=log t,若函数f(x)的值域为R,结合对数函数的性质分析可得:对于t=x2﹣2ax+3,必有△=(﹣2a)2﹣12≥0,解可得a的取值范围,即可得答案;(2)由复合函数以及对数函数、二次函数的性质分析可得,解可得a的取值范围,即可得答案.【详解】(1)根据题意,函数f(x)=log(x2﹣2ax+3),设t=x2﹣2ax+3,则y=,若函数f(x)的值域为R,对于t=x2﹣2ax+3,必有△=(﹣2a)2﹣12≥0,解可得:a≥或a≤﹣,(2)设t=x2﹣2ax+3,则y=,函数y=为减函数,若函数f(x)在(﹣∞,1)上为增函数,则函数t=x2﹣2ax+3在(﹣∞,1)上为减函数,且t=x2﹣2ax+3>0在(﹣∞,1)上恒成立,即,解可得1≤a≤2,即a的取值范围为[1,2].【点睛】本题考查复合函数的单调性以及对数函数的性质,关键是掌握对数函数的性质,属于基础题.18.,.【解析】试题分析:复合函数的零点问题可用换元法解决,将问题转化为熟悉的函数,再用零点存在性定理构造关于参数的不等式解决.试题解析:令因为所以,即由在(0,2)上只有一个零点,可以推出在(1,4)上只有一个零点,当时,故在[1,4]上有零点1,2.与题意矛盾!当时,故在[1,4]上只有零点4.满足题意.综上,当考点:1、零点存在性定理;2、复合函数;3、二次函数.【易错点晴】本题主要考查的是零点存在性定理的应用,零点存在性定理要求在上连续,并且那么在区间内有零点,即存在使得而本题要求在闭区间只有一个零点,应用零点存在性定理只能保证在开区间上只有一个零点,所以要另外讨论端点取值是否满足要求.19.【解析】【分析】解析式中的指数2x﹣1=0,求出x的值,再代入解析式求出y的值,即得到定点的坐标.【详解】由于函数y=a x经过定点(0,1),令2x﹣1=0,可得x,求得f()=2,故函数f(x)=a2x﹣1+1(a>0,a≠1),则它的图象恒过定点的坐标为(,2),故答案为:(,2).【点睛】本题主要考查指数函数的图象过定点(0,1)的应用,即令解析式中的指数为0,求出对应的x 和y的值,属于基础题.20.2【解析】【分析】根据孤长公式求出对应的半径,然后根据扇形的面积公式求面积即可.【详解】扇形的半径为,圆心角为,弧长,这条弧所在的扇形面积为,故答案为.【点睛】本题主要考査扇形的面积公式和弧长公式,意在考查对基础知识与基本公式掌握的熟练程度,属于中档题.21.【解析】分析:由题意可得f(0)=f(3),解得a=0,由分段函数求得f(1).详解:f(x)是定义在R上的周期为3的函数,且,可得f(0)=f(3),即有a=﹣18+18=0,则f(a+1)=f(1)=1+1=2,故答案为:2点睛:本题主要考查函数的周期性和分段函数求值,意在考查对这些基础知识的掌握能力和基本的运算能力.22.(0,+∞) (2,+∞)【解析】【分析】①把a=0代入函数解析式,可得不等式,对x分类求解得答案;②转化方程的根为两个函数的图象的交点,利用数形结合,通过函数的导数求解即可.【详解】①当a=0时,不等式f(x)+1>0⇔x|2x|﹣1+1>0,即2x|x|>0,若x<0,得﹣2x2>0,不合题意;若x=0,得0>0,不合题意;若x>0,得2x2>0,则x>0.综上,当a=0时,不等式f(x)+1>0的解集为(0,+∞);②若函数f(x)有三个不同的零点,即方程x|2x﹣a|﹣1=0有3个不同根.即|2x﹣a|有三个解,令y=|2x﹣a|,则y,,<,画出两个函数的图象,如图:x<,y,由y′2,解得x,x(舍去),此时切点坐标(,),代入y=a﹣2x,可得a=22,函数f(x)=x|2x﹣a|﹣1有三个零点,则实数a的取值范围为(2,+∞).故答案为:(0,+∞);(2,+∞).【点睛】本题绝对值不等式的解法,考查函数的导数的应用,函数的零点的判断,考查数形结合的应用,是中档题.。

