全等三角形提高32题(含问题详解)

合集下载

全等三角形压轴几何题提高题检测试题

全等三角形压轴几何题提高题检测试题

全等三角形压轴几何题提高题检测试题一、全等三角形旋转模型1.阅读下面材料:小炎遇到这样一个问题:如图1,点E、F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连结EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决了这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)如图3,四边形ABCD中,AB=AD,∠BAD=90°点E,F分别在边BC,CD上,∠EAF=45°.若∠B,∠D都不是直角,则当∠B与∠D满足_ 关系时,仍有EF=BE+DF;(2)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1, EC=2,求DE的长.答案:B解析:(1)∠B+∠D=180°(或互补);(2)∴5DE【解析】试题分析:(1)如图,△ABE绕着点A逆时针旋转90°得到△ADG,利用全等的知识可知,要使EF=BE+DF,即EF=DG+DF,即要F、D、G三点共线,即∠ADG+∠ADF=180°,即∠B+∠D=180°.(2) 把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合,通过证明△AEG≌△AED 得到DE=EG,由勾股定理即可求得DE的长.(1)∠B+∠D=180°(或互补).(2)∵ AB=AC,∴把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合.则∠B=∠ACG,BD=CG,AD=AG.∵在△ABC中,∠BAC=90°,∴∠ACB+∠ACG=∠ACB+∠B=90°于,即∠ECG=90°.∴ EC2+CG2=EG2.在△AEG与△AED中,∠EAG=∠EAC+∠CAG=∠EAC+∠BAD=90°-∠EAD=45°=∠EAD.又∵AD=AG,AE=AE,∴△AEG≌△AED .∴DE=EG.又∵CG=BD,∴ BD2+EC2=DE2.∴5DE .考点:1.面动旋转问题;2.全等三角形的判定和性质;3.勾股定理.2.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120º,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.答案:C解析:(1)CF=CG;(2)CF=CG,见解析【分析】(1)结论CF=CG,由角平分线性质定理即可判断.(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF=CG;证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,∴CF=CG(角平分线上的点到角两边的距离相等);(2)CF=CG.理由如下:如图,过点C作CM⊥OA,CN⊥OB,∵OP平分∠AOB,CM⊥OA,CN⊥OB,∠AOB=120º,∴CM=CN(角平分线上的点到角两边的距离相等),∴∠AOC=∠BOC=60º(角平分线的性质),∵∠DCE=∠AOC,∴∠AOC=∠BOC=∠DCE=60º,∴∠MCO=90º-60º =30º,∠NCO=90º-60º =30º,∴∠MCN=30º+30º=60º,∴∠MCN=∠DCE,∵∠MCF=∠MCN-∠DCN,∠NCG=∠DCE-∠DCN,∴∠MCF=∠NCG,在△MCF和△NCG中,CMF CNG CM CNMCF NCG ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MCF ≌△NCG (ASA ),∴CF=CG (全等三角形对应边相等);【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等 .3.如图,△ABC 是边长为4的等边三角形,点D 是线段BC 的中点,∠EDF=120°,把∠EDF 绕点D 旋转,使∠EDF 的两边分别与线段AB 、AC 交于点E 、F .(1)当DF ⊥AC 时,求证:BE=CF ;(2)在旋转过程中,BE+CF 是否为定值?若是,求出这个定值;若不是,请说明理由答案:D解析:(1)证明见解析;(2)是,2.【解析】【分析】(1)根据四边形内角和为360°,可求∠DEA=90°,根据“AAS”可判定△BDE ≌△CDF ,即可证BE=CF ;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,易证△MBD ≌△NCD ,则有BM=CN ,DM=DN ,进而可证到△EMD ≌△FND ,则有EM=FN ,就可得到BE+CF=BM+EM+CF=BM+FN+CF=BM+CN=2BM=2BD×cos60°=BD=12BC=2. 【详解】(1)∵△ABC 是边长为4的等边三角形,点D 是线段BC 的中点,∴∠B=∠C=60°,BD=CD ,∵DF ⊥AC ,∴∠DFA=90°,∵∠A+∠EDF+∠AFD+∠AED=180°,∴∠AED=90°,∴∠DEB=∠DFC ,且∠B=∠C=60°,BD=DC ,∴△BDE ≌△CDF (AAS )(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,则有∠AMD=∠BMD=∠AND=∠CND=90°.∵∠A=60°,∴∠MDN=360°-60°-90°-90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF .在△MBD 和△NCD 中,BMD CND B CBD CD ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△MBD ≌△NCD (AAS )BM=CN ,DM=DN .在△EMD 和△FND 中,EMD FND DM DNMDE NDF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△EMD ≌△FND (ASA )∴EM=FN ,∴BE+CF=BM+EM+CF=BM+FN+CF=BM+CN=2BM=2BD×cos60°=BD=12BC=2. 【点睛】本题主要考查了等边三角形的判定与性质、全等三角形的判定与性质、特殊角的三角函数值等知识,通过证明三角形全等得到BM=CN ,DM=DN ,EM=FN 是解决本题的关键. 4.(1)如图1,在OAB 和OCD 中,OA=OB ,OC=OD ,∠AOB=∠COD=40°,连接AC ,BD 交于点M . 求:①AC BD的值; ②∠AMB 的度数.(2)如图2,在OAB 和OCD 中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD 的延长线于点M .请判断AC BD的值及∠AMB 的度数,并说明理由; (3)在(2)的条件下,将OCD 点O 在平面内旋转,AC ,BD 所在直线交于点M ,若OD=2,OB=23C 与点M 重合时AC 的长.答案:A解析:(1)①1,②40°;(2)AC BD =3,∠AMB=90°,见解析;(3)23或43 【分析】(1)①根据已知条件证明△COA ≌△DOB ,即可证明AC=BD ;②根据△COA ≌△DOB 可得∠CAO=∠DBO ,根据已知条件可得∠OAB+∠ABO=140°,然后在△AMB 中,根据等角的转换即可得到答案;(2)根据已知条件证明△AOC ∽△BOD ,可得∠CAO=∠DBO ,进而可得∠MAB=∠OAB+∠DBO ,最后可得∠AMB=180°-(∠OAB+∠ABM+∠DBO )=90°;(3)分两种情况讨论,根据题(2),同理可得OAC OBD △△,90AMB ∠=︒,3AC BD=,设BD=x ,则3AC x = 用x 表示出AM 、BM 的长,在Rt AMB 中,根据勾股定理222AM BM AB +=列出方程,求解即可.【详解】 解:(1)①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB ,∵OC=OD ,OA=OB ,∴△COA ≌△DOB (SAS ),∴AC=BD , ∴AC BD =1, ②∵△COA ≌△DOB ,∴∠CAO=∠DBO ,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB 中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD )=180°﹣(∠DBO+∠OAB+∠ABD )=180°﹣140°=40°,(2)如图2,AC BD=3,∠AMB=90°,理由是:在Rt △COD 中,∠DCO=30°,∠DOC=90°, ∴3tan 30OD OC =︒= 同理得:3tan 303OB OA =︒=, ∴OD OB OC OA =, ∵∠AOB=∠COD=90°,∴∠AOC=∠BOD ,∴△AOC ∽△BOD ,∴AC OC BD OD=3∠CAO=∠DBO , 在△AMB 中,∠AMB=180°﹣(∠MAB+∠ABM )=180°﹣(∠OAB+∠ABM+∠DBO )=90°;(3)AC 的长为3或3①如图,点C 与点M 重合,同理可得:OAC OBD △△,90AMB ∴∠=︒,3AC BD =, 设BD=x ,则3AC x =,在Rt ODC 中,30OCD ∠=︒,OD=2,4CD ∴=,在Rt AOB 中,30OAB ∠=︒,OB=23,43AB ∴=,在Rt AMB 中,222AM BM AB +=, 即222(3)(4)(43)x x ++=,解得:x=2或-4(舍), AC=323x =;②如图,点C 与点M 重合,同理可得:90AMB ∠=︒,3AC BD =设BD=x ,则3x ,在Rt COD 中, 90OCD ∠=︒,OD=2,4CD ∴=,4BC x =-,在Rt AOB 中,30OAB ∠=︒,3OB =243AB OB ∴==,在Rt AMB 中,222AM BM AB +=,即222(3)(4)(43)x x +-=,解得:x=4或-2(舍),AC=343x=,综上所述,AC的长为23或43.【点睛】本题主要考查三角形的综合运用,涉及全等三角形与相似三角形的性质和判定、勾股定理、解一元一次方程、图形旋转证明、特殊角的三角函数值等知识点,难度较大,第(1)题证明△COA≌△DOB是关键,第(2)题证明△AOC∽△BOD是关键,第(3)题要特别注意分情况讨论.5.如图,△ABC中,O是△ABC内一点,AO平分∠BAC,连OB,OC.(1)如图1,若∠ACB=2∠ABC,BO平分∠ABC,AC=5,OC=3,则AB=;(2)如图2,若∠CBO+∠ACO=∠BAC=60°,求证:BO平分∠ABC;(3)如图3,在(2)的条件下,若BC=3B绕点O逆时针旋转60°得点D,直接写出CD的最小值为.答案:A解析:(1)8;(2)见解析;(3)33【分析】(1)先补充证明角平分线的性质定理:如图,△ABC中,AD是角平分线,则:BD DC=AB AC .如图1中,延长CO交AB于E,由OA平分∠EAC,推出AEAC=OEOC,推出AEEO=AC OC =53,设AE=5k,OE=3k,利用相似三角形的性质构建方程求出k即可解决问题.(2)如图2中,过点O作EF⊥OA交AB于E,交AC于F,作CG∥EF交AB于G,连接OG.证明△AGO≌△ACO(SAS),推出OG=OC,推出∠OGC=∠OCG,证明O,G,B,C 四点共圆,可得结论.(3)如图3中,以BC为边向上作等边△BCH,连接OH,作HM⊥BC于M.证明△HBO≌△CBD(SAS),推出OH=CD,由(2)可知∠BOC=120°,推出当点O落在HM 上时,OH的值最小.【详解】解:(1)先补充证明角平分线的性质定理:如图,△ABC中,AD是角平分线,则:BD DC=AB AC.理由:过C作CE∥DA,交BA的延长线于E,∵CE∥DA,∴∠1=∠E,∠2=∠3,∠1=∠2,∴∠E=∠3,∴AE=AC,∵BDDC =BAAE,∴BDDC =ABAC.如图1中,延长CO交AB于E,∵OA平分∠EAC,∴AEAC=OEOC,∴AEEO =ACOC=53,设AE=5k,OE=3k,∵OB平分∠ABC,∴OC平分∠ACB,∵∠ACB=2∠ABC,∴∠BCE=12∠ACB=∠EBC,∴EB=EC=3k+3,∵∠ACE=∠ABC,∠CAE=∠BAC,∴ACAB =AEAC,∴5533k k =55k,解得k=58或﹣1(舍弃),∴AB=8k+3=8.故答案为:8.(2)如图2中,过点O作EF⊥OA交AB于E,交AC于F,作CG∥EF交AB于G,连接OG.∵AO平分∠AEF,∴∠OAE=∠OAF,∵AO=AO,∠AOE=∠AOF=90°,∴△AOE≌△AOF(ASA),∴AE=AF,∵∠EAF=60°,∴△AEF是等边三角形,∴∠AEF=∠AFE=60°=∠FOC+∠FCO,∵∠OBC+∠FCO=60°,∴∠FOC=∠OBC,∵EF∥CG,∴∠AGC=∠AEF=60°,∠ACG=∠AFE=60°,∴∠AGC=∠ACG,∴AG=AC,∵∠GAO=∠CAO,AO=AO,∴△AGO≌△ACO(SAS),∴OG=OC,∴∠OGC=∠OCG,∵∠FOC=∠OCG,∴∠OBC=∠OGC,∴O,G,B,C四点共圆,∴∠ABO=∠OBC,∴OB平分ABC.(3)如图3中,以BC为边向上作等边△BCH,连接OH,作HM⊥BC于M.∵△OBD,△BCH都是等边三角形,∴∠HBC=∠OBD=60°,BH=BC,BO=BD,∴∠HBO=∠CBD,∴△HBO≌△CBD(SAS),∴OH=CD,由(2)可知∠BOC=120°,∴当点O落在HM上时,OH的值最小,此时OH=HM﹣OM=3﹣3,∴CD的最小值为3﹣3.故答案为:3﹣3.【点睛】本题主要考查角平分线、三角形相似的判定和性质、三角形全等的判定和性质、等边三角形等相关知识点,解题关键在于作出辅助线构造相应图形.6.如图1,在Rt△ABC中,AB=AC,∠A=90°,点D、E分别在边AB、AC上,AD=AE,连结DC,点M、P、N分别为DE、DC、BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是________,位置关系是__________;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连结MN,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若DE=2,BC=4,请直接写出△PMN面积的最大值.答案:C解析:(1)PM=PN,PM⊥PN,理由见详解;(2)△PMN是等腰直角三角形,理由见详解;(3)△PMN面积的最大值是94.【分析】(1)利用三角形的中位线得出PM=12CE,PN=12BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=12BD,PN=12BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可得出结论.【详解】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=12BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=12CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN;故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形;理由:由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=12BD,PM=12CE,∴PM=PN,∴△PMN 是等腰三角形, 同(1)的方法得,PM ∥CE , ∴∠DPM=∠DCE ,同(1)的方法得,PN ∥BD , ∴∠PNC=∠DBC ,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC , ∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC =∠ACB+∠ABD+∠DBC=∠ACB+∠ABC , ∵∠BAC=90°, ∴∠ACB+∠ABC=90°, ∴∠MPN=90°,∴△PMN 是等腰直角三角形;(3)由(2)知,△PMN 是等腰直角三角形,PM=PN=12BD , ∴PM 最大时,△PMN 面积最大,即:BD 最大时,△PMN 面积最大, ∴点D 在BA 的延长线上, ∵DE =2,BC =4,∴2AD ==4AB == ∴BD=AB+AD=∴PM=2,∴S △PMN 最大=12PM 2=219(224⨯=; 【点睛】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=12CE ,PN=12BD ,解(2)的关键是判断出△ABD ≌△ACE ,解(3)的关键是判断出BD 最大时,△PMN 的面积最大,是一道中考常考题. 7.综合与探究 问题情境在Rt △ABC 中,∠BAC =90°,AB =AC ,点D 是射线BC 上一动点,连接AD ,将线段AD 绕点A 逆时针旋转90°至AE ,连接DE ,CE . 探究发现(1)如图1,BD =CE ,BD ⊥CE ,请证明;探究猜想;(2)如图2,当BD =2DC 时,猜想AD 与BC 之间的数量关系,并说明理由; 探究拓广(3)当点D 在BC 的延长线上时,探究并直接写出线段BD ,DC ,AD 之间的数量关系.答案:B解析:(1)证明见解析;(2)10AD BC =,理由见解析;(3)2222BD CD AD +=.【分析】(1)根据题意计算得∠BAD =∠CAE ;再根据旋转的性质,通过证明△BAD ≌△CAE ,从而完成求解;(2)结合(1)的结论,通过△BAD ≌△CAE ,得CE ;通过勾股定理,得2DE =;再通过勾股定理计算,记得得到答案;(3)过点A 作AM BC ⊥交BC 于点M ;根据等腰三角形三线合一的性质,得BM CM =,再根据直角三角形斜边中线的性质,得12AM BM CM BC ===;根据勾股定理的性质,通过计算,即可得到线段BD ,DC ,AD 之间的数量关系. 【详解】(1)由题意得,∠BAC =∠DAE =90° ∵∠BAD +∠CAD =∠CAE +∠CAD ∴∠BAD =∠CAE∵线段AD 绕点A 逆时针旋转90°至AE ∴AD=AE 又∵AB=AC , ∴△BAD ≌△CAE∴BD=CE ,∠B =∠ACE =45° ∴∠ECD =90°,BD ⊥CE .(2)由(1)得:△BAD ≌△CAE ∴BD=CE ,∠B =∠ACE =45°∵13CD BC =,BD =2DC ,即23BD BC =,∴23BD CE BC ==, ∵AD=AE ∴222DE AD AE AD =+=∴∠B =∠ACB =45° ∴∠BCE =∠ACB+∠ACE =90°∴CD 2+CE 2=DE 2,即22212()()233BC BC AD +=, ∴106AD BC =; (3)如图,过点A 作AM BC ⊥交BC 于点M∵∠BAC =90°,AB =AC ∴12BM CM BC ==∴12AM BM CM BC === ∴()1122AM BC BD CD ==-,()1122DM CM CD BC CD BD CD =+=+=+ ∵222AM DM AD +=∴()()2221122BD CD BD CD AD ⎡⎤⎡⎤-++=⎢⎥⎢⎥⎣⎦⎣⎦∴2222BD CD AD +=. 【点睛】本题考查了旋转、等腰直角三角形、勾股定理、直角三角形斜边中线的知识;解题的关键是熟练掌握旋转、等腰三角形三线合一、勾股定理、直角三角形斜边中线的性质,从而完成求解.8.如图,在ABC 中,,AB AC BAC α=∠=,过A 作AD BC ⊥于点D ,点E 为直线AD 上一动点,把线段CE 绕点E 顺时针旋转α,得到线段EF ,连接FC 、FB ,直线AD 与BF 相交于点G .(1)(发现)如图1,当60α=︒时,填空:①AEBF的值为___________; ②AGB ∠的度数为___________;(2)(探究)如图2,当120α=︒时,请写出AEBF的值及AGB ∠的度数,并就图2的情形给出证明;(3)(应用)如图3,当90α=︒时,若23,15AB ACE =∠=︒,请直接写出DFG 的面积.答案:G解析:(1)1;60°;(2)3AE BF =∠G =30°,理由见解析;(3)333 【分析】(1)①根据已知条件可以证明三角形ABC 和三角形EFC 都是等边三角形,然后根据等边三角形的性质证明△AEC ≌△BFC ,即BF =AE 从而得出答案;②根据①中的证明∠ABG =90°,∠BAG =30°,从而计算出∠AGB 的度数;(2)根据题目已知条件可以计算出3BC =,同理可以证得3CF CE =,再证ECA FCB ∠=∠即△ACE ∽△BCF ,从而得到比值和角的度数;(3)根据第(2)问的计算结论分E 在AD 上和E 在DA 的延长线上分类讨论求解即可. 【详解】解:(1)①∵AB =AC ,CE =EF ,∠BAC =∠FEC =60° ∴△ABC 和△EFC 都是等边三角形 ∴∠ACB =∠ECF =60°,AC =CB ,CE =CF ∴∠ACE =∠BCF ∴△ACE ≌△BCF∴A E =BF ,即1AEBF= ②∵△ACE ≌△BCF∴∠EAC =∠CBF由①可知△ABC 是等边三角形 ∴AD 平分∠BAC ,BD ⊥AD ∴∠CAE =∠CBF =30°∴∠AGB =∠180°-∠CBF -∠BDG =60°(2)3AE BF =,理由如下: ∵AB =AC ,∠BAC =120°,AD ⊥BC ∴∠ABD =30°=∠ACB∴BD AB AC CD === ∴BC = 同理∵∠FEC =120°,EF =EC ∴CF =∴BC CF AC CE =,∠ACB =∠ECF =30° ∴△ACE ∽△BCF ∴∠CAE =∠CBF∴3AE AC BF BC ==∵AD ⊥BC ,∠BAC =120°, ∴∠CAE =∠CBF =60° 又∵∠BDG =90° ∴∠G =30°(3)第一种情况,如图所示,当E 在AD 上时 ∵AB AC ==∠BAC =90°,AD ⊥BC∴sin 4562BCAD BD CD AB =====∠DAC =45° ∵∠ACE =15°∴∠CED =∠CAD +∠ACE =60° ∴2tan 60DCDE ==∴AE AD DE =-=BC CFAC CE==,∠ACB =∠ECF =45° 又∵AD ⊥BC ,∠BAC =90°, ∴∠CAE =∠CBF =45° ∴△ACE ∽△BCF∴2BF BCAE AC== ∴()262232BF =-=-∵∠ADC =∠BDG ∴∠G =∠ACB =45° ∴223BG BD ==∴2FG BG BF =-= 过点D 作DM ⊥BG 交BG 于M , ∵∠G =∠ACB =45°,∠BDG =90° ∴=6DG BD CD ==∴232DM DG == ∴132DFG S FG DM ==△第二种情况:当E 在DA 的延长线上时 过点D 作DM ⊥BG 交BG 于M ,同上可证2BF BCAE AC==,6BG BD ==,3DM =∵∠ACE =15°,∠DAC =45° ∴∠DEC =30°∵AD ⊥CD ,6CD =∴32tan 30DCDE ==∴=6DG BD CD ==326AE DE AD =-=∴2623FB AE ==-∴6FG BF BG =+=1332DFG S FG DM ==△故答案为:3或33.【点睛】本题主要考查了相似三角形的性质与判定,旋转的性质,三角函数等知识点,解题的关键在于能够熟练的掌握相关知识点. 9.问题提出(1)如图①,在ABC 中,AD 是BC 边上的高,若∠BAD =45°,∠DAC =30°,则ABD ACDS S= . 问题探究(2)如图②,在正方形ABCD 中,边长为8,点E 是AB 的中点,作∠EDF =45°,交BC 于点F ,求DEF 的面积. 问题解决(3)如图③,某市为迎接城市运动会,打造融体育、文化、饮食、旅游为一体的综合商业品牌,规划了如图所示的矩形ABCD 观光区,如图,在矩形ABCD 中,AB =16km ,AD =12km ,要求在边AB 上确定一点E 为观光区的南门,在边BC 上确定一点F 为观光区的东门,且∠EDF =30°,同时为了方便市民游览,还要修建一条观光通道FG ,使FG ∥AB ,交DE 于点G (观光带的宽度不计),为了节约成本,要使FG 的长度最小,那么是否存在符合条件的修建方案?若存在,请求出FG 的最小值;若不存在,请说明理由.答案:B解析:3(2)803,(3) 323. 【分析】(1)根据∠BAD =45°,∠DAC =30°,求出BD 、AD 、DC 的关系即可;(2)将△DCF 绕点D 顺时针旋转90°得到△DAG ,可证△DEF ≌△DEG ,得到EF =CF +AE ,求出CF 长即可;(3) 作DM ⊥DF ,交BA 延长线于点M ,作EN ⊥DF 于N ,EH ⊥DM 于H ,作△DME 的外接圆⊙O ,连接OD 、OE 、OM ,作OQ ⊥ME 于Q ,求出△DEF 的面积最小值,再用面积求FG 最小值. 【详解】解:(1)∵AD 是BC 边上的高,若∠BAD =45°,∠DAC =30°, ∴AD =BD ,AD = tan 603DC DC ︒=,12312ABD ACDBD AD S SCD AD ⋅==⋅, (2) 将△DCF 绕点D 顺时针旋转90°得到△DAG , ∵∠DAG =∠C =90°,∠DAE =90°, ∴G 、A 、E 三点共线,由旋转可知,∠FDG =∠CDA =90°,DF =DG , ∴∠GDE =∠FDE =45°,DE =DE , ∴△GDE ≌△FDE , ∴GE =EF , ∴EF =AE +CF ,设EF 为x ,则CF =x -4,BF =12-x ,2224(12)x x +-=,解得,x =203, DEF 的面积=DEG 的面积=120808233⨯⨯=;(3)作DM ⊥DF ,交BA 延长线于点M ,作EN ⊥DF 于N ,EH ⊥DM 于H ,作△DME 的外接圆⊙O ,连接OD 、OE 、OM ,作OQ ⊥ME 于Q , ∵∠FDM =∠CDA =90°, ∴∠ADM =∠CDF , ∵∠C =∠DAM =90°, ∴△ADM ∽△CDF ,∴34MD AD DF DC ==, ∵∠FDE =30°, ∴∠EDM =60°,∵1sin 302EN DE DE =︒=,3sin 602EH DE DE =︒=, ∴3EHEN=,1432192DEF DMEDF ENS S DM EH ⋅==⋅, 设⊙O 的半径为R , ∵∠MDE =60°, ∴∠MOE =120°, ∠MOQ =60°,3sin 602RMQ OM =︒=,ME =3R ,OQ =12R ,OD +OQ ≥AD , 1122R R +≥,解得,8R ≥, 138122DMES≥⨯⨯⨯,即483DMES ≥,DME S △的最小值为483,DEF S △的最小值为43483649⨯=,1()62DEFDGFEGFSSSFG CF BF FG =+=+=, FG 的最小值为643263=.【点睛】本题考查了全等三角形的判定与性质,相似三角形的判定与性质,三角形的外接圆,解直角三角形等,解题关键是充分理解题意,恰当的构建全等三角形、相似三角形和外接圆. 10.如图1,ABC ∆中,CA CB =,ACB α∠=,D 为ABC ∆内一点,将CAD ∆绕点C 按逆时针方向旋转角α得到CBE ∆,点,AD 的对应点分别为点,BE ,且,,A D E 三点在同一直线上.(1)填空:CDE ∠=______(用含α的代数式表示);(2)如图2,若60α=︒,请补全图形,再过点C 作CF AE ⊥于点F ,然后探究线段CF ,AE ,BE 之间的数量关系,并证明你的结论;(3)如图3,若90α=︒,52AC =,直接写出四边形ABEC 面积的最大值______. 解析:(1)1802α-;(2)233AE BE CF =+;证明见解析;(3)25(21)2+. 【分析】(1)由旋转的性质可得CD CE =,DCE α∠=,即可求解;(2)由旋转的性质可得AD BE =,CD CE =,60DCE ∠=︒,可证CDE ∆是等边三角形,由等边三角形的性质可得33DF EF CF ==,即可求解; (3)如图3中,过点C 作CF BE ⊥交BE 的延长线于F ,设AE 交BC 于J .证明90ACJ BEJ,推出点E 在以AB 为直径的圆上运动,即图中BC 上运动,当CEEB 时,四边形ABEC 的面积最大,此时EC EB =,分别求出ABC ∆,BCE ∆的面积即可解决问题. 【详解】解:(1)如图1中,将CAD ∆绕点C 按逆时针方向旋转角α得到CBE ∆ACD BCE ∴∆≅∆,DCE α∠=CD CE ∴=1802CDE α︒-∴∠=.故答案为:1802α︒-. (2)233AE BE CF =+理由如下:如图2中,将CAD ∆绕点C 按逆时针方向旋转角60︒得到CBE ∆ACD BCE ∴∆≅∆AD BE ∴=,CD CE =,60DCE ∠=︒ CDE ∴∆是等边三角形,且CF DE ⊥ 33DF EF CF ∴==AE AD DF EF =++ 233AE BE CF ∴=+. (3)如图3中,过点C 作CWBE 交BE 的延长线于W ,设AE 交BC 于J .CAD ∆绕点C 按逆时针方向旋转90︒得到CBE ∆,CAD CBE ,CAD CBE ∴∠=∠, AJC BJE ,90ACJBEJ,∴点E 在以AB 为直径的圆上运动,即图中BC 上运动,当CEEB 时,四边形ABEC的面积最大,此时EC EB =,CD CE =,90DCE ∠=︒, 45CED ∴∠=︒, 90AEW AEB , 45CEW , CF EW , 45WCE CEW ,CWEW ,设CWEWx ,则EC EB ==,在Rt BCW 中,222BC CW BW ,222(2)(52)x xx ,225(22)2x ,21225(21)222BCESBE CW x , 2521252115252222ABCBCEABECS SS四边形.【点睛】本题考查了圆的性质,等腰三角形的性质,全等三角形的判定和性质,解直角三角形等知识,熟悉相关性质,灵活运用所学知识解决问题是解题的关键. 11.问题解决一节数学课上,老师提出了这样一个问题:如图①,点P 是等边ABC 内的一点,6PA =,8PB = ,10PC =.你能求出APB ∠的度数和等边ABC 的面积吗? 小明通过观察、分析、思考,形成了如下思路:如图①将BPC △绕点B 逆时针旋转60°,得到BPA △,连接PP ',可得BPP '是等边三角形,根据勾股定理逆定理可得AP P '是直角三角形,从而使问题得到解决.(1)结合小明的思路完成填空:PP '=_____________,APP '∠=_______________,APB ∠=_____________ ,ABC S = ______________.(2)类比探究Ⅰ如图②,若点P 是正方形ABCD 内一点,1PA = ,2PB =,3PC =,求APB ∠的度数和正方形的面积.Ⅱ如图③,若点P 是正方形ABCD 外一点,3PA = ,1PB =,PC =APB ∠的度数和正方形的面积.答案:B解析:(1)8,90˚,150˚,25336+;(2)Ⅰ135APB ∠=︒, 722ABCD S =+正方形;Ⅱ45APB ∠=︒, 1032ABCD S =-正方形 【分析】(1)根据小明的思路,然后利用等腰三角形和直角三角形性质计算即可;(2)Ⅰ将△BPC 绕点B 逆时针旋转90°,得到△BP′A ,连接PP′,求出∠APB 的度数;先利用旋转求出∠PBP'=90°,BP'=BP=2,AP'=CP=3,利用勾股定理求出PP',进而判断出△APP'是直角三角形,得出∠APP'=90°,即可得出结论;过B 作BE ⊥AP 于点E ,然后利用勾股定理求出AB 的长度即可求出正方形面积;Ⅱ将△BPC 绕点B 逆时针旋转90°,得到△BP′A ,连接PP′,求出∠APB 的度数;先利用旋转求出∠PBP'=90°,BP'=BP=2,AP'=CP=3,利用勾股定理求出PP',进而判断出△APP'是直角三角形,得出∠APP'=90°,即可得出结论;过B 作BF ⊥AP 于点F ,然后利用勾股定理求出AB 的长度即可求出正方形面积; 【详解】解:(1)由题易有P BP '∆是等边三角形,AP P '∆是直角三角形 ∴PP '=BP=8,90?APP '=∠,60?P PB '=∠,∴APB ∠=APP '∠+=P PB '∠150˚, 如图1,过B 作BD ⊥AP 于点D∵APB ∠=150° ∴30?BPD =∠在Rt △BPD 中,30?BPD =∠,BP=8∴BD=4,PD=43 ∴AD=6+43∴AB 2=AD 2+BD 2=100+483 ∴ABCS=234AB =25336+ (2)Ⅰ.如图2,将△BPC 绕点B 逆时针旋转90°,得到△BP′A ,连接PP′, ∴△ABP'≌△CBP ,∴∠PBP'=90°,BP'=BP=2,AP'=CP=3, 在Rt △PBP'中,BP=BP'=2,∴∠BPP'=45°,根据勾股定理得,PP'=2BP=22, ∵AP=1,∴AP 2+PP'2=1+8=9, ∵AP'2=32=9, ∴AP 2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°, ∴∠APB=∠APP'+∠BPP'=90°+45°=135°;过B 作BE ⊥AP 于点E , ∵∠APB=135° ∴∠BPE=45°∴△BPE 是等腰直角三角形 ∴BE=BP=22BP 2 ∴2∴AB 2=AE 2+BE 22∴2722ABCD S AB ==+正方形Ⅱ.如图3,将△BPC 绕点B 逆时针旋转90°,得到△BP′A ,连接PP′, ∴△ABP'≌△CBP ,∴∠PBP'=90°,BP'=BP=1,11在Rt △PBP'中,BP=BP'=1,∴∠BPP'=45°,根据勾股定理得,PP'=2BP=2, ∵AP=3,∴AP 2+PP'2=9+2=11, ∵AP'2=(11)2=11, ∴AP 2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°, ∴∠APB=∠APP'-∠BPP'=90°-45°=45°.过B 作BF ⊥AP 于点F ∵∠APB=45°∴△BPF 为等腰直角三角形 ∴PF=BF=22BP =22 ∴AF=AP-PF=3-22∴AB 2=AF 2+BF 2=1032- ∴21032ABCD S AB ==-正方形 【点睛】此题是四边形综合题,主要考查了正方形的性质,旋转的性质,直角三角形的性质和判定,勾股定理,正确作出辅助线是解本题的关键.12.已知在△ABC 中,AB =AC ,∠BAC =α,直线l 经过点A (不经过点B 或点C ),点C 关于直线l 的对称点为点D ,连接CD ,BD , AD .(1)如图1,①填空:∠ABD ∠ADB (填 >,=,<号). ②求∠BDC 的度数(用含α的式子表示).(2)如图2,当α=60°时,过点D 作BD 的垂线与直线l 交于点E ,求证:AE =BD ; (3)如图3,当α=90°时,在直线l 绕点A 旋转过程中,记直线l 与CD 的交点为F . ①若点M 为AC 的中点,连接MF , MF 的长是否会发生变化?若不变,求出MF 的长;若会发生变化,说明理由;②连接BF ,当线段BF 的长取得最大值时,求tan ∠FBC 的值.答案:B解析:(1)①=;②∠BDC =12α;(2)详见解析;(3)①MF 的长在直线l 绕点A 旋转过程中,不会发生变化,MF=1;②13【分析】(1)①根据点C 关于直线l 的对称点为点D ,得到AD =AC ,且AB =AC ,则AD =AB =AC ,可得∠ADB =∠ABD ;②连接DA ,并延长DA 交BC 于点M ,由①可知AD =AB =AC ,则有∠ADB =∠ABD ,∠ADC =∠ACD ,可以得到∠BAM =2∠ADB ,∠MAC =2∠ADC ,利用∠BAC =∠BAM +∠MAC ,可得12BDC =,(2)连接CE ,根据∠BAC =60°,AB =AC ,得到△ABC 是等边三角形,则有BC =AC ,∠ACB =60°,根据12BDC =,可知∠BDC =30°,则有∠CDE =60°,易证△CDE 是等边三角形,可以得出△BCD ≌△ACE (SAS ),则有BD =AE ; (3)①根据∠AFC =90°,M 为AC 的中点,得到 MF = 12AC =122⨯=1,则可知MF 的长在直线l 绕点A 旋转过程中,不会发生变化, ②连接MB ,根据在△BMF 中,BMMFBC ,可知当点M ,点B ,点F 三点共线时,BF 最长,过点M 作MH ⊥BC ,根据∠BAC =90°,AB =AC ,可得BC ,∠ACB =45°,且MH ⊥BC ,则有∠CMH =∠HCM =45°,可得出MC ,根据点M 是AC 中点,得到AC =,∴BC =4HC ,则可求出BH =BC ﹣HC =3HC ,利用tan ∠FBC =3MH HCBH HC=可得出结果. 【详解】解:(1)①ABD ADB ∠=∠. ∵点C 关于直线l 的对称点为点D , ∴AD =AC ,且AB =AC , ∴AD =AB =AC , ∴∠ADB =∠ABD .②如图1,连接DA ,并延长DA 交BC 于点M ,∵AD=AB=AC,∴∠ADB=∠ABD,∠ADC=∠ACD.∵∠BAM=∠ADB+∠ABD,∠MAC=∠ADC+∠ACD,∴∠BAM=2∠ADB,∠MAC=2∠ADC,∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α .∴1BDC=.2(2)如图3,连接CE,∵∠BAC=60°,AB=AC,∴△ABC是等边三角形,∴BC=AC,∠ACB=60°,∵1BDC=,2∴∠BDC=30°,∵BD⊥DE,∴∠CDE=60°.∵点C关于直线l的对称点为点D,∴DE=CE,且∠CDE=60°.∴△CDE是等边三角形.∴CD=CE=DE,∠DCE=60°=∠ACB,∴∠BCD=∠ACE,且AC=BC,CD=CE,∴△BCD≌△ACE(SAS).∴BD=AE .(3)①如图4,因为∠AFC=90°,M为AC的中点,∴ MF = 12AC =122⨯=1. ∴MF 的长在直线l 绕点A 旋转过程中,不会发生变化.②法一:如图5,连接MB ,∵在△BMF 中,BM +MF ≥BC∴当点M ,点B ,点F 三点共线时,BF 最长,如图6,过点M 作MH ⊥BC ,∵∠BAC =90°,AB =AC ,∴BC 2AC ,∠ACB =45°,且MH ⊥BC ,∴∠CMH =∠HCM =45°,∴MH =HC ,∴MC 2HC ,∵点M 是AC 中点,∴AC =22HC ,∴BC 2AC =4HC .∴BH =BC ﹣HC =3HC .∴tan ∠FBC =3MH HC BH HC ==13. 【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理,三角形的三边关系,灵活运用相关的性质定理、综合运用知识是解题的关键. 13.如图,在等边三角形ABC 中,点D 是射线CB 上一动点,连接DA ,将线段DA 绕点D逆时针旋转60°得到线段DE ,过点E 作EF ∥BC 交直线AB 于点F ,连接CF .(1)如图1,若点D 为线段BC 的中点,则四边形EDCF 是 ;(2)如图2,若点D 为线段CB 延长线上任意一点,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若点D 为射线CB 上任意一点,当∠DAB =15°,△ABC 的边长为2时,请直接写出线段BD 的长.答案:A解析:(1)平行四边形;(2)成立,见解析;(3)423-或31-.【分析】(1)证明△ADB ≌△DEO (AAS )和四边形EOBF 为平行四边形,进而求解;(2)证明△OED ≌△DAC (SAS ),则∠EOD =∠ACD =60°=∠ABC ,故OE ∥AB ,进而求解;(3)分点D 在线段BC 上、点D (D ′)在BC 的延长线上两种情况,利用勾股定理和等腰直角三角形的性质分别求解即可.【详解】解:(1)过点E 作DE 的垂线交CB 的延长线于点O ,设BA 交ED 于点R ,∵点D 为线段BC 的中点,则AD ⊥BC 且∠BAD =30°,∵∠ADE =60°,∴∠EDB =∠ADB ﹣ADE =90°﹣60°=30°,∵EF ∥BC ,∴∠EFD =∠ABC =60°,∠FED =∠EDO =30°,∴∠ERF =90°,∴DE ⊥AB ,∵AD =ED ,∠BAD =∠EDO =30°,∠ADB =∠DEO =90°,∴△ADB≌△DEO(AAS),∴OE=BD=12BC=12AB,则OB=OD﹣BD=AB﹣12AB=12AB,∴OB=BD=CD,∵OE⊥DE,DE⊥AB,∴OE∥AB,∵EF∥BC,∴四边形EOBF为平行四边形,∴EF=OB=CD,而EF∥CD,∴四边形EFCD为平行四边形,故答案为:平行四边形;(2)如图2,在CD的延长线上截取DO=AC,连接OE,设∠ADC的度数为α,∵∠EDO=180°﹣∠EDA﹣∠ADC=180°﹣60°﹣α=120°﹣α,∠DAC=180°﹣∠ACD﹣∠ADC=120°﹣α=∠EDO,而AC=OD,DE=AD,∴△OED≌△DAC(SAS),∴∠EOD=∠ACD=60°=∠ABC,∴OE∥AB,而EF∥BC,∴四边形EFCD为平行四边形;(3)①当点D在线段BC时,过点A作AH⊥BC,则∠BAH=30°,而∠DAB=15°,BH=12BC=1,即BD 是∠BAH 的角平分线,过点D 作DG ⊥AB 于点G ,设DH =x ,则DG =DH =x ,BD =BH ﹣DH =1﹣x ,在△BDG 中,∠BDG =30°,则BG =12BD =12x - 由勾股定理得:()21x -=212x -⎛⎫ ⎪⎝⎭+2x ,解得:x =233-, ∴BD =1﹣x =423-,②当点D (D ′)在BC 的延长线上时,∵∠BAD ′=15°,∴∠D ′AH =30°+15°=45°,则D ′H =AH =2213-=,∴BD ′=D ′H ﹣BH =31-;综上,BD 的长度为423-或31-.【点评】本题是四边形综合题,主要考查了平行四边形性质、三角形全等、等边三角形性质等知识点,综合性强,难度较大.14.如图,抛物线y =24x 2+2x ﹣62交x 轴于A 、B 两点(点A 在点B 的左侧),交y 轴于C 点,D 点是该抛物线的顶点,连接AC 、AD 、CD .(1)求△ACD 的面积;(2)如图,点P 是线段AD 下方的抛物线上的一点,过P 作PE ∥y 轴分别交AC 于点E ,交AD 于点F ,过P 作PG ⊥AD 于点G ,求EF+52FG 的最大值,以及此时P 点的坐标; (3)如图,在对称轴左侧抛物线上有一动点M ,在y 轴上有一动点N ,是否存在以BN 为直角边的等腰Rt △BMN ?若存在,求出点M 的横坐标,若不存在,请说明理由.答案:A解析:(1)24;(2)最大值为22,点P (﹣2,﹣1522);(3)存在,点M 的横坐标为﹣2﹣26或22﹣26.【分析】(1)先求出抛物线与坐标轴的交点坐标和顶点坐标,再用待定系数法求得AC 的解析式,进而求出点N 、D 的坐标,再根据三角形的面积公式求出结果;(2)证明EF+52FG 即为EP 的长度,即可求解; (3)分∠BNM 为直角、∠MBN 为直角,利用三角形全等即可求解.【详解】解:(1)令x =0,得202062624y =⨯+⨯-=-, ∴C (0,﹣62),令y =0,得2226204y x x =+-=, 解得162x =-,222x =,∴A (62-,0),点B (22,0),设直线AC 的解析式为:y =kx+b (k ≠0),则62062k b b ⎧-+=⎪⎨=-⎪⎩, ∴162k b =-⎧⎪⎨=-⎪⎩, ∴直线AC 的解析式为:62y x =--,∵()2222262228244y x x x =+-=+-,∴D (22-,82-),过D 作DM ⊥x 轴于点M ,交AC 于点N ,如图,令22x =-,(226242y =---=-N (22-,42-∴42DN =∴1142622422ACD S DN AO =⋅=⨯⨯=; (2)如图,过点D 作x 轴的平行线交FP 的延长线于点H ,由点A 、D 的坐标得,直线AD 的表达式为:2122y x =--∴tan ∠FDH =2,则sin ∠FDH 2555=, ∵∠HDF+∠HFD =90°,∠FPG+∠PFG =90°, ∴∠FDH =∠FPG ,在Rt △PGF 中,PF =FG sin G FP ∠= FG sin FDH ∠25=5FG , 则5FG =EF+PF =EP , 设点P (x ,22224x x +-E (x ,62x -- 则5FG =EF+PF =EP =222262262344x x x x x ⎛--+-=-- ⎝, ∵﹣24<0,故EP 有最大值,此时x =﹣2b a =﹣2,最大值为22; 当x =32-2215226242y x x =+-=-, 故点P (32-1522-); (3)存在,理由: 设点M 的坐标为(m ,n ),则222624n m m =+-,点N (0,s ), ①当∠MNB 为直角时,如图,过点N 作x 轴的平行线交过点B 与y 轴的平行线于点H ,交过点M 与y 轴的平行线于点G ,∵∠MNG+∠BNH =90°,∠MNG+∠GMN =90°,∴∠GMN =∠BNH ,∵∠NGM =∠BHN =90°,MN =BN ,∴△NGM ≌△BHN (AAS ),∴GN =BH ,MG =NH , 即22n s -=且m s -=-,联立并解得:226m =-±(舍去正值),故226m =--,则点M (226--,226-); ②当∠NBM 为直角时,如图,过点B 作y 轴的平行线交过点N 与x 轴的平行线于点G ,交过点M 与x 轴的平行线于点H ,同理可证:△MHB ≌△BGN (AAS ), 则BH =NG ,即22n =- 当22n =-时,2222224m m +-=-2226m = 故2226m =M (2226,22-);综上,点M 的横坐标为226-2226.【点睛】本题考查二次函数的综合题,涉及三角形面积的求解,用胡不归原理求最值,等腰直角三角形的存在性问题,解题的关键是需要掌握这些特定题型的特定解法,熟练运用数形结合的思想去解决问题.15.探究:如图①和②,在四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.(1)如图①,若∠B、∠ADC都是直角,把ABE△绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能得EF=BE+DF,请写出推理过程;(2)如图②,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有EF=BE+DF;(3)拓展:如图③,在ABC中,∠BAC=90°,AB=AC=22,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长.答案:B解析:(1)见解析;(2)∠B+∠D=180°;(3)5 3【分析】(1)根据已知条件证明△EAF≌△GAF,进而得到EF=FG,即可得到答案;(2)先作辅助线,把△ABE绕A点旋转到△ADG,使AB和AD重合,根据(1),要使EF=BE+DF,需证明△EAF≌△GAF,因此需证明F、D、G在一条直线上,即180ADG ADF∠+∠=︒,即180B D∠+∠=︒;(3)先作辅助线,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,根据已知条件证明△FAD≌△EAD,设DE=x,则DF=x,BF=CE=3﹣x,然后再Rt BDF中根据勾股定理即可求出x的值,即DE的长.【详解】(1)解:如图,∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,。

(完整)全等三角形证明之能力拔高(经典题目)

(完整)全等三角形证明之能力拔高(经典题目)

全等三角形能力拔高题姓名:一、角度转化问题1.已知:如图,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.2.已知:如图,AD=AE,AB=AC,∠DAE=∠BAC.求证:BD=CE.3.已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM.4.如图,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l 的垂线AE、BF,E、F为垂足.当直线l不与底边AB相交时,求证:EF=AE+BF.5.已知:如图,AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.二、二次全等问题1.已知:如图,线段AC、BD交于O,∠AOB为钝角,AB=CD,BF⊥AC于F,DE⊥AC于E,AE=CF.求证:BO=DO.2.已知:如图,AC与BD交于O点,AB∥DC,AB=DC.若过O点作直线l,分别交AB、DC于E、F两点,求证:OE=OF.3.如图,E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?4.已知:如图,DE⊥AC,BF⊥AC,AD=BC,DE=BF.求证:AB∥DC.MF E CBA5、已知:如图,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,DB=DC , 求证:EB=FC【练习】1、已知∠B=∠E=90°,CE=CB ,AB ∥CD. 求证:△ADC 是等腰三角形。