江西省南昌市第二中学2018-2019学年高一上学期期中考试数学试题

江西省南昌市第二中学2018-2019学年高一上学期期中考试数学试题

南昌二中2018—2019学年度上学期期中考试高一数学试卷命题人:曹玉璋 审题人:黄洁琼一、选择题(每小题5分,共60分.)1.若集合M ={x|1≤x },N ={y|y =x 2,1≤x },则( ) A .M∩N =]10(, B .M ⊆N C .N ⊆M D .M =N2.已知集合A ={1<x x },B ={x |13<x },则( )A .A∩B ={x|x<0} B .A ∪B =RC .A ∪B ={x|x>1}D .A∩B =φ 3.若全集U =R ,集合A ={x |x y 2020log =},集合B ={y |1+=x y },则A∩(∁U B) =( )A .φB .(0,1)C . (0,1]D .(1,+∞) 4.已知函数f (x )=⎩⎨⎧2x +1,x <1x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( )A.12B.45C .9D .2 5.已知函数)(x f y =的定义域]1,8[-,则函数2)12()(++=x x f x g 的定义域是( )A. ]3,15[-B.]0,29[-C.]0,2(2,29[--- )D ]3,2(2,15[--- )6.已知函数x x x f )1()(γγ-=(其中欧拉常数0.577≈γ),则)(x f ( )A .是奇函数,且在R 上是减函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是增函数D .是偶函数,且在R 上是减函数 7.方程x x 8201log )92011(=的解的个数是A. 3个B. 2个C. 1`个D. 0个8.方程03lg =-+x x 根所在的区间是( )9.函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( )A .a =-3B .a <3C .a ≤-3D .a ≥-310.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是( )A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]11.已知定义在R 上的偶函数)(x f ,且x≥0时,1,35310,1{)(3>+≤≤+=-x x x x f x 方程m x f =)( 恰好有4个实数根,则实数m 的取值范围是( )A .),(20B .),(21 C .),(235 D .),235[ 12.已知)(x f 是定义在R 上的奇函数,对任意两个不相等的正数21,x x 都有0)()(212112>--x x x f x x f x ,记:1.4log )1.4(log ,4.0)4.0(,1.4)1.4(2.02.01.21.22.02.0f c f b f a ===,则( ) 二、填空题(每小题5分,共20分.)13.函数12+=+x a y )10(≠>a a 且的图象恒过的定点是 . 14.幂函数m x m m x f )2()(2+=在),0[+∞上为单调递增的,则=m ___________. 15.若函数()f x 是定义在R 上的偶函数,且在区间[)0,+∞上是单调减函数.如果实数t 满足()()1ln ln 21f t f f t ⎛⎫+< ⎪⎝⎭时,那么t 的取值范围是 .16. 函数2012)(x x x x x x f ++++=--的值域是 . 三、解答题(共70分)17.(本小题共10分)已知A ={x |0<log 2(x +1)<2},B ={x |ax 2-ax -4<0}.(1)当a =2时,求A ∩B ;(2)若B=R ,求实数a 的取值范围. 18.(本小题共12分)化简与求值(1)(2)19. (本小题共12分)求下列函数的值域(1))1,(,432)(2-∞∈⨯-=+x x f x x ; (2)]4,1[,2log 4log )(22∈⋅=x x xx f ; (3)R x x e x f x∈+=,)(.20. (本小题共12分)已知函数为偶函数,且.(1)求m 的值,并确定的解析式;(2)若])([log )(ax x f x g a -=(a >0且1≠a ) 在]3,2(上为增函数,求实数a 的取值范围.21. .(本小题共12分)如果函数在其定义域D 内,存在实数使得成立,则称函数为“可拆分函数”.(1)判断函数x x f x x f x x f x x f x x f 2)(,ln )(,)(,1)(,)(543221=====是否为“可拆分函数”?(需说明理由)(2)设函数12lg)(+=xax f 为“可拆分函数”,求实数a 的取值范围。