2、如图:AB=AC ,ME ⊥AB ,MF ⊥AC ,垂足分别为E 、F ,ME=MF 。

求证:MB=MCG FEDC BA3、已知,△ABC 和△ECD 都是等边三角形,且点B ,C ,D 在一条直线上求证:BE=AD4、如图:在△ABC 中,∠C =90°,AD 平分∠ BAC ,DE ⊥AB 交AB 于E ,BC=30, BD :CD=3:2,则DE= 。

5、如图,已知,EG ∥AF ,请你从下面三个条件中,再选出两个作为已知条件,另一个作为结论,推出一个正确的命题。

北京师范大学附属实验中学八年级数学上册第十二章《全等三角形》提高卷(培优专题)

北京师范大学附属实验中学八年级数学上册第十二章《全等三角形》提高卷(培优专题)

一、选择题1.如图,AB∥CD,BE和CE分别平分∠ABC和∠BCD,AD过点E,且AD⊥AB,点P为线段BC上一动点,连接PE.若AD=14,则PE的最小值为()A.7 B.10 C.6 D.5A解析:A【分析】当EP⊥BC时,EP最短,根据角平分线的性质,可知EP=EA=ED=12AD,由AD=14,求出即可.【详解】解:当EP⊥BC时,EP最短,∵AB∥CD,AD⊥AB,∴AD⊥CD,∵BE平分∠ABC,AE⊥AB,EP⊥BC,∴EP=EA,同理,EP=ED,此时,EP=12AD=12×14=7,故选A.【点睛】本题考查了角平分线的性质和垂线段最短,熟练找到P点位置并应用角平分线性质求EP是解题关键.2.如图,AB是线段CD的垂直平分线,则图中全等三角形的对数有()A.2对B.3对C.4对D.5对B解析:B根据线段垂直平分线的性质得到,AC=AD ,BC=BD ,OC=OD ,然后根据”HL”可判断Rt △AOC ≌Rt △AOD ,Rt △BOC ≌Rt △BOD ;根据“SSS”可判断△ABC ≌△ABD .【详解】解:∵AB 是线段CD 的垂直平分线,∴AC=AD ,BC=BD ,OC=OD ,∴Rt △AOC ≌Rt △AOD (HL ),Rt △BOC ≌Rt △BOD (HL ),△ABC ≌△ABD (SSS ). 故选:B .【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”“HL”;全等三角形的对应边相等.也考查了线段垂直平分线的性质.3.在平面直角坐标系xOy 中,以原点O 为圆心,任意长为半径作弧,分别交x 轴的负半轴和y 轴的正半轴于A 点,B 点,分别以点A ,点B 为圆心,AB 的长为半径作弧,两弧交于P 点,若点P 的坐标为(m ,n),则下列结论正确的是( )A .m =2nB .2m =nC .m =nD .m =-n D解析:D【分析】 根据角平分线的性质及第二象限内点的坐标特点即可得出结论.【详解】解:∵由题意可知,点C 在∠AOB 的平分线上,∴m=-n .故选:D .【点睛】本题考查的是作图−基本作图,熟知角平分线的作法及其性质是解答此题的关键. 4.如图,AD 平分BAC ∠交BC 于点D ,DE AB ⊥于点E ,DF AC ⊥于点F ,若ABC S 12=,DF 2=,AC 3=,则AB 的长是 ( )A .2B .4C .7D .9D解析:D【分析】 求出DE 的值,代入面积公式得出关于AB 的方程,求出即可.解:∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE=DF=2,∵S △ABC =S △ABD +S △ACD ,∴12=12×AB×DE+12×AC×DF , ∴24=AB×2+3×2,∴AB=9,故选:D .【点睛】本题考查了角平分线性质,三角形的面积的应用,注意:角平分线上的点到角两边的距离相等.5.如图,ABC 的面积为26cm ,AP 垂直B 的平分线BP 于P ,则PBC 的面积为( )A .21cmB .22cmC .23cmD .24cm C解析:C【分析】 延长AP 交BC 于E ,根据AP 垂直∠B 的平分线BP 于P ,即可求出△ABP ≌△BEP ,又知△APC 和△CPE 等底同高,可以证明两三角形面积相等,即可证明三角形PBC 的面积.【详解】解:延长AP 交BC 于E ,∵AP 垂直∠B 的平分线BP 于P ,∴∠ABP =∠EBP ,∠APB =∠BPE =90∘,在△APB 和△EPB 中∠=∠⎧⎪=⎨⎪∠=∠⎩APB EPB BP BPABP EBP ∴△APB ≌△EPB (ASA ),∴APB EPB S S =△△,AP =PE ,∴△APC 和△CPE 等底同高,∴APC PCE S S =,∴PBC PCE PCE S S S =+△△△=12ABC S =1632⨯=【点睛】本题考查了三角形的面积和全等三角形的性质和判定的应用,关键是求出PBC PCE PCE S S S =+△△△=12ABC S .6.如图,AB BC ⊥,CD BC ⊥,AC BD =,则能证明ABC DCB ≅的判定法是( )A .SASB .AASC .SSSD .HL D解析:D【分析】 直接证明全等三角形,即可确定判断方法.【详解】解:∵AB BC ⊥,CD BC ⊥,∴ABC 与△DCB 均为直角三角形,又AC DB =,BC CB =, ∴()ABC DCB HL ≅,故选:D.【点睛】本题考查全等三角形的判定定理,属于基础题.7.如图,已知∠A=∠D , AM=DN ,根据下列条件不能够判定△ABN ≅△DCN 的是( )A .BM ∥CNB .∠M=∠NC .BM=CND .AB=CD C【分析】利用全等三角形的判断方法进行求解即可.【详解】A、因为 BM∥CN,所以∠ABM=∠DCN,又因为∠A=∠D, AM=DN,所以△ABN≅△DCN(AAS),故A选项不符合题意;B、因为∠M=∠N ,∠A=∠D, AM=DN,所以△ABN≅△DCN(ASA),故B选项不符合题意;C、BM=CN ,不能判定△ABN≅△DCN,故C选项符合题意;D、因为AB=CD,∠A=∠D, AM=DN,所以△ABN≅△DCN(SAS),故D选项不符合题意.故选:C.【点评】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.根据下列已知条件,能画出唯一的△ABC的是()A.AB=3,BC=4,∠C=40°B.∠A=60°,∠B=45°,AB=4C.∠C=90°,AB=6 D.AB=4,BC=3,∠A=30°B解析:B【分析】根据全等三角形的判定方法对各选项进行判断.【详解】解:A、根据AB=3,BC=4,∠C=40°,不能画出唯一三角形,故本选项不合题意;B、∠A=60°,AB=4,∠B=45°,能画出唯一△ABC,故此选项符合题意;C、∠C=90°,AB=6,不能画出唯一三角形,故本选项不合题意;D、AB=4,BC=3,∠A=30°,不能画出唯一三角形,故本选项不合题意;故选:B.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法是解题的关键.9.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.2.5 B.3 C.3.5 D.4B解析:B作DH ⊥AC 于H ,如图,利用角平分线的性质得DH=DE=2,根据三角形的面积公式得12×2×AC+12×2×4=7,于是可求出AC 的值. 【详解】解:作DH ⊥AC 于H ,如图,∵AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB ,DH ⊥AC ,∴DH=DE=2,∵S △ABC =S △ADC +S △ABD ,∴12×2×AC+12×2×4=7, ∴AC=3.故选:B .【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.这里的距离是指点到角的两边垂线段的长.10.如图,在OAB 和OCD 中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠=︒,连接AC 、BD 交于点M ,连接OM ,下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠,其中正确的为( )A .①②③B .①②④C .②③④D .①②③④B解析:B【分析】 由SAS 证明AOC BOD ≅得出OCA ODB ∠=∠,=AC BD ,①正确;由全等三角形的性质得出OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠,得出40AOB COD ∠=∠=︒,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=,由AAS 证明OCG ODH ≅(AAS ),得出OG=OH ,由角平分线的判定方法得出MO 平分BOC ∠,④正确;由AOB COD ∠=∠,得出当∠=∠DOM AOM 时,OM 平分BOC ∠,假设∠=∠DOM AOM ,由AOC BOD ≅得出COM BOM ,由MO 平分BMC ∠得出∠=∠CMO BMO ,推出COM BOM ≅,得出OB=OC ,OA=OB ,所以OA=OC ,而OA OC >,故③错误;即可得出结论.【详解】∵40AOB COD ∠=∠=︒,∴AOB AOD COD AOD ∠+∠=∠+∠即AOC BOD ∠=∠在AOC △和BOD 中OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩∴AOC BOD ≅(SAS )∴OCA ODB ∠=∠,=AC BD ,①正确;∴OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠,∴40AOB COD ∠=∠=︒,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=,在OCG 和ODH 中OCA ODB OGC OHD OC OD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴OCG ODH ≅(AAS ),∴OG=OH∴MO 平分BOC ∠,④正确;∴AOB COD ∠=∠∴当∠=∠DOM AOM 时,OM 平分BOC ∠,假设∠=∠DOM AOM∵AOC BOD ≅∴COM BOM ,∵MO 平分BMC ∠∴∠=∠CMO BMO ,在COM 和BOM 中OCM BOM OM OMCMO BMO ∠=∠⎧⎪=⎨⎪∠=∠⎩∴COM BOM ≅(ASA )∴OB=OC ,∵OA=OB ,∴OA=OC ,与OA OC >矛盾,∴③错误;正确的有①②④;故选:B【点睛】 本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.二、填空题11.如图,△ABC 中,∠ACB =90°,点D 在边AC 上,DE ⊥AB 于点E ,DC =DE ,∠A =32°,则∠BDC 的度数为________.61°【分析】首先利用直角三角形的性质求得∠ABC 的度数然后利用角平分线的判定方法得到BD 为∠ABC 的平分线再求出∠ABD 的度数根据三角形外角的性质进而求得结论【详解】解:∵∠A=32°∠ACB=9解析:61°【分析】首先利用直角三角形的性质求得∠ABC 的度数,然后利用角平分线的判定方法得到BD 为∠ABC 的平分线,再求出∠ABD 的度数,根据三角形外角的性质进而求得结论.【详解】解:∵∠A=32°,∠ACB =90°,∴∠CBA=58°,∵DE ⊥AB ,DC ⊥BC ,DC=DE ,∴BD 为∠ABC 的平分线,∴∠CBD=∠EBD ,∴∠CBD=12∠CBA=12×58°=29°,∴∠BDC=∠A+∠ABD=32°+29°=61°.故答案为:61°.【点睛】本题考查了角平分线的判定与性质,解题的关键是根据已知条件得到BD 为∠ABC 的平分线,难度不大.12.如图,已知ABC 的周长是8,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC 于D ,且3OD =,ABC 的面积是______.12【分析】连接OA 过O 作OE ⊥AB 于EOF ⊥AC 于F 根据角平分线的性质求出OE=OF=OD=3再根据三角形的面积公式求出即可【详解】解:连接OA 过O 作OE ⊥AB 于EOF ⊥AC 于F ∵OBOC 分别平分解析:12【分析】连接OA ,过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,根据角平分线的性质求出OE=OF=OD=3,再根据三角形的面积公式求出即可.【详解】解:连接OA ,过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,∵OB , OC 分别平分∠ABC 和∠ACB ,OD ⊥BC ,OD=3,∴OE=OD=3,OF=OD=3,∵△ABC 的周长是8,∴AB+BC+AC=8,∴△ABC 的面积S=S △ABO +S △BCO +S △ACO =12×AB×OE+12×BC×OD+12×AC×OF =12×AB×3+12×BC×3+12×AC×3 =12×3×(AB+BC+AC )=12×3×8 =12,故答案为:12.【点睛】本题考查了三角形的面积和角平分线的性质,能根据角平分线的性质求出OE=OD=OF=3是解此题的关键.13.如图,AC//BD ,OA ,OB 分别平分BAC ∠和ABD ∠,OE AB ⊥,垂足为E ,如果OE 5=,那么AC 与BD 的距离是________【分析】过点作于作于利用平行线的性质可证得OM ⊥BD进而可证得MN 为AC 和BD 的距离根据角平分线的性质可知OE=OM=OE 即可求得MN 的长度【详解】解:如图过点作于作于∵分别平分和∴又∥∴又∴三点共解析:10【分析】过点O 作OM AC ⊥于M ,作ON BD ⊥于N ,利用平行线的性质可证得OM ⊥BD ,进而可证得MN 为AC 和BD 的距离,根据角平分线的性质可知OE=OM=OE ,即可求得MN 的长度.【详解】解:如图,过点O 作OM AC ⊥于M ,作ON BD ⊥于N .∵OA 、OB 分别平分BAC ∠和ABD ∠,OE AB ⊥,∴OM OE ON 5===,又 AC ∥BD ,OM AC ⊥,∴OM BD ⊥,又ON BD ⊥,∴M ,O ,N 三点共线,∴ AC 与BD 之间的距离为MN=OM ON 10+=.故答案为:10.【点睛】本题考查求平行线间的距离、角平分线的性质、八个基本事实,熟练掌握角平分线的性质,作出AC 和BD 之间的距离是解答的关键.14.已知70COB ∠=,30AOB ∠=,OD 平分AOC ∠,则BOD ∠=_________20°或50°【分析】根据题意分两种情况进行讨论然后根据角平分线的性质计算解决即可【详解】解:①如图∵∠BOC=70°∴∠AOC=100°∵OD 平分∠AOC ∴∠AOD=∠AOC=50°∠AOD-=2解析:20°或50°【分析】根据题意,分两种情况进行讨论,然后根据角平分线的性质计算解决即可.【详解】解:①如图∵30AOB ∠=︒,∠BOC=70°,∴∠AOC=100°,∵OD 平分∠AOC∴∠AOD=12∠AOC=50°, BOD ∠=∠AOD-AOB ∠=20°;②如图,∵30AOB ∠=︒,∠BOC=70°,∴∠AOC=40°,∵OD 平分∠AOC∴∠AOD=12∠AOC=20°, BOD ∠=∠AOD+AOB ∠=50°;故答案为:20°或50°【点睛】本题考查了角平分线的性质,解决本题的关键是正确理解题意,熟练掌握角平分线的性质,能够由角平分线得出相等的角,在解决问题时注意要分类讨论.15.如图,AB ,CD 交于点O ,AD ∥BC .请你添加一个条件_____,使得△AOD ≌△BOC .OA =OB (答案不唯一)【分析】由AD ∥BC 可得∠A =∠B ∠C =∠D 然后根据全等三角形的判定方法添加条件即可【详解】解:添加的条件是OA =OB 理由如下:∵AD ∥BC ∴∠A =∠B ∠C =∠D 在△AOD 和 解析:OA =OB (答案不唯一)【分析】由AD ∥BC 可得∠A =∠B ,∠C =∠D ,然后根据全等三角形的判定方法添加条件即可.【详解】解:添加的条件是OA =OB ,理由如下:∵AD ∥BC ,∴∠A =∠B ,∠C =∠D在△AOD 和△BOC 中A B AO BO AOD BOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOD ≌△BOC (ASA ).故答案为:OA =OB (答案不唯一).【点睛】本题主要考查了全等三角形的判定定理和平行线的性质,掌握全等三角形的判定定理的内容是解答本题的关键.16.在ABC 中,48ABC ︒∠=,点D 在BC 边上,且满足18,BAD DC AB ︒∠==,则CAD ∠=________度.66【分析】在线段CD 上取点E 使CE=BD 再证明△ADB ≅△AEC 即可求出【详解】在线段DC 取点ECE=BD 连接AE ∵CE=BD ∴BE=CD ∵AB=CD ∴AB=BE ∠BAE=∠BEA=(180°-4解析:66【分析】在线段CD 上取点E 使CE =BD ,再证明△ADB ≅△AEC 即可求出. 【详解】在线段DC 取点E ,CE =BD ,连接AE ,∵CE =BD ,∴BE =CD ,∵AB =CD ,∴AB =BE ,∠BAE =∠BEA =(180°-48°)÷2=66°,∴∠DAE =48° ,∠AED =66°,∴△ADB ≅△AEC ,∴∠BAD =∠CAE =18°,∴∠CAD =∠DAE +∠CAE =66°.故答案为:66.【点睛】本题考察了全等三角形的证明和三角形内角和定理,解题的关键是做出辅助线找到全等三角形.17.如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,交BC 边于点D ,若12AB =,4CD =,则ABD △ 的面积为__________.24【分析】过D 作DE ⊥AB 垂足为E 根据角平分线定理可得DE=CD=4然后根据三角形的面积公式计算即可【详解】解:如图:过D 作DE ⊥AB 垂足为E ∵AD 平分交BC 边于点D ∴DE=CD=4∴的面积为AB解析:24【分析】过D 作DE ⊥AB 垂足为E ,根据角平分线定理可得DE=CD=4,然后根据三角形的面积公式计算即可.【详解】解:如图:过D 作DE ⊥AB 垂足为E ,∵90C ∠=︒,AD 平分BAC ∠,交BC 边于点D ,∴DE=CD=4,∴ABD △ 的面积为12AB·DE=12×12×4=24. 故答案为:24.【点睛】本题主要考查了角平分线的性质定理,正确作出辅助线、构造角平分线定理所需条件成为解答本题的关键.18.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为边BC 、AB 上的点,且AE =AC ,DE ⊥AB .若∠ADC =61°,则∠B 的度数为_____. 32°【分析】由HL 可证明△ADE ≌△ADC 得出∠ADE =∠ADC =61°再根据直角三角形两个锐角互余即可得出结论【详解】解:∵DE ⊥AB ∴∠AED =90°=∠DEB 在Rt △ADE 和Rt △ADC 中∴解析:32°【分析】由HL 可证明△ADE ≌△ADC ,得出∠ADE =∠ADC =61°,再根据直角三角形两个锐角互余即可得出结论.【详解】解:∵DE ⊥AB ,∴∠AED =90°=∠DEB ,在Rt △ADE 和Rt △ADC 中,AD AD AE AC =⎧⎨=⎩, ∴Rt △ADE ≌Rt △ADC (HL ),∴∠ADE =∠ADC =61°,∴∠BDE =180°﹣61°×2=58°,∴∠B =90°﹣58°=32°.故答案为:32°.【点睛】本题考查了全等三角形的判定及性质问题,解题的关键是能够熟练掌握全等三角形的判定及性质.19.如图,ABC 中,90C ∠=,AD 平分BAC ∠,若2DC =,则点D 到线段AB 的距离等于________.【分析】过D 作DE ⊥AB 于E 根据角平分线的性质得出DE=DC 即可求出答案【详解】解:过D 作DE ⊥AB 于E ∵∠C=90°AD 平分∠BACDC=2∴DE=DC=2即点D 到线段AB 的距离等于2故答案为:2 解析:【分析】过D 作DE ⊥AB 于E ,根据角平分线的性质得出DE=DC ,即可求出答案.【详解】解:过D 作DE ⊥AB 于E ,∵∠C=90°,AD 平分∠BAC ,DC=2,∴DE=DC=2,即点D 到线段AB 的距离等于2,故答案为:2.【点睛】本题考查了考查了角平分线的性质,能根据角平分线的性质得出DE=DC 是解此题的关键.20.如图,已知点(44)A -,,一个以A 为顶点的45︒角绕点A 旋转,角的两边分别交x 轴正半轴,y 轴负半轴于E 、F ,连接EF .当△AEF 直角三角形时,点E 的坐标是________.或【分析】根据等腰三角形的性质作辅助线构造全等三角形得到对应线段相等即可得到结论【详解】①如图所示:∴∵∴∵∴∴在△和中∴△△FDE ∴∴②当时同①的方法有:∴综上所述满足条件的点坐标为或故答案为:或解析:(8)0,或(40), 【分析】根据等腰三角形的性质,作辅助线构造全等三角形,得到对应线段相等即可得到结论.【详解】①如图所示:90AFE ︒∠=,∴90AFD OFE ︒∠+∠=,∵90OFE OEF ︒∠+∠=,∴AFD OEF ∠=∠,∵90AFE ︒∠=,45EAF ︒∠=,∴45AEF EAF ︒∠==∠,∴AF EF =,在△ADF 和FOE 中,ADE FOE AFD OEF AF EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△FDE ,∴4FO AD ==,8OE DF OD FO ==+=,∴(40)E ,. ②当90AEF ︒∠=时,同①的方法有:8OF =,4OE =,∴(40)E ,, 综上所述,满足条件的点E 坐标为(8)0,或(40),,故答案为:(8)0,或(40)【点睛】本题考查三角形全等性质和判定、等腰直角三角形的性质,注意直角三角形按角分类讨论分三种情况,不要漏解.三、解答题21.如图所示,△ABC中,∠ACB=90°,AC=BC,直线EF经过点C,BF⊥EF于点F,AE⊥EF 于点E.(1)求证:△ACE≌△CBF;(2)如果AE长12cm,BF长5cm,求EF的长.解析:(1)证明见解析;(2)EF=17cm.【分析】(1)根据垂直的定义可得∠AEC=∠CFB=90°,然后求出∠EAC=∠FCB,再利用“角角边”证明即可;(2)由全等三角形的性质可得:AE=CF,CE=BF,再根据线段的和差求解即可.【详解】(1)证明:在Rt△ACB中,∵∠ACB=90°,∴∠ACE+∠BCF=90°∵AE⊥EF,BF⊥EF∴∠ACE+∠EAC=90°∴∠CAE=∠BCF又∵ AC=CB∴△ACE≌△CBF(ASA)(2)由△ACE≌△CBF可得:AE=CF=12cm, EC=BF=5cm,∴EF=EC+CF=12+5=17cm.【点睛】本题考查了全等三角形的判定与性质,同角的余角相等的性质,熟练掌握三角形全等的判断方法并找出全等的条件是解题的关键.22.(1)如图,∠MAB=30°,AB=2cm,点C在射线AM上,画图说明命题“有两边和其中一边的对角分别相等的两个三角形全等”是假命题,请画出图形,并写出你所选取的BC 的长约为cm(精确到0.lcm).(2)∠MAB 为锐角,AB =a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC =x ,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是 .解析:(1)见解析,1.2;(2)x=d 或x≥a【分析】(1)可以取BC =1.2cm (1cm <BC <2cm ),画出图形即可;(2)当x =d 或x≥a 时,三角形是唯一确定的.【详解】(1)如图,选取的BC 的长约为1.2cm ,故答案是:1.2;(2)若△ABC 的形状、大小是唯一确定的,则x 的取值范围是x =d 或x≥a , 故答案为:x=d 或x≥a .【点睛】本题考查全等三角形的判定,解题的关键是理解题意,掌握“有两边和其中一边的对角分别相等的两个三角形不一定全等”,属于中考常考题型.23.如图,在ABC 和BCD △中,90BAC BCD ︒∠=∠=,AB AC =,CB CD =;延长CA 至点E ,使AE AC =;延长CB 至点F ,使BF BC =.连接AD ,AF ,DF ,EF .延长DB 交EF 于点N .(1)求证:AD AF =;(2)求证:BD EF =.解析:(1)证明见解析;(2)证明见解析 【分析】(1)结合题意得:ABF BAC ACB ∠=∠+∠,ACD ACB BCD ∠=∠+∠,推导得ABF ACD ∠=∠;通过证明ABF ACD △≌△,即可完成证明;(2)根据(1)的结论ABF ACD △≌△得:BAF CAD ∠=∠;根据题意得90BAE ∠=;再通过证明AEF ABD △≌△,即可完成证明.(1) ∵ABF BAC ACB ∠=∠+∠,ACD ACB BCD ∠=∠+∠,90BAC BCD ︒∠=∠=∴ABF ACD ∠=∠∵BF BC =,CB CD =∴BF BC CD ==即AB AC ABF ACD BF CD =⎧⎪∠=∠⎨⎪=⎩∴ABF ACD △≌△∴AF AD =;(2)∵90BAC ︒∠=∴18090BAE BAC ∠=-∠=结合(1)的结论ABF ACD △≌△∴BAF CAD ∠=∠∵90EAF BAE BAF BAF ∠=∠-∠=-∠,90BAD BAC CAD CAD ∠=∠-∠=-∠ ∴EAF BAD ∠=∠∵AE AC =,AB AC =∴AE AC AB ==即AF AD EAF BAD AE AB =⎧⎪∠=∠⎨⎪=⎩∴AEF ABD △≌△∴BD EF =.【点睛】本题考查了三角形外角、全等三角形的知识;解题的关键是熟练掌握三角形外角、全等三角形的性质,从而完成求解.24.如图,Rt △ABC 中,∠ACB=90°,D 是AB 上的一点,过D 作DE ⊥AB 交AC 于点E ,CE=DE .连接CD 交BE 于点F .(1)求证:BC=BD ;(2)若点D 为AB 的中点,求∠AED 的度数.解析:(1)见详解;(2)60°.(1)利用HL 直接证明Rt △DEB ≌Rt △CEB ,即可解决问题.(2)首先证明△ADE ≌△BDE ,进而证明∠AED=∠DEB=∠CEB ,即可解决问题.【详解】证明:(1)∵DE ⊥AB ,∠ACB=90°,∴△DEB 与△CEB 都是直角三角形,在△DEB 与△CEB 中,EB EB DE CE =⎧⎨=⎩, ∴Rt △DEB ≌Rt △CEB (HL ),∴BC=BD .(2)∵DE ⊥AB ,∴∠ADE=∠BDE=90°;∵点D 为AB 的中点,∴AD=BD ;在△ADE 与△BDE 中,AD BD ADE BDE DE DE =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BDE (SAS ),∴∠AED=∠DEB ;∵△DEB ≌△CEB ,∴∠CEB=∠DEB ,∴∠AED=∠DEB=∠CEB ;∵∠AED+∠DEB+∠CEB=180°,∴∠AED=60°.【点睛】该命题以三角形为载体,以考查全等三角形的判定及其应用为核心构造而成;解题的关键是灵活运用全等三角形的判定及其性质,来分析、判断或推理.25.如图,已知∠AOC 是直角,∠BOC =46°,OE 平分∠BOC ,OD 平分∠AOB . (1)试求∠DOE 的度数;(2)当∠BOC =α(0°≤α≤90°),请问∠DOE 的大小是否变化?并说明理由.解析:(1)45︒;(2)不会变化,理由见解析.【分析】(1)根据题意可知DOE BOD BOE ∠=∠-∠,12BOD AOB ∠=∠,12BOE BOC ∠=∠.即可推出12DOE AOC ∠=∠,即可求出DOE ∠. (2))根据(1)可知DOE ∠的大小与∠BOC 的大小无关,所以DOE ∠的大小不会变化.【详解】(1)由图可知DOE BOD BOE ∠=∠-∠,∵OE 平分∠BOC ,OD 平分∠AOB .∴12BOD AOB ∠=∠,12BOE BOC ∠=∠. ∴1111()2222DOE AOB BOC AOB BOC AOC ∠=∠-∠=∠-∠=∠, ∵∠AOC 是直角,∴90AOC ∠=︒,∴1452DOE AOC ∠=∠=︒. (2)根据(1)可知DOE ∠的大小与∠BOC 的大小无关, ∴DOE ∠的大小不会变化且大小为12AOC ∠. 【点睛】本题考查角的计算,角平分线的性质.利用角平分线的性质找出图形中角的关系是解答本题的关键.26.如图所示,A ,C ,E 三点在同一直线上,且ABC DAE △△≌.(1)求证:BC DE CE =+;(2)当ABC 满足什么条件时,//BC DE ?解析:(1)证明见解析;(2)ACB ∠为直角时,//BC DE【分析】(1)根据全等三角形的性质求出BD=AE ,AD=CE ,代入求出即可;2)根据全等三角形的性质求出∠E=∠BDA= 90︒,推出∠BDE=90︒ ,根据平行线的判定求出即可.【详解】(1)证明:∵ABC DAE △△≌,∴AE=BC ,AC=DE ,又∵AE AC CE =+,∴BC DE CE =+.(2)若//BC DE ,则BCE E ∠=∠,又∵ABC DAE △△≌,∴ACB E ∠=∠,∴ACB BCE ∠=∠,又∵180ACB BCE ∠+∠=︒,∴90ACB ∠=︒,即当ABC 满足ACB ∠为直角时,//BC DE .【点睛】本题考查全等三角形的性质和平行线的判定的应用,关键是通过三角形全等得出正确的结论.27.在数学课本中,有这样一道题:如图1,AB ∥CD ,试用不同的方法证明∠B +∠C =∠BEC(1)某同学写出了该命题的逆命题,请你帮他把逆命题的证明过程补充完整.已知:如图1,∠B +∠C =∠BEC求证:AB ∥CD证明:如图2,过点E ,作EF ∥AB ,∴∠B =∠∵∠B +∠C =∠BEC ,∠BEF +∠FEC =∠BEC (已知)∴∠B +∠C =∠BEF +∠FEC (等量代换)∴∠ =∠ (等式性质)∴EF ∥∵EF ∥AB∴AB ∥CD (平行于同一条直线的两条直线互相平行)(2)如图3,已知AB ∥CD ,在∠BCD 的平分线上取两个点M 、N ,使得∠BMN =∠BNM ,求证:∠CBM =∠ABN .(3)如图4,已知AB ∥CD ,点E 在BC 的左侧,∠ABE ,∠DCE 的平分线相交于点F .请直接写出∠E 与∠F 之间的等量关系.解析:(1)BEF ,C ,CEF ,CD ;(2)证明见解析;(3)∠E =2∠F【分析】(1)过点E ,作EF ∥AB ,根据内错角性质即可得出∠B =∠BEF ,利用等量代换即可证出∠C =∠CEF ,进而得出EF ∥CD .(2)如图3,过点N作NG∥AB,交BM于点G,可以知道NG∥AB∥CD,由平行线的性质得出∠ABN=∠BNG,∠GNC=∠NCD,由三角形的外角性质得出∠BMN=∠BCM+∠CBM,证出∠BCM+∠CBM=∠BNG+∠GNC,进而得出∠BCM+∠CBM=∠ABN+∠NCD,由角平分线得出∠BCM=∠NCD,即可得出结论.(3)如图4,分别过E,F作EG∥AB,FH∥AB,则EG∥CD,FH∥CD,根据平行线的性质和角平分线的定义即可得到结论.【详解】(1)证明:如图2,过点E,作EF∥AB,∴∠B=∠BEF,∵∠B+∠C=∠BEC,∠BEF+∠FEC=∠BEC(已知),∴∠B+∠C=∠BEF+∠FEC(等量代换),∴∠C=∠CEF(等式性质),∴EF∥CD,∵EF∥AB,∴AB∥CD(平行于同一条直线的两条直线互相平行);故答案为:BEF,C,CEF,CD;(2)如图3所示,过点N作NG∥AB,交BM于点G,则NG∥AB∥CD,∴∠ABN=∠BNG,∠GNC=∠NCD,∵∠BMN是△BCM的一个外角,∴∠BMN=∠BCM+∠CBM,又∵∠BMN=∠BNM,∠BNM=∠BNG+∠GNC,∴∠BCM+∠CBM=∠BNG+∠GNC,∴∠BCM+∠CBM=∠ABN+∠NCD,∵CN平分∠BCD,∴∠BCM=∠NCD,∴∠CBM=∠ABN.(3)如图4,分别过E,F作EG∥AB,FH∥AB,则EG∥CD,FH∥CD,∴∠BEG=∠ABE,∠CEG=∠DCE,∴∠BEC=∠BEG+∠CEG=∠ABE+∠DCE,同理可得∠BFC=∠ABF+∠DCF,∵∠ABE,∠DCE的平分线相交于点F,∴∠ABE=2∠ABF,∠DCE=2∠DCF,∴∠BEC=2(∠ABF+∠DCF)=2∠BFC.【点睛】本题考察了命题与定理、平行线的性质与判定、逆命题、三角形的外角性质、角平分线定义等知识;熟练掌握平行线的判定与性质,作出辅助平行线是解决问题的关键.28.下面是小芳同学设计的“过直线外一点作这条直线垂线”的尺规作图过程.已知:如图1,直线l及直线l外一点P .求作:直线l的垂线,使它经过点P .作法:如图2,① 以P为圆心,大于P到直线l的距离为半径作弧,交直线l于A、B两点;② 连接PA和PB;③ 作∠APB的角平分线PQ,交直线l于点Q.④ 作直线PQ .∴直线PQ就是所求的直线.根据小芳设计的尺规作图过程,解答下列问题:(1)使用直尺和圆规,补全图2(保留作图痕迹);(2)补全下面证明过程:证明:∵ PQ平分∠APB,∴∠APQ=∠QPB.又∵ PA= ,PQ=PQ,∴△APQ≌△BPQ()(填推理依据).∴∠PQA=∠PQB()(填推理依据).又∵∠PQA +∠PQB = 180°,∴∠PQA=∠PQB = 90°.∴ PQ ⊥ l .解析:(1)见详解;(2)PB,两边及其夹角相等的两三角形全等,全等三角形对应角相等.【分析】(1)根据尺规作图的步骤先做出PA,PB,然后再作出∠APQ的角平分线PQ即作出所求图;(2)根据作图过程知PA=PB,再根据三角形全等的判定定理知所用到的判定定理和性质.【详解】(1)如图:(2)PB;两边及其夹角相等的两三角形全等;全等三角形对应角相等.【点睛】此题考查学生的动手能力——尺规作图中角平分线和垂直平分线的作法,涉及到三角形全等的判定和性质,难度一般.。

全等三角形的提高拓展训练全等三角形经典题型50题(含答案)

全等三角形的提高拓展训练全等三角形经典题型50题(含答案)

全等三角形的提高拓展训练知识点睛全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等. 全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.例题精讲板块一、截长补短【例1】 (06年北京中考题)已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.DOECB AD【例2】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?【变式拓展训练】如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?【例3】 已知:如图,ABCD 是正方形,∠F AD =∠F AE . 求证:BE +DF =AE .【例4】 以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠.NC D EB M A F E DCB A O ED CA【例5】 (北京市、天津市数学竞赛试题)如图所示,ABC ∆是边长为1的正三角形,BDC∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.【例6】 五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°, 求证:AD 平分∠CDE板块二、全等与角度【例7】如图,在ABC ∆中,60BAC ∠=︒,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数.D CB ANM D CB AC EDBA【例8】在等腰ABC ∆中,AB AC =,顶角20A ∠=︒,在边AB 上取点D ,使AD BC =,求BDC ∠.【例9】(“勤奋杯”数学邀请赛试题) 如图所示,在ABC ∆中,AC BC =,20C ∠=︒,又M 在AC 上,N 在BC 上,且满足50BAN ∠=︒,60ABM ∠=︒,求NMB ∠.【例10】 在四边形ABCD 中,已知AB AC =,60ABD ︒∠=,76ADB ︒∠=,28BDC ︒∠=,求DBC ∠的度数.【例11】 (日本算术奥林匹克试题) 如图所示,在四边形ABCD 中,12DAC ︒∠=,36CAB ︒∠=,48ABD ︒∠=,24DBC ︒∠=,求ACD ∠的度数.CDBADCBAANMCBA【例12】 (河南省数学竞赛试题) 在正ABC ∆内取一点D ,使DA DB =,在ABC ∆外取一点E ,使DBE DBC ∠=∠,且BE BA =,求BED ∠.【例13】 (北京市数学竞赛试题) 如图所示,在ABC ∆中,44BAC BCA ︒∠=∠=,M 为ABC∆内一点,使得30MCA ︒∠=,16MAC ︒∠=,求BMC ∠的度数.M CA B全等三角形证明经典50题(含答案)1.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD延长AD到E,使DE=AD,则三角形ADC全等于三角形EBD即BE=AC=2 在三角形ABE中,AB-BE<AE<AB+BE即:10-2<2AD<10+2 4<AD<6又AD是整数,则AD=52.已知:D是AB中点,∠ACB=90°,求证:12 CD ABADB C3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。

全等三角形经典例题(含答案)

全等三角形经典例题(含答案)

全等三角形证明题精选一.解答题〔共30小题〕1.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.〔1〕求证:△ADE≌△CBF;〔2〕假设AC与BD相交于点O,求证:AO=CO.2.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.〔1〕求证:AC∥DE;〔2〕假设BF=13,EC=5,求BC的长.3.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.4.如图,点O是线段AB和线段CD的中点.〔1〕求证:△AOD≌△BOC;〔2〕求证:AD∥BC.5.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.6.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.7.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.8.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.9.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.10.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.11.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.12.已知△ABN和△ACM位置如下图,AB=AC,AD=AE,∠1=∠2.〔1〕求证:BD=CE;〔2〕求证:∠M=∠N.13.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.14.如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.15.如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.〔1〕求证:AB=AC;〔2〕假设AD=2,∠DAC=30°,求AC的长.16.如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.18.已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:△ABC≌△DEF.19.已知:点A、C、B、D在同一条直线,∠M=∠N,AM=CN.请你添加一个条件,使△ABM≌△CDN,并给出证明.〔1〕你添加的条件是:;〔2〕证明:.20.如图,AB=AC,AD=AE.求证:∠B=∠C.21.如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.22.一个平分角的仪器如下图,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.23.在数学课上,林老师在黑板上画出如下图的图形〔其中点B、F、C、E在同一直线上〕,并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.〔均填写序号〕证明:24.如图,在△ABC和△DEF中,AB=DE,BE=CF,∠B=∠1.求证:AC=DF.〔要求:写出证明过程中的重要依据〕25.如图,已知AB=DC,AC=DB.求证:∠1=∠2.26.如图,D、E分别为△ABC的边AB、AC上的点,BE与CD相交于O点.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.〔1〕请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:命题的条件是和,命题的结论是和〔均填序号〕;〔2〕证明你写出的命题.27.如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形并任选其中一对给予证明.28.如下图,在梯形ABCD中,AD∥BC,∠B=∠C,点E是BC边上的中点.求证:AE=DE.29.如图,给出以下论断:①DE=CE,②∠1=∠2,③∠3=∠4.请你将其中的两个作为条件,另一个作为结论,构成一个真命题,并加以证明.30.已知:如图,∠ACB=90°,AC=BC,CD是经过点C的一条直线,过点A、B分别作AE⊥CD、BF⊥CD,垂足为E、F,求证:CE=BF.全等三角形证明题精选参考答案与试题解析一.解答题〔共30小题〕1.〔2016•连云港〕四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.〔1〕求证:△ADE≌△CBF;〔2〕假设AC与BD相交于点O,求证:AO=CO.【分析】〔1〕根据已知条件得到BF=DE,由垂直的定义得到∠AED=∠CFB=90°,根据全等三角形的判定定理即可得到结论;〔2〕如图,连接AC交BD于O,根据全等三角形的性质得到∠ADE=∠CBF,由平行线的判定得到AD∥BC,根据平行四边形的性质即可得到结论.【解答】证明:〔1〕∵BE=DF,∴BE﹣EF=DF﹣EF,即BF=DE,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△ADE与Rt△CBF中,,∴Rt△ADE≌Rt△CBF;〔2〕如图,连接AC交BD于O,∵Rt△ADE≌Rt△CBF,∴∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形,∴AO=CO.【点评】此题考查了全等三角形的判定和性质,平行四边形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.2.〔2016•曲靖〕如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.〔1〕求证:AC∥DE;〔2〕假设BF=13,EC=5,求BC的长.【分析】〔1〕首先证明△ABC≌△DFE可得∠ACE=∠DEF,进而可得AC∥DE;〔2〕根据△ABC≌△DFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13,EC=5进而可得EB的长,然后可得答案.【解答】〔1〕证明:在△ABC和△DFE中,∴△ABC≌△DFE〔SAS〕,∴∠ACE=∠DEF,∴AC∥DE;〔2〕解:∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB==4,∴CB=4+5=9.【点评】此题主要考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.3.〔2016•孝感〕如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.【分析】要证明BE=CD,只要证明AB=AC即可,由条件可以求得△AEC和△ADB全等,从而可以证得结论.【解答】证明;∵BD⊥AC于点D,CE⊥AB于点E,∴∠ADB=∠AEC=90°,在△ADB和△AEC中,∴△ADB≌△AEC〔ASA〕∴AB=AC,又∵AD=AE,∴BE=CD.【点评】此题考查全等三角形的判定和性质,解题的关键是明确题意,找出所求问题需要的条件.4.〔2016•湘西州〕如图,点O是线段AB和线段CD的中点.〔1〕求证:△AOD≌△BOC;〔2〕求证:AD∥BC.【分析】〔1〕由点O是线段AB和线段CD的中点可得出AO=BO,CO=DO,结合对顶角相等,即可利用全等三角形的判定定理〔SAS〕证出△AOD≌△BOC;〔2〕结合全等三角形的性质可得出∠A=∠B,依据“内错角相等,两直线平行”即可证出结论.【解答】证明:〔1〕∵点O是线段AB和线段CD的中点,∴AO=BO,CO=DO.在△AOD和△BOC中,有,∴△AOD≌△BOC〔SAS〕.〔2〕∵△AOD≌△BOC,∴∠A=∠B,∴AD∥BC.【点评】此题考查了全等三角形的判定与性质以及平行线的判定定理,解题的关键是:〔1〕利用SAS证出△AOD≌△BOC;〔2〕找出∠A=∠B.此题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等,结合全等三角形的性质找出相等的角,再依据平行线的判定定理证出两直线平行即可.5.〔2016•云南〕如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.【分析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE,根据全等三角形的性质:得出结论.【解答】证明:∵点C是AE的中点,∴AC=CE,在△ABC和△CDE中,,∴△ABC≌△CDE,∴∠B=∠D.【点评】此题考查了全等三角形的判定和性质,全等三角形的判定方法:SSS,SAS,ASA,AAS,直角三角形还有HL.6.〔2016•宁德〕如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.【分析】根据平行线的性质找出∠ADE=∠BAC,借助全等三角形的判定定理ASA证出△ADE≌△BAC,由此即可得出AE=BC.【解答】证明:∵DE∥AB,∴∠ADE=∠BAC.在△ADE和△BAC中,,∴△ADE≌△BAC〔ASA〕,∴AE=BC.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题的关键.7.〔2016•十堰〕如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.【分析】欲证明AF=DF只要证明△ABF≌△DEF即可解决问题.【解答】证明:∵AB∥CD,∴∠B=∠FED,在△ABF和△DEF中,,∴△ABF≌△DEF,∴AF=DF.【点评】此题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握全等三角形的判断和性质,熟练掌握平行线的性质,属于基础题,中考常考题型.8.〔2016•武汉〕如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.【分析】证明它们所在的三角形全等即可.根据等式的性质可得BC=EF.运用SSS证明△ABC与△DEF全等.【解答】证明:∵BE=CF,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF〔SSS〕,∴∠ABC=∠DEF,∴AB∥DE.【点评】此题考查了全等三角形的性质和判定.全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等.9.〔2016•昆明〕如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.【分析】根据平行线的性质得出∠A=∠ECF,∠ADE=∠CFE,再根据全等三角形的判定定理AAS得出△ADE≌△CFE,即可得出答案.【解答】证明:∵FC∥AB,∴∠A=∠ECF,∠ADE=∠CFE,在△ADE和△CFE中,,∴△ADE≌△CFE〔AAS〕,∴AE=CE.【点评】此题考查了全等三角形的判定和性质,掌握全等三角形的判定定理SSS、SAS、ASA、AAS、HL是解题的关键.10.〔2016•衡阳〕如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.【分析】求出AD=BC,根据ASA推出△AED≌△BFC,根据全等三角形的性质得出即可.【解答】证明:∵AC=BD,∴AC+CD=BD+CD,∴AD=BC,在△AED和△BFC中,,∴△AED≌△BFC〔ASA〕,∴DE=CF.【点评】此题考查了全等三角形的性质和判定的应用,能求出△AED≌△BFC是解此题的关键,注意:全等三角形的对应边相等.11.〔2016•重庆〕如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.【分析】根据CE∥DF,可得∠ACE=∠D,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.【解答】证明:∵CE∥DF,∴∠ACE=∠D,在△ACE和△FDB中,,∴△ACE≌△FDB〔SAS〕,∴AE=FB.【点评】此题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.12.〔2016•南充〕已知△ABN和△ACM位置如下图,AB=AC,AD=AE,∠1=∠2.〔1〕求证:BD=CE;〔2〕求证:∠M=∠N.【分析】〔1〕由SAS证明△ABD≌△ACE,得出对应边相等即可〔2〕证出∠BAN=∠CAM,由全等三角形的性质得出∠B=∠C,由AAS证明△ACM≌△ABN,得出对应角相等即可.【解答】〔1〕证明:在△ABD和△ACE中,,∴△ABD≌△ACE〔SAS〕,∴BD=CE;〔2〕证明:∵∠1=∠2,∴∠1+∠DAE=∠2+∠DAE,即∠BAN=∠CAM,由〔1〕得:△ABD≌△ACE,∴∠B=∠C,在△ACM和△ABN中,,∴△ACM≌△ABN〔ASA〕,∴∠M=∠N.【点评】此题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键.13.〔2016•恩施州〕如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.【分析】通过全等三角形〔Rt△CBE≌Rt△BCD〕的对应角相等得到∠ECB=∠DBC,则AB=AC.【解答】证明:∵BE⊥AC,CD⊥AB,∴∠CEB=∠BDC=90°.∵在Rt△CBE与Rt△BCD中,,∴Rt△CBE≌Rt△BCD〔HL〕,∴∠ECB=∠DBC,∴AB=AC.【点评】此题考查了全等三角形的判定与性质,等腰三角形的判定.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.14.〔2016•重庆〕如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.【分析】根据两直线平行,内错角相等可得∠BAC=∠ECD,再利用“边角边”证明△ABC和△CED全等,然后根据全等三角形对应角相等证明即可.【解答】证明:∵AB∥CD,∴∠BAC=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED〔SAS〕,∴∠B=∠E.【点评】此题考查了全等三角形的判定与性质,平行线的性质,熟练掌握三角形全等的判定方法并找出两边的夹角是解题的关键.15.〔2016•湖北襄阳〕如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.〔1〕求证:AB=AC;〔2〕假设AD=2,∠DAC=30°,求AC的长.【分析】〔1〕先证明△DEB≌△DFC得∠B=∠C由此即可证明.〔2〕先证明AD⊥BC,再在RT△ADC中,利用30°角性质设CD=a,AC=2a,根据勾股定理列出方程即可解决问题.【解答】〔1〕证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∠DEB=∠DFC=90°,在RT△DEB和RT△DFC中,,∴△DEB≌△DFC,∴∠B=∠C,∴AB=AC.〔2〕∵AB=AC,BD=DC,∴AD⊥BC,在RT△ADC中,∵∠ADC=90°,AD=2,∠DAC=30°,∴AC=2CD,设CD=a,则AC=2a,∵AC2=AD2+CD2,∴4a2=a2+〔2〕2,∵a>0,∴a=2,∴AC=2a=4.【点评】此题考查全等三角形的判定和性质、直角三角形30°性质、勾股定理等知识,解题的关键是正确寻找全等三角形,记住直角三角形30°角所对的直角边等于斜边的一半,属于中考常考题型.16.〔2016•吉安校级一模〕如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.【分析】根据全等三角形的性质得到CD=AF,证明∴△DGC≌△AGF,根据全等三角形的性质和角平分线的判定得到∠CBG=∠FBG,根据三角形内角和定理计算即可.【解答】解:∵Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∴BC=BF,BD=BA,∴CD=AF,在△DGC和△AGF中,,∴△DGC≌△AGF,∴GC=GF,又∠ACB=∠DFB=90°,∴∠CBG=∠FBG,∴∠GBF=〔90°﹣28°〕÷2=31°.【点评】此题考查的是全等三角形的性质角平分线的判定,掌握全等三角形的对应边相等、对应角相等是解题的关键.17.〔2016•武汉校级四模〕如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.【分析】由垂直的定义可得到∠C=∠D,结合条件和公共边,可证得结论.【解答】证明:∵AC⊥BC,BD⊥AD,∴∠C=∠D=90,在Rt△ACB和Rt△BDA中,,∴△ACB≌△BDA〔HL〕.【点评】此题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.18.〔2016•济宁二模〕已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:△ABC≌△DEF.【分析】求出BC=FE,∠ACB=∠DFE,根据SAS推出全等即可.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,∴BC=FE,∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF〔SAS〕.【点评】此题考查了全等三角形的判定定理的应用,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.19.〔2016•诏安县校级模拟〕已知:点A、C、B、D在同一条直线,∠M=∠N,AM=CN.请你添加一个条件,使△ABM≌△CDN,并给出证明.〔1〕你添加的条件是:∠MAB=∠NCD;〔2〕证明:在△ABM和△CDN中∵∠M=∠N,AM=CM,∠MAB=∠NCD∴△ABM≌△CDN〔ASA〕..【分析】判定两个三角形全等的一般方法有:ASA、SSS、SAS、AAS、HL,所以可添加条件为∠MAB=∠NCD,或BM=DN或∠ABM=∠CDN.【解答】解:〔1〕你添加的条件是:①∠MAB=∠NCD;〔2〕证明:在△ABM和△CDN中∵∠M=∠N,AM=CM,∠MAB=∠NCD∴△ABM≌△CDN〔ASA〕,故答案为:∠MAB=∠NCD;在△ABM和△CDN中∵∠M=∠N,AM=CM,∠MAB=∠NCD∴△ABM≌△CDN〔ASA〕.【点评】此题考查三角形全等的性质和判定方法,判定两个三角形全等的一般方法有:ASA、SSS、SAS、AAS、HL〔在直角三角形中〕.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.20.〔2016•屏东县校级模拟〕如图,AB=AC,AD=AE.求证:∠B=∠C.【分析】要证∠B=∠C,可利用判定两个三角形全等的方法“两边和它们的夹角对应相等的两个三角形全等”证△ABE≌△ACD,然后由全等三角形对应边相等得出.【解答】证明:在△ABE与△ACD中,,∴△ABE≌△ACD〔SAS〕,∴∠B=∠C.【点评】此题主要考查了两个三角形全等的其中一种判定方法,即“边角边”判定方法.观察出公共角∠A是解决此题的关键.21.〔2016•沛县校级一模〕如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.【分析】易证△BED≌△CFD,根据全等三角形对应边相等的性质即可解题.【解答】解:∵BE⊥AE,CF⊥AE,∴∠BED=∠CFD=90°,在△BED和△CFD中,,∴△BED≌△CFD〔AAS〕,∴BE=CF.【点评】此题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,此题中找出全等三角形并证明是解题的关键.22.〔2016•福州〕一个平分角的仪器如下图,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理〔SSS〕证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC〔SSS〕,∴∠BAC=∠DAC.【点评】此题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.此题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.23.〔2012•漳州〕在数学课上,林老师在黑板上画出如下图的图形〔其中点B、F、C、E在同一直线上〕,并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:可以为①②③;结论:④.〔均填写序号〕证明:【分析】此题可以分成三种情况:情况一:题设:①②③;结论:④,可以利用SAS定理证明△ABC≌△DEF;情况二:题设:①③④;结论:②,可以利用AAS证明△ABC ≌△DEF;情况三:题设:②③④;结论:①,可以利用ASA证明△ABC≌△DEF,再根据全等三角形的性质可推出结论.【解答】情况一:题设:①②③;结论:④.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF.在△ABC和△DEF中,,∴∠1=∠2;情况二:题设:①③④;结论:②.证明:在△ABC和△DEF中,∵,∴△ABC≌△DEF〔AAS〕,∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=EC;情况三:题设:②③④;结论:①.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF〔ASA〕,∴AB=DE.【点评】此题主要考查了全等三角形的判定与性质,此题为开放性题目,需要同学们有较强的综合能力,熟练应用全等三角形的全等判定才能正确解答.24.〔2009•大连〕如图,在△ABC和△DEF中,AB=DE,BE=CF,∠B=∠1.求证:AC=DF.〔要求:写出证明过程中的重要依据〕【分析】因为BE=CF,利用等量加等量和相等,可证出BC=EF,再证明△ABC≌△DEF,从而得出AC=DF.【解答】证明:∵BE=CF,∴BE+EC=CF+EC〔等量加等量和相等〕.即BC=EF.在△ABC和△DEF中,AB=DE,∠B=∠1,BC=EF,∴AC=DF〔全等三角形对应边相等〕.【点评】解决此题要熟练运用三角形的判定和性质.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.25.〔2006•平凉〕如图,已知AB=DC,AC=DB.求证:∠1=∠2.【分析】探究思路:因为△ABO与△DCO有一对对顶角,要证∠1=∠2,只要证明∠A=∠D,把问题转化为证明△ABC≌△DCB,再围绕全等找条件.【解答】证明:在△ABC和△DCB中∵,∴△ABC≌△DCB.∴∠A=∠D.又∵∠AOB=∠DOC,∴∠1=∠2.【点评】此题是全等三角形的判定,性质的综合运用,可以由探究题目的结论出发,找全等三角形,再寻找判定全等的条件.26.〔2006•佛山〕如图,D、E分别为△ABC的边AB、AC上的点,BE与CD相交于O点.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.〔1〕请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:命题的条件是①和③,命题的结论是②和④〔均填序号〕;〔2〕证明你写出的命题.【分析】此题实际是考查全等三角形的判定,根据条件可看出主要是围绕三角形ABE和ACD 全等来求解的.已经有了一个公共角∠A,只要再知道一组对应角和一组对应边相等即可得出三角形全等的结论.可根据这个思路来进行选择和证明.【解答】解:〔1〕命题的条件是①和③,命题的结论是②和④.〔2〕已知:D,E分别为△ABC的边AB,AC上的点,且AB=AC,∠ABE=∠ACD.求证:OB=OC,BE=CD.证明如下:∵AB=AC,∠ABE=∠ACD,∠BAC=∠CAB,∴△ABE≌△ACD.∴BE=CD.又∠BCD=∠ACB﹣∠ACD=∠ABC﹣∠ABE=∠CBE,∴△BOC是等腰三角形.∴OB=OC.【点评】此题主要考查了全等三角形的判定,要注意的是AAA和SSA是不能判定三角形全等的.27.〔2005•安徽〕如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形并任选其中一对给予证明.【分析】此题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.做题时从已知结合全等的判定方法开始思考,做到由易到难,不重不漏.【解答】解:此图中有三对全等三角形.分别是:△ABF≌△DEC、△ABC≌△DEF、△BCF≌△EFC.证明:∵AB∥DE,∴∠A=∠D.又∵AB=DE、AF=DC,∴△ABF≌△DEC.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.28.〔2004•昆明〕如下图,在梯形ABCD中,AD∥BC,∠B=∠C,点E是BC边上的中点.求证:AE=DE.【分析】利用已知条件易证△AEB≌△DEC,从而得出AE=DE.【解答】证明:∵AD∥BC,∠B=∠C,∴梯形ABCD是等腰梯形,∴AB=DC,在△AEB与△DEC中,,∴△AEB≌△DEC〔SAS〕,∴AE=DE.【点评】此题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,假设有两边一角对应相等时,角必须是两边的夹角.29.〔2004•淮安〕如图,给出以下论断:①DE=CE,②∠1=∠2,③∠3=∠4.请你将其中的两个作为条件,另一个作为结论,构成一个真命题,并加以证明.【分析】可以有三个真命题:〔1〕②③⇒①,可由ASA证得△ADE≌△BCE,所以DE=EC;〔2〕①③⇒②,可由SAS证得△ADE≌△BCE,所以∠1=∠2;〔3〕①②⇒⑧,可由ASA证得△ADE≌△BCE,所以AE=BF,∠3=∠4.【解答】解:②③⇒①证明如下:∵∠3=∠4,∴EA=EB.在△ADE和△BCE中,∴△ADE≌△BCE.∴DE=EC.①③⇒②证明如下:∵∠3=∠4,∴EA=EB,在△ADE和△BCE中,,∴△ADE≌△BCE,∴∠1=∠2.①②⇒⑧证明如下:在△ADE和△BCE中,∴△ADE≌△BCE.∴AE=BE,∠3=∠4.【点评】此题考查了全等三角形的判定和性质;题目是一道开放型的问题,选择有多种,可以采用多次尝试法,证明时要选择较为简单的进行证明.30.〔2011•通州区一模〕已知:如图,∠ACB=90°,AC=BC,CD是经过点C的一条直线,过点A、B分别作AE⊥CD、BF⊥CD,垂足为E、F,求证:CE=BF.【分析】根据AE⊥CD,BF⊥CD,求证∠BCF+∠B=90°,可得∠ACF=∠B,再利用〔AAS〕求证△BCF≌△CAE即可.【解答】证明:∵AE⊥CD,BF⊥CD∴∠AEC=∠BFC=90°∴∠BCF+∠B=90°∵∠ACB=90°,∴∠BCF+∠ACF=90°∴∠ACF=∠B在△BCF和△CAE中∴△BCF≌△CAE〔AAS〕∴CE=BF.【点评】此题主要考查全等三角形的判定与性质这一知识点,解答此题的关键是利用〔AAS〕求证△BCF≌△CAE,要求学生应熟练掌握.。

八年级全等三角形专题练习(解析版)

八年级全等三角形专题练习(解析版)

一、八年级数学全等三角形解做题压轴题〔难〕1. 〔1〕如图〔1〕,:在△ ABC中,N BAC=90.,AB二AC,直线m经过点A, 8口,直线m, CE J_直线m,垂足分别为点D、E.证实:DE=BD+CE.〔2〕如图〔2〕,将〔1〕中的条件改为:在△ ABC中,AB=AC, D、A、E三点都在直线m 上,并且有N BDA=Z AEC=Z BAC=.,其中.为任意锐角或钝角.请问结论DE=BD+CE是否成立? 如成立,请你给出证实;假设不成立,请说明理由.〔3〕拓展与应用:如图〔3〕 , D、E是D、A、E三点所在直线m上的两动点〔D、A、E 三点互不重合〕,点F为N BAC平分线上的一点,且△ ABF和^ ACF均为等边三角形,连接BD、CE,假设N BDA=Z AEC=Z BAC,试判断△ DEF 的形状.【答案】(1)见解析(2)成立(3) 4DEF为等边三角形【解析】解:(1)证实:BDL直线m, CEJ_直线m,,N BDA=N CEA=900.: Z BAC=90°, /. Z BAD+Z CAE=90°.•/ Z BAD+Z ABD=90°, /. Z CAE=Z ABD.又AB二“AC〞,「・△ ADB合△ CEA (AAS) . /. AE=BD, AD=CE./. DE=,,AE+AD=H BD+CE.(2)成立.证实如下:: Z BDA =Z BAC=a , /. Z DBA+Z BAD=Z BAD+Z CAE=180°-O r . /. Z DBA=Z CAE.Z BDA=Z AEC=., AB=AC,「・△ AD於△ CEA (AAS). /. AE=BD, AD=CE.DE二AE+AD=BD+CE.(3)△ DEF为等边三角形.理由如下:由(2)知,△ ADB合△ CEA, BD=AE, Z DBA =Z CAE,: △ ABF 和^ ACF 均为等边三角形,J Z ABF=Z CAF=60°.・•, Z DBA+Z ABF=Z CAE+Z CAF. /. Z DBF=Z FAE.; BF=AF,,•・丛DBF合△ EAF (AAS) . /. DF=EF, Z BFD=Z AFE.・•, Z DFE=Z DFA+z AFE=Z DFA+Z BFD=60°.・•.A DEF为等边三角形.(1)由于DE=DA+AE,故由AAS证△ ADB合4 CEA,得出DA=EC, AE=BD,从而证得DE=BD+CE.(2)成立,仍然通过证实△ ADB2 J CEA,得出BD=AE, AD=CE,所以DE=DA+AE=EC+BD.(3)由△ ADB2△ CEA得BD=AE, NDBA=N CAE,由△ ABF和△ ACF均等边三角形,得Z ABF=Z CAF=60°, FB=FA,所以N DBA+N ABF=N CAE+N CAF,即N DBF二N FAE,所以△ DBF^ △ EAF,所以FD=FE, Z BFD=Z AFE,再根据N DFE=Z DFA+Z AFE=Z DFA+Z BFD=60°得到△ DEF是等边三角形.2.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE, PE 交CD 于 F〔1〕证实:PC=PE;〔2〕求N CPE的度数:〔3〕如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当N ABC=12〔T时,连接【答案】(1)证实见解析(2) 90° (3) AP=CE【解析】【分析】(1)、根据正方形得出AB=BC, ZABP=ZCBP=45%结合PB=PB得出aABP g^CBP,从而得出结论:⑵、根据全等得出NBAP=NBCP, ZDAP=ZDCP,根据PA=PE得出NDAP=NE,即ZDCP=ZE,易得答案;(3)、首先证实4ABP和^CBP全等,然后得出PA=PC, NBAP=NBCP,然后得出NDCP二NE,从而得出NCPF=NEDF=60°,然后得出AEPC是等边三角形,从而得出AP=CE.【详解】⑴、在正方形ABCD 中,AB=BC, ZABP=ZCBP=45%在ZkABP 和4CBP 中,XV PB=PB AAABP^ACBP (SAS) , ,PA=PC, VPA=PE>:.PC=PE;⑵、由(1)知,A ABP^ACBP,.\ZBAP=ZBCP, JNDAP=NDCP,VPA=PE, .\ZDAP=ZE> /. ZDCP=ZE. VZCFP=ZEFD (对顶角相等), A180° - ZPFC - ZPCF=1800 - ZDFE - NE, BPZCPF=ZEDF=90<>:⑶、AP = CE理由是:在菱形ABCD 中,AB=BC, NABP二NCBP,在2\ABP ^lACBP 中,XV PB=PB /.△ABP^ACBP (SAS),,PA二PC, NBAP=NDCP,VPA=PE,,PC=PE,,NDAP=NDCP, V PA=PC,/DAP=NE, A ZDCP=ZE V ZCFP=ZEFD (对顶角相等),A180°- ZPFC - ZPCF=180° - ZDFE - NE, RPZCPF=ZEDF=180° - ZADC=180° - 120°=60°, AAEPC 是等边三角形,,PC=CE, AAP=CE考点:三角形全等的证实3.如图,在AA8C中,NAC8为锐角,点£>为射线8C上一动点,连接AO.以AO为直角边且在AD的上方作等腰直角三角形ADF.图①图②图③〔1〕假设A3 = AC, ABAC = 90°①当点.在线段BC上时〔与点3不重合〕,试探讨CF与8.的数量关系和位置关系:②当点O在线段C的延长线上时,①中的结论是否仍然成立,请在图2中而出相应的图形并说明理由;〔2〕如图3,假设ABwAC, ABAC90° , ZBC4 = 45°,点.在线段8C上运动,试探究CF与8.的位置关系.【答案】〔1〕①CF_LBD,证实见解析:②成立,理由见解析:〔2〕 CF1BD,证实见解析.【解析】【分析】〔1〕①根据同角的余角相等求出NCAF=NBAD,然后利用"边角边"证实4ACF和4ABD全等,②先求出NCAF=NBAD,然后与①的思路相同求解即可:〔2〕过点A作AE_LAC交BC于E,可得4ACE是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE, NAED=45.,再根据同角的余角相等求出NCAF=NEAD,然后利用“边角边〞证实4ACF 和4AED全等,根据全等三角形对应角相等可得NACF=NAED,然后求出ZBCF=90°,从而得到CFJ_BD.【详解】解:〔1〕①•••NBAC=90°, 4ADF是等腰直角三角形,.\ZCAF+ZCAD=90% ZBAD+ZACD=90°,.\ZCAF=ZBAD,在4ACF和4ABD中,VAB=AC, ZCAF=ZBAD, AD=AF,.,.△ACF^AABD〔SAS〕,.・.CF=BD, ZACF=ZABD=45",ZACB=45",AZFCB=90°,.-.CF±BD:②成立,理由如下:如图2:VZCAB=ZDAF=90%,ZCAB+ ZCAD= ZDAF+ ZCAD, 即NCAF=NBAD,在aACF和AABD中,VAB=AC, ZCAF=ZBAD, AD=AF, AAACF^AABD(SAS), ACF=BD, NACF=NB,VAB=AC, ZBAC=90%AZB=ZACB=45%/. Z BCF= ZACF+ ZACB=45o+45o=90°,ACF1BD:(2)如图3,过点A作AE_LAC交BC于E,•/ ZBCA=45",••.△ACE是等腰直角三角形,,AC=AE, NAED=45°, VZCAF+ZCAD=90°, ZEAD+ZCAD=90%,NCAF=NEAD,在4ACF和4AED中,VAC=AE, NCAF=NEAD, AD=AF,.•.△ACF^AAED(SAS), /. ZACF=ZAED=45\,ZBCF= ZACF+ ZBCA=45o+45°=90°, ACF1BD.【点睛】此题考查全等三角形的动点问题,综合性较强,有一定难度,需要熟练掌握全等三角形的判定和性质进行综合运用.4.如图〔1〕,在△A3C中,ZA = 90°, A3 = AC,点.是斜边8C的中点,点E, 产分别在线段A3, 4c上,且NEDF = 90..〔1〕求证:△.所为等腰直角三角形:〔2〕假设△ABC的面积为7,求四边形AEDF•的面积:〔3〕如图〔2〕,如果点E运动到A8的延长线上时,点尸在射线C4上且保持ZEDF = 90°,△.石尸还是等腰直角三角形吗.请说明理由.【答案】〔1〕证实见解析;〔2〕 3.5:〔3〕是,理由见解析.【解析】【分析】〔1〕由题意连接AD,并利用全等三角形的判定判定△ BD年△ ADF〔ASA〕,进而分析证得△.瓦'为等腰直角三角形;〔2〕由题意分析可得S网边形AEDF=S MDF+S AADE=S ABDE+S ACDF,以此进行分析计算求出四边形AEDF的面积即可;〔3〕根据题意连接AD,运用全等三角形的判定判定△ BDE^ △ ADF〔ASA〕,进而分析证得△.所为等腰直角三角形.【详解】解:〔1〕证实:如图①,连接AD.「N BAC=90°,AB=AC,点D是斜边BC的中点,/. AD±BC , AD=BD,・•, Z 1=Z B=45°,Z EDF=90% Z 2+Z 3=90%又,Z 3+Z 4=90°,/. Z 2=Z 4,在^ BDE 和^ ADF 中,Z 1=Z B, AD=BD,Z 2=Z 4,/. △ BDE合 , ADF(ASA),・•, DE二DF,又;Z EDF=90\・•・ ADEF为等腰直角三角形.(2)由(1)可知DE=DF, NON 6=45., 又「N 2+N 3=90°, Z 2+Z 5=90%J Z 3=Z 5,A ADE级△ CDF,・' S N边H,AEDF=S AADF+S CADE二S ABDE+S^CDF,S MBC=2 S 网边毛AEDF,S wijn;AEDF=3.5.(3)是,如图②,连接AD.•/ Z BAC=90\ AB=AC, D 是斜边BC 的中点,/. AD±BC Z AD=BD ,「・Z 1=45°,Z DAF=180°-Z l=180°-45°=135% Z DBE=180°-Z ABC=180°-45°=135%/. Z DAF=Z DBE,「Z EDF=90\/. Z 3+Z 4=90%又;Z 2+Z 3=90°,「・Z 2=Z 4,在仆BDE 和a ADF 中,Z DAF=Z DBE, AD=BD,N 2=Z 4,△ BDE合△ ADF(ASA),・•.DE=DB又:Z EDF=90\.•.A DEF为等腰直角三角形.【点睛】此题考查等腰直角三角形的性质以及全等三角形的判定与性质,根据题意作辅助线构造出全等三角形是解题的关键.5.如图,在MBC中,ZC = 90°, AC = 3, BC = 7,点.是8c边上的动点,连接AD,以AO为斜边在A.的下方作等腰直角三角形AO石.(1)填空:AABC的面积等于—;(2)连接CE,求证:CE是NAC3的平分线;(3)点.在6C边上,且CO = 1,当.从点.出发运动至点3停止时,求点E相应的运动路程.王O 1 _【答案】〔I〕—:〔2〕证实见解析:〔3〕 3点【解析】【分析】〔1〕根据直角三角形的面积计算公式直接计算可得:〔2〕如下图作出辅助线,证实△AEM名ADEN 〔AAS〕,得至I] ME=NE,即可利用角平分线的判定证实:〔3〕由〔2〕可知点E在NACB的平分线上,当点D向点B运动时,点E的路径为一条直线,再根据全等三角形的性质得出CN=!〔AC + C.〕,根据CD的长度计算出CE的长度即可.【详解】解:〔1〕 ZC = 90°, AC = \ BC = 7= -ACxBC = -x3x7 = — ,故答案为:—2〔2〕连接CE,过点E作EMLAC于点M,作EN_LBC于点N,AZEMA=Z END=90°,XVZACB=90SAZMEN=90%AZMED+Z DEN=90°,•••△ADE是等腰直角三角形AZAED=90\ AE=DEA ZAEM+Z MED=90%, ZAEM=Z DEN,在△AEM 与ZkDEN 中,ZEMA=Z END=90% ZAEM=Z DEN, AE=DEAAAEM^ADEN 〔AAS〕/. ME=NE,点E 在NACB 的平分线上, 即CE 是NAC3的平分线工(3)由(2)可知,点E 在NACB 的平分线上,・•・当点D 向点B 运动时,点E 的路径为一条直线,VAAEM^ADEN,AM=DN,即 AC-CM=CN-CD在 RtZiCME 与 RtZkCNE 中,CE=CE, ME=NE,ARtACME^RtACNE (HL)ACM=CN.,.CN=;(AC + CO),又YNMCE 二NNCE=45°, ZCME=90\・,. CE= y/2CN = —(AC + CD).2当 AC=3, CD=CO=1 时,CE=](3 + 1) = 2&当 AC=3, CD=CB=7 时,5CE=r (3 + 7) = 5 虚,点E 的运动路程为:50-20 = 30,£【点睛】此题考查了全等三角形的综合证实题,涉及角平分线的判定,几何中动点问题,全等三角 形的性质与判定,解题的关键是综合运用上述知识点.6.如图1,在长方形ABCD 中,AB=CD=5 cm, BC=12 cm,点P 从点B 出发,以2cm/s 的 速度沿BC 向点C 运动,设点P 的运动时间为ts.(1) PC=—cm :(用含t 的式子表示)■I) I)(2)当t 为何值时,△ABPg^DCP?.(3)如图2,当点P从点B开始运动,此时点Q从点C出发,以vcm/s的速度沿CD向点D运动,是否存在这样的v值,使得某时刻4ABP与以P, Q, C为顶点的直角三角形全等?假设存在,请求出v的值:假设不存在,请说明理由.【答案】(1) (12-2/); (2)1 = 3;(3)存在,P = 2或忏1【解析】【分析】(1)根据P点的运动速度可得BP的长,再利用BC的长减去BP的长即可得到PC的长:(2)先根据三角形全等的条件得出当BP=CP,列方程求解即得;(3)先分两种情况:当BP=CQ, AB=PC 时,△ABPgZ\PCQ:或当BA=CQ, PB=PC 时,△ABPgaQCP,然后分别列方程计算出t的值,进而计算出v的值.【详解】解:(1)当点P以2cm/s的速度沿BC向点C运动时间为ts时3P = 2/57•・• BC = \2cin:.PC = BC-BP = (n-2i)cm故答案为:(12—27)(2) MBP = ^DCP・•. BP = CP・•・ 2/= 12-2/解得1 = 3.(3)存在,理由如下:①当BP=CQ, AB=PC 时,ZiABP名△PCQ,1. PC=AB=5.•.BP=BC-PC=12-5=7•・• BP = Item:.2t=7解得t=3.5.\CQ=BP=7,那么 3.5v=7解得y = 2.②当B4 = C.,PB = PC 时,MBP = \QCP,: BC = ncm,BP = CP = -BC = 6c7〃 2V BP = Item:.2t = 6解得/ = 3CQ = 3vcm,: AB = CQ = 5cm, 3v = 5解得U3综上所述,当u = 2或i,=,时,A48尸与以P, Q,C为顶点的直角三角形全等.【点睛】此题考查全等三角形的判定及性质和矩形的性质,解题关键是将动态情况化为某一状态情况,并以这一状态为等量关系建立方程求解.7.:在MBC中,AB = AC,ZBAC = 90° ,尸Q为过点4的一条直线,分别过B、C两点作8M_LP0,CN_L尸.,垂足分别为M、N.(1)如图①所示,当P.与BC边有交点时,求证:MN = CN — BM ;(2)如图②所示,当与6C边不相交时,请写出线段8M、CN和MN之间的数量关系,并说明理由. 【答案】(1)见解析:(2) MN = BM + CN (或BM = MN — CN或CN = MN-BM ),理由见解析【解析】【分析】(1)根据条件先证AAA/i运ACN4,得到AM = CN,BM = AN,即可证得MN = CN — BM: (2)由(1)知AAMBYACNA,得到4M =CN,8M = AN,即可确定MN = BM + CN.【详解】证实:・・・BM_LPQ,CN_LP0,・•. ZAMB=ZCAN=90°,V ZBAC=90 ° ,AZCAN+ZACN=90°,ZCAN+ZBAM=90°(或NCW + NAC/V = NC4N+NMM)・•. ZBAM = ZACN,在AAMB和ACN4中,'ZAMB = 4CNA・.• ZBAM = AACN , AB = CA:.AAM“ACN4(A4S),.・.AM =CN,BM =AN,,: MN = AM-AN,:.MN = CN — BM.(2) MN = BM + CN (或BM=MN-CN或CN = MN-BM) .理由:•.・BM_LPQ,CN_LP.,・•・ ZAMB=ZCAN=90°,V ZBAC=90 ° ,.\ZCAN+ZACN=90°,ZCAN+ZBAM=90°(或NCW + NAC/V = NC4N+NBAM ),:.ZBAM = ZACN,在AAMB和ACNA中,'AAMB = ZCNAZ.B\M = ZACN , AB = CA:.AAM*ACNA( AAS),.・.AM =CN,BM =AN,:.MN = AN + AM = BM+CN.【点睛】此题考察三角形全等的应用,正确确定全等三角形是解题关键,由此得到对应相等的线段,确定它们之间的和差关系得到80、CN和MN之间的关系式.8.操作发现:如图,己知"配和"DE均为等腰三角形,AB=AC, AD=AE,将这两个三角形放置在一起,使点8, D, E在同一直线上,连接CE.(1)如图1, ZABC= ZACB= ZADE= ZAED=55Q,求证:△BADgZkCAE;(2)在(1)的条件下,求N8EC的度数:拓广探索:(3)如图2,假设NC48=NEAD=120.,8D=4, CF为aBCE中8E边上的高,请直接写出讦的长度.【答案】(1)见解析:(2) 70°; (3) 2【解析】【分析】(1)根据SAS证实△BADg/kCAE即可.(2)利用全等三角形的性质解决问题即可.(3)同法可证4BAD丝ZkCAE,推出EC=BD=4,由NBEC=NBAC=12O0,推出NFCE=30°即可解决问题.(1)证实:如图1中,图1Z ABC=^ ACB = Z ADE=N AED, /. Z EAD=Z CAB,:.Z EAC=A DAB,AE=AD. AC=AB9:.△ BAD^ & CAE (SAS).(2)解:如图1中,设AC交8E于O. •「N A8C=N4C8 = 55°,/. Z 84c=180° - 110° = 70°,BAD^△ CAE,Z ABO=Z ECO,Z EOC=ZAOB,・•, Z CEO = Z 840=70°,即 N BEC= 70°.(3)解:如图2中,A图2Z C48 = N EAD=120\•. Z BAD=A CAE,:AB=AC, AD=AE.△ BAD^ 4 CAE 〔SAS〕,•. Z BAD=A ACE. 8D=EC=4,同理可证N BEC- 8AC=120°,Z F£C=60%CFLEF,Z F=90",•. Z FCE=30\1•. EF=-EC=2. 2此题属于三角形综合题,考查了全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.9.在等边aABC中,点.是边8C上一点.作射线AO,点3关于射线AO的对称点为点E.连接CE并延长,交射线AO于点〔1〕如图,连接AE,①AE与AC的数量关系是;②设NBA尸=a,用.表示NBCF的大小;〔2〕如图,用等式表示线段A尸,CF.所之间的数量关系,并证实.【答案】⑴①AB二AE;②NBCF=.:(2)AF-EF=CF,理由见详解.【解析】【分析】(1)①根据轴对称性,即可得到答案;②由釉对称性,得:AE二AB, NBAF=NEAF=.,由△A3C是等边三角形,得AB=AC, ZBAC=ZACB=60° ,再根据等腰三角形的性质和三角形内角和等于180°,即可求解:(2)作NFCG=60°交AD于点G,连接BF,易证AFCG是等边三角形,得GF=FC,再证△ACG会ABCF(SAS),从而得AG=BF,进而可得至lj结论.【详解】(1)①•・•点4关于射线的对称点为点E , AAB和AE关于射线AD的对称,AAB=AE.故答案是:AB=AE;②•.•点3关于射线的对称点为点E , ,AE二AB, NBAF=NEAF=.,•二△A3c是等边三角形,AAB=AC, ZBAC=ZACB=60" ,:.ZEAC=60° -2a, AE=AC,ZACE=1[180 - (60 - 2a)] = 60 +6?,A ZBCF=ZACE-ZACB=60 +a-60°=a .(2) AF-EF=CF,理由如下:作NFCG=60.交AD于点G,连接BF,•••NBAF=NBCF=a , NADB=NCDF,A ZABC=ZAFC=60c ,••.△FCG是等边三角形,AGF=FC,•二△A3c是等边三角形,ABC=AC, ZACB=60° , AZACG=ZBCF=« .在AACG和ABCF中,CA = CBZACG = ABCF , CG = CF,AACG 仝ABCF(SAS),.,.AG=BF,•・•点4关于射线AO的对称点为点E , .\AG=BF=EF,VAF-AG=GF,.\AF-EF=CE【点睛】此题主要考查等边三角形的性质和三角形全等的判定和性质定理,添加辅助线,构造全等三角形,是解题的关键.10.如图,AA8C是等边三角形,点.在边4c上〔“点D不与A,C重合〕,点石是射线5c上的一个动点〔点E不与点8,C重合〕,连接OE,以OE为边作作等边三角形hDEF,连接CF.〔1〕如图1,当.石的延长线与A3的延长线相交,且CF在直线OE的同侧时,过点D 作DG//AB, DG 交BC 于点、G ,求证:CF = EG ;〔2〕如图2,当.石反向延长线与A8的反向延长线相交,且.,尸在直线OE的同侧时,求证:CD = CE+CF;〔3〕如图3,当OE反向延长线与线段A8相交,且.,厂在直线O石的异侧时,猜测CD、CE、CP之间的等量关系,并说明理由.【答案】〔1〕证实见详解;〔2〕证实见详解:〔3〕 CF = CO-CE,理由见详解.【解析】【分析】(1)由AABC 是等边三角形,DG//AB,得NCDG=NA=60° , NACB=60.,ACDG 是等边三角形,易证AGDE仝ACDF(SAS),即可得到结论:(2)过点D作DG〃AB交BC于点G,易证A GDE仝△ CDF(SAS),即可得到结论;(3)过点D作DG〃AB交BC于点G,易证A GDE仝A CDF(SAS),即可得到结论.【详解】(1)•・• AA3C是等边三角形,DG//AB, :.ZCDG=ZA=60° , ZACB=60° , ・•. ACQG是等边三角形,.\DG=DC.是等边三角形, .,.DE=DF, ZEDF=60° , A ZCDG-ZGDF=ZEDF-ZGDF,即:ZGDE=ZCDF, 在4 GDE和八CDF中,DE = DFNGDE = NCDF ,DG = DC.,.△GDE^A CDF(SAS),:.CF = EG ;(2)过点D作DG〃AB交BC于点G,如图2,•・• AABC是等边三角形,DG//AB、:.ZCDG=ZA=60° , ZACB=60" ,••・ACDG是等边三角形,:.DG=DC.•••ADE/是等边三角形,,DE=DF, ZEDF=60c ,A ZCDG-ZCDE=ZEDF-ZCDE> 即:ZGDE=ZCDF, 在4 GDE和^ CDF中,DE = DFNGDE = ZCDF ,DG = DC.,.△GDE^ACDF(SAS),:・CF = GE,••. CD = CG = CE+GE = CE+CF(3)CF = CD + CE,理由如下:过点D作DG〃AB交BC于点G,如图3,•・・AA8C是等边三角形,DGUAB, .,.ZCDG=ZA=60° , ZACB=60" ,,ACDG是等边三角形, ADG=DC=GC.•・• ADEF是等边三角形, ,DE=DF, ZEDF=60° ,A ZCDG+ZCDE=ZEDF+ZCDE,即:NGDE=NCDF, 在A GDE和4 CDF中,DE = DFNGDE = ZCDF , DG = DCAAGDE^ACDF(SAS),,CF = G£=GC+CE=CD+CE.【点睛】此题主要考查等边三角形的性质和三角形全等的判定和性质定理,添加辅助线,构造全等三角形,是解题的关键.。