江苏省苏州市2018-2019学年高一上学期期中考试数学试卷(解析版)

江苏省苏州市2018-2019学年高一上学期期中考试数学试卷(解析版)

2018-2019学年江苏省苏州市高一上学期期中考试数学试卷一、选择题。

1.【答案】C【解析】【分析】空集是任何集合的子集.根据元素与集合的关系、集合与集合的关系对选项逐一进行判断,由此得出正确选项.【详解】对于A选项,集合中含有一个元素空集,故空集是这个集合的元素,故A选项正确. 空集是任何集合的子集,故B,D两个选项正确.对于C选项,空集不是正整数集合的元素,C选项错误.故选C.【点睛】本小题主要考查元素与集合的关系,考查集合与集合的关系,考查空集的概念.属于基础题.2.不【答案】B【解析】【分析】将化为以为底的对数形式,然后利用对数函数的定义域和单调性求得不等式的解集.【详解】依题意,由于是定义域上的递增函数,故.所以选B.【点睛】本小题主要考查对数函数的定义域,考查对数不等式的解法,属于基础题.3.【答案】C【解析】【分析】令,解这个不等式求得函数的定义域.【详解】由于函数的定义域为,故,解得或,故选C.【点睛】本小题主要考查抽象函数的定义域的求法,考查定义域的概念及应用,属于基础题.4.【答案】D【解析】试题分析:由题意得,当时,即,则,解得(舍去);当时,即,则,解得,故选D.考点:分段函数的应用.5.【答案】D【解析】试题分析:因为,所以函数是偶函数,又+=在上是减函数,故选D.考点:1、函数的奇偶性;2、函数的单调性.6.【答案】A【解析】若选项A错误时,选项B、C、D正确,,因为是的极值点,是的极值,所以,即,解得:,因为点在曲线上,所以,即,解得:,所以,,所以,因为,所以不是的零点,所以选项A错误,选项B、C、D正确,故选A.【考点定位】1、函数的零点;2、利用导数研究函数的极值.二、填空题。