全等三角形题库(精品)(70题)-含答案

全等三角形题库(精品)(70题)-含答案

全等三角形题库(70题)一、解答题(本大题共70小题,共560.0分)1.如图,在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD.AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何.【答案】解:(1)∵BE、CF分别是AC、AB两边上的高,∴∠AFC=∠BFC=∠BEC=∠BEA=90°∴∠BAC+∠ACF=90°,∠BAC+∠ABE=90°,∠G+∠GAF=90°,∴∠ABE=∠ACF.在△ABD和△GCA中,{BD=AC∠ABE=∠ACF AB=CG,∴△ABD≌△GCA(SAS),∴AD=GA,(2)结论:AG⊥AD.理由:∵△ABD≌△GCA(SAS),∴∠BAD=∠G,∴∠BAD+∠GAF=90°,∴AG⊥AD.【解析】(1)先由条件可以得出∠ABE=∠ACF,就可以得出△ABD≌△GCA,就有AD= GA,∠BAD=∠G;(2)结论:AG⊥AD.由(1)可以得出∠GAD=90°,进而得出AG⊥AD.本题考查了全等三角形的判定及性质的运用、直角三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,学会利用等量代换证明垂直,属于中考常考题型.2.如图,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.求证:点G是DE的中点;【答案】解:作DM⊥AF于M,EN⊥AF于N,∵BC⊥AF,∴∠BFA=∠AMD=90°,∵∠BAD=90°,∴∠1+∠2=∠1+∠B=90°,∴∠B=∠2,在△ABF与△DAM中,{∠BFA=∠AMD ∠B=∠2AB=AD,∴△ABF≌△DAM(AAS),∴AF=DM,同理,△ACF≌△EAN(AAS),AF=EN,∴EN=DM,∵DM⊥AF,EN⊥AF,∴∠GMD=∠GNE=90°,在△DMG与△ENG中,{∠DMG =∠ENG ∠DGM =∠EGN DM =EN, ∴△DMG≌△ENG(AAS),∴DG =EG ,即点G 是DE 的中点.【解析】本题考查了全等三角形的判定和性质,垂直的定义,余角的性质,正确的作出辅助线是解题的关键.作DM ⊥AF 于M ,EN ⊥AF 于N ,根据余角的性质得到∠B =∠2,根据全等三角形的性质得到AF =DM ,同理AF =EN ,求得EN =DM ,由全等三角形的性质得到DG =EG ,于是得到点G 是DE 的中点.3. 如图,将Rt △ABC 沿斜边翻折得到△ADC ,点E ,F 分别为DC ,BC 边上的点,且∠EAF =12∠DAB.试猜想DE ,BF ,EF 之间有何数量关系,并证明你的猜想.【答案】解:猜想:DE +BF =EF.证明:延长CF ,作∠4=∠1,如图:∵将Rt △ABC 沿斜边翻折得到△ADC ,点E ,F 分别为DC ,BC 边上的点,且∠EAF = 12∠DAB ,∴∠1+∠2=∠3+∠5,∠2+∠3=∠1+∠5,∵∠4=∠1,∴∠2+∠3=∠4+∠5,∴∠GAF =∠FAE ,在△AGB 和△AED 中,{∠4=∠1AB =AD ∠ABG =∠ADE, ∴△AGB≌△AED(ASA),∴AG =AE ,BG =DE ,在△AGF 和△AEF 中,{AG =AE ∠GAF =∠EAF AF =AF, ∴△AGF≌△AEF(SAS),∴GF =EF ,∴DE +BF =EF .【解析】本题考查了全等三角形的判定与性质,解题的关键是作辅助角,将DE 和BF 放在一起,便于数量关系的猜想和证明.通过延长CF ,将DE 和BF 放在一起,便于寻找等量关系,通过两次三角形全等证明,得出结论.4. 已知△ABC 为等边三角形,点D 为直线BC 上一动点(点D 不与点B ,点C 重合).以AD 为边作等边三角形ADE ,连接CE .(1)如图1,当点D 在边BC 上时.①求证:△ABD≌△ACE ;②直接判断结论BC =DC +CE 是否成立(不需证明);(2)如图2,当点D 在边BC 的延长线上时,其他条件不变,请写出BC ,DC ,CE 之间存在的数量关系,并写出证明过程.【答案】解:(1)①∵△ABC 和△ADE 是等边三角形,∴∠BAC =∠DAE =60°,AB =BC =AC ,AD =DE =AE .∴∠BAC −∠DAC =∠DAE −∠DAC ,∴∠BAD=∠EAC.在△ABD和△ACE中{AB=AC∠BAD=∠EAC AD=AE,∴△ABD≌△ACE(SAS).②∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中{AB=AC∠BAD=∠EAC AD=AE,∴△ABD≌△ACE(SAS).∴BD=CE.∵BD=BC+CD,∴CE=BC+CD;【解析】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE;②由△ABD≌△ACE就可以得出BC= DC+CE;(2)由等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE= AE,进而就可以得出△ABD≌△ACE,就可以得出BC+CD=CE.本题考查了等边三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.5.已知点C是∠MAN平分线上一点,∠BCD的两边CB、CD分别与射线AM、AN相交于B,D两点,且∠ABC+∠ADC=180°.过点C作CE⊥AB,垂足为E.(1)如图1,当点E在线段AB上时,求证:BC=DC;(2)如图2,当点E在线段AB的延长线上时,探究线段AB、AD与BE之间的等量关系;(3)如图3,在(2)的条件下,若∠MAN=60°,连接BD,作∠ABD的平分线BF交AD于点F,交AC于点O,连接DO并延长交AB于点G.若BG=1,DF=2,求线段DB的长.【答案】(1)证明:如图1,过点C作CF⊥AD,垂足为F,∵AC平分∠MAN,CE⊥AB,CF⊥AD,∴CE=CF,∵∠CBE+∠ADC=180°,∠CDF+∠ADC=180°,∴∠CBE=∠CDF,在△BCE和△DCF中,{∠CBE=∠CDF∠CEB=∠CFD=90°CE=CF,∴△BCE≌△DCF(AAS)∴BC=DC;(2)解:AD−AB=2BE,理由如下:如图2,过点C作CF⊥AD,垂足为F,∵AC平分∠MAN,CE⊥AB,CF⊥AD,∴CE=CF,AE=AF,∵∠ABC+∠ADC=180°,∠ABC+∠CBE=180°,∴∠CDF=∠CBE,在△BCE和△DCF中,{∠CBE=∠CDF∠CEB=∠CFD=90°CE=CF,∴△BCE≌△DCF(AAS),∴DF=BE,∴AD=AF+DF=AE+DF=AB+BE+DF=AB+2BE,∴AD−AB=2BE;(3)解:如图3,在BD上截取BH=BG,连接OH,∵BH=BG,∠OBH=∠OBG,OB=OB在△OBH和△OBG中,{BH=BG∠OBH=∠OBG OB=OB,∴△OBH≌△OBG(SAS)∴∠OHB=∠OGB,∵AO是∠MAN的平分线,BO是∠ABD的平分线,∴点O到AD,AB,BD的距离相等,∴∠ODH=∠ODF,∵∠OHB=∠ODH+∠DOH,∠OGB=∠ODF+∠DAB,∴∠DOH=∠DAB=60°,∴∠GOH=120°,∴∠BOG=∠BOH=60°,∴∠DOF=∠BOG=60°,∴∠DOH=∠DOF,在△ODH和△ODF中,{∠DOH=∠DOF OD=OD∠ODH=∠ODF,∴△ODH≌△ODF(ASA),∴DH=DF,∴DB=DH+BH=DF+BG=2+1=3.【解析】(1)过点C作CF⊥AD,根据角平分线的性质得到CE=CF,证明△BCE≌△DCF,根据全等三角形的性质证明结论;(2)过点C作CF⊥AD,根据角平分线的性质得到CE=CF,AE=AF,证明△BCE≌△DCF,得到DF=BE,结合图形解答即可;(3)在BD上截取BH=BG,连接OH,证明△OBH≌△OBG,根据全等三角形的性质得到∠OHB=∠OGB,根据角平分线的判定定理得到∠ODH=∠ODF,证明△ODH≌△ODF,得到DH=DF,计算即可.本题考查的是全等三角形的判定和性质、角平分线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.6.如图,在△ABC和△ADE中,AB=AD,AC=AE,∠1=∠2.(1)求证:△ABC≌△ADE;(2)找出图中与∠1、∠2相等的角(直接写出结论,不需证明).【答案】(1)证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,即∠BAC=∠DAE,在△BAC和△DAE中{AB=AD∠BAC=∠DAE AC=AE,∴△ABC≌△ADE(SAS);(2)解:∵△ABC≌△ADE,∴∠B=∠D,∵∠AMB=∠DMF,∴∠1=∠MFD,∵∠MFD=∠NFC,∴∠1=∠NFC,∴与∠1、∠2相等的角有∠NFC,∠MFD.【解析】(1)根据等式的性质可得∠BAC=∠DAE,然后利用SAS判定△ABC≌△ADE;(2)利用三角形内角和定理可得∠1=∠MFD,再由对顶角相等可得∠1=∠NFC.此题主要考查了全等三角形的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.7.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图(1)的位置时,求证:①△ADC≌△CEB.②DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD−BE;(3)当直线MN绕点C旋转到图(3)的位置时,请写出DE,AD,BE之间的等量关系.【答案】解:(1)①∵AD⊥MN,BE⊥MN,∴∠ADC=∠ACB=90°=∠CEB,∴∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,{∠CAD=∠BCE ∠ADC=∠CEB AC=BC,∴△ADC≌△CEB(AAS);②∵△ADC≌△CEB,∴CE=AD,CD=BE,∴DE=CE+CD=AD+BE;(2)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=∠ACB=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,{∠CAD=∠BCE ∠ADC=∠CEB AC=BC,∴△ADC≌△CEB(AAS);∴CE=AD,CD=BE,∴DE=CE−CD=AD−BE;(3)当MN旋转到题图(3)的位置时,AD,DE,BE所满足的等量关系是:DE=BE−AD.理由如下:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=∠ACB=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,{∠CAD=∠BCE ∠ADC=∠CEB AC=BC,∴△ADC≌△CEB(AAS),∴CE=AD,CD=BE,∴DE=CD−CE=BE−AD.【解析】本题属于三角形综合题,主要考查了全等三角形的判定与性质的综合应用,解题时注意:全等三角形的对应边相等,同角的余角相等,解决问题的关键是根据线段的和差关系进行推导,得出结论.(1)①根据AD⊥MN,BE⊥MN,∠ACB=90°,得出∠CAD=∠BCE,再根据AAS即可判定△ADC≌△CEB;②根据全等三角形的对应边相等,即可得出CE=AD,CD=BE,进而得到DE=CE+CD=AD+BE;(2)先根据AD⊥MN,BE⊥MN,得到∠ADC=∠CEB=∠ACB=90°,进而得出∠CAD=∠BCE,再根据AAS即可判定△ADC≌△CEB,进而得到CE=AD,CD=BE,最后得出DE=CE−CD=AD−BE;(3)DE=BE−AD,与(2)同理,即可证明:DE=BE−AD.8.如图,已知∠AOB=∠COD=90°,AB=CD,OA=OC.求证:(1)△AOB≌△COD(2)DE=BF.【答案】证明:(1)∵∠AOB=∠COD=90°,∴在Rt△AOB和Rt△COD中,{AB=CDOA=OC,∴Rt△AOB≌Rt△COD(HL),即△AOB≌△COD;(2)∵△AOB≌△COD∴OD=OB,∠A=∠C,∵∠AOB=∠COD=90°∴∠AOB−∠EOF=∠COD−∠EOF,即∠AOE=∠COF在△AOE和△COF中,{∠AOE=∠COF OA=OF∠A=∠C,∴△AOE≌△COF(ASA),∴OE=OF,∵OD=OB,∴OD−OE=OB−OF,即DE=BF.【解析】(1)根据题意,利用HL定理可以证明结论成立;(2)根据(1)中的结论,再根据三角形全等的性质和判定,可以证明结论成立.本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求结论需要的条件,利用数形结合的思想解答.9. 以点A 为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD ,CE .(1)试说明:BD =CE ;(2)延长BD 交CE 于点F ,求∠BFC 的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.【答案】解:(1)∵△ABC 、△ADE 是等腰直角三角形,∴AB =AC ,∠BAD =∠EAC =90°,AD =AE ,∵在△ADB 和△AEC 中,{AD =AE ∠DAB =∠EAC AB =AC,∴△ADB≌△AEC(SAS),∴BD =CE .(2)∵△ADB≌△AEC ,∴∠ACE =∠ABD ,而在△CDF 中,∠BFC =180°−∠ACE −∠CDF ,又∵∠CDF =∠BDA ,∴∠BFC =180°−∠DBA −∠BDA =∠DAB =90°.(3)BD =CE 成立,且两线段所在直线互相垂直,即∠BFC =90°.理由如下:∵△ABC 、△ADE 是等腰直角三角形,∴AB =AC ,AD =AE ,∠BAC =∠EAD =90°,∵∠BAC +∠CAD =∠EAD +∠CAD ,∴∠BAD =∠CAE ,∵在△ADB 和△AEC 中,{AD =AE ∠DAB =∠EAC AB =AC,∴△ADB≌△AEC(SAS),∴BD =CE ,∠ACE =∠DBA ,【解析】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等,对应角相等.也考查了等腰直角三角形的性质.(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△AEC,则BD=CE;(2)由△ADB≌△AEC得到∠ACE=∠DBA,利用三角形内角和定理可以得到∠BFC= 180°−∠ACE−∠CDF=180°−∠DBA−∠BDA=∠DAB=90°;(3)与(1)一样可证明△ADB≌△AEC,得到BD=CE,∠ACE=∠DBA,利用三角形内角和定理得到∠BFC=∠CAB=90°.10.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.【答案】证明:(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF,在△ABF和△AEC中,∵{AE=AB∠EAC=∠BAF AF=AC,∴△ABF≌△AEC(SAS),∴EC=BF;(2)如图,根据(1),△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°−∠ABF−∠BDM=180°−90°=90°,所以EC⊥BF.【解析】(1)先求出∠EAC=∠BAF,然后利用“边角边”证明△ABF和△AEC全等,根据全等三角形对应边相等即可证明;(2)根据全等三角形对应角相等可得∠AEC=∠ABF,设AB、CE相交于点D,根据∠AEC+∠ADE=90°可得∠ABF+∠ADM=90°,再根据三角形内角和定理推出∠BMD=90°,从而得证.本题考查了全等三角形的判定与性质,根据条件找出两组对应边的夹角∠EAC=∠BAF 是证明的关键,也是解答本题的难点.11.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【答案】证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,{AB=AD∠BAC=∠DAE AC=AE,(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,{BF=GF∠AFB=∠AFG AF=AF,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,{∠GCA=∠DCA ∠CGA=∠CDA AG=AD,∴△CGA≌△CDA(AAS),∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.【解析】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.(1)根据题意和题目中的条件可以找出△BAC≌△DAE的条件;(2)根据(1)中的结论和等腰直角三角形的定义可以得到∠FAE的度数;(3)根据题意和三角形全等的知识,作出合适的辅助线即可证明结论成立.12.如图1,四边形ABCD是正方形,点E是边BC上的动点(不与B,C重合),将线段AE绕点E顺时针旋转90°得到线段EF,连接AF,EF、AF分别与CD交于点M、N,作FG⊥BC于点G;(1)求证:BE=CG(2)探究线段BE、EN、DN间的等量关系,并说明理由;(3)如图2,当点E运动到BC的中点时,若AB=6,求MN的长.【答案】(1)证明:∵EF⊥AE,∴∠AEB+∠GEF=90°,又∵∠AEB+∠BAE=90°∴∠GEF=∠BAE,又∵FG⊥BC,∴∠ABE=∠EGF=90°,在△ABE与△EGF中,{∠ABE=∠EGF ∠BAE=∠GEF AE=EF,∴△ABE≌△EGF(AAS),∴AB=EG,∴BE=CG.(2)解:结论:EN=BE+DN.理由:如图1中,延长EB到K,使得BK=DN.∵四边形ABCD是正方形,∴AD=AB,∠DAB=∠D=∠ABC=∠ABK=90°,∵DN=BK,∴△ADN≌△ABK(SAS),∴AK=AN,∠BAK=∠DAN,∵EA=EF,∠AEF=90°,∴∠EAF=45°,∴∠KAE=∠BAK+∠BAE=∠DAN+∠BAE=45°,∴∠EAK=∠EAN=45°,∵AE=AE,∴△EAK≌△EAN(SAS),∴EN=EK,∵EK=BK+BE=DN+BE,∴EN=BE+DN.(3)解:如图2中,作FK⊥AB于K,交CD于J.∵BE=CE=3,∴FG=BE=CG=3,∵AB//CD,∴∠FKB=∠FJC=90°,∵∠G=∠JCG=90°,∴四边形FGCJ是矩形,∵CG=FG,∴四边形FGCJ是正方形,CG=FG=3,∵EC=CG,CM//FG,∴CM=12FG=32,∴JM=CJ−CM=32,∵四边形BGFK是矩形,∴FK=BG=9,BK=FG=AK=3,∵JN//AK,∴NJAK =FJFK,∴NJ3=39,∴NJ=1,∴MN=NJ+JM=1+32=52.【解析】(1)根据同角的余角相等得到一对角相等,再由一对直角相等,且AE=EF,利用AAS得到三角形ABE与三角形EFG全等即可解决问题.(2)结论:EN=BE+DN.如图1中,延长EB到K,使得BK=DN.构造全等三角形解决问题即可.(3)如图2中,作FK⊥AB于K,交CD于J.分别求出NJ,JM即可解决问题.此题属于四边形综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定和性质,正方形的性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.13.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图1,若∠ACD=60゜,则∠AFB=________;(2)如图2,若∠ACD=α,则∠AFB=_____________(用含α的式子表示);(3)将图2中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),如图3.试探究∠AFB与α的数量关系,并予以证明.【答案】解:(1)120°;(2)180°−α;(3)∠AFB=180°−α,证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中{AC=DC∠ACE=∠DCB CE=CB,∴△ACE≌△DCB,∴∠AEC=∠DBC,∴∠AFB=∠AEC+∠CEB+∠EBD=∠DBC+∠CEB+∠EBC=∠CEB+∠EBC=180°−∠ECB=180°−α,即∠AFB=180°−α.【解析】本题考查了全等三角形的性质和判定,三角形外角性质,三角形的内角和定理(1)求出∠ACE=∠DCB,证△ACE≌△DCB,推出∠CAE=∠CDB,求出∠AFB=∠CDA+∠DAC,根据三角形内角和定理求出即可;(2)求出∠ACE=∠DCB,证△ACE≌△DCB,推出∠CAE=∠CDB,求出∠AFB=∠CDA+∠DAC,根据三角形内角和定理求出即可;(3)求出∠ACE=∠DCB,证△ACE≌△DCB,推出∠CAE=∠CDB,求出∠AFB=∠CEB+∠CBE,根据三角形内角和定理求出即可.【解答】解:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中{AC=DC∠ACE=∠DCB CE=CB∴△ACE≌△DCB,∴∠CAE=∠CDB,∴∠AFB=∠CDB+∠CDA+∠DAE=∠CDA+∠DAE+∠BAE=∠CDA+∠DAC=180°−60°=120°,故答案为:120°;(2)解:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中{AC=DC∠ACE=∠DCB CE=CB∴△ACE≌△DCB,∴∠CAE=∠CDB,∴∠AFB=∠CDB+∠CDA+∠DAE=∠CDA+∠DAE+∠BAE=180°−∠ACD=180°−α,故答案为:180°−α;(3)见答案.14.(1)问题发现:如图1,△ABC与△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,则线段AE、BD的数量关系为_______,AE、BD所在直线的位置关系为________;(2)深入探究:在(1)的条件下,若点A,E,D在同一直线上,CM为△DCE中DE边上的高,请判断∠ADB的度数及线段CM,AD,BD之间的数量关系,并说明理由.【答案】解:(1)AE=BD,AE⊥BD;(2)结论:AD=2CM+BD,理由:如图2中,∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,∠BDC=∠AEC=135°.∴∠ADB=∠BDC−∠CDE=135°−45°=90°;在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DE=2CM.∴AD=DE+AE=2CM+BD.【解析】【分析】本题属于三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.(1)结论:AE=BD,AE⊥BD.如图1中,延长AE交BD于点H,AH交BC于点O.只要证明△ACE≌△BCD(SAS),即可解决问题;(2)结论:AD=2CM+BD,只要证明△ACE≌△BCD(SAS),即可解决问题.【解答】解:(1)结论:AE=BD,AE⊥BD.理由:如图1中,延长AE交BD于点H,AH交BC于点O.∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,∵∠CAE+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠CBD=90°∴∠AHB=90°,∴AE⊥BD.故答案为AE=BD,AE⊥BD.(2)见答案.15.如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC,D在线段BC上,E是线段AD上一点.现以CE为直角边,C为直角顶点,在CE的下方作等腰直角△ECF,连接BF.(1)如图1,求证:∠CAE=∠CBF;(2)当A、E、F三点共线时,取AF的中点G,连接CG,求证:AE2+EF2=4CG2;(3)如图3,若AC=BC=3√3,∠BAD=15°,连接DF,当E运动到使得∠ACE=30°时,求△DEF的面积.【答案】(1)证明:∵△ABC,△ECF都是等腰直角三角形,∴CA=CB,CE=CF,∠ACB=∠ECF=90°,∴∠ACE=∠BCF,∴△ACE≌△BCF(SAS),∴∠CAE=∠CBF;(2)解:延长AC至点H,使CH=AC,连接HF,BE.由(1)得:△ACE≌△BCF,∴AE=BF,且∠CAD=∠DBF,∵∠ADB=∠CAD+∠ACD=∠DBF+∠DFB,∴∠DFB=∠ACD=90°,∴BF2+EF2=BE2,易证△CEB≌△CFH,∴BE=HF=2CG,∴BF2+EF2=BE2=4CG2;(3)解:过点F作FH⊥BC于H,如图3所示:∵△ABC是等腰直角三角形,∠ACB=90°,AC=BC,∴∠BAC=∠ABC=45°,∵∠BAD=15°,∴∠CAE=45°−15°=30°,∴∠ACE=∠CAE=30°,∴AE=CE=CF,同(1)得:△ACE≌△BCF(SAS),∴BF=AE,∠ACE=∠BCF=30°,∴CF=BF,∴∠BCF=∠CBF=30°,∵FC=FB,FH⊥BC,∴CH=BH=12BC=3√32,FH=√33CH=32,CF=BF=2FH=3,∵∠CED=∠CAE+∠ACE=60°,∠ECD=90°−30°=60°,∴△ECD是等边三角形,∴EC=CF=CD=3,∴S△DEF=S△ECD+S△CDF−S△ECF=√34×32+12×3×32−12×3×3=9√3−94.【解析】(1)证明△ACE≌△BCF(SAS),即可解决问题;(2)延长AC至点H,使CH=AC,连接HF,BE,由(1)得△ACE≌△BCF,进而得到BF2+ EF2=BE2,易证△CEB≌△CFH,即可解决问题;(3)过点F作FH⊥BC于H,如图3所示,同(1)得△ACE≌△BCF,再证明△BCF是底角为30°的等腰三角形,再求出CH,FB,CF的长,然后根据S△DEF=S△ECD+S△CDF−S△ECF 计算即可.本题属于三角形综合题,考查了等腰直角三角形的性质,含30°角的直角三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.16.平面直角坐标系中,A(a,0),B(b,b),C(0,c),且满足:√a−4+(2b−a−c)2+|b−c|=0,E、D分别为x轴和y轴上动点,满足∠DBE=45°.(1)求A、B、C三点坐标;(2)如图1,若D为线段OC中点,求E点坐标;(3)当E,D在x轴和y轴上运动时,试探究CD、DE和AE之间的关系.【答案】解:(1)∵√a−4+(2b−a−c)2+|b−c|=0,∴a=4,b=c,2b−a−c=0,∴b=4,c=4,∴点A(4,0),点B(4,4),点C(0,4);(2)如图1,将△BCD绕点B逆时针旋转90°得到△BAH,∵点A(4,0),点B(4,4),点C(0,4),∴OA=OC=BC=AB=4,∵D为线段OC中点,∴CD=DO=2,∵将△BCD绕点B逆时针旋转90°得到△BAH,∴△BCD≌△BAH,∴BD=BH,∠CBD=∠HBA,CD=AH=2,∵∠DBE=45°,∴∠CBD+∠EBA=45°,∴∠EBA+∠ABH=45°=∠HBE=∠DBE,且BD=BH,BE=BE,∴△DBE≌△HBE(SAS)∴DE=EH,∵OH=OA+AH=4+2=6,∴DE=EH=6−OE,∵DE2=OD2+OE2,∴(6−OE)2=4+OE2,∴OE=8,3,0);∴点E坐标为(83(3)如图1,若点E在x轴正半轴,点D在y轴正半轴上,由(2)可知:DE=EH,AH=CD,∴DE=AE+AH=AE+CD,如图2,点E在x轴负半轴,点D在y轴正半轴,将△BCD绕点B逆时针旋转90°得到△BAH,∴△BCD≌△BAH,∠DBH=90°,∴BD=BH,∠CBD=∠HBA,CD=AH,∵∠DBE=45°,∴∠DBE=45°=∠HBE,且BD=BH,BE=BE,∴△DBE≌△HBE(SAS)∴DE=EH,∴AE=AH+EH=CD+DE;如图3,点E在x轴正半轴,点D在y轴负半轴,将△BCD绕点B逆时针旋转90°得到△BAH,∴△BCD≌△BAH,∠DBH=90°,∴BD=BH,∠CBD=∠HBA,CD=AH,∵∠DBE=45°,∴∠DBE=45°=∠HBE,且BD=BH,BE=BE,∴△DBE≌△HBE(SAS)∴DE=EH,∴CD=AH=AE+EH=AE+DE.【解析】(1)由非负性可求a,b,c的值,即可求解;(2)将△BCD绕点B逆时针旋转90°得到△BAH,可得BD=BH,∠CBD=∠HBA,CD= AH=2,由“SAS”可证△DBE≌△HBE,可得DE=EH,由勾股定理可求OE的长,即可求E点坐标;(3)分三种情况讨论,由旋转的性质,全等三角形的性质可求解.本题是四边形综合题,考查了非负性,正方形的性质,旋转的性质,全等三角形的判定和性质,利用分类讨论思想解决问题是本题的关键.17.如图,在锐角三角形AOB中,分别以OA、OB为腰在△AOB外作等腰直角三角形OAE和等腰直角三角形OBD.(1)如图1,连接BE、AD,求证:BE=AD.(2)如图2,以O为原点、AB边上的高OC所在的直线为y轴.建立平面直角坐标系,连接ED与y轴交于点F.①若A点坐标为(n,m),请用n、m表示;E点的坐标(________,________)及D点的横坐标为________.②△AOB的面积S△AOB与△EOD的面积S△EOD有什么数量关系?请写出你的结果,并给出证明.【答案】解:(1)∵△OAE、△OBD均为等腰直角三角形,∴OD=OB,OA=OE,∠DOB=∠AOE=90°.∴∠EOA+∠AOB=∠BOD+∠AOB,即∠EOB=∠AOD.在Rt△EOB和Rt△AOD中,∴Rt△EOB≌Rt△AOD.∴BE=AD.(2)①m;−n;−m.②S△AOB=S△EOD,证明如下:如图所示:过点B作BN⊥OA,垂足为N,过点D作DM⊥OE,垂足为M.∵∠EOD+∠DOM=180°,∠EOD+∠NOB=180°,∴∠DOM=∠NOB.在△OBN和△ODM中,∴△OBN≌△ODM.∴MD=BN.又∵AO=OE,∴12AO⋅BN=12OE⋅DM,即S△AOB=S△EOD.【解析】【分析】本题主要考查三角形全等的性质与判定,等腰直角三角形的性质与判定,点的坐标的确定等知识的综合运用.(1)依据等腰直角三角形的性质可得到OD=OB,OA=OE,∠DOB=∠AOE=90°,然后依据等式的性质可证明∠EOB=∠AOD,接下来,依据SAS可证明Rt△EOB≌Rt△AOD,最后,依据全等三角形的性质可得到BE=AD.(2)①过点E作EG⊥y轴,垂足为G,过点D作DH⊥x轴,垂足为H.先证明∠OEG=∠AOC,然后再证明△OEG≌△AOC,依据全等三角形的性质可得到OG=AC,EG=OC,从而可得到点E的坐标,接下来再证明△ODH≌△OBC.从而可得到OH=OC,故此可得到点D的横坐标;②过点B作BN⊥OA,垂足为N,过点D作DM⊥OE,垂足为M,先证明△OBN≌△ODM,从而可得到MD=BN,最后,依据三角形的面积公式求解即可.【解答】(1)见答案;(2)①如图所示:过点E作EG⊥y轴,垂足为G,过点D作DH⊥x轴,垂足为H.∵∠EOA=90°,∴∠EOG+∠AOC=90°.又∵∠EOG+∠OEG=90°,∴∠OEG=∠AOC.在△OEG和△AOC中,∴△OEG≌△AOC.∴OG=AC,EG=OC.∵A(n,m)∴E(m,−n).∵∠DOH+∠HOB=90°,∠HOB+∠BOC=90°,∴∠DOH=∠BOC.在△ODH和△OBC中,∴△ODH≌△OBC.∴OH=OC.∴点D的横坐标为−m.故答案为:m;−n;−m;②见答案.18.已知,△ABC是等边三角形,D是直线BC上一点,以D为顶点做∠ADE=60°.DE交过C且平行于AB的直线于E,求证:AD=DE;当D为BC的中点时,(如图1)小明同学很快就证明了结论:他的做法是:取AB的中点F,连结DF,然后证明△AFD≌△DCE.从而得到AD=DE,我们继续来研究:(1)如图2、当D是BC上的任意一点时,求证:AD=DE(2)如图3、当D在BC的延长线上时,求证:AD=DE(3)当D在CB的延长线上时,请利用图4画出图形,并说明上面的结论是否成立(不必证明).【答案】(1)证明:在AB上截取AF=DC,连接FD,如图2所示:∵△ABC是等边三角形,∴AB=BC,∠B=60°,又∵AF=DC,∴BF=BD,∴△BDF是等边三角形,∴∠BFD=60°,∴∠AFD=120°,又∵AB//CE,∴∠DCE=120°=∠AFD,而∠EDC+∠ADE=∠ADC=∠FAD+∠B∠ADE=∠B=60°,∴∠FAD=∠CDE,在△AFD和△DCE中{∠FAD=∠CDE AF=CD∠AFD=∠DCE,∴△AFD≌△DCE(ASA),∴AD=DE;(2)证明:在BA的延长线上截取AF=DC,连接FD,如图3所示:∵△ABC是等边三角形,∴AB=BC,∠B=60°,又∵AF=DC,∴BF=BD,∴△BDF是等边三角形,∴∠F=60°,又∵AB//CE,∴∠DCE=60°=∠F,而∠FAD=∠B+∠ADB,∠CDE=∠ADE+∠ADB,又∵∠ADE=∠B=60°,∴∠FAD=∠CDE,在△AFD和△DCE中,{∠FAD=∠CDEAF=CD∠F=∠DCE,∴△AFD≌△DCE(ASA),∴AD=DE;(3)解:AD=DE仍成立.理由如下:在AB的延长线上截取AF=DC,连接FD,如图4所示:∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴∠FAD+∠ADB=60°,又∵AF=DC,∴BF=BD,∵∠DBF=∠ABC=60°,∴△BDF是等边三角形,∴∠AFD=60°,又∵AB//CE,∴∠DCE=∠ABC=60°,∴∠AFD=∠DCE,∵∠ADE=∠CDE+∠ADB=60°,∴∠FAD=∠CDE,在△AFD和△DCE中,{∠FAD=∠CDE AF=CD∠AFD=∠DCE,∴△AFD≌△DCE(ASA),∴AD=DE.【解析】(1)在AB上截取AF=DC,连接FD,证明△BDF是等边三角形,得出∠BFD=60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论;(2)在BA的延长线上截取AF=DC,连接FD,证明△BDF是等边三角形得出∠F=60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论;(3)在AB的延长线上截取AF=DC,连接FD,证明△BDF是等边三角形,得出∠BFD= 60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论.本题是三角形综合题目,考查了全等三角形的判定与性质、等边三角形的判定与性质、平行线的性质、三角形的外角性质等知识;本题综合性强,有一定难度,通过作辅助线证明三角形全等是解题的关键.19.如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD的右侧作等腰直角三角形ADE,∠DAE=90°,AD=AE.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时,如图1,线段CE、BD的位置关系为______,数量关系为______;②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由;(2)如图3,如果AB≠AC∠BAC≠90°,点D在线段BC上运动.探究:当∠ACB多少度时,CE ⊥BC ?小明通过(1)的探究,猜想∠ACB =45°时,CE ⊥BC.他想过点A 做AC 的垂线,与CB 的延长线相交,构建图2的基本图案,寻找解决此问题的方法.小明的想法对吗?如不对写出你的结论;如对按此方法解决问题并写出理由.【答案】垂直 相等【解析】解:(1)CE 与BD 位置关系是CE ⊥BD ,数量关系是CE =BD .理由:如图1,∵∠BAD =90°−∠DAC ,∠CAE =90°−∠DAC ,∴∠BAD =∠CAE .又BA =CA ,AD =AE ,∴△ABD≌△ACE (SAS)∴∠ACE =∠B =45°且CE =BD .∵∠ACB =∠B =45°,∴∠ECB =45°+45°=90°,即CE ⊥BD .故答案为:垂直,相等;②都成立∵∠BAC =∠DAE =90°,∴∠BAC +∠DAC =∠DAE +∠DAC ,∴∠BAD =∠CAE在△DAB 与△EAC 中,{AD =AE ∠BAD =∠CAE AB =AC∴△DAB≌△EAC(SAS),∴CE =BD ,∠B =∠ACE ,∴∠ACB +∠ACE =90°,即CE ⊥BD(2)小明的想法对的当∠ACB =45°时,CE ⊥BD理由:过点A 作AG ⊥AC 交CB 的延长线于点G ,则∠GAC =90°,∵∠ACB=45°,∠AGC=90°−∠ACB,∴∠AGC=90°−45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,在△GAD与△CAE中,{AC=AG∠DAG=∠EAC AD=AE∴△GAD≌△CAE(SAS),∴∠ACE=∠AGC=45°,∠BCE=∠ACB+∠ACE=45°+45°=90°,即CE⊥BC(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;②先根据“SAS”证明△ABD≌△ACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;(2)先过点A作AG⊥AC交BC于点G,画出符合要求的图形,再结合图形判定△GAD≌△CAE,得出对应角相等,即可得出结论.本题为三角形综合题,主要考查了全等三角形的判定与性质及等腰直角三角形的性质,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等,对应角相等进行求解.20.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B、C作过点A的直线的垂线BD、CE,垂足为D、E.求证:(1)△ABD≌△CAE;(2)DE=BD+CE.【答案】证明:(1)∵BD⊥DE,CE⊥DE,∴∠D=∠E=90°,∵∠BAC=90°,∴∠DAB+∠DBA=∠DAB+∠EAC,∴∠DBA=∠EAC;在△ABD与△CAE中,∵{∠DBA=∠EAC ∠BDA=∠AEC AB=AC,∴△ABD≌△CAE(AAS),(2)由(1)得:△ABD≌△CAE,∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE.【解析】证明∠DBA=∠EAC,这是解决该题的关键性结论;证明△ABD≌△CAE,得到BD=AE,AD=CE,即可解决问题.该题主要考查了全等三角形的判定及其性质的应用问题;准确找出命题中隐含的等量关系,是证明全等三角形的关键.21.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线l上,且∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE= BD+CE是否成立?如成立;请你给出证明;若不成立,请说明理由.【答案】证明:(1)∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中{∠ABD=∠CAE ∠BDA=∠CEA AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD,∵在△ADB和△CEA中{∠ABD=∠CAE ∠BDA=∠CEA AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.【解析】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;得出∠CAE=∠ABD是解题关键.(1)根据BD⊥直线l,CE⊥直线l得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD= CE,于是DE=AE+AD=BD+CE;(2)利用∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°−α,得出∠CAE=∠ABD,进而得出△ADB≌△CEA即可得出答案.22.如图①,已知CA=CB,CD=CE,∠ACB=∠DCE=ɑ,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含ɑ的式子表示∠AMB的度数(3)当ɑ=90°时,AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图②,判断△CPQ的形状,并加以证明.【答案】解:(1)如图①,∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中,{CA=CB;∠ACD=∠BCECD=CE,∴△ACD≌△BCE(SAS),∴BE=AD;(2)如图①,∵△ACD≌△BCE,∴∠CAD=∠CBE,∵△ABC中,∠BAC+∠ABC=180°−α,∴∠BAM+∠ABM=180°−α,∴△ABM中,∠AMB=180°−(180°−α)=α;(3)△CPQ为等腰直角三角形.证明:如图②,由(1)可得,BE=AD,∵AD,BE的中点分别为点P、Q,∴AP=BQ,∵△ACD≌△BCE,∴∠CAP=∠CBQ,在△ACP和△BCQ中,{CA=CB∠CAP=∠CBQ AP=BQ,∴△ACP≌△BCQ(SAS),∴CP=CQ,且∠ACP=∠BCQ,又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ为等腰直角三角形.【解析】本题属于三角形综合题,主要考查了全等三角形的判定与性质,等腰直角三角形的判定以及三角形内角和定理的综合应用.等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.解题时注意掌握全等三角形的对应边相等,对应角相等的运用.(1)由CA=CB,CD=CE,∠ACD=∠BCE,利用SAS即可判定△ACD≌△BCE;(2)根据△ACD≌△BCE,得出∠CAD=∠CBE,即可得到∠AMB=∠ACB=α;(3)先根据SAS判定△ACP≌△BCQ,再根据全等三角形的性质,得出CP=CQ,∠ACP=∠BCQ,最后根据∠ACB=90°即可得到∠PCQ=90°,进而得到△PCQ为等腰直角三角形.23.据图回答问题(1)如图①,已知:△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)拓展:如图②,将(1)中的条件改为:△ABC中,AB=AC,D、A、E三点都在直线m上,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE= BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.【答案】(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,{∠ABD=∠CAE ∠BDA=∠CEA AB=AC,。

全等三角形提高32题(含答案)

全等三角形提高32题(含答案)

全等三角形提高32题(含答案)(一)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC4. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C5. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE6. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

求证:BC=AB+DC 。

C D B AB C D EF 21 AD B CAB ACDF2E7. 已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C8.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .9.如图,OM 平分∠POQ ,MA ⊥OP ,MB⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA10.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP于D .求证:AD +BC =AB .11.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B12.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由. D C B A F E PED C B AD C B A13.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,(1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):14.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE . 15、如图:AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。