请把答案填写在答题纸相应位置上。

7.【答案】【解析】【分析】根据补集的概念,求得集合的补集.【详解】由于,全集中除了以外的元素是,所以.【点睛】本小题主要考查全集的概念,考查补集的概念以及补集的求法,属于基础题.8.【答案】-【解析】【分析】先将被开方数化为指数的形式,再用根式的运算化简式子,从而得到最终的结果.【详解】依题意.【点睛】本小题主要考查根式的运算,属于基础题,在根式运算中,要注意如果为偶数,则,如果为奇数,则.9.【答案】【解析】【分析】首先判断出的范围,然后将其代入对应的分段函数解析式中,所求值变为,然后判断的范围,代入对应的分段函数解析式中.以此类推,直到可以代入第一段解析式为止,由此求得最终的函数值. 【详解】由于,所以,由于,所以,由于,所以.【点睛】本小题主要考查分段函数的性质,考查对数的运算公式,考查运算求解能力.在分段函数求值的过程中,首先要明确自变量所在的区间,这样才能够知道代入函数解析式的哪一段.对数运算公式,,要熟练记忆和运用这些公式.属于基础题.10.【答案】b<a<c【解析】【分析】先根据函数为偶函数化简使它们的自变量都落在这个区间内,再根据函数的单调性比较大小.【详解】由于函数为偶函数,故,由于,且函数在上递减,故.【点睛】本小题主要考查函数奇偶性的应用,考查函数单调性的应用,考查抽象函数比较大小,考查化归与转化的数学思想方法,属于基础题.函数是偶函数,故满足,这样可以将不是题目给定范围内的数,转化到这个区间里面来,再按照单调性来比较大小.11.【答案】[,3)【解析】【分析】先求得函数的定义域,然后利用复合函数单调性的判断方法“同增异减”来求得单调递减区间.【详解】令,解得.由于(),开口向下,且对称轴为,左增右减.而函数在定义域上为递增函数,故函数的递减区间为.【点睛】本小题主要考查复合函数的单调性的求解,考查一元二次不等式的解法,属于基础题.由于题目涉及对数函数,故首先要满足对数的真数要大于零这个前提,也即是求函数的单调区间,首先要求函数的定义域.复合函数的单调性,主要判断依据是根据“同增异减”这一特点来进行.12.【答案】{a|a>0或a=﹣4}【解析】【分析】对分为三类,根据去绝对值的情况,讨论函数在上的单调性,由此确定的取值范围. 【详解】当时,为常数函数,不符合题意.当时,由于,故函数,函数开口向上,对称轴为,故函数在上递增,符合题意.当时,令,解得.此时,故函数在上递减,在上递增,所以是的子集,故,解得,故的取值范围是或.【点睛】本小题主要考查含有参数、绝对值的函数的单调性的问题,考查二次函数的单调性的判断,考查分段函数的单调性,还考查了分类讨论的数学思想,综合性较强,属于中档题.它的关键点有两个,一个是的范围,这个决定了二次函数的开口方向还有对称轴.二个是如何去绝对值符号,变为分段函数的形式. 13.【答案】10【解析】【分析】首先利用换元法,结合函数的单调性求得函数的解析式,再来求的值.【详解】令,则,且,令代入上式,得,所以,解得,由于函数是上的递增函数,故上述解只有一个,故,即,所以.【点睛】本小题主要考查复合函数求解析式,考查换元法的思想,考查分析和解决问题的能力,属于基础题.14.【答案】﹣≤a≤2【解析】【分析】先求画出函数的图像,然后对的图像进行分类讨论,使得的图像在函数的图像下方,由此求得的取值范围.【详解】画出函数的图像如下图所示,而,是两条射线组成,且零点为.将向左平移,直到和函数图像相切的位置,联立方程消去并化简得,令判别式,解得.将向右平移,直到和函数图像相切的位置,联立方程消去并化简得,令判别式,解得.根据图像可知【点睛】本小题主要考查分段函数的图像与性质,其中包括二次函数的图像、对勾函数的图像,以及含有绝对值函数的图像,考查恒成立问题的求解方法,考查数形结合的数学思想方法以及分类讨论的数学思想方法,属于中档题.形如函数的图像,是引出的两条射线.15.【答案】(I)(II)1【解析】【分析】(I)利用配方法,求得的值,将两边平方化简后,求得,利用立方和公式以及平方差公式化简所求的式子,由此计算得结果.(2)利用对数的运算公式,将化为并代回原式,合并同类项后化简,可求得最终结果.【详解】(I),====(II)===1【点睛】本小题主要考查指数的运算,考查对数的运算,考查化归与转化的数学思想方法和运算求解能力,属于中档题.16.【答案】(1)M∪N=[1,+∞)(2)m【解析】【分析】(1)先通过求函数的定义域,求得集合,当时,利用配方法求得二次函数的值域,也即求得集合,然后求两个集合的并集.(2)由(1)得到集合的范围,以及集合的范围,集合的范围含有参数.根据,得到是的子集,由此求得的取值范围.【详解】(1)M=[1,3]当m=3时,N={y|y=x2﹣2x+3}={y|y=(x-1)2+2}=[2,+∞),所以,M∪N=[1,+∞)(2)可得由(1)可知M=[1,3],N=[m-1,+∞)则m【点睛】本小题主要考查函数的定义域,考查二次函数值域的求法,考查集合的并集和交集,考查子集的概念以及运用.属于基础题.函数的定义域主要由以下方面考虑来求解:一个是分数的分母不能为零,二个是偶次方根的被开方数为非负数,第三是对数的真数要大于零,第四个是零次方的底数不能为零.17.【答案】(1) y=-; (2) 200元;(3) 每台冰箱的售价降价150元时,商场的利润最高,最高利润是5000元【解析】【分析】(1)先计算降价后每台冰箱的利润,然后计算每天销售额,两者相乘得到利润的表达式.(2)令利润的表达式等于,解出降价的钱,从中选一个百姓能得到更大优惠的.(3)利用二次函数的对称轴,求得函数的最大值以及相应的自变量的值.【详解】(1)根据题意,得y=(2400-2000-x)(8+4×),即y=-;(2)由题意,得-整理,得x2-300x+20000=0,解这个方程,得x1=100,x2=200,要使百姓得到实惠,取x=200,所以,每台冰箱应降价200元;(3)对于y=-当x=-时,y最大值=(2400-2000-150)(8+4×)=250×20=5000,所以,每台冰箱的售价降价150元时,商场的利润最高,最高利润是5000元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金川公司二高2018-2019学年度第一学期高一年级期中考试数 学 试 卷第Ⅰ卷一、选择题(本大题共12小题,每小题5分,满分60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列表示错误..的是( ). A .0φ∉ B .{}1,2φ⊆ C .{}{}(3,4)3,4= D .{}211x x ∈=2.集合{}|19,*M x x x N =<<∈,{}1,3,5,7,8N =,则M N ⋂=( ).A .{}1,3,5B .{}1,3,5,7,8C .{}1,3,5,7D . {}3,5,7,83.函数04()()=+-f x x 的定义域为( ). A .[)()2,44,+∞ B .[)2,+∞ C .()(2,4)4,+∞ D .(],2-∞4.下列四组函数中,表示相同函数的一组是( ).A .()()2f xg x ==B .()(),f x x g x ==C .()()21,11x f x g x x x -==+- D .()()f x g x ==5.函数的()3log 82f x x x =-+零点一定位于区间( ).A .(1,2)B .(2,3)C .(3,4)D .(5,6)6.设21()3a =,123b =,13log 2c = 则( ).A .a b c >>B . b c a >>C . b a c >>D . c b a >>7.函数212log (6)=+-y x x 的单调增.区间是( ). A .1(,]2-∞ B .1(2,]2- C .1[,)2+∞ D .1[,3)28.()log a f x x = (01)a <<在区间]2,[a a 上的最大值是最小值的3倍,则a 的值为( ).A .42 B . 22 C . 41 D . 219.函数2xy -=的大致图象是( ).A .B .C .D .10.已知函数1()(2)()2(1)(2)xx f x f x x ⎧≥⎪=⎨⎪+<⎩,则2(log 3)f =( ).A .6B .16 C .13D .3 11.()f x 是定义在(2,2)-上递减的奇函数,当(2)(23)0f a f a -+-<时,a 的取值范围是( ).A .(0,4)B .5(0,)2 C .15(,)22 D .5(1,)212. 若函数()21()log 3xf x x =-,实数0x 是函数()f x 的零点,且100x x <<,则()1f x 的值( ).A .恒为正值B .等于0C .恒为负值D .不大于0第Ⅱ卷二.填空题:(本大题共4小题,每小题5分,满分20分。

)13.若函数()f x 是定义域为[]1,2a a -的偶函数,则a = . 14.已知幂函数()f x的图象经过点(8,,那么(4)f = . 15.若函数()f x 是定义在R 上的奇函数,当0x >时,2()1f x x x =-+,则0x <时,()f x 的表达式是 . 16.给出下列六个结论其中正确..的序号..是 .(填上所有正确结论的序号...........) ① 已知ln 2a =,ln3b =,则用含a ,b 的代数式表示为:3log 2ba=; ② 若函数()f x 的定义域为[0,2],则函数(2)f x 的定义域为[0,4];③ 函数log (2)3,(0,1)a y x a a =-+>≠恒过定点(2,4);④ 若21()12x -≤,则{}2x x ≤;⑤ 若指数函数2(31)x y a a a =-+,则3a =;⑥若函数1f x =+,则2()2f x x =+.三.解答题:(本大题共6小题,满分70分;解答应写出文字说明,证明过程或演算步骤。

) 17.(本题满分10分)计算下列各式的值:(1)11022331(2)20.064(2)54-+⋅--; (2)27log 4374lg 25lg 327log +++.18.(本题满分12分)已知函数2()67,[1,4]f x x x x =-+∈,(1)在给定直角坐标系中画出函数的大致图象;(每个小正方形边长为一个单位长度) (2)由图象指出函数()f x 的单调递增区间(不要求证明); (3)由图象指出函数()f x 的值域(不要求证明)。