全等三角形提高证明题含辅助线(六种类型)(解析版)--初中数学专项训练

全等三角形提高证明题含辅助线(六种类型)(解析版)--初中数学专项训练

拓展全等三角形提高证明题含辅助线(六种类型)【类型一】利用角平分线构造全等1如图,在△ABC 中,AD 是角平分线,E ,F 分别为AC ,AB 上的点,且∠AED +∠AFD =180°.(1)求证:∠AFD =∠CED ;(2)求证:DE =DF.【答案】(1)见解析;(2)见解析【分析】(1)根据同角的补角相等即可得解;(2)过D 作DM ⊥AB 于M ,DN ⊥AC 于N ,根据角平分线性质求出DM =DN ,由(1)知∠MFD =∠DEN ,证出△FMD ≌△END 即可.【详解】(1)证明:∵∠AED +∠AFD =180°,∠AED +∠CED =180°,∴∠AFD =∠CED ;(2)证明:过D 作DM ⊥AB 于M ,DN ⊥AC 于N ,∵AD 平分∠BAC ,∴DM =DN ,∠FMD =∠END =90°,∵∠AED +∠AFD =180°,∠AED +∠DEN =180°,∴∠MFD =∠DEN ,在△FMD 和△END 中,∠MFD =∠DEN∠FMD =∠END DM =DN,∴△FMD ≌△END (AAS ),∴DE =DF .【点睛】本题考查了全等三角形的性质和判定,角平分线性质的应用,解题关键是利用AAS 推出△FMD ≌△END .2如图,在ΔABC 中,∠C =90°,AD 是∠BAC 的角平分线交BC 于D ,过D 作DE ⊥BA 于点E ,点F 在AC 上,且BD =DF.(1)求证:AC =AE ;(2)求证:∠BAC +∠FDB =180°;(3)若AB =9.5,AF =1.5,求线段BE 的长,【答案】(1)证明见解析;(2)证明见解析;(3)BE 的长为4.【分析】(1)根据已知条件,利用AAS 证明△ACD ≌△AED 即可;(2)设∠1=∠2=α,在AB 上截取AM =AF ,连接MD ,证明△FAD ≌△MAD ,进而证明Rt ΔMDE ≌Rt ΔBDE ,再证明ΔCFD ≌ΔEBD ,根据∠FDB +∠BAC 即可求证;(3)由(2)可得EB =EM ,AF =AM ,根据BE =AB -AM -ME 即可求得BE 的长.【详解】证明:(1)∵AD 平分∠BAC ,∴∠1=∠2,∵DE ⊥BA ,∴∠DEA =∠DEB =90°,∵∠C =90°,∴∠C =∠DEA =90°,在ΔACD 和ΔAED 中,∠DCA =∠DEA∠1=∠2AD =AD,∴ΔACD ≌ΔAED (AAS ),∴AC =AE ,(2)设∠1=∠2=α,∵∠C =∠DEA =90°,在ΔADC 中,∠ADC =90°-α,在ΔADE 中,∠ADE =90°-α,∵∠FDB =∠FCD +∠CFD =90°+∠CFD ,在AB 上截取AM =AF ,连接MD ,在ΔFAD 和ΔMAD 中,FA =MA∠1=∠2AD =AD∴ΔFAD ≌ΔMAD (SAS ),∴FD =MD ,∠5=∠6,∵BD =DF ,∴BD =MD ,在Rt ΔMDE 和Rt ΔBDE 中,MD =BDDE =DE∴Rt ΔMDE ≌Rt ΔBDE (HL ),∴∠3=∠4,设∠5=∠6=β,∵∠1=∠2=α,∴∠1+∠5=∠2+∠6=α+β,在ΔFAD 中,∠1+∠5=∠DFC在ΔAMD 中,∠2+∠6=∠3,∴∠DFC =∠3,∴∠DFC =∠4,在ΔCFD 和ΔEBD 中,∠DCF =∠DEB ∠CFD =∠EBD FD =BD,∴ΔCFD ≌ΔEBD (AAS ),∴∠CFD =∠4,∵∠C =90°,在ΔABC 中,∠4=90°-2α,∴∠CFD =90°-2α,∴∠FDB =90°+90°-2α=180°-2α,∵∠BAC =∠1+∠2=2α,∴∠FDB +∠BAC =180°-2α+2α=180°,(3)∵AF =AM ,且AF =1.5,∴AM =1.5,∵AB =9.5,∴MB =AB -AM =9.5-1.5=8,∵MB =BE ,且ME +BE =BM ,∴BE =12BM =4【点睛】本题考查了三角形全等的性质与判定,角平分线的定义,掌握以上知识是解题的关键.3如图,AD 是△ABC 的角平分线,H ,G 分别在AC ,AB 上,且HD =BD .(1)求证:∠B 与∠AHD 互补;(2)若∠B +2∠DGA =180°,请探究线段AG 与线段AH 、HD 之间满足的等量关系,并加以证明.【答案】(1)见解析;(2)AG =AH +HD ,证明见解析【分析】(1)在AB 上取一点M ,使得AM =AH ,连接DM ,则利用SAS 可得出ΔAHD ≌ΔAMD ,从而得出HD =MD =DB ,即有∠DMB =∠B ,通过这样的转化可证明∠B 与∠AHD 互补.(2)由(1)的结论中得出的∠AHD =∠AMD ,结合三角形的外角可得∠DGM =∠GDM ,可将HD 转化为MG ,从而在线段AG 上可解决问题.【详解】证明:(1)在AB 上取一点M ,使得AM =AH ,连接DM∵AH =AM∠CAD =∠BADAD =AD∴ΔAHD ≌ΔAMD ∴HD =MD ,∠AHD =∠AMD∵HD =DB∴DB =MD∴∠DMB =∠B∵∠AMD +∠DMB =180°∴∠AHD +∠B =180°即∠B 与∠AHD 互补.(2)由(1)∠AHD=∠AMD,HD=MD,∠AHD+∠B=180°,∵∠B+2∠DGA=180°,∠AHD=2∠DGA∴∠AMD=2∠DGM又∵∠AMD=∠DGM+∠GDM∴2∠DGM=∠DGM+∠GDM即∠DGM=∠GDM∴MD=MG∴HD=MG∵AG=AM+MG∴AG=AH+HD.【点睛】本题考查角平分线的性质,应用角平分线构造全等是常用的构造全等的方法,遇到角平分线常有“翻折构造全等”“作角边的垂线段”两种辅助线方法.4已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.求证:(1)AD=AE=EC.(2)BA+BC=2BF.【答案】证明详见解析【详解】分析:(1)根据角平分线的性质,得到∠ABD=∠CBD,然后根据SAS证得△ABD≌△EBC,然后根据全等三角形的性质和三角形的外角得到等腰△ACE,由此可证;(2)过点E作EG⊥BC于点G,根据三角形全等的判定“HL”证得Rt△BEG≌Rt△BEF和Rt△CEG≌Rt△AFE,然后根据全等三角形的对应边相等,等量代换求解.详解:证明:(1)∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,BD=BC∠ABD=∠CBD BE=BA,∴△ABD≌△EBC(SAS),∴∠BCE=∠BDA,∵∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=EC=AE.(2)过点E作EG⊥BC于点G,∵E是BD上的点,EF⊥AB,EG⊥BC,∴EF=EG,∵在Rt△BEG和Rt△BEF中,BE=BE EF=EG,∴Rt△BEG≌Rt△BEF(HL),∴BG=BF,∵在Rt△CEG和Rt△AFE中,EF=EG AE=CE,Rt△CEG≌Rt△AFE,∴AF=CG,∴BA+BC=BF+FA+BG-CG,=BF+BG=∠BF,∴BA+BC=2BF.点睛:此题考查了角平分线定理,全等三角形的判定与性质,以及等腰三角形的性质,利用了转化及等量代换的数学思想,熟练掌握判定与性质是解本题的关键.【类型二】倍长中线5如图,AB=CD,E为BC的中点,∠BAC=∠BCA,求证:AD=2AE.【答案】见解析.【分析】延长AE至点F,使得EF=AE,连接BF,易证△AEC≌△FEB(SAS),得到BF=AC,∠FBE=∠ACE=∠BAC,可得∠ABF=∠DCA,然后通过SAS证明△ABF≌△△DCA即可.【详解】证明:延长AE至点F,使得EF=AE,连接BF,∵∠BEF=∠CEA,BE=CE,∴△AEC≌△FEB(SAS),∴BF=AC,∠FBE=∠ACE=∠BAC,∴∠ABF=∠FBE+∠ABE=∠BAC+∠ABC=∠DCA,在△ABF和△DCA中,AB=CD∠ABF=∠DCA BF=AC,∴△ABF≌△△DCA(SAS),∴AD=FA=2AE.【点睛】本题主要考查三角形全等的判定和性质,正确作出辅助线是解题关键,一般的中线辅助线都是用的倍长中线.6如图,已知ΔABC中,点M是BC边长的中点,过M作∠BAC的角平分线AD的平行线交AB于E,交CA的延长线于F,求证:(1)AE=AF.(2)BE=CF.【答案】见详解.【分析】(1)要证AE=AF,利用等角对等边只需证出∠AFE=∠AEF,利用平行不难发现这两个角和角平分线分成的两角是内错角和同位角;(2)利用倍长中线法构造出全等三角形即可.【详解】证明:(1)∵MF∥DA∴∠AFE=∠CAD,∠AEF=∠DAE又∵AD平分∠CAB∴∠CAD=∠DAE∴∠AFE=∠AEF∴AE=AF(2)将FM延长至N使FM=MN,连接BN.∵M 为CB 中点∴CM =MB在△FMC 和△NMB 中CM =MB∠FMC =∠NMBFM =MN∴△FMC ≌△NMB (SAS )∴CF =BN ,∠F =∠N又∵∠AFE =∠AEF ,∠AEF =∠BEN∴∠N =∠BEN∴BE =BN∴BE =CF【点睛】此题考查的(1)平行线的性质和等角对等边;(2)倍长中线法构造全等三角形.7在△ABC 中,∠ABC =45°,AM ⊥MB ,垂足为M ,点C 是BM 延长线上一点,连接AC .(1)如图1,点D 在线段AM 上,且DM =CM .求证:△BDM ≌△ACM ;(2)如图2,在(1)的条件下,点E 是△ABC 外一点,且满足EC =AC ,连接ED 并延长交BC 于点F ,且F 为线段BC 的中点,求证:∠BDF =∠CEF.【答案】(1)见解析;(2)见解析.【分析】(1)根据已知条件,利用(SAS )即可证明三角形全等;(2)延长EF 至点G ,使FG =EF ,由上题中△BDM ≌△ACM ,得出AC =BD ,再证△BFG ≌△CFE ,可得BG =CE ,∠G =∠CEF ,从而得BD =CE =BG ,即可得∠BDF =∠G =∠CEF .【详解】解:(1)如图,∵∠ABC =45°,AM ⊥MB∴BM =AM在△BMD 和△AMC 中∵DM =CM ∠BDM =∠AMC BM =AM∴△BDM ≌△ACM (SAS ).(2)如图,延长EF 至点G ,使FG =EF ,连接BG∵△BDM ≌△ACM∴BD =AC又∵CE =AC∴BD =CE在△BFG 和△CFE 中∵BF =FC ∠BFG =∠EFC FG =FE∴△BFG ≌△CFE (SAS )∴BG =CE ,∠G =∠CEF∴BD =CE =BG∴∠BDF =∠G =∠CEF .【点睛】本题主要考查全等三角形的判定与性质、等腰直角三角形的性质等知识点,熟练掌握全等三角形的判定和性质是解题的关键.8规定:有两组边相等,且它们所夹的角互补的两个三角形叫兄弟三角形.如图,OA =OB ,OC =OD ,∠AOB =∠COD =90°,回答下列问题:(1)求证:△OAC 和△OBD 是兄弟三角形.(2)取BD 的中点P ,连接OP ,请证明AC =2OP .【答案】(1)证明见解析(2)证明见解析【分析】(1)根据OA =OB ,OC =OD ,∠AOC +∠BOD =180°即可证明;(2)延长OP 至E ,使PE =OP ,先证△BPE ≌△DPO ,推出BE =OD ,∠E =∠DOP ,进而推出BE ∥OD ,再证△EBO ≌△COA ,即可推出OE =AC ,由此可证AC =2OP .【详解】(1)证明:∵∠AOB =∠COD =90°,∴∠AOC +∠BOD =360°-∠AOB -∠COD =360°-90°-90°=180°,又∵AO =OB ,OC =OD ,∴△OAC 和△OBD 是兄弟三角形.(2)证明:延长OP 至E ,使PE =OP,∵P 为BD 的中点,∴BP =PD ,∵在△BPE 和△DPO 中,PE =PO∠BPE =∠DPO BP =DP,∴△BPE ≌△DPO SAS ,∴BE =OD ,∠E =∠DOP ,∴BE ∥OD ,∴∠EBO +∠BOD =180°,又∵∠BOD +∠AOC =180°,∴∠EBO =∠AOC ,∵BE =OD ,OD =OC ,∴BE =OC ,在△EBO 和△COA 中,OB =AO∠EBO =∠AOCBE =OC∴△EBO ≌△COA SAS ,∴OE =AC ,又∵OE =2OP ,∴AC =2OP .【点睛】本题考查全等三角形的判定与性质、平行线的判定与性质,解题的关键是正确作出辅助线,构造全等三角形.【类型三】截长补短9如图,在△ABC 中,AB =AC ,∠A =108°,BD 平分∠ABC 交AC 于D ,试说明:BC =AB +CD.【答案】见解析【分析】在线段BC 上截取BE =BA ,连接DE .则只需证明CD =CE 即可.结合角度证明∠CDE =∠CED .【详解】解:证明:在线段BC 上截取BE =BA ,连接DE .∵BD 平分∠ABC ,∴∠ABD =∠EBD =12∠ABC .在△ABD 和△EBD 中,BE =BA∠ABD =∠EBD BD =BD,∴△ABD ≌△EBD .(SAS )∴∠BED =∠A =108°,∠ADB =∠EDB .又∵AB=AC,∠A=108°,∠ACB=∠ABC=12×(180°-108°)=36°,∴∠ABD=∠EBD=18°.∴∠ADB=∠EDB=180°-18°-108°=54°.∴∠CDE=180°-∠ADB-∠EDB=180°-54°-54°=72°.∴∠DEC=180°-∠DEB=180°-108°=72°.∴∠CDE=∠DEC.∴CD=CE.∴BC=BE+EC=AB+CD.【点睛】此题考查全等三角形的判定和性质及等腰三角形的判定,综合性较强.10如图,在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,求证:AE+CD=AC.【答案】证明见解析【分析】根据三角形内角和定理和角平分线的定义,得到∠AOC=120°,∠AOE=∠COD=60°,在AC上截取AF=AE,连接OF,分别证明△AOE≌△AOF SAS,△COD≌△COF ASA,得到CD=CF,即可证明结论.【详解】证明:∵∠B=60°,∴∠BAC+∠ACB=180°-∠B=120°,∵AD、CE分别平分∠BAC、∠ACB,∴∠OAC=∠OAB=12∠BAC,∠OCA=∠OCB=12∠ACB,∴∠OAC+∠OCA=12∠BAC+12∠ACB=12∠BAC+∠ACB=60°,∴∠AOC=120°,∴∠AOE=∠COD=180°-∠AOC=60°,如图,在AC上截取AF=AE,连接OF,在△AOE和△AOF中,AE=AF∠OAE=∠OAF AO=AO,∴△AOE≌△AOF SAS,∴∠AOE=∠AOF=60°,∴∠COF=∠AOC-∠AOF=120°-60°=60°,∵∠COD=60°,∴∠COD=∠COF,在△COD和△COF中,∠OCD=∠OCF CO=CO∠COD=∠COF,∴△COD≌△COF ASA,∴CD=CF,∵AF=AE,∴AF+CF=AE+CD=AC.【点睛】本题考查了全等三角形的判定和性质,三角形内角和定理,角平分线的定义,做辅助线构造全等三角形是解题关键.11在△ABC中,∠ABC=60°,点D、E分别在AC、BC上,连接BD、DE和AE;并且有AB=BE,∠AED=∠C.(1)求∠CDE的度数;(2)求证:AD+DE=BD.【答案】(1)60°;(2)见解析【分析】(1)由AB=BE,∠ABC=60°,可得△ABE为等边三角形,由∠AEB=∠EAC+∠C,∠CDE=∠EAC+∠AED,∠AED=∠C,可证∠CDE=∠AEB=60°(2)延长DA至F,使AF=DE,连接FB,由∠BED=60°+∠AED,∠BAF=60°+∠C,且∠C=∠AED,可证△FBA≌△DBE(SAS)由DB=FB,可证△FBD为等边三角形,可得BD=FD,可推出结论,【详解】解:(1)∵AB=BE,∠ABC=60°,∴△ABE为等边三角形,∴∠BAE=∠AEB=60°,∵∠AEB=∠EAC+∠C,∠CDE=∠EAC+∠AED,∵∠AED=∠C,∴∠CDE=∠AEB=60°(2)如图,延长DA至F,使AF=DE,连接FB,由(1)得△ABE为等边三角形,∴∠AEB=∠ABE=60°,∵∠BED=∠AEB+∠AED=60°+∠AED,又∵∠BAF=∠ABE+∠C=60°+∠C,且∠C=∠AED,∴∠BED=∠BAF,在△FBA与△DBE中,AB=BE∠BAF=∠BED AF=DE∴△FBA≌△DBE(SAS)∴DB=FB,∠DBE=∠FBA∴∠DBE+∠ABD=∠FBA+∠ABD,∴∠ABE=∠FBD=60°又∵DB=FB,∴△FBD为等边三角形∴BD=FD,又∵FD=AF+AD,且AF=DE,∴FD=DE+AD=BD,【点睛】本题考查等边三角形的判定与性质,三角形全等判定与性质,线段和差,三角形外角性质,关键是引辅助线构造三角形全等证明等边三角形.12(1)如图1,射线OP平分∠MON,在射线OM,ON上分别截取线段OA,OB,使OA=OB,在射线OP上任取一点D,连接AD,BD.求证:AD=BD.(2)如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,求证:BC=AC+AD.(3)如图3,在四边形ABDE中,AB=9,DE=1,BD=6,C为BD边中点,若AC平分∠BAE,EC平分∠AED,∠ACE=120°,求AE的值.【答案】(1)见详解;(2)见详解;(3)AE=13【分析】(1)由题意易得∠AOD=∠BOD,然后易证△AOD≌△BOD,进而问题可求证;(2)在BC上截取CE=CA,连接DE,由题意易得∠ACD=∠ECD,∠B=30°,则有△ACD≌△ECD,然后可得∠A=∠CED=60°,则根据三角形外角的性质可得∠EDB=∠B=30°,然后可得DE=BE,进而问题可求证;(3)在AE上分别截取AF=AB,EG=ED,连接CF、CG,同理(2)可证△ABC≌△AFC,△CDE≌△CGE,则有∠ACB=∠ACF,∠DCE=∠GCE,然后可得∠ACF+∠GCE=60°,进而可得△CFG是等边三角形,最后问题可求解.【详解】证明:(1)∵射线OP平分∠MON,∴∠AOD=∠BOD,∵OD=OD,OA=OB,∴△AOD≌△BOD(SAS),∴AD=BD.(2)在BC上截取CE=CA,连接DE,如图所示:∵∠ACB=90°,∠A=60°,CD平分∠ACB,∴∠ACD=∠ECD,∠B=30°,∵CD=CD,∴△ACD≌△ECD(SAS),∴∠A=∠CED=60°,AD=DE,∵∠B+∠EDB=∠CED,∴∠EDB=∠B=30°,∴DE=BE,∴AD=BE,∵BC=CE+BE,∴BC=AC+AD.(3)在AE 上分别截取AF =AB =9,EG =ED =1,连接CF 、CG ,如图所示:同理(1)(2)可得:△ABC ≌△AFC ,△CDE ≌△CGE ,∴∠ACB =∠ACF ,∠DCE =∠GCE ,BC =CF ,CD =CG ,DE =GE =1,∵C 为BD 边中点,∴BC =CD =CF =CG =3,∵∠ACE =120°,∴∠ACB +∠DCE =60°,∴∠ACF +∠GCE =60°,∴∠FCG =60°,∴△CFG 是等边三角形,∴FG =CF =CG =3,∴AE =AF +FG +GE =9+3+1=13.【点睛】本题主要考查三角形全等的性质与判定、角平分线的定义、等腰三角形的性质与判定及等边三角形的性质与判定,解题的关键是构造辅助线证明三角形全等.【类型四】直接连接13如图,在Rt △ABC 中,AB =AC ,∠A =90°,点D 为BC 中点,过点D 作DM ⊥DN ,分别交BA ,AC 延长线于点M 、N ,求证:DM =DN.【答案】见解析【分析】连接AD ,可得∠ADM =∠CDN ,可证△AMD ≌△CND ,可得DM =DN .【详解】解:连接AD ,∵D 为BC 中点,∴AD =BD ,∠BAD =∠C ,∵∠ADM +∠MDC =90°,∠MDC +∠CDN =90°,∴∠ADM =∠CDN ,∵∠MAD =MAC +DAC =135°,∠NCD =180°-∠ACD =135°在ΔAMD 和ΔCND 中,∠ADM =∠CDNAD =CD ∠MAD =∠NCD,∴ΔAMD ≅ΔCND (ASA ),∴DM =DN .【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△AMD ≌△CND 是解题的关键.14△ABC 中,∠A =90°,AB =AC ,D 为BC 中点,E 、F 分别在AC 、AB 上,且DE ⊥DF ,试判断DE 、DF 的数量关系,并说明理由.【答案】DE =DF ,理由见解析【分析】连接AD ,则有AD =CD ,∠DAF =∠C =45°,且AD ⊥CD ,可得∠CDE +∠EDA =∠ADF +∠EDA =90°,所以∠CDE =∠ADF ,可证△CDE ≌△ADF ,可得结论.【详解】DE =DF ,理由如下:连接AD ,因为∠A =90°,AB =AC ,D 为BC 中点,∴CD =AD ,∠C =∠DAF =45°,AD ⊥CD ,∴∠CDE +∠EDA =∠ADF +∠EDA =90°,∴∠CDE =∠ADF ,在△CDE 和△ADF 中,∠C =∠DAFCD =AD ∠CDE =∠ADF,∴△CDE ≌△ADF (ASA ),∴DE =DF .【点睛】本题主要考查了三角形全等的判定和性质,正确掌握全等三角形的判定方法是解题的关键.15如图所示,在△ABC 中,D 为BC 的中点,DE ⊥BC ,交∠BAC 的平分线AE 于点E ,EF ⊥AB 于点F ,EG ⊥AC 交AC 延长线于点G .求证:BF =CG.【答案】见解析.【分析】连接EB 、EC ,利用已知条件证明Rt △BEF ≌Rt △CEG ,即可得到BF =CG .【详解】证明:连接BE 、EC ,∵ED ⊥BC ,D 为BC 中点,∴BE =EC ,∵EF ⊥AB ,EG ⊥AG ,且AE 平分∠FAG ,∴FE =EG,在Rt △BEF 和Rt △CEG 中,BE =CE EF =EG ,∴Rt △BEF ≌Rt △CEG (HL ),∴BF =CG .【点评】本题考查了全等三角形的判定:解题的关键是全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.16如图,在ΔABC 中,∠ABC =90°,AB =BC ,CD 平分∠ACB 交AB 于D 点,过A 作AE ⊥CD 交CD 延长线于E 点,交CB 延长线于F 点,取FC 中点G ,连接DG ,过C 作CH ⊥AC 交DG 延长线于H ,(1)求证:AF =CD ;(2)求证:AC =CH +2BD.【答案】(1)见解析;(2)见解析【分析】(1)根据垂直推出∠ABF =∠ABC =90°与∠FAB =∠BCD ,则可证明ΔABF ≌ΔCBD ,即可有AF =CD ;(2)连接FD 根据CE ⊥AF ,AB ⊥CF ,推出FD ⊥AC ,即可证明CH ⎳FD ,可有∠HCG =∠DFG ,然后证明ΔFGD ≌ΔCGH 推出CH =FD ,根据已知条件即可有AD =DF ,由(1)知FB =BD ,即可证明AC =CH +2BD .【详解】证:(1)∵∠ABC =90°,CE ⊥AF∴∠ABF =∠ABC =90°∴∠AFB +∠FAB =90°,∠EFC +∠BCD =90°∴∠FAB =∠BCD在ΔABF 与ΔCBD 中,∠ABF =∠CBDAB =CB∠FAB =∠DCB∴ΔABF ≌ΔCBD∴AF =CD (2)连接FD∵CE ⊥AF ,AB ⊥CF∴FD ⊥AC∵CH ⊥AC∴CH ⎳FD∴∠HCG =∠DFG∵G 是FC 中点∴FG =CG在ΔFGD 与ΔCGH 中,∠DFG =∠HCGFG =CG∠FGD =∠CGH∴ΔFGD ≌ΔCGH∴CH =FD ∵CE ⊥AF ,CE 平分∠FCA∴AC =CF∴AD =DF由(1)可知ΔABF ≌ΔCBD∴FB =BD∴CF =CB +BF =AB +BF =AD +DB +BF =CH +2DB即AC =CH +2BD【点睛】本题主要考查了三角形全等的性质与判定,角平分线的性质,在(1)中找出条件证明ΔABF ≌ΔCBD 是关键,在(2)中作出辅助线是解题的关键.【类型五】延长交于一点17如图,△ABC 中,CD 平分∠ACB ,过点A 作AD ⊥CD 于点D ,点E 是AB 的中点,连接DE ,若AC =20,BC =14,求DE的长.【答案】DE 的长为3.【分析】先添加辅助线,构造全等三角形,利用性质求出AD =DF ,最后用中位线定理即可求解.【详解】解:如图,延长AD ,CB 交于点F ,∵CD 平分∠ACB ,∴∠ACD =∠FCD ,∵AD ⊥CD ,∴∠ADC =∠FDC =90°,在△ACD 和△FCD 中,∠ACD =∠FCDCD =CD ∠ADC =∠FDC,∴△ACD ≌△FCD ASA ,∴AD =DF ,AC =CF =20,∴BF =CF -BC =20-14=6,∵点D 为AF 中点,点E 为AB 中点,∴DE 为△ABF 的中位线,∴DF =12BF =3,答:DE 的长为3.【点睛】此题考查了等腰三角形和全等三角形的判定和性质,三角形中位线定理,解题的关键是延长CB 交AD 延长线于F ,证明DE 是△ABF 的中位线.18已知,Rt△ABC 中,∠ACB =90°,AC =BC ,∠ABC 的角平分线交AC 于E ,AD ⊥BE 于D ,求证:AD =12BE .【答案】见解析【详解】试题分析:延长AD 和BC 交于F ,求出∠CBE =∠CAF ,AC =BC ,证△EBC ≌△FAC ,△ABD ≌△FBD ,推出BE =AF ,AD =DF ,即可得出答案.解:如图延长AD 和BC 交于F ,∵Rt △ABC 中,∠ACB =90°,∠BAC =45°,∴∠ABC =45°=∠BAC ,∴AC =BC ,∵∠ACB =90°,∴∠BCE =∠ACF =90°,∵BE 平分∠ABC ,∴∠ABD =∠EBC ,∵BD ⊥AD ,∴∠BCE =∠ADE =90°,∵∠BEC =∠AED ,∴根据三角形内角和定理得:∠DAE =∠CBE ,在△BCE 和△ACF 中,∠FAC =∠CBE AC =BC ∠ACF =∠BCE,∴△BCE ≌△ACF (SAS ),∴BE =AF ,在△ABD 和△FBD 中,∠ABD =∠FDN BD =BD ∠ADB =∠FDB,∴△ABD≌△FBD (ASA ),∴AD =DF ,即AF =2AD ,∴AD =12AF ,∴AD =12BE .考点:全等三角形的判定与性质.19如图,在Rt △ABC 中,∠ACB =90°,∠BAC 的角平分线AD 交BC 于D ,交∠ABC 的角平分线于E ,过点E 作EF ⊥AE ,交AC 于点F ,求证:AF +BD =AB.【答案】见解析【分析】延长EF ,BC 相交于点M ,分别证明△AEB ≌△MEB 和△AEF ≌△MED 即可得解.【详解】证明:延长EF ,BC 相交于点M ,∵∠ACB =90°,∴∠CAB +∠CBA =90°,∵AE 平分∠BAC ,BE 平分∠ABC ,∴∠EAB +∠EBA =45°,∴∠AEB =180°-45°=135°,∴∠DEB =180°-135°=45°,∵AE ⊥EF ,∴∠MEB =∠MED +∠DEB =90°+45°=135°=∠AEB ,在△AEB 和△MEB 中,∠AEB =∠MEBEB =EB ∠ABE =∠MBE,∴△AEB ≌△MEB ASA ,∴∠EAB =∠M ,AE =ME ,AB =MB ,∵AE 平分∠BAC ,∴∠FAE =∠EAB ,∴∠FAE =∠M ,在△AEF 和△MED 中,∠FAE =∠MAE =ME ∠AEF =∠MED =90°,∴△AEF ≌△MED ASA ,∴AF =MD ,∴AF +BD =MD +BD =MB =AB .【点睛】本题考查角平分线的定义和全等三角形的判定和性质.熟练掌握角平分线的定义,通过添加辅助线证明三角形全等是解题的关键.20如图,在△ABC 中,AB =AC ,∠C =45°,点D 为AC 中点,AE ⊥BD 交BC 于点E ,交BD 于点F.求证:(1)∠CAE=∠ABD;(2)BD=AE+ED.【答案】(1)见解析(2)见解析【分析】(1)根据三角形的内角和定理得出∠BAC=90°,再根据直角三角形两锐角互余得出∠CAE+∠BAF=∠ABD+∠BAF=90°,即可求证;(2)过点C作CA的垂线交AE延长线于点M,先证明△ACM≌△BAD ASA,得出AD=CM,BD= AM,则CM=CD,再证明△MCE≌△DCE SAS,得出EM=ED,即可求证.【详解】(1)证明:∵AB=AC,∠C=45°,∴∠CBA=45°,∴∠BAC=90°,∵AE⊥BD,∴∠AFB=90°∴∠CAE+∠BAF=∠ABD+∠BAF=90°,∴∠CAE=∠ABD.(2)证明:过点C作CA的垂线交AE延长线于点M∵CM⊥CA,∴∠MCA=90°即∠MCA=∠CAB,在△ACM和△BAD中,∠CAE=∠ABD AB=AC∠MCA=∠CAB∴△ACM≌△BAD ASA,∴AD=CM,∵D为AC中点,∴AD=CD,∴CM=CD∵∠MCA=90°,∠ACB=45°,∴∠ACB=∠MCB,在△MCE和△DCE中,CM=CD∠ACB=∠MCB CE=CE,∴△MCE≌△DCE SAS∴EM=ED,∴AM=AE+EM=AE+ED,∴BD=AE+ED.【点睛】本题主要考查了三角形的内角和定理,全等三角形的判定和性质,解题的关键是掌握三角形的内角和为180°,直角三角形两锐角互余,以及正确画出辅助线,构造全等三角形,根据全等三角形的性质进行证明.【类型六】半角模型21如图,△ABC中,AB=AC,∠BAC+∠BDC=180°.(1)求证:AD为∠BDC的平分线;(2)若∠DAE=12∠BAC,且点E在BD上,直接写出BE、DE、DC三条线段之间的等量关系.【答案】(1)见解析;(2)DE=B E+DC.【分析】(1)过A作AG⊥BD于G,AF⊥DC于F,先证明∠BAG=∠CAF,然后证明△BAG≌△CAF得到AG=AF,最后由角平分线的判定定理即可得到结论;(2)过A作∠CAH=∠BAE,证明△EAD≌△HAD,得到AE=AH,再证明△EAB≌△HAC中,即可得出BE、DE、DC三条线段之间的等量关系.【详解】证明:(1)如图1,过A作AG⊥BD于G,AF⊥DC于F,∵AG⊥BD,AF⊥DC,∴∠AGD=∠F=90°,∴∠GAF+∠BDC=180°,∵∠BAC+∠BDC=180°,∴∠GAF=∠BAC,∴∠GAF-∠GAC=∠BAC-∠GAC,∴∠BAG=∠CAF,在△BAG和△CAF中,∠AGB=∠F=90°∠BAG=∠CAF AB=AC∴△BAG≌△CAF(AAS),∴AG=AF,∴∠BDA=∠CDA,(2)BE、DE、DC三条线段之间的等量关系是DE=B E+DC,理由如下:如图2,过A作∠CAH=∠BAE交DC的延长线于H,∵∠DAE=12∠BAC,∴∠DAE=∠BAE+∠CAD,∵∠CAH=∠BAE,∴∠DAE=∠CAH+∠CAD=∠DAH,在△EAD和△HAD中,∠EAD=∠HAD AD=AD∠ADE=∠ADH ,∴△EAD≌△HAD(ASA),∴DE=DH,AE=AH,在△EAB和△HAC中,AB=AC∠BAE=∠CAH AE=AH,∴△EAB≌△HAC(SAS),∴BE=CH,∴DE=DH=DC+CH=DC+BE,∴DE=DC+BE.故答案是:DE=DC+BE.【点睛】本题考查了全等三角形的性质和判定,角平分线的判定定理,线段和差的证明,掌握截长法和补短法是解答此题的突破口.22(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,若∠EAF=12∠BAD,可求得EF、BE、FD之间的数量关系为.(只思考解题思路,完成填空即可,不必书写证明过程)(2)如图2,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,若∠EAF=12∠BAD,判断EF、BE、FD之间的数量关系还成立吗,若成立,请完成证明,若不成立,请说明理由.【答案】(1)BE+DF=EF;(2)EF+DF=BE.理由见解析.【分析】(1)线段EF、BE、FD之间的数量关系是BE+DF=EF.如图,延长CB至M,使BM=DF,连接AM,利用全等三角形的性质解决问题即可.(2)结论:EF+DF=BE.如图中,在BE上截取BM=DF,连接AM,证明△ABM≌△ADF SAS,推出AM=AF,∠BAM=∠DAF,再证明△AEM≌△AEF SAS,可得结论.【详解】(1)解:线段EF、BE、FD之间的数量关系是BE+DF=EF.如图,延长CB至M,使BM=DF,连接AM,∵∠ABC=∠D=90°,∠ABC+∠1=180°,即:∠ABC+∠D=180°,∴∠1=∠D,在△ABM 和△ADF 中,AB =AD∠1=∠D BM =DF,∴△ABM ≌△ADF SAS ,∴AM =AF ,∠3=∠2,∵∠EAF =12∠BAD ,∠EAF +∠2+∠4=∠BAD ,∴∠2+∠4=∠EAF ,∴∠EAM =∠3+∠4=∠2+∠4=∠EAF ,在△MAE 和△FAE 中,AM =AF∠MAE =∠FAE AE =AE,∴△MAE ≌△FAE SAS ,∴EF =EM ,∵EM =BM +BE =BE +DF ,∴EF =BE +FD ;故答案为:BE +DF =EF .(2)结论:EF +DF =BE .理由:在BE 上截取BM =DF ,连接AM ,∵∠B +∠ADC =180°,∠ADC +∠ADE =180°,∴∠B =∠ADF ,在△ABM 与△ADF 中,BM =DF∠ABM =∠ADF AB =AD,∴△ABM ≌△ADF SAS ,∴AM =AF ,∠BAM =∠DAF ,则∠BAM +∠MAD =∠DAF +∠MAD ,∴∠BAD =∠MAF∵∠EAF =12∠BAD ,∠EAF +∠EAM =∠MAF ,∴∠EAF =∠EAM ,在△AEM 与△AEF 中,AM =AF∠EAF =∠EAM AE =AE,∴△AEM ≌△AEF SAS ,∴EM =EF ,即BE -BM =EF ,即BE -DF =EF ,∴EF +DF =BE .【点睛】本题考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.23问题背景:如图1:在四边形ABCD 中,AB =AD .∠BAD =120°.∠B =∠ADC =90°.E ,F 分别是BC .CD 上的点,且∠EAF =60°,探究图中线段BE ,EF ,FD 之间的数量关系.(1)小王同学探究此问题的方法是:延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;(直接写结论,不需证明)探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠ADF=180°.E,F分别是BC,CD上的点,且∠EAF=12∠BAD,(1)中结论是否仍然成立,并说明理由;(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明:若不成立,请直接写出它们之间的数量关系.【答案】(1)EF=BE+FD(2)(1)中的结论EF=BE+FD仍然成立.证明见解析;(3)结论EF=BE+FD不成立,结论是:EF=BE-FD.证明见解析.【分析】(1)延长FD到点G.使DG=BE.连接AG,利用全等三角形的性质解决问题即可;(2)延长CB至M,使BM=DF,连接AM.证明△ABM≌△ADF(SAS),由全等三角形的性质得出AF= AM,∠2=∠3.△AME≌△AFE(SAS),由全等三角形的性质得出EF=ME,即EF=BE+BM,则可得出结论;(3)在BE上截取BG,使BG=DF,连接AG.证明△ABG≌△ADF(SAS).由全等三角形的性质得出∠BAG=∠DAF,AG=AF.证明△AEG≌△AEF(SAS),由全等三角形的性质得出结论.【详解】(1)解:EF=BE+FD.延长FD到点G.使DG=BE.连接AG,∵∠ABE=∠ADG=∠ADC=90°,AB=AD,∴△ABE≌△ADG(SAS).∴AE=AG,∠BAE=∠DAG.∴∠BAE+∠DAF=∠DAG+∠DAF=∠EAF=60°.∴∠GAF=∠EAF=60°.又∵AF=AF,∴△AGF≌△AEF(SAS).∴FG=EF.∵FG=DF+DG.∴EF=BE+FD.故答案为:EF=BE+FD;(2)解:(1)中的结论EF=BE+FD仍然成立.证明:如图②中,延长CB至M,使BM=DF,连接AM.∵∠ABC +∠D =180°,∠1+∠ABC =180°,∴∠1=∠D ,在△ABM 与△ADF 中,AB =AD∠1=∠D BM =DF,∴△ABM ≌△ADF (SAS ).∴AF =AM ,∠2=∠3.∵∠EAF =12∠BAD ,∴∠2+∠4=12∠BAD =∠EAF .∴∠3+∠4=∠EAF ,即∠MAE =∠EAF .在△AME 与△AFE 中,AM =AF∠MAE =∠EAF AE =AE,∴△AME ≌△AFE (SAS ).∴EF =ME ,即EF =BE +BM ,∴EF =BE +DF ;(3)解:结论EF =BE +FD 不成立,结论:EF =BE -FD .证明:如图③中,在BE 上截取BG ,使BG =DF ,连接AG .∵∠B +∠ADC =180°,∠ADF +∠ADC =180°,∴∠B =∠ADF .在△ABG 与△ADF 中,AB =AD∠ABG =∠ADF BG =DF,∴△ABG ≌△ADF (SAS ).∴∠BAG =∠DAF ,AG =AF .∴∠BAG +∠EAD =∠DAF +∠EAD =∠EAF =12∠BAD .∴∠GAE =∠EAF .∵AE =AE ,∴△AEG ≌△AEF (SAS ),∴EG =EF ,∵EG =BE -BG ,∴EF =BE -FD .【点睛】本题是三角形综合题,考查了三角形全等的判定和性质等知识,解题的关键是添加辅助线,构造全等三角形解决问题.24【问题引领】问题1:如图1.在四边形ABCD 中,CB =CD ,∠B =∠ADC =90°,∠BCD =120°.E ,F 分别是AB ,AD 上的点.且∠ECF =60°.探究图中线段BE ,EF ,FD 之间的数量关系.小王祠学探究此问题的方法是,延长FD 到点G .使DG =BE .连接CG .先证明△CBE ≌△CDG ,再证明△CEF ≌△CGF .他得出的正确结论是.【探究思考】问题2:如图2,若将问题Ⅰ的条件改为:四边形ABCD 中,CB =CD ,∠ABC +∠ADC =180°,∠ECF =12∠BCD,问题1的结论是否仍然成立?请说明理由.【拓展延伸】问题3:如图3在问题2的条件下,若点E在AB的延长线上,点F在DA的延长线上,则问题2的结论是否仍然成立?若不成立,猜测此时线段BE,EF,FD之间存在的等量关系是.【答案】问题1:BE+FD=EF;问题2:问题1中结论仍然成立,理由见解析;问题3:结论:DF=EF+BE.【分析】问题1,先证明△CBE≌△CDG,得到CE=CG,∠BCE=∠DCG,再证明△CEF≌△CGF,得到EF=GF,即可得到EF=DG+DF=BE+DF;问题2,延长FD到点G.使DG=BE.连接CG,先判断出∠ABC=∠GDC,进而判断出△CBE≌△CDG,再证明△CEF≌△CGF,最后用线段的和差即可得出结论;问题3,在DF上取一点G.使DG=BE.连接CG,然后同问题2的方法即可得出结论.【详解】解:问题1,如图1,延长FD到点G.使DG=BE.连接CG,∵∠ADC=∠B=90°,∴∠CDG=180°-∠ADC=90°,∴∠CBE=∠CDG=90°,在△CBE和△CDG中,BE=DG∠CBE=∠CDG BC=DC,∴△CBE≌△CDG SAS,∴CE=CG,∠BCE=∠DCG,∴∠BCE+∠ECD=∠DCG+∠ECD,即∠ECG=∠BCD=120°,∵∠ECF=60°,∴∠GCF=∠ECG-∠ECF=60°,∴∠ECF=∠GCF,在△CEF和△CGF中,CE=CG∠ECF=∠GCF CF=CF,∴△CEF≌△CGF SAS,∴EF=GF,∴EF=DG+DF=BE+DF;故他得到的正确结论是:EF=BE+DF;问题2,问题1中结论仍然成立,如图2,理由:延长FD到点G.使DG=BE.连接CG,∵∠ABC+∠ADC=180°,∠CDG+∠ADC=180°,∴∠ABC=∠GDC,在△CBE和△CDG中,BE=DG∠CBE=∠CDGBC=DC,∴△CBE≌△CDG SAS,∴CE=CG,∠BCE=∠DCG,∴∠BCE+∠ECD=∠DCG+∠ECD,即∠ECG=∠BCD,∵∠ECF=12∠BCD,∴∠ECF=12∠ECG,∴∠ECF=∠GCF,在△CEF和△CGF中,CE=CG∠ECF=∠GCFCF=CF,∴△CEF≌△CGF SAS,∴EF=GF,∴EF=DG+DF=BE+DF;即EF=BE+DF;问题3.结论:DF=BE+EF,理由如下:如图3,在DF上取一点G.使DG=BE.连接CG,∵∠ABC+∠ADC=180°,∠ABC+∠CBE=180°,∴∠ADC=∠CBE,即∠CDG=∠CBE,在△CBE和△CDG中,BE=DG∠CBE=∠CDG BC=DC,∴△CBE≌△CDG SAS,∴CE=CG,∠BCE=∠DCG,∴∠BCE+∠BCG=∠DCG+∠BCG,即∠ECG=∠BCD,∵∠ECF=12∠BCD,∴∠ECF=12∠ECG,∴∠ECF=∠GCF,在△CEF和△CGF中,CE=CG∠ECF=∠GCF CF=CF,∴△CEF≌△CGF SAS,∴EF=GF,∴EF=GF=DF-DG=DF-BE.即DF=BE+EF.【点睛】本题主要考查全等三角形的性质与判定,解题的关键在于能够正确作出辅助线构造全等三角形.。

全等三角形动点问题提高题

全等三角形动点问题提高题

全等三角形动点问题提高题1.已知△ABC中,AB=AC=12厘米,BC=9厘米,点D为AB的中点。

点P在线段BC上以3厘米/秒的速度由B点向C 点运动,同时点Q在线段CA上由C点向A点运动。

1) 若点Q的运动速度与点P的运动速度相等,1秒钟时,△BPD与△CQP是否全等?请说明理由。

2) 若点Q的运动速度与点P的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD≌△CQP?2.如图,△XXX的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,XXX与XXX重合,且EF=FP。

1) 通过观察、测量和猜想,写出AB与AP所满足的数量关系和位置关系;2) 将△EFP沿直线l向左平移到图2的位置时,EP交AC 于点Q,连接AP,BQ,猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;3) 将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ。

你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,请给出证明;若不成立,请说明理由。

3.如图,在△ABC中,∠CAB=70°。

在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠B′AB=_________。

4.已知如图(1),△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B、C在AE的两侧,BD⊥AE于D,CE⊥AE于E。

1) 求证:BD=DE+CE;2) 若直线AE绕A点旋转到(2)位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?请予证明;3) 若直线AE绕A点旋转到图(3)位置时,(BD>CE),其余条件不变,问BD与DE、CE的关系如何?请直接写出结果,不须证明;4) 归纳(1)、(2)、(3),请用简捷语言表述BD、DE、CE的关系。

5.在图中,直线MN与线段AB相交于点O,∠1=∠2=45°。

全等三角形的提高拓展训练典范题型50题(含答案解析)

全等三角形的提高拓展训练典范题型50题(含答案解析)

全等三角形的提高拓展训练知识点睛全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等. 全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.例题精讲板块一、截长补短【例1】 (06年北京中考题)已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.DOECB AND【例2】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?【变式拓展训练】如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?【例3】 已知:如图,ABCD 是正方形,∠FAD =∠FAE . 求证:BE +DF =AE .【例4】 以ABC ∆的AB 、AC 为边向三角形外作等边ABD∆、ACE ∆,连结CD 、BE 相交NCDE BMAFEDCBA OEDCBA于点O.求证:OA平分DOE∠.【例5】(北京市、天津市数学竞赛试题)如图所示,ABC∆是边长为1的正三角形,BDC∆是顶角为120︒的等腰三角形,以D为顶点作一个60︒的MDN∠,点M、N分别在AB、AC上,求AMN∆的周长.【例6】五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°,求证:AD平分∠CDEA NMD CBACE DBA板块二、全等与角度【例7】如图,在ABC∆中,60BAC∠=︒,AD是BAC∠的平分线,且AC AB BD=+,求ABC∠的度数.【例8】在等腰ABC∆中,AB AC=,顶角20A∠=︒,在边AB上取点D,使AD BC=,求BDC∠.【例9】(“勤奋杯”数学邀请赛试题) 如图所示,在ABC∆中,AC BC=,20C∠=︒,又M在AC上,N在BC上,且满足50BAN∠=︒,60ABM∠=︒,求NMB∠. NMCB A【例10】 在四边形ABCD 中,已知AB AC =,60ABD ︒∠=,76ADB ︒∠=,28BDC ︒∠=,求DBC ∠的度数.【例11】 (日本算术奥林匹克试题) 如图所示,在四边形ABCD 中,12DAC ︒∠=,36CAB ︒∠=,48ABD ︒∠=,24DBC ︒∠=,求ACD ∠的度数.【例12】 (河南省数学竞赛试题) 在正ABC ∆内取一点D ,使DA DB =,在ABC ∆外取一点E ,使DBE DBC ∠=∠,且BE BA =,求BED ∠.【例13】 (北京市数学竞赛试题) 如图所示,在ABC ∆中,44BAC BCA ︒∠=∠=,M 为ABC∆内一点,使得30MCA ︒∠=,16MAC ︒∠=,求BMC ∠的度数.全等三角形证明经典20题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求ADMCAB_延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2 又∵CD=DE∴⊿ADC ≌⊿GDE (AAS ) ∴EG=AC ∵EF//AB ∴∠DFE=∠1 ∵∠1=∠2 ∴∠DFE=∠DGE ∴EF=EG ∴EF=ACADBCBA CDF2 1 E3. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS ) ∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C4. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明:在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥ABCDB A所以∠CEB=∠CEF=90°因为EB=EF,CE=CE,所以△CEB≌△CEF所以∠B=∠CFE因为∠B+∠D=180°,∠CFE+∠CFA=180°所以∠D=∠CFA因为AC平分∠BAD所以∠DAC=∠FAC又因为AC=AC所以△ADC≌△AFC(SAS)所以AD=AF所以AE=AF+FE=AD+BE5. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。

全等三角形经典题型50题(含答案解析)

全等三角形经典题型50题(含答案解析)

全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。

因为 BC=ED,CF=DF,∠BCF=∠EDF 。

所以 三角形BCF 全等于三角形EDF(边角边)。

所以 BF=EF,∠CBF=∠DEF 。

连接BE 。

在三角形BEF 中,BF=EF 。

所以 ∠EBF=∠BEF 。

又因为 ∠ABC=∠AED 。

所以 ∠ABE=∠AEB 。

所以 AB=AE 。

在三角形ABF 和三角形AEF 中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。

所以 三角形ABF和三ADBC角形AEF 全等。

所以 ∠BAF=∠EAF (∠1=∠2)。

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DG E ∴EF=EG ∴EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BDAC=AE+CE ∴CE=DE ∴∠C=∠E DC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

(完整)八年级上《全等三角形》单元检测卷(提高版)

(完整)八年级上《全等三角形》单元检测卷(提高版)

O EA B D C八年级上《全等三角形》单元检测卷(提高)一、选择题1. 在下列条件中,能判断两个直角三角形全等的是 ( )A.一个锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条边对应相等 2.如图1,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店 去配一块完全一样的玻璃,那么最省事的办法是( ) A. 带①去 B. 带②去 C. 带③去 D. 带①和②去3.如图2,将两根钢条AA ′、BB ′的中点 O 连在一起,使AA ′、BB ′ 能绕着点 O 自由转动,就做成了一个测量工具,则A ′B ′的长等于内槽 宽 AB ,那么判定△OAB ≌△OA ′B ′的理由是 ( ) A .SAS B .ASA C .SSS D .HL4.如图3,OA =OB ,OC =OD ,∠O =50°,∠D =35°,则∠AEC 等于 ( ) A .60° B .50° C .45° D .30°5.如图4,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是 ( ) A. 线段CD 的中点 B. OA 与OB 的中垂线的交点 C. OA 与CD 的中垂线的交点 D. CD 与∠AOB 的平分线的交点6.已知,如图5,△ABC 中,AB=AC ,AD 是角平分线,BE=CF ,则下列说法正确的有几个( )(1)AD 平分∠EDF ;(2)△EBD ≌△FCD ;(3)BD=CD ;(4)AD ⊥BC .(A )1个 (B )2个 (C )3个 (D )4个7.已知:如图6,AD 是ABC △的角平分线,且AB :AC=3:2,则ABD △与ACD △的面积之比为( )A.3:2 B.6:4C.2:3 D.不能确定图2 _ B _ D_ O _ C _ A 图4 图1 图3图58.直线L1、L2、L3表示三条相互交叉的公路,现要建立一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有( )A 一处B 二处C 三处D 四处9.如图7,用直尺和圆规作一个角等于已知角的示意图如图所示,则说明A O B AOB '''∠=∠的依据是 .A 、SSSB 、SASC 、ASAD 、AAS 10.如图8,已知ABC △中,45ABC ∠=o,4AC =,H 是高AD 和BE 的交点,则线段BH 的长度为( )A .2B .4C .5D .不能确定二、填空题11. 如图9,若 △ABC ≌△DEF ,则∠E= °12.杜师傅在做完门框后,为防止门框变形常常需钉两根 斜拉的木条,这样做的数学原理是 13.如图10,如果△ABC ≌△DEF ,△DEF 周长是32cm ,DE=9cm, EF=13cm.∠E=∠B ,则AC=____ cm.14.如图11,AD ⊥BC ,D 为BC 的中点,则△ABD ≌_________.15.如图12,若AB =DE ,BE =CF ,要证△ABF ≌△DEC ,需补充条 件________或 。

三角形全等证明题目60题目(有详解)

三角形全等证明题目60题目(有详解)