19.(本题满分12分)已知集合{}|212=-≤≤+A x a x a ,集合{}|15B x x =≤≤,若=A B A ,求实数a 的取值范围。

20.(本题满分12分)如图所示,动物园要建造一面靠墙的2间面积相同的矩形熊猫居室.如果可供建造围墙的材料总长为30米,那么宽x (单位:米)为多少时才能使所建造的每间熊猫居室面积最大?每间熊猫居室的最大面积是多少?21.(本题满分12分)已知函数1()21xf x a =-+. (1)求证:不论a 为何实数,()f x 总为增函数; (2)求a 的值,使()f x 为奇函数; (3)当()f x 为奇函数时,求()f x 的值域。

22.(本题满分12分)已知函数()f x ,当,x y R ∈时,恒有()()()f x y f x f y +=+. (1) 求证: ()()0f x f x +-=; (2) 若(3)f a -=,试用a 表示(24)f ; (3) 如果x R ∈时,()0,f x <且1(1)2f =-,试求()f x 在区间[2,6]-上的最大值和最小值。

试卷参考答案B二、填空题(每小题5分,共20分) 13.13; 14.2; 15.2()1(0)=---<f x x x x ; 16.⑤。

三、解答题 17.解:(1)原式=1+52235241-=-⨯……………… 6分 (2)原式=()143115log 3lg 25422244-+⨯+=-++= ……………… 12分18.解:]4,1[,2)3()(2∈--=x x x f ……………… 2分 (1)图略 ……………… 6分(2))(x f 的单调递增区间是[3,4] ……………… 10分 (3))(x f 的值域是[-2,2] ……………… 12分 19.解:,A B A A B =∴⊆, ……………… 2分 当A φ=时,满足A B ⊆,此时有212a a ->+,解得3a > . ……………… 4分当A φ≠时,又有A B ⊆,且{|15}B x x =≤≤ ……………… 6分2123211113253a a a a a a a a -≥+≤⎧⎧⎪⎪∴-≥⇒≥⇒≤≤⎨⎨+≤≤⎪⎪⎩⎩ ……………… 10分 ∴综上可得,实数a 的取值范围为1a ≥. . ……………… 12分20.解:如图设2间面积相同的矩形熊猫居室长的和为y 米,每间熊猫居室面积为()S x 米2,则……………… 2分330303x y y x -=⇒=-, ……………… 4分{030010303x x y x<<⇒<<=- ……………… 8分 233()(15)15222y S x x x x x x =⋅=⋅-=-+, ……………… 10分min 75(5)2S S ∴== … …………… 11分答:宽5x =米)时才能使所建造的每间熊猫居室面积最大,每间熊猫居室的最大面积是752米2… …………… 12分21.解: (1)设(),x ∈-∞+∞,且12x x <, 则 ……………… 1分121211()()2121x x f x f x a a -=--+++=121222(12)(12)x x x x -++, ……………… 3分 12x x <, 1212220,(12)(12)0x x x x ∴-<++>, 12()()0,f x f x ∴-<……………… 5分即12()()f x f x <,所以不论a 为何实数()f x 总为增函数. ………… 6分 (2)()f x 为奇函数, ()()f x f x ∴-=-,即112121x xa a --=-+++, 解得: 1.2a =11().221x f x ∴=-+ ……………… 9分 (3)由(2)知11()221x f x =-+,211x +>,10121x∴<<+, 11110,()2122x f x ∴-<-<∴-<<+所以()f x 的值域为11(,).22-……………… 12分 22.解:(1) 令0x y ==得(0)0f =, ……………… 1分再令y x =-得()(),f x f x -=- …………… 3分()()0.f x f x ∴-+= ……………… 4分(2) 由(3)f a -=(3),f a =-(24)(333)8(3)8f f f a ∴=++⋅⋅⋅+==- .………………8分(3)设(),x ∈-∞+∞,且12x x <,则2121()[()]f x f x x x =+-=121()()f x f x x +-21210,()0x x f x x ->∴-<又,1211()()()f x f x x f x ∴+-<,21()()f x f x ∴<()f x ∴在R 上是减函数,max ()(2)(2)(1)1f x f f f ∴=-=-=-=,min 1()(6)6(1)6()32f x f f ===⨯-=-. ……………… 12分。

相关文档
最新文档