全等三角形证明题专项练习60 题(有答案)1.已知如图,△ABC≌△ ADE,∠ B=30°,∠ E=20°,∠ BAE=105°,求∠ BAC的度数.∠ BAC= _________.2.已知:如图,四边形ABCD中, AB∥CD, AD∥BC.求证:△ ABD≌△ CDB.3.如图,点 E 在△ ABC外面,点 D 在边 BC上, DE交 AC于 F.若∠ 1=∠ 2=∠ 3, AC=AE,请说明△ ABC≌△ ADE的道理.4.如图,△ ABC的两条高AD, BE订交于 H,且 AD=BD.试说明以下结论成立的原由.(1)∠ DBH=∠ DAC;(2)△ BDH≌△ ADC.5.如图,在△ABC中, D 是 BC边的中点, DE⊥ AB, DF⊥ AC,垂足分别为E、 F,且 DE=DF,则 AB=AC,并说明原由.6.如图, AE是∠ BAC的均分线, AB=AC, D 是 AE反向延长线的一点,则△ABD与△ ACD全等吗?为什么?第1页共28页7.以下列图,A、 D、 F、 B 在同素来线上,A F=BD, AE=BC,且 AE∥BC.求证:△ AEF≌△ BCD.8.如图,已知AB=AC, AD=AE, BE 与 CD订交于 O,△ ABE与△ ACD全等吗?说明你的原由.9.如图,在△ ABC中, AB=AC, D 是 BC的中点,点 E 在 AD上,找出图中全等的三角形,并说明它们为什么是全等的.10.以下列图, CD=CA,∠ 1=∠ 2, EC=BC,求证:△ ABC≌△ DEC.11.已知 AC=FE, BC=DE,点 A、 D、 B、F 在一条直线上,要使△ ABC≌△ FDE,应增加什么条件?并依照你所增加的条件证明:△ ABC≌△ FDE.12.如图,已知AB=AC, BD=CE,请说明△ ABE≌△ ACD.13.如图,△ ABC中,∠ ACB=90°, AC=BC,将△ ABC绕点 C 逆时针旋转角α( 0°<α< 90°)获取△ A1B1C,连接BB1.设 CB1交 AB于 D, A1B1分别交 AB, AC于 E, F,在图中不再增加其他任何线段的情况下,请你找出一对全等的三角形,并加以证明.(△ ABC与△ A1B1 C1全等除外)14.如图, AB∥ DE,AC∥ DF,BE=CF.求证:△ ABC≌△ DEF.15.如图, AB=AC, AD=AE, AB,DC订交于点M, AC, BE订交于点N,∠ DAB=∠EAC.求证:△ADM≌△ AEN.16.将两个大小不同样的含 45°角的直角三角板如图 1 所示放置在同一平面内.从图1中抽象出一个几何图形(如图2), B、 C、E 三点在同一条直线上,连接DC.求证:△ ABE≌△ ACD.优秀文档17.如图,已知△ ABC是等边三角形, D、E 分别在边 BC、AC上,且 CD=CE,连接 DE并延长至点 F,使 EF=AE,连接AF、 BE和 CF.请在图中找出所有全等的三角形,用符号“≌”表示,并选择一对加以证明.18.如图,已知∠1=∠ 2,∠ 3=∠ 4, EC=AD.(1)求证:△ ABD≌△ EBC.(2)你能够从中得出哪些结论?请写出两个.19.等边△ ABC边长为 8, D为 AB边上一动点,过点 D 作 DE⊥ BC于点 E,过点 E 作 EF⊥ AC于点 F.(1)若 AD=2,求 AF的长;(2)求当 AD取何值时, DE=EF.20.巳知:如图,AB=AC, D、E 分别是 AB、 AC上的点, AD=AE, BE与 CD订交于 G.(Ⅰ)问图中有多少对全等三角形?并将它们写出来.(Ⅱ)请你选出一对三角形,说明它们全等的原由(根椐所选三角形说理难易不同样给分,即难的说对给分高,易的说对给分低)21.已知:如图,AB=DC, AC=BD, AC、BD订交于点E,过 E 点作 EF∥ BC,交 CD于 F,(1)依照给出的条件,能够直接证明哪两个三角形全等?并加以证明.(2) EF 均分∠ DEC吗?为什么?22.如图,己知∠1=∠ 2,∠ ABC=∠ DCB,那么△ ABC与△ DCB全等吗?为什么?23.如图, B, F, E, D 在一条直线上,AB=CD,∠ B=∠ D,BF=DE.试证明:(1)△ DFC≌△ BEA;(2)△ AFE≌△ CEF.24.如图, AC=AE,∠ BAF=∠BGD=∠ EAC,图中可否存在与△ABE全等的三角形?并证明.25.如图, D 是△ ABC的边 BC的中点, CE∥ AB,E 在 AD的延长线上.试证明:△ ABD≌△ ECD.26.如图,已知AB=CD,∠ B=∠C, AC和 BD订交于点O,E 是 AD的中点,连接OE.(1)求证:△ AOB≌△ DOC;(2)求∠ AEO的度数.27.如图,已知AB∥ DE, AB=DE, AF=DC.(1)求证:△ ABF≌△ DEC;(2)请你找出图中还有的其他几对全等三角形.(只要直接写出结果,不要证明)28.如图:在△ ABC中, BE、CF分别是 AC、AB 两边上的高,在 BE 上截取 BD=AC,在 CF的延长线上截取CG=AB,连接 AD、 AG.(1)求证:△ ABD≌△ GCA;(2)请你确定△ ADG的形状,并证明你的结论.29.如图,点D、 F、 E 分别在△ ABC的三边上,∠ 1=∠ 2=∠ 3, DE=DF,请你说明△ ADE≌△ CFD的原由.30.如图,在△ ABC中,∠ ABC=90°, BE⊥ AC于点 E,点 F 在线段 BE 上,∠ 1=∠ 2,点 D在线段 EC上,给出两个条件:① DF∥BC;② BF=DF.请你从中选择一个作为条件,证明:△AFD≌△ AFB.31.如图,在△ ABC中,点 D在 AB 上,点 E 在 BC上, AB=BC, BD=BE,EA=DC,求证:△ BEA≌△ BDC.32.阅读并填空:如图,在△ ABC中,∠ ACB=90°, AC=BC, BE⊥ CE于点 E,AD⊥ CE于点 D.请说明△ ADC≌△ CEB的原由.解:∵ BE⊥CE于点 E(已知),∴∠ E=90°_________,同理∠ ADC=90°,∴∠ E=∠ ADC(等量代换).在△ ADC中,∵∠ 1+∠ 2+∠ ADC=180°_________,∴∠ 1+∠ 2=90°_________.∵∠ ACB=90°(已知),∴∠ 3+∠ 2=90°,∴_________ .在△ ADC和△ CEB中, .∴△ ADC≌△ CEB ( A. A. S)33.已知:以下列图,AB∥ DE,AB=DE, AF=DC.( 1)写出图中你认为全等的三角形(不再增加辅助线);( 2)选择你在(1)中写出的全等三角形中的任意一对进行证明.34.如图,点 E 在△ ABC外面,点 D在 BC边上, DE交 AC于点 F,若∠ 1=∠ 2=∠ 3, AC=AE.试说明以下结论正确的原由:(1)∠ C=∠ E;(2)△ ABC≌△ ADE.35.如图,在 Rt△ ABC中,∠ ACB=90°,AC=BC,D 是斜边 AB上的一点, AE⊥ CD于 E,BF⊥ CD交 CD的延长线于F.求证:△ ACE≌△ CBF.36.如图,在△ ABC中, D 是 BC的中点, DE∥ CA交 AB 于 E,点 P 是线段 AC上的一动点,连接PE.研究:当动点P 运动到 AC边上什么地址时,△APE≌△ EDB?请你画出图形并证明△APE≌△ EDB.37.已知:如图,AD∥ BC, AD=BC, E 为 BC上一点,且AE=AB.求证:( 1)∠ DAE=∠B;(2)△ ABC≌△ EAD.38.如图, D 为 AB边上一点,△ ABC和△ ECD都是等腰直角三角形,∠ ACB=∠ DCE=90°, CA=CB, CD=CE,图中有全等三角形吗?指出来并说明原由.39.如图, AB=AC, AD=AE,∠ BAC=∠ DAE.求证:△ ABD≌△ ACE.40.如图,已知D是△ ABC的边 BC的中点,过D 作两条互相垂直的射线,分别交AB于 E,交 AC于 F,求证: BE+CF >EF.41.以下列图,在△MNP中, H是高 MQ与 NE的交点,且QN=QM,猜想 PM与 HN有什么关系?试说明原由.42.如图,在△ ABC中, D 是 BC的中点,过 D 点的直线 GF交 AC于 F,交 AC的平行线 BG于 G点, DE⊥ GF,交 AB于点 E,连接 EG.(1)求证: BG=CF;(2)请你判断 BE+CF与 EF 的大小关系,并证明你的结论.43.如图,在△ ABC中,∠ ACB=90°, AC=BC, BE⊥ CE于 E, AD⊥ CE于 D,,,求 BE 的长.44.如图,小明在完成数学作业时,遇到了这样一个问题,AB=CD, BC=AD,请说明:∠ A=∠ C 的道理,小明着手测量了一下,发现∠A确实与∠ C相等,但他不能够说明其中的道理,你能帮助他说明这个道理吗?试一试看.45.如图, AD是△ ABC的中线, CE⊥ AD于 E, BF⊥AD,交 AD的延长线于F.求证: CE=BF.46.如图,已知 AB∥ CD,AD∥ BC,F 在 DC的延长线上, AM=CF,FM交 DA的延长线上于E.交 BC于 N,试说明:AE=CN.47.已知:如图,△ABC中,∠ C=90°, CM⊥ AB于 M, AT均分∠ BAC交 CM于 D,交 BC于 T,过 D 作 DE∥ AB交 BC 于 E,求证: CT=BE.48.如图,已知AB=AD, AC=AE,∠ BAE=∠ DAC.∠ B 与∠ D 相等吗?请你说明原由.49. D 是 AB上一点, DF交 AC于点 E, DE=EF, AE=CE,求证: AB∥CF.50.如图, M是△ ABC的边 BC上一点, BE∥ CF,且 BE=CF,求证: AM是△ ABC的中线.优秀文档合用标准文案51.如图,在△ ABC中, AC⊥BC, AC=BC, D 为 AB上一点, AF⊥ CD交于 CD的延长线于点F, BE⊥ CD于点 E,求证:EF=CF﹣ AF.52.如图,在△ ABC中,∠ BAC=90°, AB=AC,若 MN是经过点 A 的直线, BD⊥ MN于 D,EC⊥ MN于 E.(1)求证: BD=AE;(2)若将 MN绕点 A 旋转,使 MN与 BC订交于点 O,其他条件都不变, BD与 AE边相等吗?为什么?(3) BD、 CE与 DE有何关系?53.已知:如图,△ABC中, AB=AC, BD和 CE为△ ABC的高, BD和 CE订交于点O.求证: OB=OC.54.在△ ABC中,∠ ACB=90°, D 是 AB边的中点,点 F 在 AC边上, DE与 CF平行且相等.试说明AE=DF的原由.55.如图,在△ ABC中, D 是边 BC上一点, AD均分∠ BAC,在 AB 上截取 AE=AC,连接 DE,已知 DE=2cm, BD=3cm,求线段 BC的长.优秀文档56.如图:已知∠B=∠ C, AD=AE,则 AB=AC,请说明原由.57.如图△ ABC中,点 D 在 AC上, E 在 AB上,且 AB=AC,BC=CD, AD=DE=BE.( 1)求证△ BCE≌△ DCE;( 2)求∠ EDC的度数.58.已知:∠ A=90°, AB=AC, BD均分∠ ABC, CE⊥ BD,垂足为E.求证: BD=2CE.59.如图,已知:AB=CD, AD=BC,过 BD上一点 O的直线分别交DA、 BC的延长线于E、 F.(1)求证:∠ E=∠ F;(2) OE与 OF相等吗?若相等请证明,若不相等,需增加什么条件就能证得它们相等?请写出并证明你的想法.60.以以下列图, AD是∠ BAC的均分线, DE垂直 AB于点 E, DF垂直 AC于点 F,且 BD=DC.求证: BE=CF.全等三角形证明题专项练习60 题参照答案:1.∵△ ABC≌△ ADE 且∠ B≠∠ E,∴∠ C=∠ E,∠ B=∠ D;∴∠ BAC=180°﹣∠ B﹣∠ C=180°﹣ 30°﹣ 20° =130°.2.∵ AB∥ CD, AD∥ BC,∴∠ ABD=∠ CDB、∠ ADB=∠CBD.又 BD=DB,∴△ ABD≌△ CDB(ASA).3.△ ADF与△ AEF中,∵∠ 2=∠ 3,∠ AFE=∠ CFD,∴∠ E=∠ C.∵∠ 1=∠ 2,∴∠ BAC=∠DAE.∵AC=AE,∴△ ABC≌△ ADE.4.( 1)∵∠ BHD=∠ AHE,∠ BDH=∠ AEH=90°∴∠ DBH+∠BHD=∠ HAE+∠ AHE=90°∴∠ DBH=∠HAE∵∠ HAE=∠DAC∴∠ DBH=∠DAC;(2)∵ AD⊥ BC∴∠ ADB=∠ADC在△ BDH与△ ADC中,∴△ BDH≌△ ADC.5.∵ DE⊥ AB, DF⊥ AC,∴△ DBE与△ DCF是直角三角形,∵BD=CD, DE=DF,∴Rt △ DBE≌ Rt △ DCF( HL),∴∠ B=∠ C,∴AB=AC.6.∵ AE 是∠ BAC的均分线,∴∠ BAE=∠CAE;∴180°﹣∠BAE=180°﹣∠CAE,即∠ DAB=∠DAC;又∵ AB=AC, AD=AD,∴在△ ABD和△ ACD中,∴△ ABD≌△ ACD( SAS)7.∵ AE∥ BC,∴∠ B=∠ C.∵AF=BD, AE=BC,∴△ AEF≌△ BCD( SAS).8.△ ABE与△ ACD全等.原由:∵ AB=AC,∠ A=∠ A(公共角), AE=AD,∴△ ABE≌△ ACD.9.图中的全等三角形有:△ABD≌△ ACD,△ABE≌△ ACE,△BDE≌△ CDE.原由:∵ D是 BC的中点,∴BD=DC, AB=AC, AD=AD∴△ ABD≌△ ACD( SSS);∵AE=AE,∠ BAE=∠ CAE, AB=AC,∴△ ABE≌△ ACE( SAS);∵BE=CE, BD=DC, DE=DE,∴△ BDE≌△ CDE( SSS).10.:∵∠ 1=∠ 2,∴∠ ACB=∠DCE,在△ ABC和△ DEC中,,∴△ ABC≌△ DEC( SAS)11.增加AB=DF.在△ ABC和△ FDE中,∴△ ABC≌△ FDE(SSS).12.∵ AB=AC, BD=CE,∴ AD=AE.又∵∠ A=∠ A,∴△ ABE≌△ ACD(SAS).13.△ CBD≌△ CA1F 证明以下:∵AC=BC,∴∠A=∠ ABC.∵△ ABC绕点 C 逆时针旋转角α( 0°<α< 90°)获取△ A1B1C1,∴∠ A1 =∠ A, A1C=AC,∠ ACA1=∠ BCB1=α.∴∠ A1 =∠ ABC(1 分), A1C=BC.∴△ CBD≌△ CAF( ASA)114.∵ AB∥DE, AC∥DF,∴∠ B=∠ DEF,∠ F=∠ ACB.∵BE=CF,∴BE+CE=CF+EC.∴BC=EF.∴△ ABC≌△ DEF ( ASA).15.∵ AB=AC, AD=AE,∠ DAB=∠ EAC,∴∠ DAC=∠AEB,∴△ ACD≌△ ABE,∴∠ D=∠ E,又 AD=AE,∠ DAB=∠EAC,∴△ ADM≌△ AEN16.∵△ ABC和△ ADE均为等腰直角三角形,∴AB=AC, AD=AE,∠ BAC=∠DAE=90,即∠ BAC+∠CAE=∠DAE+∠ CAE,∴∠ BAE=∠CAD,在△ ABE和△ ACD中,,∴△ ABE≌△ ACD17.答:△ BDE≌△ FEC,△ BCE≌△ FDC,△ ABE≌△ ACF;证明:(以△ BDE≌△ FEC为例)∵△ ABC是等边三角形,∴BC=AC,∠ ACB=60°,∵CD=CE,∴△ EDC是等边三角形,∴∠ EDC=∠DEC=60°,∴∠ BDE=∠FEC=120°,∵CD=CE,∴BC﹣ CD=AC﹣ CE,∴BD=AE,又∵ EF=AE,∴B D=FE,在△ BDE与△ FEC中,∵,∴△ BDE≌△ FEC( SAS).18.( 1)证明以下:∵∠ ABD=∠1+∠ EBC,∠ CBE=∠ 2+∠ EBC,∠ 1=∠2.∴∠ ABD=∠CBE.在△ ABD和△ EBC中∴△ ABD≌△ EBC( AAS);(2)从中还可获取 AB=BC,∠ BAD=∠ BEC19.( 1)∵ AB=8, AD=2∴BD=AB﹣ AD=6在 Rt △ BDE中∠BDE=90°﹣∠B=30°∴ BE= BD=3∴CE=BC﹣ BE=5在 Rt △ CFE中∠CEF=90°﹣∠C=30°∴ CF= CE=∴AF=AC﹣ FC= ;(2)在△ BDE和△ EFC中,∴△ BDE≌△ CFE( AAS)∴BE=CF∴BE=CF= EC∴BE= BC=∴BD=2BE=∴AD=AB﹣ BD=∴AD= 时, DE=EF20.( 1)图中全等的三角形有四对,分别为:①△ DBG≌△ EGC,②△ ADG≌△ AEG,③△ ABG≌△ ACG,④△ABE≌△ ACD;( 4 分)(Ⅱ)∵ AB=AC, AD=AE,∠ A 是公共角,∴△ ABE≌△ ACD( SAS)④;∵AB=AC, AD=AE,∴AB﹣ AD=AC﹣ AE,即 BD=CE;由④得∠ B=∠ C,又∵∠ DGB=∠ EGC(对顶角相等), BD=CE(已证),∴△ DBG≌△ EGC( AAS)①;由①得 BG=CG,由④得∠ B=∠C,又∵ AB=AC,∴△ ABG≌△ ACG( SAS)③;由①得 BG=CG,且 AD=AE, AG为公共边,∴△ ADG≌△ AEG( SSS)②;21.( 1)△ ABC≌△ DCB.证明:∵ AB=CD, AC=BD, BC=CB,∴△ ABC≌△ DCB.( SSS)(2) EF 均分∠ DEC.原由:∵ EF∥ BC,∴∠ DEF=∠EBC,∠ FEC=∠ ECB;由( 1)知:∠ EBC=∠ ECB;∴∠ DEF=∠FEC;∴ FE 均分∠ DEC22.△ ABC≌△ DCB.原由以下:∵∠ABC=∠ DCB,∠ 1=∠ 2,∴∠ DBC=∠ACB.∵BC=CB,∴△ ABC≌△ DCB23.( 1)∵ BF=DE,∴BF+EF=DE+EF.即 BE=DF.在△ DFC和△ BEA中,∵,∴△ DFC≌△ BEA( SAS).(2)∵△ DFC≌△ BEA,∴CF=AE,∠ CFD=∠ AEB.∵在△ AFE与△ CEF中,∵,∴△ AFE≌△ CEF( SAS)24.△ ABF与△ DFG中,∠ BAF=∠ BGD,∠ BFA=∠DFG,∴∠ B=∠ D,∵∠ BAF=∠EAC,∴∠ BAE=∠DAC,∵AC=AE,∠ BAE=∠ DAC,∠B=∠D,∴△ BAE≌△ DAC.答案:有.△ BAE≌△ DAC25.∵ CE∥AB,∴∠ ABD=∠ECD.在△ ABD和△ ECD中,,∴△ ABD≌△ ECD( ASA)26.( 1)证明:在△ AOB和△ COD中∵∴△ AOB≌△ COD( AAS)(2)解:∵△ AOB≌△ COD,∴ AO=DO∵ E 是 AD的中点∴OE⊥ AD∴∠ AEO=90°27. 1)证明:∵ AB∥ DE,∴∠ A=∠ D.∵AB=DE, AF=DC,∴△ ABF≌△ DEC.( 2)解:全等三角形有:△ ABC和△ DEF;△ CBF和△ FEC28.证明:( 1)∵ BE、 CF分别是 AC、 AB两边上的高,∴∠ AFC=∠AEB=90°(垂直定义),∴∠ ACG=∠DBA(同角的余角相等),又∵ BD=CA,AB=GC,∴△ ABD≌△ GCA;(2)连接 DG,则△ ADG是等腰三角形.证明以下:∵△ ABD≌△ GCA,∴AG=AD,∴△ ADG是等腰三角形.29.解:∵∠ 4+∠ 6=180°﹣∠ 3,∠ 5+∠ 6=180°﹣∠ 2,∠ 3=∠2,∴∠ 4+∠ 6=∠ 5+∠ 6,∴∠ 4=∠ 5,∵在△ ADE和△ CFD中,,∴△ ADE≌△ CFD( AAS).30.① DF∥BC.证明:∵ BE⊥ AC,∴∠ BEC=90°,∴∠ C+∠ CBE=90°,∵∠ ABC=90°,∴∠ ABF+∠CBE=90°,∴∠ C=∠ ABF,∵DF∥ BC,∴∠C=∠ ADF,∴∠ABF=∠ADF,在△ AFD和△ AFB中∴△ AFD≌△ AFB( AAS).31.在△ BEA和△ BDC中:,故△ BEA≌△ BDC(SSS).32.如图,在△ ABC中,∠ ACB=90°, AC=BC, BE⊥ CE于点 E, AD⊥CE于点 D.请说明△ ADC≌△ CEB的原由.解:∵ BE⊥CE于点 E(已知),∴∠ E=90°(垂直的意义),同理∠ ADC=90°,∴∠ E=∠ ADC(等量代换).在△ ADC中,∵∠ 1+∠ 2+∠ ADC=180°(三角形的内角和等于180°),∴∠ 1+∠ 2=90°(等式的性质).∵∠ ACB=90°(已知),∴∠ 3+∠ 2=90°,∴∠ 1=∠3(同角的余角相等).在△ ADC和△ CEB中, .∴△ ADC≌△ CEB ( A. A. S)33.( 1)△ ABF≌△ DEC,△ ABC≌△ DEF,△ BCF≌△ EFC;(2 分)(2)△ ABF≌△ DEC,证明:∵ AB∥ DE,∴∠ A=∠ D,( 3 分)在△ ABF和△ DEC中,(4 分)∴△ ABF≌△ DEC.(5 分)34.( 1)△ ADF与△ AEF中,∵∠ 2=∠ 3,∠ AFE=∠ CFD,∴∠ C=∠ E;(2)∵∠ 1=∠ 2,∴∠BAC=∠DAE.∵AC=AE,又∠ C=∠ E,∴△ ABC≌△ ADE.35.∵ AE⊥CD,∴∠ AEC=90°,∴∠ ACE+∠CAE=90°,(直角三角形两个锐角互余)∵∠ ACE+∠BCF=90°,∴∠ CAE=∠BCF,(等角的余角相等)∵AE⊥ CD,BF⊥ CD,∴∠ AEC=∠BFC=90°,在△ ACE与△ CBF中,∠ CAE=∠ BCF,∠ AEC=∠ BFC,AC=BC,∴△ ACE≌△ CBF( AAS).优秀文档36.当动点 P 运动到 AC边上中点地址时,△APE≌△ EDB,∵DE∥ CA,∴△ BED∽△ BAC,∴= ,∵D是BC的中点,∴ = ,∴= ,∴E 是 AB中点,∴DE= AC, BE=AE,∵DE∥ AC,∴∠ A=∠ BED,要使△ APE≌△ EDB,还缺少一个条件DE=AP,又有 DE= AC,∴ P 必定是 AC中点.37.( 1)∵ AE=AB,∴∠ B=∠ AEB,又∵ AD∥ BC,∴∠ AEB=∠DAE,∴∠ DAE=∠B;(2)∵∠ DAE=∠ B,AD=BC,AE=AB,∴△ ABC≌△ EAD.38.△ ACE≌△ BCD.∵△ ABC和△ ECD都是等腰直角三角形,∴∠ ECD=∠ACB=90°,∴∠ ACE=∠BCD(都是∠ ACD的余角),在△ ACE和△ BCD中,∵,∴△ ACE≌△ BCD.39.∵∠ BAC=∠ DAE,∴∠ BAC+∠CAD=∠ DAE+∠ CAD,即∠ BAD=∠EAC,在△ ABD和△ ACE中,∴△ ABD≌△ ACE.40.证明:延长FD到 M使 MD=DF,连接 BM,EM.∵D 为 BC中点,∴BD=DC.∵∠ FDC=∠BDM,∴△ BDM≌△ CDF.∴BM=FC.∵ED⊥ DF,∴EM=EF.∵BE+BM> EM,∴B E+FC> EF.41. PM=HN.原由:∵在△ MNP中, H是高 MQ与 NE的交点,∴∠ MEH=∠NQH=90°,∠ MQP=∠ NQH=90°∵∠ MHE=∠NHQ(对顶角相等),∴∠ EMH=∠QNH(等角的余角相等)在△ MPQ和△ NHQ中,,∴△ MPQ≌△ NHQ( ASA),∴MP=NH.42.( 1)∵ BG∥ AC,∴∠ DBG=∠DCF.∵D为BC的中点,∴ BD=CD又∵∠ BDG=∠ CDF,在△ BGD与△ CFD中,∵∴△ BGD≌△ CFD( ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD=FD, BG=CF.又∵ DE⊥ FG,∴EG=EF(垂直均分线到线段端点的距离相等).∴在△ EBG中, BE+BG> EG,即 BE+CF>EF.43.∵ BE⊥CE于 E,AD⊥ CE于 D∴∠ E=∠ ADC=90°∵∠ BCE+∠ACE=∠ DAC+∠ ACE=90°∴∠ BCE=∠DAC∵AC=BC∴△ ACD≌△ CBE∴CE=AD,﹣ 1.7=0.8 ( cm)44.∵ AB=CD, BC=AD,又∵ BD=DB,在△ ABD和△ CDB中,∴△ ABD≌△ CDB,∴∠ A=∠ C.45.∵ AD是△ ABC中 BC边上的中线,∴BD=CD.∵CE⊥ AD于 E, BF⊥AD,∴∠ BFD=∠CED.在△ BFD和△ CED中,∴△ BFD≌△ CED( AAS).∴CE=BF46.∵ AD∥BC,∴∠ E=∠ ENB,∵∠ ENB=∠CNF,∴∠ E=∠ CNF,∵AB∥ CD,∴∠A=∠B,∵∠ C=∠ B,∴∠ EAB=∠DCB,∵AM=CF,∴△ AME≌△ CFN,优秀文档47.证明:过T 作 TF⊥ AB于 F,∵A T 均分∠ BAC,∠ ACB=90°,∴CT=TF(角均分线上的点到角两边的距离相等),∵∠ ACB=90°, CM⊥AB,∴∠ ADM+∠DAM=90°,∠ ATC+∠ CAT=90°,∵AT 均分∠ BAC,∴∠DAM=∠CAT,∴∠ ADM=∠ATC,∴∠ CDT=∠CTD,∴CD=CT,又∵ CT=TF(已证),∴C D=TF,∵CM⊥ AB,DE∥ AB,∴∠ CDE=90°,∠ B=∠ DEC,在△ CDE和△ TFB 中,,∴△ CDE≌△ TFB( AAS),∴C E=TB,∴CE﹣ TE=TB﹣ TE,即 CT=BE.48.∵∠ BAE=∠ DAC∴∠ BAE+∠CAE=∠ DAC+∠ CAE即∠ BAC=∠DAE又∵ AB=AD, AC=AE,∴△ ABC≌△ ADE( SAS)∴∠ B=∠ D(全等三角形的对应角相等)49.∵ DE=EF, AE=CE,∠ AED=∠ FEC,∴△ AED≌△ FEC.∴∠ ADE=∠CFE.∴AD∥ FC.∵D是AB上一点,∴ AB∥ CF50.∵ BE∥CF,∴∠ CMF=∠BME,∠ FCM=∠ EBM.又∵ BE=CF,即 AM是△ ABC的中线51.∵ AC⊥BC, BE⊥CD,∴∠ ACF+∠FCB=∠ FCB+∠ CBE=90°.∴∠ FCA=∠EBC.∵∠ BEC=∠CFA=90°, AC=BC,∴△ BEC≌△ CFA.∴CE=AF.∴EF=CF﹣ CE=CF﹣ AF52.解:( 1)证明:由题意可知, BD⊥ MN与 D, EC⊥ MN与 E,∠BAC=90°,则△ ABD与△ CEA是直角三角形,∠ DAB=∠ ECA,在△ ABD与△ CEA中,∵,∴△ ABD≌△ CEA,∴B D=AE;(2)若将 MN绕点 A 旋转,与 BC订交于点 O,则 BD, CE与 MN垂直,∴△ABD与△CEA仍是直角三角形,两个三角形仍全等,∴BD与 AE边仍相等;(3)∵△ ABD≌△ CEA,∴B D=AE, AD=EC,∴DE=BD+EC或 DE=CE﹣ BD或 DE=BD﹣ CE.53.∵ AB=AC,∴∠ ABC=∠ACB,∵BD、CE分别为△ABC的高,∴∠ BEC=∠BDC=90°,∴在△ BEC和△ CDB中,∴△ BEC≌△ CDB,∴∠ 1=∠ 2,∴OB=OC∵∠ ACB=90°, D 是 AB 边的中点∴CD=AD,∠ DAC=∠ DCF∵DE与 CF平行且相等∴∠ EDA=∠DAC∴∠ EDA=∠DCF在△ AED和△ CFD中CD=AD,∠ EDA=∠ DCF, DE=CF∴△ AED≌△ CFD∴A E=DF.55.∵ AD均分∠ BAC∴∠ BAD=∠CAD在△ ADE和△ ADC中∵∴△ ADE≌△ ADC( SAS)∴DE=DC∴BC=BD+DC=BD+DE=2+3=5(cm)56.在△ AEB与△ ADC中,.∴△ AEB≌△ ADC( AAS).∴ AB=AC(全等三角形,对应边相等)57.( 1)证明:在△ BCE和△ DCE中∴△ BCE≌△ DCE( SSS).(2)解:∵ AD=DE,∴∠ A=∠ AED;∴∠ EDC=∠A+∠ AED=2∠ A,设∠ A=x,依照题意得,5x=180°,解得x=36°∴∠ EDC=2∠ A=72°证明:延长CE、 BA 交于点 F.∵CE⊥ BD于 E,∠ BAC=90°,∴∠ ABD=∠ACF.又 AB=AC,∠ BAD=∠ CAF=90°,∴△ ABD≌△ ACF,∴B D=CF.∵BD均分∠ ABC,∴∠ CBE=∠FBE.有 BE=BE,∴△ BCE≌△ BFE,∴C E=EF,∴C E= BD,∴B D=2CE.59.( 1)证明:在△ ABD和△ CDB中∵AB=CD,AD=BC,BD=DB,∴△ ABD≌△ CDB( SSS),∴∠ ADB=∠DBC,∴ DE∥ BF.∴∠ E=∠ F.(2)答:当 O是 BD中点时,OE=OF.证明以下:∵ O是 BD中点,∴OB=OD.又∵∠ ADB=∠ DBC,∠ E=∠ F,∴△ ODE≌△ OBF( AAS).∴OE=OF.(当 AE=CF时也可证得60.∵ DE⊥AB, DF⊥AC,∴∠ E=∠ DFC=90°.∵AD均分∠ EAC,∴ DE=DF.在 Rt △ DBE和 Rt △ DCF中,∴Rt △ DBE≌ Rt △ CDF( HL).∴BE=CF.。

全等三角形判定 专题复习50题含问题详解

全等三角形判定 专题复习50题含问题详解

实用文档文案大全全等三角形判定一、选择题:1.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA2.方格纸中,每个小格顶点叫做一个格点,以格点连线为边的三角形叫做格点三角形.如图,在4×4的方格纸中,有两个格点三角形△ABC、△DEF,下列说法中成立的是()A.∠BCA=∠EDF B.∠BCA=∠EFD C.∠BAC=∠EFD D.这两个三角形中,没有相等的角3.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等 B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC4.下列判断中错误..的是()A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等5.使两个直角三角形全等的条件是()A.一个锐角对应相等 B.两个锐角对应相等C.一条边对应相等 D.两条边对应相等6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C∠AFB D.2∠ABF实用文档文案大全7.在△ABC和△A/B/C/中,已知∠A=∠A/,AB=A/B/,在下面判断中错误的是( ) A.若添加条件AC=A/C/,则△ABC≌△△A/B/C/B.若添加条件BC=B/C/,则△ABC≌△△A/B/C/C.若添加条件∠B=∠B/,则△ABC≌△△A/B/C/D.若添加条件∠C=∠C/,则△ABC≌△△A/B/C/8.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F9.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm10.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形个数是()A.1 B.2 C.3 D.411.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A a2B a2C a2D a2实用文档文案大全12.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A BCD二、填空题:13.如图所示,有一块三角形的镜子,小明不小心弄破裂成1、2两块,现需配成同样大小的一块.为了方便起见,需带上块,其理由是14.如图示,点B在AE上,∠CBE=∠DBE,要使ΔABC≌ΔABD, 还需添加一个条件是__________.(填上你认为适当的一个条件即可)15.如图,已知∠1=∠2,AC=AD,请增加一个条件,使△ABC≌△AED,你添加的条件是实用文档文案大全16.如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是(只添一个条件即可).17.如图,在△ABC中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角形对.18.如图,△ABD≌△BAC,若AD=BC,则∠BAD的对应角是19.如图,已知AB⊥BD,垂足为B,ED⊥BD,垂足为D,AB=CD,BC=DE,则∠ACE=度.20.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是三、解答题:21.如图,∠DCE=90°,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A.B.试说明AD+AB=BE.实用文档文案大全22.如图,E、A.C三点共线,AB∥CD,∠B=∠E,,AC=CD。

全等三角形练习题(含答案)

全等三角形练习题(含答案)

全等三角形练习题宇文皓月一、选择题:1、以两条边长为10和3及另一条边组成边长都是整数的三角形一共有()。

A.3个B.4个C.5个D.无数多个2、若一个三角形的一个角等于其它两个角的差,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能3、具备下列条件的两个三角形,全等的是()A.两个角分别相等,且有一边相等B.一边相等,且这边上的高也相等C.两边分别相等,且第三边上的中线也相等D.两边且其中一条对应边的对角对应相等4、等腰三角形中有一个角是50,它的一条腰上的高与底边的夹角是()A.25B.40C.25或40D.大小无法确定5、一个三角形的一边为2,这边的中线为1,另两边之和为31,那么这个三角形的面积为()A.1B.32C.3D.不克不及确定二、解答题、1已知:如图,ABC中,AB=AC,AD=BD,AC=DC求:B的度数2、已知:Rt ABC中,BAC=90,AD是BC边上的高,BF平分ABC,交AD于E。

求证:AEF是等腰三角形3、已知:如图AB=CD,AC和BD的垂直平分线相交于O点。

求证:ABO=CDO4、已知:如图ABC中,BC边中垂线DE交BAC的平分线于D,DM⊥AB 于M,DN⊥AC于N。

求证BM=CN5、已知:如图,ABC中,ACB=90,M为AB的中点,DM⊥AB于M,CD平分ACB,交AB于E求证:MD=AM6、在△ABC中,∠C=90°,AC=BC,AD=BD,PE⊥AC于点E, PF⊥BC于点F。

求证:DE=DF参考答案一、选择题:1、C2、B3、C4、C5、B二、解答题1 B为36。

2、提示:根据等角的余角相等,可证AFE=BED,又因为BED=AEF,所以AFE=AEF。

3、提示:连结OA,OC,证AOB≌COD5、提示:连结DB、DC。

根据线段中垂线的性质,可得DB=DC,根据角平分线的性质,可得DM=DN,因此,可得Rt DMB∆。

全等三角形拔高题目附带答案

全等三角形拔高题目附带答案

全等三角形提升练习1.如下图,△ ABC≌△ ADE, BC的延伸线过点 E,∠ ACB=∠ AED=105°,∠ CAD=10°,∠ B=50°,求∠DEF的度数。

EDFCA B2.如图,△ AOB 中,∠ B=30°,将△ AOB 绕点 O 顺时针旋转 52°,获得△ A′ OB′,边 A′ B′与边 OB交于点 C(A′不在 OB 上),则∠ A′ CO的度数为多少BA'CB'AO3. 如下图,在△ABC 中,∠ A=90°, D、 E 分别是AC、 BC 上的点,若△ADB≌△ EDB≌△ EDC,则∠ C的度数是多少ADBC E4.如下图,把△ ABC 绕点 C 顺时针旋转 35°,获得△ A′B′ C,A′ B′交 AC 于点 D,若∠ A′ DC=90°,则∠ A=A'ADB'B C5. 已知,如下图,AB=AC, AD⊥BC 于 D,且 AB+AC+BC=50cm,而 AB+BD+AD=40cm,则 AD 是多少CA DB6. 如图, Rt△ ABC中,∠ BAC=90°, AB=AC,分别过点B、C 作过点 A 的垂线 BC、 CE,垂足分别为D、E,若 BD=3, CE=2,则 DE=BCD A E7. 如图, AD 是△ ABC的角均分线, DE⊥ AB, DF⊥ AC,垂足分别是E、 F,连结 EF,交 AD 于 G,AD 与 EFA 垂直吗证明你的结论。

EGFCBD8.如下图,在△ ABC 中, AD 为∠ BAC 的角均分线, DE⊥ AB 于 E, DF⊥ AC 于 F,△ ABC 的面积是28cm2,AB=20cm, AC=8cm,求 DE 的长。

AE FB D CA9. 已知,如图: AB=AE,∠ B=∠ E,∠ BAC=∠ EAD,∠ CAF=∠ DAF,求证: AF⊥ CDBEC F D10.如图, AD=BD, AD⊥ BC 于 D, BE⊥ AC 于 E, AD 与 BE订交于点 H,则 BH 与 AC相等吗为何AEHB D C11.如下图,已知, AD 为△ ABC 的高, E 为 AC 上一点, BE 交 AD 于 F,且有 BF=AC, FD=CD,求证: BE⊥ AC AEFB D C12.△ DAC、△ EBC均是等边三角形, AF、BD 分别与 CD、CE交于点 M 、N,求证:(1)AE=BD ( 2)CM=CN( 3)△ CMN 为等边三角形( 4) MN ∥BC EDM NA C B13.已知:如图 1,点 C 为线段 AB 上一点,△ ACM、△ CBN都是等边三角形, AN 交 MC 于点 E,BM 交 CN 于点F(1)求证: AN=BM(2)求证:△ CEF为等边三角形14.如下图,已知△ ABC和△ BDE 都是等边三角形,以下结论:①AE=CD;② BF=BG;③ BH 均分∠ AHD;④∠ AHC=60°;⑤△ BFG是等边三角形;⑥ FG∥ AD,此中正确的有()EA.3 个 B.4个 C. 5个 D.6个C HF GABD15.已知: BD、 CE是△ ABC 的高,点 F 在 BD 上, BF=AC,点 G 在 CE的延伸线上, CG=AB,求证: AG⊥AFG AEDFB C16. 如图:在△ ABC 中, BE、CF 分别是 AC、 AB 两边上的高,在BE 上截取 BD=AC,在 CF 的延伸线上截取CG=AB,连结 AD、 AGG A求证:( 1) AD=AGF E( 2) AD 与 AG 的地点关系如何DHB C17.如图,已知E 是正方形 ABCD的边 CD 的中点,点 F 在 BC上,且∠ DAE=∠ FAE 求证: AF=AD-CF ADE BF C18.如下图,已知△ ABC中, AB=AC, D 是 CB 延伸线上一点,∠ADB=60°, E 是 AD 上一点,且 DE=DB,求证: AC=BE+BC AE19.如下图,已知在△ AEC中,∠ E=90°, AD 均分∠ EAC, DF⊥ AC,垂足为 F,,求证:BE=CFDB=DCBEB DA F C 20.已知如图: AB=DE,直线 AE、 BD 订交于 C,∠ B+∠D=180°, AF∥DE,交 BD 于 F,求证: CF=CDABDF CE21.如图, OC是∠ AOB 的均分线, P 是 OC 上一点, PD⊥ OA 于 D, PE⊥ OB 于 E, F 是 OC上一点,连结 DF 和 EF,求证: DF=EF ADOCFPEB22.已知:如图, BF⊥ AC于点 F, CE⊥ AB 于点 E,且 BD=CD,求证:( 1)△ BDE≌△ CDF(2)点 D在∠A 的均分线上BEDA F C23.如图,已知 AB∥CD, O 是∠ ACD与∠ BAC的均分线的交点,OE⊥ AC 于 E,且 OE=2,则 AB 与 CD之间的距离是多少A BEOC DA DM24.如图,过线段 AB 的两个端点作射线AM、 BN,使 AM∥BN,按以下要求绘图并回答:画∠ MAB、∠ NBA 的均分线交于 EE(1)∠ AEB 是什么角(2)过点 E 作向来线交 AM 于 D,交 BN 于 C,察看线段 DE、CE,你有何发现B C N (3)不论 DC的两头点在 AM 、BN 如何挪动,只需 DC 经过点 E,① AD+BC=AB;② AD+BC=CD谁建立并说明原因。

初二数学 提高题专题复习全等三角形压轴几何题练习题及答案

初二数学 提高题专题复习全等三角形压轴几何题练习题及答案

初二数学提高题专题复习全等三角形压轴几何题练习题及答案一、全等三角形旋转模型1.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120º,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.答案:C解析:(1)CF=CG;(2)CF=CG,见解析【分析】(1)结论CF=CG,由角平分线性质定理即可判断.(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF=CG;证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,∴CF=CG(角平分线上的点到角两边的距离相等);(2)CF=CG.理由如下:如图,过点C作CM⊥OA,CN⊥OB,∵OP平分∠AOB,CM⊥OA,CN⊥OB,∠AOB=120º,∴CM=CN(角平分线上的点到角两边的距离相等),∴∠AOC=∠BOC=60º(角平分线的性质),∵∠DCE=∠AOC,∴∠AOC=∠BOC=∠DCE=60º,∴∠MCO=90º-60º =30º,∠NCO=90º-60º =30º, ∴∠MCN=30º+30º=60º, ∴∠MCN=∠DCE ,∵∠MCF=∠MCN-∠DCN ,∠NCG=∠DCE-∠DCN , ∴∠MCF=∠NCG , 在△MCF 和△NCG 中,CMF CNG CM CNMCF NCG ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MCF ≌△NCG (ASA ), ∴CF=CG (全等三角形对应边相等); 【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等 .2.我们定义:有一组对角为直角的四边形叫做“对直角四边形”.(1)如图①,四边形ABCD 为对直角四边形,∠B=90°,若AB 2-AD 2=4,求CD 2-BC 2的值; (2)如图②,四边形ABCD 中,∠ABC=90°,AB=BC ,若BD 平分∠ADC ,求证:四边形ABCD 为对直角四边形;(3)在(2)的条件下,如图③,连结AC ,若35ACD ABCS S=,求tan ∠ACD 的值.答案:A解析:⑴ 4;⑵见解析 ;⑶tan ∠ACD 的值为3或13. 【分析】(1)利用勾股定理即可解决问题;(2)如图②中,作BE ⊥CD 于E ,BF ⊥DA 交DA 的延长线于F .只要证明∠EBF=90°即可解决问题;(3)如图③中,设AD=x ,BD=y .根据35ACD ABCSS=,构建方程即可解决问题. 【详解】解:如图①中,∵四边形ABCD为对直角四边形,∠B=90°,∴∠D=∠B=90°,∴AC2=AB2+BC2=AD2+DC2,∴CD2-BC2=AB2-AD2=4.(2)证明:如图②中,作BE⊥CD于E,BF⊥DA交DA的延长线于F.∵BD平分∠ADC,BE⊥CD,BF⊥AD,∴BE=BF,∵∠BFA=∠BEC=90°,BA=BC,BF=BE,∴Rt△BFA≌Rt△BEC(HL),∴∠ABF=∠CBE,∴∠EBF=∠ABC=90°,∴ADC=360°-90°-90°-90°=90°,∵∠ABC=∠ADC=90°,∴四边形ABCD为对直角四边形.(3)解:如图③中,设AD=x,BD=y.∵∠ADC=90°,∴tan ∠ACD=xy,AC=22x y +, ∵AB=AC ,∠ABC=90°, ∴AB=BC=22•22x y +, ∵35ACD ABCS S=, ∴()22132154xy x y =+, 整理得:3x 2-10xy+3y 2,∴3(x y )2-10•xy +3=0,∴x y =3或13. ∴tan ∠ACD 的值为3或13. 【点睛】本题属于四边形综合题,考查了勾股定理,三角形的面积,全等三角形的判定和性质,角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数,构建方程解决问题,属于中考压轴题. 3.探究问题: (1)方法感悟:如图①,在正方形ABCD 中,点E ,F 分别为DC ,BC 边上的点,且满足∠BAF =45°,连接EF ,求证DE +BF =EF .感悟解题方法,并完成下列填空:将△ADE 绕点A 顺时针旋转90°得到△ABG ,此时AB 与AD 重合,由旋转可得:AB =AD ,BG =DE ,∠1=∠2,∠ABG =∠D =90°,∴ ∠ABG +∠ABF =90°+90°=180°,因此,点G ,B ,F 在同一条直线上.∵ ∠EAF =45°∴ ∠2+∠3=∠BAD -∠EAF =90°-45°=45°. ∵ ∠1=∠2,∠1+∠3=45°. 即∠GAF =∠________. 又AG =AE ,AF =AE ∴ △GAF ≌△________.∴ _________=EF ,故DE +BF =EF . (2)方法迁移:如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF =∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.答案:E解析:(1)EAF、△EAF、GF;(2)DE+BF=EF.【解析】【分析】(1)利用角之间的等量代换得出∠GAF=∠FAE,再利用SAS得出△GAF≌△EAF,得出答案;(2)将△ADE顺时针旋转90°得到△ABG,再证明△AGF≌△AEF,即可得出答案;【详解】解:(1)如图①所示;根据等量代换得出∠GAF=∠FAE,利用SAS得出△GAF≌△EAF,∴GF=EF,故答案为:FAE;△EAF;GF;(2)DE+BF=EF,理由如下:假设∠BAD的度数为m,将△ADE绕点A顺时针旋转,m°得到△ABG,如图,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.∵ ,∴.∵ ∠1=∠2, ∴ ∠1+∠3=.即∠GAF =∠EAF . ∵在△AGF 和△AEF 中,,∴ △GAF ≌△EAF (SAS ). ∴ GF =EF .又∵ GF =BG +BF =DE +BF , ∴ DE +BF =EF . 【点睛】此题主要考查了全等三角形的判定和性质、以及折叠的性质和旋转变换性质等知识,证得△GAF ≌△EAF 是解题的关键.4.如图所示,ABC ∆中,1AB BC ==,90ABC ∠=︒,把一块含30角的直角三角板DEF 的直角顶点D 放在AC 的中点上(直角三角板的短直角边为DF ,长直角边为DE ),将三角板DEF 绕D 点按逆时针方向旋转.(1)在如图所见中,DE 交AB 于M ,DF 交BC 于N ,证明DM DN =; (2)继续旋转至如图所见,延长AB 交DE 于M ,延长BC 交DF 于N ,证明DM DN =.答案:B解析:(1)见解析;(2)见解析. 【解析】 【分析】(1)连接BD ,证明△DMB ≌△DNC .根据已知,全等条件已具备两个,再证出∠MDB=∠NDC ,用ASA 证明全等,四边形DMBN 的面积不发生变化,因为它的面积始终等于△ABC 面积的一半;(2)同样利用(1)中的证明方法可以证出△DMB ≌△DNC ; (3)方法同(1). 【详解】证明:(1)连接BD,∵AB=BC ,∠ABC=90°,点D 为AC 的中点 ∴BD ⊥AC ,∠A=∠C=45° ∴BD=AD=CD ∴∠ABD=∠A=45° ∴∠MBD=∠C=45° ∵∠MDB+∠BDN=90° ∠NDC+∠BDN=90° ∴∠MDB=∠NDC 在△MDB 和△NDC 中MBD C BD CDMDB NDC ∠∠⎧⎪⎨⎪∠∠⎩=== ∴△MDB ≌△NDC (ASA ) ∴DM=DN (5分)(2)DM=DN 仍然成立.理由如下:连接BD ,由(1)知BD ⊥AC ,BD=CD ∴∠ABD=∠ACB=45°∵∠ABD+∠MBD=180°∠ACB+∠NCD=180° ∴∠MBD=∠NCD ∵BD ⊥AC∴∠MDB+∠MDC=90° 又∠NDC+∠MDC=90°∴∠MDB=∠NDC 在△MDB 和△NDC 中MBD NCD BD CDMDB NDC ∠∠⎧⎪⎨⎪∠∠⎩=== ∴△MDB ≌△NDC (ASA ) ∴DM=DN. 【点睛】本题主要考查学生的推理能力,题目比较典型,利用ASA 求三角形全等(手拉手模型),还运用了全等三角形的性质,等腰直角三角形的性质,及等腰三角形三线合一定理等知识.5.如图,△ABC 中,O 是△ABC 内一点,AO 平分∠BAC ,连OB ,OC .(1)如图1,若∠ACB =2∠ABC ,BO 平分∠ABC ,AC =5,OC =3,则AB = ; (2)如图2,若∠CBO +∠ACO =∠BAC =60°,求证:BO 平分∠ABC ;(3)如图3,在(2)的条件下,若BC =3B 绕点O 逆时针旋转60°得点D ,直接写出CD 的最小值为 .答案:A解析:(1)8;(2)见解析;(3)33 【分析】(1)先补充证明角平分线的性质定理:如图,△ABC 中,AD 是角平分线,则:BDDC=AB AC .如图1中,延长CO 交AB 于E ,由OA 平分∠EAC ,推出AE AC =OE OC,推出AEEO =AC OC =53,设AE =5k ,OE =3k ,利用相似三角形的性质构建方程求出k 即可解决问题. (2)如图2中,过点O 作EF ⊥OA 交AB 于E ,交AC 于F ,作CG ∥EF 交AB 于G ,连接OG .证明△AGO ≌△ACO (SAS ),推出OG =OC ,推出∠OGC =∠OCG ,证明O ,G ,B ,C 四点共圆,可得结论.(3)如图3中,以BC 为边向上作等边△BCH ,连接OH ,作HM ⊥BC 于M .证明△HBO ≌△CBD (SAS ),推出OH =CD ,由(2)可知∠BOC =120°,推出当点O 落在HM 上时,OH 的值最小.【详解】解:(1)先补充证明角平分线的性质定理:如图,△ABC中,AD是角平分线,则:BD DC=AB AC.理由:过C作CE∥DA,交BA的延长线于E,∵CE∥DA,∴∠1=∠E,∠2=∠3,∠1=∠2,∴∠E=∠3,∴AE=AC,∵BDDC =BAAE,∴BDDC =ABAC.如图1中,延长CO交AB于E,∵OA平分∠EAC,∴AEAC=OEOC,∴AEEO =ACOC=53,设AE=5k,OE=3k,∵OB平分∠ABC,∴OC平分∠ACB,∵∠ACB=2∠ABC,∴∠BCE=12∠ACB=∠EBC,∴EB=EC=3k+3,∵∠ACE=∠ABC,∠CAE=∠BAC,∴△ACE∽△ABC,∴ACAB =AEAC,∴5533k k =55k,解得k=58或﹣1(舍弃),∴AB=8k+3=8.故答案为:8.(2)如图2中,过点O作EF⊥OA交AB于E,交AC于F,作CG∥EF交AB于G,连接OG.∵AO平分∠AEF,∴∠OAE=∠OAF,∵AO=AO,∠AOE=∠AOF=90°,∴△AOE≌△AOF(ASA),∴AE=AF,∵∠EAF=60°,∴△AEF是等边三角形,∴∠AEF=∠AFE=60°=∠FOC+∠FCO,∵∠OBC+∠FCO=60°,∴∠FOC=∠OBC,∵EF∥CG,∴∠AGC=∠AEF=60°,∠ACG=∠AFE=60°,∴∠AGC=∠ACG,∴AG=AC,∵∠GAO=∠CAO,AO=AO,∴△AGO≌△ACO(SAS),∴OG=OC,∴∠OGC=∠OCG,∵∠FOC=∠OCG,∴∠OBC=∠OGC,∴O,G,B,C四点共圆,∴∠ABO=∠OCG,∴∠ABO=∠OBC,∴OB平分ABC.(3)如图3中,以BC为边向上作等边△BCH,连接OH,作HM⊥BC于M.∵△OBD,△BCH都是等边三角形,∴∠HBC=∠OBD=60°,BH=BC,BO=BD,∴∠HBO=∠CBD,∴△HBO≌△CBD(SAS),∴OH=CD,由(2)可知∠BOC=120°,∴当点O落在HM上时,OH的值最小,此时OH=HM﹣OM=3﹣3,∴CD的最小值为3﹣3.故答案为:3﹣3.【点睛】本题主要考查角平分线、三角形相似的判定和性质、三角形全等的判定和性质、等边三角形等相关知识点,解题关键在于作出辅助线构造相应图形.6.如图1,在等腰Rt△ABC中,∠ABC=90°,AB=BC=6,过点B作BD⊥AC交AC于点D,点E、F分别是线段AB、BC上两点,且BE=BF,连接AF交BD于点Q,过点E作EH⊥AF交AF于点P,交AC于点H.(1)若BF=4,求△ADQ的面积;(2)求证:CH =2BQ ;(3)如图2,BE =3,连接EF ,将△EBF 绕点B 在平面内任意旋转,取EF 的中点M ,连接AM ,CM ,将线段AM 绕点A 逆时针旋转90°得线段AN ,连接MN 、CN ,过点N 作NR ⊥AC 交AC 于点R .当线段NR 的长最小时,直接写出△CMN 的周长.答案:A解析:(1)1.8;(2)证明见解析;(3. 【分析】(1)利用等腰直角三角形的性质求出12BD AD CD AC ====积相等和勾股定理分别求出AQ 和QD ,最后利用三角形面积公式即可求解;(2)如图,先作辅助线构造()AEH CFG ASA ∆∆≌,得到AH CG =,再通过转化得到2AH DQ =,最后利用AC ,得到一个相等关系,即()2AH HC BQ QD +=+,利用等式性质即可得到所求;(3)如图,通过做辅助线构造全等三角形确定出当HN ⊥AC ,且N 点位于H 、R 之间时,此时NR 的长最小,接着利用勾股定理和等腰直角三角形的性质,分别求出CM 、MN 、CN 的长,相加即可.【详解】解:6AB BC ==,°90ABC =∠,AC ==∴又∵AC BD ⊥∴BD 平分AC ,且BD 是∠ABC 的角平分线∴12BD AD CD AC ====Q 点到BA 和BC 边的距离相等; ∵4BF =, ∴6342ABQ BFQ S S ∆∆==, ∴32AQ FQ =,∵AF ===∴35AQ AF ==∴QD ===,∴1 1.825ADQ S ∆=⨯⨯=,∴△ADQ 的面积为1.8.(2)如图,作CG ⊥AC ,垂足为C ,交AF 的延长线于点G ,∴°90ACG =∠∵°45ACB CAB ==∠∠,∴°45GCB CAB ==∠∠,∵EH ⊥AF ,∴°90EAP AEP +=∠∠,又∵°90EAP AFB +=∠∠∴AEP AFB =∠∠,∴AEP CFG =∠∠∵BE BF =,BA BC =∴AE CF =,在AEH ∆和CFG ∆中,AEH CFG AE CFEAH FCG ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()AEH CFG ASA ∆∆≌∴AH CG =;∵BD ⊥AC ,CG ⊥AC ,∴BD ∥CG ,∵D 点是AC 的中点,且BD ∥CG ,∴DQ 是ACG ∆的中位线, ∴12DQ CG =, ∴2DQ CG AH ==; ∵AC =2BD ,∴()2AH HC BQ QD +=+,∵2AH DQ =,∴CH =2BQ .(3)如图①,作AH ⊥AB ,且AH =AB ,∴∠NAH +∠HAM =∠HAM +∠BAM =90°,∴∠BAM =∠NAH ,∵AB =AH ,AM =AN ,∴()ABM AHN SAS ∆∆≌,∴HN =BM ,∵BE =BF =3,∠EBF =90°, ∴232EF BE ==∴由M 点是EF 的中点,可得1322BM EF == ∴322NH =, ∴N 点在以H 32为半径的圆上, 如图②,当HN ⊥AC ,且N 点位于H 、R 之间时,此时NR 的长最小, 为322NR HR HN HR =-=-, ∵∠BAC =45°,∴∠HAC =45°,∴∠AHN =45°,HR =AR ,∵222HR AR AH +=, ∴322HR AR ===, ∴323222NR HR =-=, ∵262AC AB == ∴32CR AC AR =-=∴()22333221022CN AN ⎛⎫==+= ⎪⎝⎭, ∵∠MAN =90°,AM =AN ,∴235MN AN ==,∴∠ABM =45°,∴∠EBM =45°,∴F 点在BA 上,E 点在CB 延长线上,如图,作MP ⊥EC ,垂足为P ,∴1322BP MP EB ===, ∴315622PC PB BC =+=+=, ∴223262MC MP PC =+=, ∴3263351022MC MN CN ++=++, ∴△CMN 的周长为3263351022++.【点睛】本题综合考查了等腰直角三角形的性质、全等三角形的判定与性质、旋转的性质、勾股定理、圆等知识,要求学生熟练掌握相关概念并能灵活应用它们,本题的综合性较强,难点在于作辅助线构造全等三角形以及线段之间的关系转化等,考查了学生综合分析和推理论证以及计算的能力,本题属于压轴题,蕴含了数形结合和转化的思想方法等.7.在ABC 中,,AB AC BAC α=∠=,点P 为线段CA 延长线上一动点,连接PB ,将线段PB 绕点P 逆时针旋转,旋转角为α,得到线段PD ,连接,DB DC .(1)如图1,当60α=︒时,请直接写出线段PA 与线段CD 的数量关系是__________,DCP ∠为______度;(2)如图2,当120α=︒时,写出线段PA 和线段DC 的数量关系,并说明理由; (3)如图2,在(2)的条件下,当23AB =13BP PC +的最小值. 答案:A解析:(1)PA =DC ,60;(2)CD 3PA .理由见详解;(232【分析】(1)先证明△ABC ,△PBD 是等边三角形,再证明△PBA ≌△DBC ,进而线段PA 与线段CD 的数量关系,利用全等三角形的性质以及三角形内角和等于180°,解决问题即可;(2)证明△CBD ∽△ABP ,可得3CD BC PA AB== (3)过点C 作射线CM ,使得sin ∠ACM =13,过点P 作PN ⊥CM 于点N ,则PN =13PC , 过点B 作BG ⊥BA 于点G ,当点B 、P 、N 共线时,BP +PN 最小,即13BP PC +最小,由BGP CNP ∽,得13GP NP BP CP ==,结合勾股定理求出GP ,从而得CP ,进而即可求解. 【详解】(1)①证明: ∵将线段PB 绕点P 逆时针旋转,旋转角为α,得到线段PD , ∴PB =PD ,∵AB =AC ,PB =PD ,∠BAC =∠BPD =60°,∴△ABC ,△PBD 是等边三角形,∴∠ABC =∠PBD =60°,∴∠PBA =∠DBC ,∵BP =BD ,BA =BC ,∴△PBA ≌△DBC (SAS ),∴PA =DC .设BD 交PC 于点O ,如图1,∵△PBA ≌△DBC ,∴∠BPA =∠BDC ,∵∠BOP =∠COD ,∴∠OBP =∠OCD =60°,即∠DCP =60°.故答案是:PA =DC ,60;(2)解:结论:CD 3.理由如下:∵AB =AC ,PB =PD ,∠BAC =∠BPD =120°,∴BC =2•AB •cos30°3,BD ═2BP •cos30°3, ∴BC BD BA BP=3 ∵∠ABC =∠PBD =30°,∴∠ABP =∠CBD ,∴△CBD ∽△ABP , ∴3CD BC PA AB== ∴CD 3; (3) 过点C 作射线CM ,使得sin ∠ACM =13,过点P 作PN ⊥CM 于点N ,则PN =13PC , 过点B 作BG CA ⊥于点G ,则BG =AB ×sin ∠BAG 3=3,AG = AB ×cos ∠BAG 3 当点B 、P 、N 共线时,BP +PN 最小,即13BP PC +最小, ∵∠BGP =∠CNP =90°,∠BPG =∠CPN , ∴BGP CNP ∽, ∴13GP NP BP CP ==, 设GP =x ,则AP 3-x ,BP =3x ,∴()22233x x +=,解得:x 324∴BP =924,AP =3-324, ∴CP =AC +AP =23+3-324=33-324, ∴13BP PC +最小值=924+13×(33-324)=3+22.【点睛】本题属于几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,第(1)(2)题解题的关键是正确寻找全等三角形或相似三角形解决问题,第(3)题的关键是过点C 作射线CM ,使得sin ∠ACM =13,过点P 作PN ⊥CM 于点N .8.如图,已知ABC 和ADE 均为等腰三角形,AC =BC ,DE =AE ,将这两个三角形放置在一起.(1)问题发现:如图①,当60ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,则CEB ∠= °,线段BD 、CE 之间的数量关系是 ;(2)拓展探究:如图②,当90ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,请判断CEB ∠的度数及线段BD 、CE 之间的数量关系,并说明理由;(3)解决问题:如图③,90ACB AED ∠∠︒==,25AC =,AE =2,连接CE 、BD ,在AED 绕点A 旋转的过程中,当DE BD ⊥时,请直接写出EC 的长.答案:C解析:(1)60BD CE ,=;(2)45CEB BD ∠︒=,,理由见解析;(3)CE 的长为或【分析】(1)证明ACE ABD ≌,得出CE =BD ,AEC ADB ∠=∠,即可得出结论; (2)证明ACE ABD ∽,得出AEC ADB ∠=∠,BD =,即可得出结论; (3)先判断出BD =,再求出AB =:①当点E 在点D 上方时,先判断出四边形APDE 是矩形,求出AP =DP =AE =2,再根据勾股定理求出,BP =6,得出BD =4;②当点E 在点D 下方时,同①的方法得,AP =DP =AE =1,BP =6,进而得出BD =BP +DP =8,即可得出结论.【详解】解:(1)ABC 为等腰三角形,60AC BC ACB ∠︒=,=,∴ABC 是等边三角形,同理可得ADE 是等边三角形6018012060BAD DAC DAC CAE BAD CAE AD AE AB ACEAC DAB ACE ABD SAS BD CEAEC ADB ADE AEC AED CEBCEB ∠+∠=∠+∠=︒∴∠=∠=⎧⎪=⎨⎪∠∠⎩∴∴=∠=∠=︒-∠=︒∠=∠+∠∴∠=︒=≌()故答案为:60CEB BD CE ∠=︒=;.(2)45CEB BD ∠︒=,,理由如下:在等腰三角形ABC 中,AC =BC ,90ACB ∠︒=,45AB CAB ∴∠︒,= ,同理,45AD ADE DAE ∠∠︒,==, ∴AE AC AD AB =,DAE CAB ∠∠=, EAC DAB ∴∠∠=,ACE ABD ∴∽ ,∴BD AD CE AE==∴2AEC ADB BD CE ∠∠=,=, 点B 、D 、E 在同一条直线上:180135ADB ADE ∴∠︒-∠︒== 135AEC ∴∠︒=45CEB AEC AED ∴∠∠-∠︒==; (3)由(2)知,ACE ABD ∽, 2BD CE ∴=,在Rt ABC 中,25AC =, 2210AB AC ∴== ,①当点E 在点D 上方时,如图③, 过点A 作AP BD ⊥交BD 的延长线于P , DE BD ⊥,PDE AED APD ∴∠∠∠==, ∴四边形APDE 是矩形,AE DE = ,∴矩形APDE 是正方形,2AP DP AE ∴===,在Rt APB △中,根据勾股定理得,226BP AB AP -==, 4BD BP AP ∴-==,1222CE BD ∴==; ②当点E 在点D 下方时,如图④同①的方法得,AP =DP =AE =2,BP =6, ∴BD =BP +DP =8,122CE BD ∴==4, 综上CE 的长为22或42.【点睛】本题是几何变换的综合题,主要考查了旋转的性质,全等三角形的判定和定理,相似三角形的判定和性质,勾股定理,等边三角形的性质,判断出三角形ACE 和三角形ABD 相似是关键.9.(1)ABC 和CDE △是两个等腰直角三角形,如图1,其中90ACB DCE ∠=∠=︒,连接AD 、BE ,求证:ACD △≌BCE .(2)ABC 和CDE △是两个含30°的直角三角形,中90ACB DCE ∠=∠=︒,∠=CAB CDE ∠30=︒,CD AC <,CDE △从边CD 与AC 重合开始绕点C 逆时针旋转一定角度()0180αα︒<<︒.①如图2,DE 与BC 交于点F ,交AB 于G ,连接AD ,若四边形ADEC 为平行四边形,求BG AG的值. ②若12AB =,当点D 落在AB 上时,求BE 的长.答案:A解析:(1)见解析;(2)①13BG AG =;②2212312cos 4sin 1ααα+- 【分析】(1)利用SAS 证明即可;(2)①连接CG ,根据平行四边形的性质推出//AD CE ,求出120ADE ∠=︒,得到90ADC ADE CDE ∠=∠-∠=︒,根据30CAB CDE ∠=∠=︒证得A 、D 、G 、C 四点共圆,从而得到90AGC ADC ∠=∠=︒,利用直角三角形中30度角的性质求出3AG CG =, 3CG BG =,即可求出答案;②先证明ACD △∽BCE ,由此推出∠DBE=90°,得到DBE 为直角三角形,设BE a =,则3AD a =,123BD a =-,过D 点作DH AC ⊥于H ,利用30A ∠=︒得到3sin 302DH AD a =︒=,由ACD α∠=,得到3sin 2sin HD a CD αα==,由此求出cos30sin CD a DE α==︒,由勾股定理得222DE BE BD =+,即()2222221231443243sin a a a a a a α=+-=++-,解方程求出a.【详解】 (1)∵ABC 和CDE △是两个等腰直角三角形,∴AC BC =,CD CE =,ACB DCE ∠=∠,∴∠ACB-∠DCB=∠DCE-∠DCB ,∴ACD BCE ∠=∠,在ACD △和BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴ACD △≌BCE (SAS ).(2)①连接CG ,如图所示,∵四边形ADEC 为平行四边形,∴//AD CE ,∴180ADE CED ∠+∠=︒,∵90903060CED CDE ∠=︒-∠=︒-︒=︒,∴120ADE ∠=︒,∴90ADC ADE CDE ∠=∠-∠=︒,∵30CAB CDE ∠=∠=︒,∴A 、D 、G 、C 四点共圆,∴90AGC ADC ∠=∠=︒,∵30CAB ∠=︒, ∴12CG AC =,3AG CG =,30BCG ∠=︒, ∴3CG BG =,即33BG CG =, ∴13BG AG =;②∵90ACB DCE ∠=∠=︒,∴ACB DCB DCE DCB ∠-∠=∠-∠,∴ACD BCE ∠=∠,∵30CAB CDE ∠=∠=︒,∴3AC DC BC CE ==, ∴ACD △∽BCE ,∴CAD CBE ∠=∠,∴90DBE DBC CBE DBC CAD ∠=∠+∠=∠+∠=︒,∴DBE 为直角三角形,设BE a =,∴3AD a =,∴123BD a =,过D 点作DH AC ⊥于H ,30A ∠=︒, 则3sin 302DH AD a =︒=, 又∵ACD α∠=,∴3sin 2sin HD a CD αα==, 又在Rt CDE △中,30∠=︒CDE ,∴cos30sin CD a DE α==︒, ∴在Rt BDE △中,由勾股定理得222DE BE BD =+,即()2222221231443243sin a a a a a a α=+-=++-,∴22142431440sin a a α⎛⎫--+= ⎪⎝⎭, 解得22576243576sin 28sin a αα±-=-, 即222243sin 241sin 8sin 2a ααα+-=- 2222243sin 24cos 123sin 12cos 8sin 24sin 1αααααα++==--, 故BE 的长为22123sin 12cos 4sin 1ααα+-.【点睛】此题考查等腰直角三角形的性质,三角形全等的判定及性质,旋转的性质,平行四边形的性质,四点共圆,含30度角的直角三角形的性质,相似三角形的判定及性质,锐角三角函数,是一道较难的几何综合题.10.在等腰Rt ABC △中,AB AC =、90BAC ∠=︒.(1)如图1,D ,E 是等腰Rt ABC △斜边BC 上两动点,且45DAE ∠=︒,将ABE △绕点A 逆时针旋转90后,得到AFC △,连接DF .①求证:AED AFD ≌.②当3BE =,9CE =时,求DE 的长.(2)如图2,点D 是等腰Rt ABC △斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt ADE △(E 点在直线BC 的上方),当3BD =,9BC =时,求DE 的长.答案:D解析:(1)①证明见解析;②5;(2)35或317【分析】(1)①证明∠DAE=∠DAF=45°即可利用SAS 证明全等;②由①中全等可得DE=DF ,再在Rt △FDC 中利用勾股定理计算即可;(2)连接BE ,根据共顶点等腰直角三角形证明全等,再利用勾股定理计算即可。

全等三角形的证明及计算大题专项训练(30道)(含答案)

全等三角形的证明及计算大题专项训练(30道)(含答案)

全等三角形的证明及计算大题专项训练(30道)考卷信息:本套训练卷共30题,培优篇15题,拔尖篇15题,题型针对性较高,覆盖面广,选题有深度,可深化学生对全等三角形工具的应用及构造全等三角形!1.(2021春•道里区期末)如图,点A ,C 在EF 上,AD ∥BC ,DE ∥BF ,AE =CF .(1)求证:△ADE ≌△CBF ;(2)直接写出图中所有相等的线段(AE =CF 除外).【解题思路】(1)利用ASA 证明△ADE ≌△CBF 即可;(2)根据△ADE ≌△CBF 即可得图中所有相等的线段.【解答过程】(1)证明:∵AD ∥BC∴∠DAC =∠BCA ,又∵∠DAC +∠EAD =180°,∠BCA +∠FCB =180°,∴∠EAD =∠FCB ,∵DE ∥BF ,∴∠E =∠F ,在△ADE 和△CBF 中,{∠EAD =∠FCB AE =CF ∠E =∠F,∴△ADE ≌△CBF (ASA ),(2)∵△ADE ≌△CBF ,∴ED =FB ,DA =BC ,EC =F A .∵AD ∥BC ,∴∠DAC =∠BCA ,在△ADC 和△CBA 中,{AD =CB ∠DAC =∠CBA AC =CA,∴△ADC ≌△CBA (SAS ),∴AB =CD ;∴图中所有相等的线段有:ED =FB ,DA =BC ,AB =CD ,EC =F A .2.(2021春•宁德期末)如图,AB ,CD 交于点O ,AC =DB ,∠ACD =∠DBA .(1)说明△AOC ≌△DOB 的理由;(2)若∠ACD =94°,∠CAO =28°,求∠OCB 的度数.【解题思路】(1)直接利用AAS 即可证明△AOC ≌△DOB ;(2)利用三角形外角的性质得到∠COB ,再根据△AOC ≌△DOB 得到OC =OB ,即可求得∠OCB .【解答过程】解:(1)在△AOC 和△DOB 中,{∠AOC =∠DOB ∠ACO =∠DBO AC =DB,∴△AOC ≌△DOB (AAS );(2)∵∠ACD =94°,∠CAO =28°,∴∠COB =∠ACD +∠CAO =122°,∵△AOC ≌△DOB ,∴OC =OB ,∴∠OCB =(180°﹣122°)÷2=29°.3.(2021春•沙坪坝区校级期末)如图,在△ABC 中,AC =BC ,点D 在AB 边上,点E 在BC 边上,连接CD ,DE .已知∠ACD =∠BDE ,CD =DE .(1)猜想AC 与BD 的数量关系,并证明你的猜想;(2)若AD =3,BD =5,求CE 的长.【解题思路】(1)利用AAS 证明△ADC ≌△BED ,即可得结论;(2)结合△ADC ≌△BED ,可得AC =BD =5,BE =AD =3,进而可得CE 的长.【解答过程】解:(1)AC =BD ,理由如下:∵AC =BC ,∴∠A =∠B ,在△ADC 和△BED 中,{∠A =∠B ∠ACD =∠BED CD =DE,∴△ADC ≌△BED (AAS ),∴AC =BD ;(2)由(1)知:△ADC ≌△BED ,∴AC =BD =5,BE =AD =3,∴BC =AC =5,∴CE =BC ﹣BE =2.4.(2021春•渝中区校级期末)如图,点E 在△ABC 的边AC 上,且∠ABE =∠C ,AF 平分∠BAE 交BE 于F ,FD ∥BC 交AC 于点D .(1)求证:△ABF ≌△ADF ;(2)若BE =7,AB =8,AE =5,求△EFD 的周长.【解题思路】(1)根据平行线的性质得到∠ADF =∠C ,等量代换得到∠ABF =∠ADF ,由角平分线的定义得到∠BAF =∠CAF ,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AD =AB =8,BF =DF ,由线段的和差得到DE =AD =AE =8﹣5=3,根据三角形的周长公式即可得到结论.【解答过程】解:(1)∵FD ∥BC ,∴∠ADF =∠C ,∵∠ABF =∠C ,∴∠ABF =∠ADF ,∵AF 平分∠BAE ,∴∠BAF =∠CAF ,在△ABF 和△ADF 中,{∠BAF =∠DAF ∠ABF =∠ADF AF =AF,∴△ABF ≌△ADF (AAS );(2)∵△ABF ≌△ADF ,∴AD =AB =8,BF =DF ,∵AE =5,∴DE =AD ﹣AE =8﹣5=3,∴△EFD 的周长=EF +DF +DE =EF +BF +DE =BE +DE =7+3=10.5.(2021春•北碚区校级期末)如图,已知D 是AC 上一点,AB =DA ,AB +DC =ED ,AE =BC .(1)求证:△ABC ≌△DAE ,(2)若∠BAE =125°,求∠DCB 的度数.【解题思路】(1)根据SSS 证明三角形全等即可.(2)利用全等三角形的性质以及三角形内角和定理求解即可.【解答过程】(1)证明:∵DE =AB +DC ,AB =AD ,∴DE =AD +DC =AC ,在△ABC 和△DAE 中,{AB =AD AC =DE BA =AE,∴△ABC ≌△DAE (SSS ).(2)解:∵△ABC ≌△DAE ,∴∠EAD =∠B ,∴∠B +∠BAC =∠EAD +∠BAC =∠EAB =125°,∴∠DCB =180°﹣(∠B +∠BAC )=180°﹣125°=55°.6.(2021春•莱芜区期末)如图,已知AD 、BC 相交于点O ,AB =CD ,AM ⊥BC 于点M ,DN ⊥BC 于点N ,BN =CM .(1)求证:△ABM ≌△DCN ;(2)试猜想OA 与OD 的大小关系,并说明理由.【解题思路】(1)根据HL 可证明:△ABM ≌△DCN ;(2)根据AAS 证明△AMO ≌△DNO 可得结论.【解答过程】(1)证明:∵BN =CM ,∴BN +MN =MN +CM ,即CN =BM ,∵AM ⊥BC 于点M ,DN ⊥BC 于点N ,∴∠AMB =∠DNC =90°,在Rt △ABM 和Rt △DCN 中,{AB =CD BM =CN, ∴Rt △ABM ≌Rt △DCN (HL );(2)解:OA =OD ,理由如下:∵Rt △ABM ≌Rt △DCN ,∴AM =DN ,在△AMO 和△DNO 中,{∠AOM =∠DNO ∠AMO =∠DNO AM =DN,∴△AMO ≌△DNO (AAS ),∴OA =OD .7.(2021春•静安区期末)如图,已知四边形ABCD 中,AB ∥CD ,AD ∥BC .E 为BD 上一点,且BE =AD ,∠DEF =∠ADC ,EF 交BC 的延长线于点F .(1)AD 和BC 相等吗?为什么?(2)BF 和BD 相等吗?为什么?【解题思路】(1)根据平行线的性质和全等三角形的判定和性质得出△ABD 与△CDB 全等,进而利用全等三角形的性质解答即可;(2)根据平行线的性质和全等三角形的判定和性质得出△EFB 与△CDB 全等,进而解答即可.【解答过程】解:(1)AD =CB ,理由如下:∵AD ∥BC ,∴∠ABD =∠CDB ,同理可得,∠ADB =∠CBD ,在△ABD 与△CDB 中,{∠ABD =∠CDB BD =DB ∠ADB =∠CBD,∴△ABD ≌△CDB (ASA ),∴AD =CB ;(2)BF =BD ,理由如下:∵AD =CB ,BE =AD ,∴BC =BE ,∵∠DEF =∠ADC ,∴∠DEF ﹣∠DBF =∠ADC ﹣∠ADB ,即∠EFB =∠CDB ,在△EFB 与△CDB 中,{∠EFB =∠CDB BC =BE ∠FBE =∠DBC,∴△EFB ≌△CDB (ASA ),∴FB =DB .8.(2021春•沙坪坝区校级月考)如图,△ABC 中,CD ⊥AB ,垂足为D .BE ⊥AC ,垂足为G ,AB =CF ,BE =AC .(1)求证:AE =AF ;(2)求∠EAF 的度数.【解题思路】(1)利用SAS 证明△AEB ≌△F AC 可证明结论;(2)由全等三角形的性质可得∠E =∠CAF ,由余角的定义可求得∠EAF 的度数.【解答过程】(1)证明:∵CD ⊥AB ,BE ⊥AC ,∴∠CAD +∠ACD =∠CAD +∠EBA =90°,∴∠ACD =∠EBA ,在△AEB 和△F AC 中,{AB =FC ∠EBA =∠ACF BE =CA,∴△AEB ≌△F AC (SAS ),∴AE =F A ;(2)解:∵△AEB ≌△F AC ,∴∠E =∠CAF ,∵∠E +∠EAG =90°,∴∠CAF +∠EAG =90°,即∠EAF =90°.9.(2021春•铁岭月考)已知:如图,AB =AC ,∠1=∠2.(1)找出图中的所有全等三角形(直接写出);(2)求证:AD =AE .【解题思路】(1)直接根据全等三角形的判定可得答案;(2)先根据SAS 证得△ABF ≌△ACF ,再根据ASA 证得△BDF ≌△CEF ,然后根据全等三角形的性质可得结论.【解答过程】解:(1)△ABF ≌△ACF ,△BDF ≌△CEF ,△ADF ≌△AEF ,△ADC ≌△AEB ;(2)证明:在△ABF 和△ACF 中,{AB =AC ∠1=∠2AF =AF,∴△ABF ≌△ACF (SAS ),∴∠B =∠C ,BF =CF .在△BDF 和△CEF 中,{∠B =∠C BF =CF ∠BFD =∠CFE,∴△BDF ≌△CEF (ASA ),∴BD =CE ,∴AB ﹣BD =AC ﹣CE ,∴AD =AE .10.(2021•南岗区模拟)已知:在△ABC 和△DBE 中,AB =DB ,BC =BE ,其中∠ABD =∠CBE .(1)如图1,求证:AC =DE ;(2)如图2,AB =BC ,AC 分别交DE ,BD 于点F ,G ,BC 交DE 于点H ,在不添加任何辅助线的情况下,请直接写出图2中的四对全等三角形.【解题思路】(1)根据SAS 证明△ABC 与△DBE 全等,利用全等三角形的性质解答即可.(2)根据全等三角形的判定解答即可.【解答过程】证明:(1)∵∠ABD =∠CBE ,∴∠ABD +∠DBC =∠CBE +∠DBC ,即∠ABC =∠DBE ,在△ABC 与△DBE 中,{AB =DB ∠ABC =∠DBE BC =BE,∴△ABC ≌△DBE (SAS ),∴AC =DE ;(2)由(1)得△ABC ≌△DBE ,∴∠A =∠D ,∠C =∠E ,AB =DB ,BC =BE ,∴AB =BE ,∵AB =BC ,∴∠A =∠C ,∴∠A =∠E ,在△ABG 与△EBH 中,{∠A =∠E AB =BE ∠ABD =∠EBC,∴△ABG ≌△EBH (ASA ),∴BG =BH ,在△DBH 与△CBG 中,{BG =BH ∠DBH =∠CBG DB =CB,∴△DBH ≌△CBG (SAS ),∴∠D =∠C ,∵DB =CB ,BG =BH ,∴DG =CH ,在△DFG 与△CFH 中,{∠DFG =∠CFH ∠D =∠C DG =CH,∴△DFG ≌△CFH (AAS ).11.(2021•三水区一模)如图,AB =AC ,直线l 过点A ,BM ⊥直线l ,CN ⊥直线l ,垂足分别为M 、N ,且BM =AN .(1)求证△AMB ≌△CNA ;(2)求证∠BAC =90°.【解题思路】(1)由HL证明△AMB≌△CNA即可;(2)先由全等三角形的性质得∠BAM=∠ACN,再由∠CAN+∠ACN=90°,得∠CAN+∠BAM=90°,即可得出结论.【解答过程】证明:(1)∵BM⊥直线l,CN⊥直线l,∴∠AMB=∠CNA=90°,在Rt△AMB和Rt△CNA中,{AB=CABM=AN,∴Rt△AMB≌Rt△CNA(HL);(2)由(1)得:Rt△AMB≌Rt△CNA,∴∠BAM=∠ACN,∵∠CAN+∠ACN=90°,∴∠CAN+∠BAM=90°,∴∠BAC=180°﹣90°=90°.12.(2021•广州模拟)如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是30.【解题思路】(1)根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC;(2)利用(1)中结论,根据全等三角形的性质即可解决问题;【解答过程】(1)证明:∵BE ⊥CE ,AD ⊥CE ,∴∠E =∠ADC =90°,∴∠EBC +∠BCE =90°.∵∠BCE +∠ACD =90°,∴∠EBC =∠DCA .在△BCE 和△CAD 中,{∠E =∠ADC ∠EBC =∠DCA BC =AC,∴△BCE ≌△CAD (AAS );(2)解:∵:△BCE ≌△CAD ,BE =5,DE =7,∴BE =DC =5,CE =AD =CD +DE =5+7=12.∴由勾股定理得:AC =13,∴△ACD 的周长为:5+12+13=30,故答案为:30.13.(2020春•越秀区校级期中)已知:△ABN 和△ACM 的位置如图所示,∠1=∠2,AB =AC ,AM =AN . 求证:(1)∠BAN =∠CAM ;(2)∠ODA =∠OEA .【解题思路】(1)由∠1=∠2,则∠1+∠MAN =∠2+∠MAN ,即∠BAN =∠CAM ;(2)先证△ACM ≌△ABN (SAS ),得∠M =∠N ,再证△ADN ≌△AEM (ASA ),即可得出结论.【解答过程】证明:(1)∵∠1=∠2,∴∠1+∠MAN =∠2+∠MAN ,即∠BAN =∠CAM ;(2)在△ACM 和△ABN 中,{AM =AN ∠CAM =∠BAN AC =AB,∴△ACM ≌△ABN (SAS ),∴∠M =∠N ,在△ADN 和△AEM 中,{∠DAN =∠EAM AN =AM ∠N =∠M,∴△ADN ≌△AEM (ASA ),∴∠NDA =∠MEA ,即∠ODA =∠OEA .14.(2020•江北区模拟)如图,在△ABC 中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作CF ∥AB ,交ED 的延长线于点F .(1)求证:△BDE ≌△CDF ;(2)当AD ⊥BC ,AE =2,CF =1时,求AC 的长.【解题思路】(1)根据平行线的性质得到∠B =∠FCD ,∠BED =∠F ,由AD 是BC 边上的中线,得到BD =CD ,于是得到结论;(2)根据全等三角形的性质得到BE =CF =1,求得AB =AE +BE =3,于是得到结论.【解答过程】证明:∵CF ∥AB ,∴∠B =∠FCD ,∠BED =∠F ,∵AD 是BC 边上的中线,∴BD =CD ,在△BDE 和△CDF 中,{∠B =∠FCD ∠BED =∠F BD =CD,∴△BDE ≌△CDF (AAS );(2)∵△BDE ≌△CDF ,∴BE =CF =1,∴AB =AE +BE =2+1=3,∵AD ⊥BC ,BD =CD ,∴AC =AB =3.15.(2020秋•萧山区月考)如图,已知在△ABC 中,BD ⊥AC 于D ,CE ⊥AB 于E ,F 是BD 上一点,BF =AC ,G 是CE 延长线上一点,CG =AB ,连接AG ,AF .(1)试说明∠ABD =∠ACE ;(2)探求线段AF ,AG 有什么关系?并请说明理由.【解题思路】(1)根据的等角的余角相等,即可证明∠ACG =∠ABF ;(2)根据SAS 推出△ABF ≌△GCA 即可解决问题;【解答过程】(1)证明:∵BD 、CE 是△ABC 的高,∴∠ADB =∠AEC =90°,∴∠ABF +∠BAD =90°,∠GCA +∠BAD =90°,∴∠ABF =∠GCA ,(2)结论:AF =AG ,AF ⊥AG .理由如下:在△ABF 和△GCA 中,{AB =CG ∠ABF =∠GCA BF =AC,∴△ABF ≌△GCA (SAS ),∴AF =AG ,∠GAC =∠AFB ,∵∠AFB=∠ADB+∠F AD,∠GAC=∠GAF+∠F AD,∴∠GAF=∠ADF,∵∠ADF=90°,∴∠GAF=90°,∴AG⊥AF,AG=AF.16.(2021•张家界模拟)如图,四边形ABCD中,AB=BC=2CD,AB∥CD,∠C=90°,E是BC的中点,AE与BD相交于点F,连接DE(1)求证:△ABE≌△BCD;(2)判断线段AE与BD的数量关系及位置关系,并说明理由;(3)若CD=1,试求△AED的面积.【解题思路】(1)由平行线的性质得出∠ABE+∠C=180°,得出∠ABE=90°=∠C,再证出BE=CD,由SAS证明△ABE≌△BCD即可;(2)由全等三角形的性质得出AE=BD,证出∠ABF+∠BAE=90°,得出∠AFB=90°,即可得出结论;(3)由全等三角形的性质得出BE=CD=1,求出CE=BC﹣BE=1,得出CE=CD,△AED的面积=梯形ABCD的面积﹣△ABE的面积﹣△CDE的面积,即可得出答案.【解答过程】(1)证明:∵AB∥CD,∴∠ABE+∠C=180°,∵∠C=90°,∴∠ABE=90°=∠C,∵E是BC的中点,∴BC=2BE,∵BC=2CD,∴BE=CD,在△ABE和△BCD中,{AB=BC∠ABE=∠CBE=CD,∴△ABE≌△BCD(SAS);(2)解:AE=BD,AE⊥BD,理由如下:由(1)得:△ABE≌△BCD,∴AE=BD,∵∠BAE=∠CBD,∠ABF+∠CBD=90°,∴∠ABF+∠BAE=90°,∴∠AFB=90°,∴AE⊥BD;(3)解:∵△ABE≌△BCD,∴BE=CD=1,∵AB=BC=2CD=2,∴CE=BC﹣BE=1,∴CE=CD,∴△AED的面积=梯形ABCD的面积﹣△ABE的面积﹣△CDE的面积=12(1+2)×2−12×2×1−12×1×1=3 2.17.(2020秋•台江区校级期中)如图,A,B,C三点共线,D,C,E三点共线,∠A=∠DBC,EF⊥AC 于点F,AE=BD.(1)求证:C是DE的中点;(2)求证:AB=2CF.【解题思路】(1)过D 作DH ⊥AC 的延长线与H ,根据全等三角形的判定证得△AEF ≌△BDH ,得到EF =DH ,再证得△EFC ≌△DHC 得到CE =CD ,即可证得即可证得结论;(2)由(1)得,△AEF ≌△BDH ,△EFC ≌△DHC ,根据全等三角形的性质得到AF =BH ,CF =CH ,再根据线段的和差即可证得结论.【解答过程】证明:(1)过D 作DH ⊥AC 的延长线与H ,∴∠EFC =∠DHC =90°,在△AEF 和△BDH 中,{∠A =∠DBC ∠AFE =∠BHD =90°AE =BD,∴△AEF ≌△BDH (AAS ),∴EF =DH ,在△EFC 和△DHC 中,{∠FCE =∠HCD ∠EFC =∠DHC =90°EF =DH,∴△EFC ≌△DHC (AAS ),∴CE =CD ,∴C 是DE 的中点;(2)由(1)得,△AEF ≌△BDH ,△EFC ≌△DHC ,∴AF =BH ,CF =CH ,∴AB +BF =BF +FH ,FH =2FC ,∴AB =FH ,∴AB =2CF .18.(2021春•铁岭月考)如图,△AOC 和△BOD 中,OA =OC ,OB =OD ,∠AOC =∠BOD =α(0<α<90°),AD 与BC 交于点P .(1)求证:△AOD ≌△COB ;(2)求∠APC (用含α的式子表示);(3)过点O 分别作OM ⊥AD ,ON ⊥BC ,垂足分别为点M 、N ,请直接写出OM 和ON 的数量关系.【解题思路】(1)由∠AOC =∠BOD ,可得∠AOD =∠COB ,然后根据SAS 可得结论;(2)根据全等三角形的性质得∠OAD =∠OCB ,再根据三角形外角性质可得答案;(3)根据全等三角形的性质得∠MAO =∠NCO ,由垂直定义得∠AMO =∠CNO ,再根据全等三角形的判定与性质可得结论.【解答过程】解:(1)∵∠AOC =∠BOD ,∴∠AOC +∠COD =∠BOD +∠COD ,∴∠AOD =∠COB ,在△AOD 和△COB 中,{OA =OC ∠AOD =∠COB OD =OB,∴△AOD ≌△COB (SAS );(2)由(1)可知△AOD ≌△COB ,∴∠OAD =∠OCB ,令AD 与OC 交于点E ,则∠AEC =∠OAD +∠AOC =∠OCB +∠APC ,∴∠AOC =∠APC ,∵∠AOC =α,∴∠APC =α;(3)∵△AOD ≌△COB ,∴∠P AP =∠BCO ,即∠MAO =∠NCO ,∵OM ⊥AD ,ON ⊥BC ,∴∠AMO =∠CNO =90°,在△AOM 和△CON 中,{∠MAO =∠NCO ∠AMO =∠CNO OA =OC,∴△AOM ≌△CON (AAS ),∴OM =ON .19.(2020秋•花都区月考)如图所示,BD 、CE 是△ABC 的高,点P 在BD 的延长线上,CA =BP ,点Q 在CE 上,QC =AB .(1)探究P A 与AQ 之间的关系;(2)若把(1)中的△ABC 改为钝角三角形,AC >AB ,∠A 是钝角,其他条件不变,上述结论是否成立?画出图形并证明你的结论.【解题思路】(1)由条件可得出∠1=∠2,可证得△APB ≌△QAC ,可得结论;(2)根据题意画出图形,结合(1)可证得△APB ≌△QAC ,可得结论.【解答过程】(1)结论:AP =AQ ,AP ⊥AQ 证明:∵BD 、CE 是△ABC 的高, ∴BD ⊥AC ,CE ⊥AB ,∴∠1+∠CAB =90°,∠2+∠CAB =90°, ∴∠1=∠2,在△QAC 和△APB 中,{QC =AB ∠1=∠2CA =BP,∴△QAC ≌△APB (SAS ),∴AQ =AP ,∠QAC =∠P ,而∠DAP +∠P =90°,∴∠DAP +∠QAC =90°,即∠QAP =90°,∴AQ ⊥AP ;即AP =AQ ,AP ⊥AQ ;(2)上述结论成立,理由如下:如图所示:∵BD 、CE 是△ABC 的高,∴BD ⊥AC ,CE ⊥AB ,∴∠1+∠CAE =90°,∠2+∠DAB =90°, ∵∠CAE =∠DAB ,∴∠1=∠2,在△QAC 和△APB 中,{QC =AB ∠1=∠2CA =BP,∴△QAC ≌△APB (SAS ),∴AQ =AP ,∠QAC =∠P ,∵∠PDA =90°,∴∠P +∠P AD =90°,∴∠QAC +∠P AD =90°,∴∠QAP =90°,∴AQ ⊥AP ,即AP =AQ ,AP ⊥AQ .20.(2020春•萍乡期末)在△ABC 中,AB =AC ,D 是直线BC 上一点,以AD 为一边在AD 的右侧作△ADE ,使AE =AD ,∠DAE =∠BAC ,连接CE ,设∠BAC =∠1,∠DCE =∠2.(1)如图①,当点D 在线段BC 上移动时,试说明:∠1+∠2=180°;(2)如图②,当点D 在线段BC 的延长线上移动时,请猜测∠1与∠2有怎样的数量关系?并说明理由.【解题思路】(1)由“SAS ”可证△BAD ≌△CAE ,可得∠ACE =∠ABD ,由三角形的内角和定理可得结论;(2)由“SAS ”可证△BAD ≌△CAE ,可得∠ACE =∠ABD ,由三角形的内角和定理和平角的定义可得结论.【解答过程】证明:(1)∵∠DAE =∠BAC ,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,{AB =AC ∠BAD =∠CAE AD =AE,∴△BAD ≌△CAE (SAS ),∴∠ACE =∠ABD ,∵∠BAC +∠ABD +∠ACB =180°,∴∠BAC +∠ACB +∠ACE =∠BAC +∠BCE =180°,∴∠1+∠2=180°;(2)∠1=∠2,理由如下:∵∠DAE =∠BAC ,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,{AB =AC ∠BAD =∠CAE AD =AE,∴△BAD ≌△CAE (SAS ),∴∠ACE =∠ABD ,∵∠BAC +∠ABD +∠ACB =180°,∠ACE +∠ACB +∠DCE =180°,∴∠1=∠2.21.(2020春•揭阳期末)已知△ABC ,点D 、F 分别为线段AC 、AB 上两点,连接BD 、CF 交于点E .(1)若BD ⊥AC ,CF ⊥AB ,如图1所示,试说明∠BAC +∠BEC =180°;(2)若BD 平分∠ABC ,CF 平分∠ACB ,如图2所示,试说明此时∠BAC 与∠BEC 的数量关系;(3)在(2)的条件下,若∠BAC =60°,试说明:EF =ED .【解题思路】(1)根据余角的性质得到∠DEC =∠BAC ,由于∠DEC +∠BEC =180°,即可得到结论;(2)根据角平分线的性质得到∠EBC =12∠ABC ,∠ECB =12∠ACB ,于是得到结论;(3)作∠BEC 的平分线EM 交BC 于M ,由∠BAC =60°,得到∠BEC =90°+12∠BAC =120°,求得∠FEB =∠DEC =60°,根据角平分线的性质得到∠BEM =60°,推出△FBE ≌△EBM ,根据全等三角形的性质得到EF =EM ,同理DE =EM ,即可得到结论.【解答过程】解:(1)∵BD ⊥AC ,CF ⊥AB ,∴∠DCE +∠DEC =∠DCE +∠F AC =90°,∴∠DEC =∠BAC ,∠DEC +∠BEC =180°,∴∠BAC +∠BEC =180°;(2)∵BD 平分∠ABC ,CF 平分∠ACB ,∴∠EBC =12∠ABC ,∠ECB =12∠ACB ,∠BEC =180°﹣(∠EBC +∠ECB )=180°−12(∠ABC +∠ACB )=180°−12(180°﹣∠BAC )=90°+12∠BAC ;(3)作∠BEC 的平分线EM 交BC 于M ,∵∠BAC =60°,∴∠BEC =90°+12∠BAC =120°,∴∠FEB =∠DEC =60°,∵EM 平分∠BEC ,∴∠BEM =60°,在△FBE 与△EBM 中,{∠FBE =∠EBM BE =BE ∠FEB =∠MEB,∴△FBE ≌△EBM (ASA ),∴EF =EM ,同理DE =EM ,∴EF =DE .22.(2020秋•淇滨区校级期中)(1)如图1所示,△ACB 和△ECD 都是等腰三角形,A 、C 、D 三点在同一直线上,连接BD 、AE ,并延长AE 交BD 于点F ,试判断AE 与BD 的数量关系及位置关系,并证明你的结论.(2)若△ECD 绕顶点C 顺时针转任意角度后得到图2,图1中的结论是否仍然成立?请说明理由.【解题思路】(1)根据SAS 推出△ACE ≌△BCD ,根据全等三角形的性质得出∠CAE =∠DBC ,根据∠ACB =90°求出∠CAE +∠AEC =90°,求出∠DBC +∠BEF =90°,根据三角形内角和定理求出∠BFE =90°即可;(2)根据SAS 推出△ACE ≌△BCD ,根据全等三角形的性质得出∠CAE =∠DBC ,根据∠ACB =90°求出∠CAE +∠AOC =90°,求出∠DBC +∠BOE =90°,根据三角形内角和定理求出∠BFO =90°即可.【解答过程】(1)AE ⊥BD .证明:在△ACE 和△BCD 中{AC =BC ∠ACE =∠BCD CE =CD∴△ACE ≌△BCD (SAS ),∴∠CAE =∠DBC ,∵∠ACB =90°,∴∠CAE +∠AEC =90°,∵∠CAE =∠DBC ,∠AEC =∠BEF ,∴∠DBC +∠BEF =90°,∴∠BFE =180°﹣90°=90°,∴AE ⊥BD ;(2)解:结论还成立,理由是:∵∠ACB =∠ECD ,∴∠ACB +∠BCE =∠ECD +∠BCE ,即∠ACE =∠BCD ,在△ACE 和△BCD 中{AC =BC ∠ACE =∠BCD CE =CD∴△ACE≌△BCD(SAS),∴∠CAE=∠DBC,∵∠ACB=90°,∴∠CAE+∠AOC=90°,∵∠CAE=∠DBC,∠AOC=∠BOE,∴∠DBC+∠BOE=90°,∴∠BFO=180°﹣90°=90°,∴AE⊥BD.23.(2020秋•蒙阴县期中)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕着点C旋转到如图1所示的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕着点C旋转到如图2所示的位置时,①找出图中一对全等三角形;②DE、AD、BE之间有怎样的数量关系,并加以证明.【解题思路】(1)根据余角和补角的性质易证得∠DAC=∠ECB,已知∠ADC=∠CEB=90°,AC=CB,根据全等三角形的判定AAS即可证明△ADC≌△CEB,根据各边的相等关系即可得DE=AD+BE.(2)同理可证得△ADC≌△CEB,再根据各边的相等关系可得DE=AD﹣BE.【解答过程】(1)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=90°,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠ACD+∠BCE=180°﹣90°=90°,∴∠DAC=∠ECB;在△ADC和△CEB中,∠ADC=∠CEB,∠DAC=∠ECB,AC=CB,∴△ADC≌△CEB(AAS)①,(7分)∴DC=EB,AD=CE,∴DE=AD+BE.(9分)(2)解:同理可得△ADC≌△CEB①;(11分)∴AD=CE,CD=BE,∴DE=AD﹣BE②.(14分)24.(2018秋•环翠区期末)(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,若∠EAF=12∠BAD,可求得EF、BE、FD之间的数量关系为BE+DF=EF.(只思考解题思路,完成填空即可,不必书写证明过程)(2)如图2,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,若∠EAF=12∠BAD,判断EF、BE、FD之间的数量关系还成立吗,若成立,请完成证明,若不成立,请说明理由.【可借鉴第(1)问的解题经验】【解题思路】(1)线段EF、BE、FD之间的数量关系是BE+DF=EF.如图1中,延长CB至M,使BM =DF,连接AM,利用全等三角形的性质解决问题即可.(2)结论:EF+DF=BE.如图2中,在BE上截取BM=DF,连接AM,证明△ABM≌△ADF(SAS),推出AM=AF,∠BAM=∠DAF,再证明△AEM≌△AEF(SAS),可得结论.【解答过程】解:(1)线段EF、BE、FD之间的数量关系是BE+DF=EF.如图1,延长CB至M,使BM=DF,连接AM,∵∠ABC +∠D =180°,∠ABC +∠1=180°,∴∠1=∠D ,在△ABM 和△ADF 中,{AB =AD ∠1=∠D BM =DF,∴△ABM ≌△ADF (SAS ),∴AM =AF ,∠3=∠2,∵∠EAF =12∠BAD ,∴∠4+∠4=∠EAF ,∴∠GAM =∠3+∠4=∠2+∠4=∠EAF ,在△MAE 和△F AE 中,{AM =AF ∠MAE =∠FAE AE =AE,∴△MAE ≌△F AE (SAS ),∴EF =EM ,∵EM =BM +BE =BE +DF ,∴EF =BE +FD ;故答案为:BE +DF =EF .(2)结论:EF +DF =BE .理由:在BE 上截取BM =DF ,连接AM ,∵∠B +∠ADC =180°,∠ADC +∠ADE =180°,∴∠B =∠ADF ,在△ABM 与△ADF 中,{BM =DF ∠ABM =∠ADF AB =AD,∴△ABM ≌△ADF (SAS ),∴AM =AF ,∠BAM =∠DAF ,∵∠EAF =12∠BAD ,∴∠EAF =∠EAM ,在△AEM 与△AEF 中,{AM =AF ∠EAF =∠EAM AE =AE,∴△AEM ≌△AEF (SAS ),∴EM =EF ,即BE ﹣BM =EF ,即BE ﹣DF =EF ,∴EF +DF =BE .25.(2021春•和平区期末)如图,在△ABC 中,AC =BC ,点D 在边AB 上,AB =4BD ,连接CD ,点E ,F 在线段CD 上,连接BF ,AE ,∠BFC =∠AEC =180°﹣∠ACB .(1)①∠FBC 与∠ECA 相等吗?说明你的理由;②△FBC 与△ECA 全等吗?说明你的理由;(2)若AE =11,EF =8,则请直接写出BF 的长为 3 ;(3)若△ACE 与△BDF 的面积之和为12,则△ABC 的面积为 48 .【解题思路】(1)①连接BC ,由已知及∠AEC =180°﹣∠AED ,可得到∠ACB =∠AED .再证明∠CAE =∠BCF ,由三角形内角和定理可得∠FBC =∠ECA ;②利用“ASA ”证明△FBC ≌△ECA ;(2)由(1)中全等三角形的结论及已知可得到BF 的长;(3)由(1)中结论可得S △FBC =S △ECA ,所以S △ECA +S △BDF =12=S △FBC +S △BDF =S △DBC ,根据AB =4BD ,可得到S △DBC =14S △ABC =12,从而可得△ABC 的面积.【解答过程】解:(1)①∠FBC =∠ECA ,理由如下:连接BC ,如右图.∵∠BFC =∠AEC =180°﹣∠ACB ,且∠AEC =180°﹣∠AED ,∴∠ACB =∠AED .由外角定理可得∠AED =∠ACD +∠CAE ,又∠ACB =∠ACD +∠BCF ,∴∠CAE =∠BCF ,由三角形内角和定理可得∠FBC =∠ECA .②△FBC 与△ECA 全等,理由如下:在△FBC 和△ECA 中,{∠FBC =∠ECA BC =CA ∠BCF =∠CAE,∴△FBC ≌△ECA (ASA ).(2)由(1)中②可知,FC =AE =11,BF =CE ,又EF =8,∴CE =FC ﹣EF =11﹣8=3,∴BF =3,故答案为:3.(3)由(1)中结论可知S△FBC=S△ECA,∴S△ECA+S△BDF=12=S△FBC+S△BDF=S△DBC,又AB=4BD,∴S△DBC=14S△ABC=12,∴S△ABC=48.故答案为:48.26.(2020•岱岳区一模)已知∠ABC=90°,点D是直线AB边上的点,AD=BC.(1)如图1,点D在线段AB上,过点A作AF⊥AB,且AF=BD,连接DC、DF、CF,试判断△CDF 的形状并说明理由;(2)如图2,点D在线段AB的延长线上,点F在点A的左侧,其他条件不变,以上结论是否仍然成立?请说明理由.【解题思路】(1)利用SAS证明△F AD≌△DBC,再利用全等三角形的性质得出FD=DC,即可判断三角形的形状;(2)利用SAS证明△F AD和△DBC全等,再利用全等三角形的性质得出FD=DC,∠FDC=90°,即可得出结论.【解答过程】(1)△CDF是等腰直角三角形,理由如下:∵AF⊥AB,∴∠A=90°,在△F AD和△DBC中,∵{AF=BD∠A=∠B=90°AD=BC,∴△F AD≌△DBC(SAS),∴∠ADF=∠BCD,DF=DC,∵∠BDC+∠BCD=90°,∴∠ADF+∠CDB=90°,∴∠FDC=180°﹣90°=90°,又∵DF=DC,∴△CDF是等腰直角三角形;(2)仍然成立,理由如下:∵AF⊥AB,∴∠A=90°,在△F AD和△DBC中,∵{AF=BD∠A=∠DBC=90°AD=BC,∴△F AD≌△DBC(SAS),∴∠ADF=∠BCD,DF=DC,∵∠BDC+∠BCD=90°,∴∠ADF+∠BDC=90°,即∠FDC=90°,又∵DF=DC,∴△CDF是等腰直角三角形.27.如图(1),线段AD∥BC,连接AB、CD,取CD中点E,连接AE,AE平分∠BAD.(1)线段AB与AD、BC之间存在怎样的等量关系?请说明理由.(2)如果点C在AB的左侧,其他条件不变,如图(2)所示,那么(1)中的结论还成立吗?如果成立,请说明理由;如果不成立,请写出新的结论,并说明理由.【解题思路】(1)延长AE ,BF 交于点F ,即可求证△ADE ≌△FCE ,即可求得CF =AD ,AB =BF ,即可求得AB =AD +BC ;(2)不成立,新的结论为:AB +BC =AD .延长AE ,BF 交于点F ,可证△ADE ≌△FCE 和AB =BF ,即可解题.【解答过程】解:(1)延长AE ,BF 交于点F ,∵AE 平分∠BAD ,∴∠BAF =∠DAF ,∵AD ∥BC ,∴∠AFB =∠DAF ,∴AB =BF ,在△ADE 和△FCE 中,{∠DAE =∠EFC ∠AED =∠FEC DE =CE,∴△ADE ≌△FCE (AAS ),∴CF =AD ,∵BF =BC +CF ,∴AB =BC +AD ;(2)不成立,新结论为:AB =AD ﹣BC .延长AE ,BF 交于点F ,证明:∵AE 平分∠BAD ,∴∠BAF =∠DAF ,∵AD ∥BC ,∴∠AFB =∠DAF ,∴AB =BF ,在△ADE 和△FCE 中,{∠DAE =∠EFC ∠AED =∠FEC DE =CE,∴△ADE ≌△FCE (AAS ),∴CF =AD ,∵BF +BC =CF ,∴AB +BC =AD .28.(2021春•章丘区期末)如图,CD 是经过∠BCA 顶点C 的一条直线,CA =CB ,E 、F 分别是直线CD 上两点,且∠BEC =∠CF A =α.(1)若直线CD 经过∠BCA 的内部,且E 、F 在射线CD 上.①如图1,若∠BCA =90°,α=90°,则BE = CF ;②如图2,若0°<∠BCA <180°,请添加一个关于α与∠BCA 关系的条件 α+∠BCA =180° ,使①中的结论们然成立,并说明明理由;(2)如图3,若线CD 经过∠BCA 的外部,a =∠BCA ,请提出关于EF ,BE ,AF 三条线段数量关系的合理猜想,并简述理由.【解题思路】(1)由∠BCA =90°,∠BEC =∠CF A =α=90°,可得∠CBE =∠ACF ,从而可证△BCE ≌△CAF ,故BE =CF .(2)若BE =CF ,则可使得△BCE ≌△CAF .根据题目已知条件添加条件,再使得一对角相等,△BCE ≌△CAF 便可得证.(3)题干已知条件可证△BCE ≌△CAF ,故BE =CF ,EC =F A ,从而可证明EF =BE +AF .【解答过程】解:(1)∵∠BEC =∠CF A =α=90°,∴∠BCE +∠CBE =180°﹣∠BEC =90°.又∵∠BCA =∠BCE +∠ACF =90°,∴∠CBE =∠ACF .在△BCE 和△CAF 中,{∠BEC =∠CFA ,∠CBE =∠ACF ,BC =AC .∴△BCE ≌△CAF (AAS ).∴BE =CF .(2)α+∠BCA =180°,理由如下:∵∠BEC =∠CF A =α,∴∠BEF =180°﹣∠BEC =180°﹣α.又∵∠BEF =∠EBC +∠BCE ,∴∠EBC +∠BCE =180°﹣α.又∵α+∠BCA =180°,∴∠BCA =180°﹣α.∴∠BCA =∠BCE +∠ACF =180°﹣α.∴∠EBC =∠FCA .在△BCE 和△CAF 中,{∠CBE =∠ACF ,∠BEC =∠CFA ,BC =CA .∴△BCE ≌△CAF (AAS ).∴BE =CF .(3)EF =BE +AF ,理由如下:∵∠BCA =α,∴∠BCE +∠ACF =180°﹣∠BCA =180°﹣α.又∵∠BEC =α,∴∠EBC +∠BCE =180°﹣∠BEC =180°﹣α.∴∠EBC =∠FCA .在△BEC 和△CF A 中,{∠EBC =∠FCA ,∠BEC =∠FCA ,BC =CA .∴△BEC ≌△CF A (AAS ).∴BE =CF ,EC =F A .∴EF =EC +CF =F A +BE ,即EF =BE +AF .29.(2020春•南岸区期末)在∠MAN 内有一点D ,过点D 分别作DB ⊥AM ,DC ⊥AN ,垂足分别为B ,C .且BD =CD ,点E ,F 分别在边AM 和AN 上.(1)如图1,若∠BED =∠CFD ,请说明DE =DF ;(2)如图2,若∠BDC =120°,∠EDF =60°,猜想EF ,BE ,CF 具有的数量关系,并说明你的结论成立的理由.【解题思路】(1)根据题目中的条件和∠BED =∠CFD ,可以证明△BDE ≌△CDF ,从而可以得到DE =DF ;(2)作辅助线,过点D 作∠CDG =∠BDE ,交AN 于点G ,从而可以得到△BDE ≌△CDG ,然后即可得到DE =DG ,BE =CG ,再根据题目中的条件可以得到△EDF ≌△GDF ,即可得到EF =GF ,然后即可得到EF ,BE ,CF 具有的数量关系.【解答过程】解:(1)∵DB ⊥AM ,DC ⊥AN ,∴∠DBE =∠DCF =90°,在△BDE 和△CDF 中,∵{∠BED =∠CFD ,∠DBE =∠DCF ,BD =CD ,∴△BDE ≌△CDF (AAS ).∴DE =DF ;(2)EF =FC +BE ,理由:过点D 作∠CDG =∠BDE ,交AN 于点G ,在△BDE 和△CDG 中,{∠EBD =∠GCD BD =CD ∠BDE =∠CDG,∴△BDE ≌△CDG (ASA ),∴DE =DG ,BE =CG .∵∠BDC =120°,∠EDF =60°,∴∠BDE +∠CDF =60°.∴∠FDG =∠CDG +∠CDF =60°,∴∠EDF =∠GDF .在△EDF 和△GDF 中,{DE =DG ∠EDF =∠GDF DF =DF,∴△EDF ≌△GDF (SAS ).∴EF =GF ,∴EF=FC+CG=FC+BE.30.(2021春•揭东区期末)已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F.(1)如图1,求证:△ACE≌△DCB.(2)如图1,若∠ACD=60°,则∠AFB=120°;如图2,若∠ACD=90°,则∠AFB=90°;(3)如图3,若∠ACD=β,则∠AFB=180°﹣β(用含β的式子表示)并说明理由.【解题思路】(1)求出∠ACE=∠DCB,根据SAS证出两三角形全等即可;(2)根据全等三角形性质得出∠AEC=∠DBC,∠CDB=∠CAE,求出∠EAB+∠DBA=∠ACD,∠AFB =180°﹣(∠EAB+∠DBC),代入求出即可;(3)根据全等三角形性质得出∠AEC=∠DBC,∠CDB=∠CAE,求出∠EAB+∠DBA=∠ACD,∠AFB =180°﹣(∠EAB+∠DBC),代入求出即可.【解答过程】(1)证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中∵{AC=CD∠ACE=∠DCB CE=CB,∴△ACE≌△DCB;(2)解:∵∠ACD=60°,∴∠CDB+∠DBC=∠ACD=60°,∵△ACE≌△DCB,∴∠AEC=∠DBC,∠CDB=∠CAE,∴∠CAE+∠DBC=60°,∴∠AFB=180°﹣60°=120°;当∠ACD=90°时,∵∠ACD=90°,∴∠CDB+∠DBC=∠ACD=90°,∵△ACE≌△DCB,∴∠AEC=∠DBC,∠CDB=∠CAE,∴∠CAE+∠DBC=90°,∴∠AFB=180°﹣90°=90°;故答案为:120°,90°;(3)解:当∠ACD=β时,∠AFB=180°﹣β,理由是:∵∠ACD=β,∴∠CDB+∠DBC=∠ACD=β,∵△ACE≌△DCB,∴∠AEC=∠DBC,∠CDB=∠CAE,∴∠CAE+∠DBC=β,∴∠AFB=180°﹣(∠CAE+∠DBC)=180°﹣β;故答案为:180°﹣β.。

北京海淀区尚丽外国语学校数学全等三角形(提升篇)(Word版 含解析)

北京海淀区尚丽外国语学校数学全等三角形(提升篇)(Word版 含解析)

北京海淀区尚丽外国语学校数学全等三角形(提升篇)(Word 版含解析)一、八年级数学轴对称三角形填空题(难)1.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,点E ,F 分别在边AB ,AC 上,将△AEF 沿直线EF 翻折,点A 落在点P 处,且点P 在直线BC 上.则线段CP 长的取值范围是____.【答案】15CP ≤≤【解析】【分析】根据点E 、F 在边AB 、AC 上,可知当点E 与点B 重合时,CP 有最小值,当点F 与点C 重合时CP 有最大值,根据分析画出符合条件的图形即可得.【详解】如图,当点E 与点B 重合时,CP 的值最小,此时BP=AB=3,所以PC=BC-BP=4-3=1,如图,当点F 与点C 重合时,CP 的值最大,此时CP=AC ,Rt △ABC 中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP 的最大值为5, 所以线段CP 长的取值范围是1≤CP≤5,故答案为1≤CP≤5.【点睛】本题考查了折叠问题,能根据点E 、F 分别在线段AB 、AC 上,点P 在直线BC 上确定出点E 、F 位于什么位置时PC 有最大(小)值是解题的关键.2.如图,在四边形ABCD 中,BC CD = ,对角线BD 平分ADC ∠,连接AC ,2ACB DBC ∠=∠,若4AB =,10BD =,则ABC S =_________________.【答案】10【解析】【分析】由等腰三角形的性质和角平分线的性质可推出AD ∥BC ,然后根据平行线的性质和已知条件可推出CA=CD ,可得CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,根据等腰三角形的性质和已知条件可得DE 的长和BCF CDE ∠=∠,然后即可根据AAS 证明△BCF ≌△CDE ,可得CF=DE ,再根据三角形的面积公式计算即得结果.【详解】解:∵BC CD =,∴∠CBD =∠CDB ,∵BD 平分ADC ∠,∴∠ADB =∠CDB ,∴∠CBD =∠ADB ,∴AD ∥BC ,∴∠CAD =∠ACB ,∵2ACB DBC ∠=∠,2ADC BDC ∠=∠,∠CBD =∠CDB ,∴ACB ADC ∠=∠,∴CAD ADC ∠=∠,∴CA=CD ,∴CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,则152DE BD ==,12BCF ACB ∠=∠, ∵12BDC ADC ∠=∠,ACB ADC ∠=∠,∴BCF CDE ∠=∠, 在△BCF 和△CDE 中,∵BCF CDE ∠=∠,∠BFC =∠CED =90°,CB=CD ,∴△BCF ≌△CDE (AAS ),∴CF=DE =5,∴11451022ABC S AB CF =⋅=⨯⨯=. 故答案为:10.【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质、角平分线的定义以及全等三角形的判定和性质等知识,涉及的知识点多、综合性强、具有一定的难度,正确添加辅助线、熟练掌握上述知识是解题的关键.3.在ABC ∆中,边AB 、AC 的垂直平分线分别交边BC 于点D 、点E ,20DAE ∠=︒,则BAC ∠=______°.【答案】80或100【解析】【分析】根据题意,点D 和点E 的位置不确定,需分析谁靠近B 点,则有如下图(图见解析)两种情况:(1)图1中,点E 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有1,2B DAE C DAE ∠=∠+∠∠=∠+∠,再根据三角形的内角和定理可得180B C BAC ∠+∠+∠=︒,联立即可求得;(2)图2中,点D 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有3,4B C ∠=∠∠=∠,由三角形的内角和定理得180B C BAC ∠+∠+∠=︒,联立即可求得.【详解】由题意可分如下两种情况:(1)图1中,根据垂直平分线性质可知,,BD AD AE CE ==,1,2B DAE C DAE ∴∠=∠+∠∠=∠+∠(等边对等角),两式相加得12B C DAE DAE ∠+∠=∠+∠+∠+∠,又12DAE BAC ∠+∠+∠=∠20B C BAC DAE BAC ∴∠+∠=∠+∠=∠+︒,由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠+︒+∠=︒,80BAC ∴∠=︒;(2)图2中,根据垂直平分线性质可知,,BD AD AE CE ==,3,4B C ∴∠=∠∠=∠(等边对等角), 两式相加得34B C ∠+∠=∠+∠,又34DAE BAC ∠+∠+∠=∠,3420BAC DAE BAC ∴∠+∠=∠-∠=∠-︒,20B C BAC ∴∠+∠=∠-︒由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠-︒+∠=︒,100BAC ∴∠=︒.故答案为80或100.【点睛】本题考查了垂直平分线的性质(垂直平分线上的点到线段两端点的距离相等)、等腰三角形的定义和性质(等边对等角)、以及三角形内角和定理,本题的难点在于容易漏掉第二种情况,出现漏解.4.在平面直角坐标系中,点A 在x 轴的正半轴上,点B 在y 轴的正半轴上,36ABO ∠=︒,在x 轴或y 轴上取点C ,使得ABC ∆为等腰三角形,符合条件的C 点有__________个.【答案】8【解析】【分析】观察数轴,按照等腰三角形成立的条件分析可得答案.【详解】解:如下图所示,若以点A为圆心,以AB为半径画弧,与x轴和y轴各有两个交点,但其中一个会与点B重合,故此时符合条件的点有3个;若以点B为圆心,以AB为半径画弧,同样与x轴和y轴各有两个交点,但其中一个与点A重合,故此时符合条件的点有3个;线段AB的垂直平分线与x轴和y轴各有一个交点,此时符合条件的点有2个.∴符合条件的点总共有:3+3+2=8个.故答案为:8.【点睛】本题考查了等腰三角形的判定,可以观察图形,得出答案.5.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的垂直平分线上;④S△DAC:S△ABC=1:3.其中正确的是__________________.(填所有正确说法的序号)【答案】4【解析】【分析】①连接NP,MP,根据SSS定理可得△ANP≌△AMP,故可得出结论;②先根据三角形内角和定理求出∠CAB的度数,再由AD是∠BAC的平分线得出∠1=∠2=30°,根据直角三角形的性质可知∠ADC=60°;③根据∠1=∠B可知AD=BD,故可得出结论;④先根据直角三角形的性质得出∠2=30°,CD=12AD,再由三角形的面积公式即可得出结论.【详解】①连接NP,MP.在△ANP与△AMP中,∵AN AMNP MPAP AP=⎧⎪=⎨⎪=⎩,∴△ANP≌△AMP,则∠CAD=∠BAD,故AD是∠BAC的平分线,故此选项正确;②∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.∵AD是∠BAC的平分线,∴∠1=∠2=12∠CAB=30°,∴∠3=90°﹣∠2=60°,∴∠ADC=60°,故此选项正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上,故此选项正确;④∵在Rt△ACD中,∠2=30°,∴CD=12AD,∴BC=BD+CD=AD+12AD=32AD,S△DAC=12AC•CD=14AC•AD,∴S △ABC=12AC•BC=12AC•32AD=34AC•AD,∴S△DAC:S△ABC=1:3,故此选项正确.故答案为①②③④.本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.6.如图,在直角坐标系中,点()8,8B -,点()2,0C -,若动点P 从坐标原点出发,沿y 轴正方向匀速运动,运动速度为1/cm s ,设点P 运动时间为t 秒,当BCP ∆是以BC 为腰的等腰三角形时,直接写出t 的所有值__________________.【答案】2秒或46秒或14秒【解析】【分析】分两种情况:PC 为腰或BP 为腰.分别作出符合条件的图形,计算出OP 的长度,即可求出t 的值.【详解】解:如图所示,过点B 作BD ⊥x 轴于点D ,作BE ⊥y 轴于点E ,分别以点B 和点C 为圆心,以BC 长为半径画弧交y 轴正半轴于点F ,点H 和点G∵点B (-8,8),点C (-2,0),∴DC=6cm ,BD=8cm ,由勾股定理得:BC=10cm∴在直角三角形COG 中,OC=2cm ,CG=BC=10cm ,∴2210246(cm)-=,当点P 运动到点F 或点H 时,BE=8cm ,BH=BF=10cm ,∴EF=EH=6cm∴OP=OF=8-6=2(cm )或OP=OH=8+6=14(cm ),故答案为:2秒,6秒或14秒.本题综合考查了勾股定理和等腰三角形在平面直角坐标系中的应用,通过作图找出要求的点的位置,利用勾股定理来求解是本题的关键.7.在△ABC 中,∠ACB=90º,D、E 分别在 AC、AB 边上,把△ADE 沿 DE 翻折得到△FDE,点 F 恰好落在 BC 边上,若△CFD 与△BFE 都是等腰三角形,则∠BAC 的度数为_________.【答案】45°或60°【解析】【分析】根据题意画出图形,设∠BAC的度数为x,则∠B=90°-x,∠EFB =135°-x,∠BEF=2x-45°,当△BFE 都是等腰三角形,分三种情况讨论,即可求解.【详解】∵∠ACB=90º,△CFD是等腰三角形,∴∠CDF=∠CFD=45°,设∠BAC的度数为x,∴∠B=90°-x,∵△ADE 沿 DE 翻折得到△FDE,点 F 恰好落在 BC 边上,∴∠DFE=∠BAC=x,∴∠EFB=180°-45°-x=135°-x,∵∠ADE=∠FDE,∴∠ADE=(180°-45°)÷2=67.5°,∴∠AED=180°-∠ADE-∠BAC=180°-67.5° -x=112.5°-x,∴∠DEF=∠AED=112.5°-x,∴∠BEF=180°-∠AED-∠DEF=180°-(112.5°-x)-(112.5°-x)=2x-45°,∵△BFE 都是等腰三角形,分三种情况讨论:①当FE=FB时,如图1,则∠BEF=∠B,∴90-x=2x-45,解得:x=45;②当BF=BE时,则∠EFB=∠BEF,∴135-x=2x-45,解得:x=60,③当EB=EF时,如图2,则∠B=∠EFB,∴135-x=90-x,无解,∴这种情况不存在.综上所述:∠BAC 的度数为:45°或60°.故答案是:45°或60°.图1 图2【点睛】本题主要考查等腰三角形的性质定理,用代数式表示角度,并进行分类讨论,是解题的关键.8.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为______.【答案】7或34【解析】【分析】分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.【详解】如图1,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OB=4,又∵∠AOC=∠BOM=60°,∴△BOM是等边三角形,∴BM=BO=4,∴Rt△ABM中,AM=22AB BM-=43;如图2,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OA=4,又∵∠AOC=60°,∴△AOM是等边三角形,∴AM=AO=4;如图3,当∠ABM=90°时,∵∠BOM=∠AOC=60°,∴∠BMO=30°,∴MO=2BO=2×4=8,∴Rt△BOM中,BM=22-=43,MO OB∴Rt△ABM中,AM=22+=47.AB BM综上所述,当△ABM为直角三角形时,AM的长为43或47或4.故答案为43或47或4.9.如图,∠AOB=45°,点M、点C在射线OA上,点P、点D在射线OB上,且OD=32,则CP+PM+DM的最小值是_____.【答案】34.【解析】【分析】如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC′,D′M,OD′,C′D′,根据轴对称的性质得到OC′=OC=2,OD′=OD=32,CP=C′P,DM=D′M,∠C′OD=′COD=∠COD′=45°,于是得到CP+PM+MD=C′+PM+D′M≥C′D′,当仅当C′,P,M,D′三点共线时,CP+PM+MD最小为C′D′,作C′T⊥D′O于点T,于是得到结论.【详解】解:如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC′,D′M,OD′,C′D′,则OC′=OC=2,OD′=OD=32,CP=C′P,DM=D′M,∠C′OD=′COD=∠COD′=45°,∴CP+PM+MD=C′+PM+D′M≥C′D′,当仅当C′,P,M,D′三点共线时,CP+PM+MD最小为C′D′,作C′T⊥D′O于点T,则C′T=OT=2,∴D′T=42,∴C′D′=34,∴CP+PM+DM的最小值是34.故答案为:34.【点睛】本题考查了最短路径问题,掌握作轴对称点是解题的关键.10.如图,在△ABC 中,AD 是高,DE 是 AC 的垂直平分线,AE=4cm,△ABD 的周长为15cm,则△ABC 的周长为______【答案】23cm .【解析】【分析】根据线段垂直平分线的性质得到AC=2AE=8,DA=DC ,根据三角形的周长公式计算即可.【详解】解:∵DE 是AC 的垂直平分线,∴AC=2AE=8,DA=DC ,∵△ABD 的周长=AB+BD+AD=AB+BD+DC=AB+BC=15,∴△ABC 的周长=AB+BC+AC=15+8=23cm ,故答案是:23cm .【点睛】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.二、八年级数学轴对称三角形选择题(难)11.如图,120AOB ∠=︒,OP 平分AOB ∠,且2OP =,若点M N 、分别在OA OB 、上,且PMN ∆为等边三角形,则满足上述条件的PMN ∆有( )A .1个B .2个C .3个D .无数个【答案】D【解析】【分析】 根据题意在OA 、OB 上截取OE=OF=OP ,作∠MPN=60°,只要证明△PEM ≌△PON 即可反推出△PMN 是等边三角形满足条件,以此进行分析即可得出结论.【详解】解:如图在OA 、OB 上截取OE=OF=OP ,作∠MPN=60°.∵OP 平分∠AOB ,120AOB ∠=︒,∴∠EOP=∠POF=60°,∵OE=OF=OP ,∴△OPE ,△OPF 是等边三角形,∴EP=OP ,∠EPO=∠OEP=∠PON=∠MPN=60°,∴∠EPM=∠OPN ,在△PEM 和△PON 中,PEM PON PE POEPM OPN ∠⎪∠⎧⎩∠⎪∠⎨=== ∴△PEM ≌△PON (ASA ).∴PM=PN ,∵∠MPN=60°,∴△PNM 是等边三角形,∴只要∠MPN=60°,△PMN 就是等边三角形,故这样的三角形有无数个.故选:D .【点睛】本题考查等边三角形的判定和性质、全等三角形的判定和性质、角平分线的定义等知识,解题的关键是正确添加辅助线并构造全等三角形.12.如图所示,在ABC 中,AC BC =,90ACB ︒∠=,AD 平分BAC ∠,BE AD ⊥交AC 的延长线F ,E 为垂足.则有:①AD BF =;②CF CD =;③AC CD AB +=;④BE CF =;⑤2BF BE =,其中正确结论的个数是()A .1B .2C .3D .4【答案】D【解析】【分析】利用全等三角形的判定定理及其性质以及等腰三角形的三线合一的性质逐项分析即可得出答案.【详解】解:∵AC BC =,90ACB ︒∠=∴45CAB ABC ︒∠=∠=∵AD 平分BAC ∠∴22.5BAE EAF ︒∠=∠=∵90EAF F FBC F ︒∠+∠=∠+∠=∴EAF FBC ∠=∠∴ADC BFC ≅∴AD=BF ,CF=CD ,故①②正确;∵CD=CF,∴AC+CD=AC+CF=AF∵67.5F ︒∠=∵18018067.54567.5ABF F CAB ︒︒︒︒︒∠=-∠-∠=--=∴AF=AB ,即AC+CD=AB ,故③正确;由③可知,三角形ABF 是等腰三角形,∵BE AD ⊥ ∴12BE BF = 若BE CF =,则30CBF ∠=︒与②中结论相矛盾,故④错误;∵三角形ABF 是等腰三角形,∵BE AD ⊥ ∴12BE BF = ∴BF=2BE ,故⑤正确;综上所述,正确的选项有4个.故选:D .【点睛】本题考查的知识点是全等三角形的判定定理及其性质,等腰三角形的判定与性质,等腰直角三角形的性质,掌握以上知识点是解此题的关键.13.如图,AOB α∠=,点P 是AOB ∠内的一定点,点,M N 分别在OA OB 、上移动,当PMN ∆的周长最小时,MPN ∠的值为( )A .90α+B .1902α+C .180α-D .1802α-【答案】D【解析】【分析】 过P 点作角的两边的对称点,在连接两个对称点,此时线段与角两边的交点,构成的三角形周长最小.再根据角的关系求解.【详解】解:过P 点作OB 的对称点1P ,过P 作OA 的对称点2P ,连接12PP ,交点为M,N ,则此时PMN 的周长最小,且△1P NP 和△2PMP 为等腰三角形.此时∠12P PP =180°-α;设∠NPM=x°,则180°-x°=2(∠12P PP -x°) 所以 x°=180°-2α 【点睛】求出M,N 在什么位子△PMN 周长最小是解此题的关键.14.在一个33⨯的正方形网格中,A ,B 是如图所示的两个格点,如果C 也是格点,且ABC 是等腰三角形,则符合条件的C 点的个数是( )A.6B.7C.8D.9【答案】C【解析】【分析】根据题意、结合图形,画出图形即可确定答案.【详解】解:根据题意,画出图形如图:共8个.故答案为C.【点睛】本题主要考查了等腰三角形的判定,根据题意、画出符合实际条件的图形是解答本题的关键.15.如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC 于F,AD交CE于G.则下列结论中错误的是( )A.AD=BE B.BE⊥ACC.△CFG为等边三角形D.FG∥BC【答案】B【解析】试题解析:A.ABC和CDE△均为等边三角形,60AC BC EC DC ACB ECD∴==∠=∠=︒,,,在ACD与BCE中,{AC BCACD BCECD CF=∠=∠=,ACD BCE∴≌,AD BE∴=,正确.B.据已知不能推出F是AC中点,即AC和BF不垂直,所以AC BE⊥错误,故本选项符合题意.C.CFG是等边三角形,理由如下:180606060ACG BCA∠=︒-︒-︒=︒=∠,ACD BCE≌,CBE CAD∴∠=∠,在ACG和BCF中,{CAG CBFAC BCBCF ACG∠=∠=∠=∠,ACG BCF∴≌,CG CH∴=,又∵∠ACG=60°CFG∴是等边三角形,正确.D.CFG是等边三角形,60CFG ACB∴∠︒=∠﹦,.FG BC∴正确.故选B.16.如图,C 是线段 AB 上一点,且△ACD 和△BCE 都是等边三角形,连接 AE、BD 相交于点O,AE、BD 分别交 CD、CE 于 M、N,连接 MN、OC,则下列所给的结论中:①AE=BD;②CM=CN;③MN∥AB;④∠AOB=120º;⑤OC 平分∠AOB.其中结论正确的个数是()A.2 B.3 C.4 D.5【答案】D【解析】【分析】由题意易证:△ACE≅△DCB,进而可得AE=BD;由△ACE≅△DCB,可得∠CAE=∠CDB,从而△ACM ≅△DCN,可得:CM=CN;易证△MCN是等边三角形,可得∠MNC=∠BCE,即MN∥AB;由∠CAE=∠CDB,∠AMC=∠DMO,得∠ACM=∠DOM=60°,即∠AOB=120º;作CG⊥AE,CH⊥BD,易证CG=CH,即:OC 平分∠AOB.【详解】∵△ACD 和△BCE 都是等边三角形,∴AC=DC ,CE=CB ,∠ACE=∠DCB=120°,∴△ACE ≅△DCB(SAS)∴AE =BD ,∴①正确;∵△ACE ≅△DCB ,∴∠CAE=∠CDB ,∵△ACD 和△BCE 都是等边三角形,∴∠ACD=∠BCE=∠DCE=60°,AC=DC ,在△ACM 和△DCN 中,∵60CAE CDB AC DCACD DCE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴△ACM ≅△DCN (ASA ),∴CM =CN ,∴②正确;∵CM =CN ,∠DCE=60°,∴△MCN 是等边三角形,∴∠MNC=60°,∴∠MNC=∠BCE ,∴MN ∥AB ,∴③正确;∵△ACE ≅△DCB ,∴∠CAE=∠CDB ,∵∠AMC=∠DMO ,∴180°-∠CAE-∠AMC=180°-∠CDB-∠DMO ,即:∠ACM=∠DOM=60°,∴∠AOB =120º,∴④正确;作CG ⊥AE ,CH ⊥BD ,垂足分别为点G ,点H ,如图,在△ACG 和△DCH 中,∵90?AMC DHC CAE CDB AC DC ∠=∠=⎧⎪∠=∠⎨⎪=⎩∴△ACG ≅△DCH (AAS ),∴CG =CH ,∴OC 平分∠AOB ,∴⑤正确.故选D.【点睛】本题主要考查全等三角形的判定定理和性质定理,等边三角形的性质定理以及角平分线性质定理的逆定理,添加合适的辅助线,是解题的关键.17.如图,ABC ∆中,AB 的垂直平分线DG 交ACB ∠的平分线CD 于点D ,过D 作DE AC ⊥于点E ,若10AC =,4CB =,则AE =( )A .7B .6C .3D .2【答案】C【解析】【分析】 连接BD 、AD,过点D 作DF ⊥CB 于点F ,利用角平分线及线段垂直平分线的性质可求出BD=AD ,DE=DF ,依据HL 定理可判断出Rt △AED ≌Rt △BFD ,根据全等三角形的性质即可得出BF=AE ,再运用AAS 定理可证得Rt △CED ≌Rt △CFD ,证出CE=CF ,设AE 的长度为x ,根据CE=CF 列方程求解即可.【详解】如图, 连接BD 、AD,过点D 作DF⊥CB 于点F.∵AB 的垂直平分线DG 交ACB ∠的平分线CD 于点D ,DE⊥AC,DF⊥BC,∴BD=AD,DE=DF .∴Rt△AED≌Rt△BFD.∴BF=AE.又∵∠ECD=∠FCD,∠CED=∠CFD,CA=CA ,∴Rt△CED≌Rt△CFD,∴CE=CF,设AE 的长度为x ,则CE=10-x ,CF=CB +BF= CB +AE= 4+x,∴可列方程10-x=4+x ,x=3,∴AE=3;故选C.【点睛】本题涉及到线段垂直平分线及角平分线的性质,直角三角形全等的判定定理及性质,解答此题的关键是作出辅助线,构造出直角三角形解答.18.如图钢架中,∠A=a ,焊上等长的钢条P 1P 2, P 2P 3, P 3P 4, P 4P 5……来加固钢架.著P 1A= P 1P 2,且恰好用了4根钢条,则α的取值范圈是( )A .15°≤ a <18°B .15°< a ≤18°C .18°≤ a <22.5°D .18° < a ≤ 22.5°【答案】C【解析】【分析】由每根钢管长度相等,可知图中都是等腰三角形,利用等腰三角形底角一定是锐角,可推出取值范围.【详解】∵AB=BC=CD=DE=EF∴∠P 1P 2A=∠A=a由三角形外角性质,可得∠P 2P 1P 3=2∠A=2a同理可得,∠P 1P 3P 2=∠P 2P 1P 3=2a ,∠P 3P 2P 4=∠P 3P 4P 2=∠A+∠P 1P 3P 2=3a ,∠P 4P 3P 5=∠P 4P 5P 3=∠A+∠P 3P 4P 2=4a ,在△P 4P 3P 5中,∠P 3P 4P 5=180°-2∠P 4P 3P 5=180°-8a当∠P 5P 4B ≥90°即∠P 5P 4A ≤90°时,不能再放钢管,∴3180890+-≤a a ,解得a ≥18°又∵等腰三角形底角只能是锐角,∴4a <90°,解得a <22.5∴1822.5οο≤<a故选C.【点睛】本题考查等腰三角形的性质,掌握等腰三角形的底角只能是锐角是关键.19.如图,已知AD为ABC∆的高线,AD BC=,以AB为底边作等腰Rt ABE∆,连接ED,EC,延长CE交AD于F点,下列结论:①DAE CBE∠=∠;②CE DE⊥;③BD AF=;④AED∆为等腰三角形;⑤BDE ACES S∆∆=,其中正确的有( )A.①③B.①②④C.①③④D.①②③⑤【答案】D【解析】【分析】①根据等腰直角三角形的性质即可证明∠CBE=∠DAE,再得到△ADE≌△BCE;②根据①结论可得∠AEC=∠DEB,即可求得∠AED=∠BEG,即可解题;③证明△AEF≌△BED即可;④根据△AEF≌△BED得到DE=EF, 又DE⊥CF,故可判断;⑤易证△FDC是等腰直角三角形,则CE=EF,S△AEF=S△ACE,由△AEF≌△BED,可知S△BDE =S△ACE,所以S△BDE=S△ACE.【详解】①∵AD为△ABC的高线,∴CBE+∠ABE+∠BAD=90°,∵Rt△ABE是等腰直角三角形,∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE,∴∠CBE+∠BAD=45°,∴∠DAE=∠CBE,故①正确;在△DAE和△CBE中,AE BEDAE CBEAD BC⎧⎪∠∠⎨⎪⎩===,∴△ADE≌△BCE(SAS);②∵△ADE≌△BCE,∴∠EDA=∠ECB,∵∠ADE+∠EDC=90°,∴∠EDC+∠ECB=90°,∴∠DEC=90°,∴CE⊥DE;故②正确;③∵∠BDE=∠ADB+∠ADE,∠AFE=∠ADC+∠ECD,∴∠BDE=∠AFE,∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF,在△AEF和△BED中,BDE AFEBED AEFAE BE∠∠⎧⎪∠∠⎨⎪⎩===,∴△AEF≌△BED(AAS),∴BD=AF故③正确;∵△AEF≌△BED∴DE=EF, 又DE⊥CF,∴△DEF为等腰直角三角形,故④错误;④∵AD=BC,BD=AF,∴CD=DF,∵AD⊥BC,∴△FDC是等腰直角三角形,∵DE⊥CE,∴EF=CE,∴S△AEF=S△ACE,∵△AEF≌△BED,∴S△AEF=S△BED,∴S△BDE=S△ACE.故④正确;故选:D.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BFE≌△CDE是解题的关键.20.如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)【答案】A【解析】试题分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.试题解析:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2).故选A.考点:1.翻折变换(折叠问题);2.正方形的性质;3.坐标与图形变化-平移.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形提高32题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC4. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C5. 已知:AC 平分∠BAD ,CE ⊥AB , ∠B+∠D=180°,求证:AE=AD+BECDBA BC DEF 21 ADBCABA CDF2E6. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

求证:BC=AB+DC 。

7. 已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C8.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD⊥BC .9.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA10.如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .11.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠BDCBAFE12.如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.13.已知:如图,DC∥AB,且DC=AE,E为AB的中点,(1)求证:△AED≌△EBC.(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明):14.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.15、如图:AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。

求证:AM是△ABC的中线。

16、AB=AC,DB=DC,F是AD的延长线上的一点。

求证:BF=CF17、如图:AB=CD,AE=DF,CE=FB。

求证:AF=DE。

18. .公园里有一条“Z”字形道路ABCD,如图所示,其中AB∥CD,在AB,CD,BC三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试说明三只石凳E,F,M恰好在一条直线上.19.已知:点A 、F 、E 、C 在同一条直线上, AF =CE ,BE ∥DF ,BE =DF .求证:△ABE ≌△CDF .20.已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F , 求证:BE =CD .21 . 已知:如图, AC ⊥BC 于C , DE ⊥AC 于E , AD ⊥AB 于A , BC =AE .若AB = 5 ,求AD 的长?22.如图:AB=AC ,ME ⊥AB ,MF ⊥AC ,垂足分别为E 、F ,ME=MF 。

求证:MB=MC23.在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ∆≌CEB ∆;②BE AD DE +=;(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,ACBDEFAC请给出证明;若不成立,说明理由.24.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。

求证:(1)EC=BF;(2)EC⊥BF25.如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB。

求证:(1)AM=AN;(2)AM⊥AN。

26.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF. 求证:BC∥EF FBAMNE 1234AEB MCF27.如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 和∠DBA ,CD 过点E ,则AB 与AC+BD 相等吗?请证明。

28、 如图,已知: AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .29、已知:如图,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE BF .求证:AB CD ∥.30、 如图,已知AC ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD ,试猜想线段CE 与DE的大小与CDADECBF位置关系,并证明31、 如图,已知AB =DC ,AC =DB ,BE =CE ,求证:AE =DE.32.如图9所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .答案1.延长AD 到E,使DE=AD,则△ADC ≌△EBD ∴BE=AC=2 在△ABEAB E CDABC DEF图9中,AB-BE<AE<AB+BE ∴10-2<2AD<10+2 4<AD<6 又AD是整数,则AD=5 2.证明:连接BF和EF。

∵ BC=ED,CF=DF,∠BCF=∠EDF。

∴△BCF≌△EDF(边角边)。

∴ BF=EF,∠CBF=∠DEF。

连接BE。

在△BEF中,BF=EF。

∴∠EBF=∠BEF。

又∵∠ABC=∠AED。

∴∠ABE=∠AEB。

∴ AB=AE。

在△ABF和△AEF中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF。

∴△ABF≌△AEF∴∠BAF=∠EAF (∠1=∠2)。

3.证明:过E点,作EG//AC,交AD延长线于G则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE∴△ADC≌△GDE(AAS)∴EG=AC∵EF∥AB∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE∴EF=EG∴EF=AC4.证明:在AC上截取AE=AB,连接ED∵AD平分∠BAC∴∠EAD=∠BAD又∵AE=AB,AD=AD∴⊿AED≌⊿ABD(SAS)∴∠AED=∠B,DE=DB∵AC=AB+BD AC=AE+CE∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C∴∠B=2∠C5.证明:在AE上取F,使EF=EB,连接CF ∵CE⊥AB ∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF ∴∠B=∠CFE ∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA ∵AC平分∠BAD ∴∠DAC=∠FAC又∵AC=AC ∴△ADC≌△AFC(SAS)∴AD=AF ∴AE=AF+FE=AD+BE6.证明:在BC上截取BF=BA,连接EF.∵∠ABE=∠FBE,BE=BE,∴⊿ABE≌ΔFBE(SAS),∠EFB=∠A;AB平行于CD, ∴∠A+∠D=180°;又∵∠EFB+∠EFC=180°, ∴∠EFC=∠D;又∵∠FCE=∠DCE,CE=CE, ∴⊿FCE≌ΔDCE(AAS),FC=CD.∴BC=BF+FC=AB+CD.7.∵AB∥ED, AE∥BD ∴AE=BD,又∵AF=CD, EF=BC∴△AEF≌△DCB,∴∠C=∠F8.延长AD至H交BC于H;BD=DC;∴∠DBC=∠DCB;∠1=∠2;∠DBC+∠1=∠DCB+∠2;∠ABC=∠ACB;∴AB=AC;△ABD≌△ACD;∠BAD=∠CAD;AD是等腰三角形的顶角平分线∴AD⊥BC9.∵AOM与MOB都为直角三角形、共用OM,且∠MOA=∠MOB∴MA=MB∴∠MAB=∠MBA∵∠OAM=∠OBM=90度∴∠OAB=90-∠MAB ∠OBA=90-∠MBA∴∠OAB=∠OBA10.证明:做BE的延长线,与AP相交于F点,∵PA∥BC∴∠PAB+∠CBA=180°,又∵,AE,BE均为∠PAB和∠CBA的角平分线∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形在△ABF中,AE⊥BF,且AE为∠FAB的角平分线∴△FAB为等腰三角形,AB=AF,BE=EF在△DEF与△BEC中,∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB,∴△DEF≌△BEC,∴DF=BC∴AB=AF=AD+DF=AD+BC11.证明:在AB上找点E,使AE=AC∵AE=AC,∠EAD=∠CAD,AD=AD∴△ADE≌△ADC。

DE=CD,∠AED=∠C∵AB=AC+CD,∴DE=CD=AB-AC=AB-AE=BE∠B=∠EDB∠C=∠B+∠EDB=2∠B12.分析:通过证明两个直角三角形全等,即Rt△DEC≌Rt△BFA以及垂线的性质得出四边形BEDF是平行四边形.再根据平行四边形的性质得出结论.解:(1)连接BE,DF.∵DE⊥AC于E,BF⊥AC于F,,∴∠DEC=∠BFA=90°,DE ∥BF,在Rt△DEC和Rt△BFA中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA,∴DE=BF.∴四边形BEDF是平行四边形.∴MB=MD,ME=MF;(2)连接BE,DF.∵DE⊥AC于E,BF⊥AC于F,,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA,∴DE=BF.∴四边形BEDF是平行四边形.∴MB=MD,ME=MF.13.(1) ∵DC∥AE,且DC=AE,∴四边形AECD是平行四边形。

于是知AD=EC,且∠EAD=∠BEC。

由AE=BE,∴△AED≌△EBC。

(2)△AEC、△ACD、△ECD都面积相等。

14.证明:延长BA、CE,两线相交于点F ∵BE⊥CE ∴∠BEF=∠BEC=90°在△BEF和△BEC中∠FBE=∠CBE, BE=BE, ∠BEF=∠BEC ∴△BEF≌△BEC(ASA) ∴EF=EC ∴CF=2CE ∵∠ABD+∠ADB=90°,∠ACF+∠CDE=90°又∵∠ADB=∠CDE ∴∠ABD=∠ACF 在△ABD和△ACF中∠ABD=∠ACF, AB=AC, ∠BAD=∠CAF=90°∴△ABD≌△ACF(ASA) ∴BD=CF ∴BD=2CE15.证明:∵BE∥CF∴∠E=∠CFM,∠EBM=∠FCM∵BE=CF∴△BEM≌△CFM∴BM=CM∴AM是△ABC的中线.16.证明:在△ABD与△ACD中AB=ACBD=DCAD=AD∴△ABD≌△ACD∴∠ADB=∠ADC∴∠BDF=∠FDC在△BDF与△FDC中BD=DC∠BDF=∠FD C DF=DF∴△FBD≌△FCD ∴BF=FC17.∵AB=DC AE=DF CE=FB CE+EF=EF+FB∴△ABE≌△CDF∵∠DCB=∠ABF AB=DC BF=CE∴△ABF≌△CDE ∴AF=DE18.证:∵AB平行CD(已知)∴∠B=∠C(两直线平行,错角相等)∵M在BC的中点(已知)∴EM=FM(中点定义)在△BME和△CMF中BE=CF(已知)∠B=∠C(已证) EM=FM(已证)△BME全等与△CMF(SAS)∴∠EMB=∠FMC(全等三角形的对应角相等)∴∠EMF=∠EMB+∠BMF=∠FMC+∠BMF=∠BMC=180°(等式的性质)∴E,M,F在同一直线上19.证明:∵AF=CE∴AF+EF=CE+EF∴AE=CF∵BE//DF∴∠BEA=∠DFC又∵BE=DF ∴△ABE≌△CDF(SAS)20.证明:∵ AB=AC,∴∠EBC=∠DCB∵ BD⊥AC,CE⊥AB ∴∠BEC=∠CDB BC=CB (公共边)∴△EBC≌△DCB∴ BE=CD21.∠C=∠E=90度∠B=∠EAD=90度-∠BAC BC=AE△ABC≌△DAE AD=AB=522.证明∵AB=AC∴△ABC是等腰三角形∴∠B=∠C又∵ME=MF,△BEM和△CEM是直角三角形∴△BEM全等于△CEM∴MB=MC23.(1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN 于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在Rt△ADC和Rt△CEB中,{∠ADC=∠CEB∠ACD=∠CBE AC=CB,∴Rt△ADC≌Rt △CEB(AAS),∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)不成立,证明:在△ADC和△CEB中,{∠ADC=∠CEB=90°∠ACD=∠CBE AC=CB,∴△ADC≌△CEB(AAS),∴AD=CE,DC=BE,∴DE=CE-CD=AD-BE;24.(1)证明∵AE⊥AB∴∠EAB=∠EAC+∠CAB=90度∵AF⊥AC∴∠CAF=∠CAB+∠BAF=90度∴∠EAC=∠BAF∵AE=AB AF=AC∴△EAC≌△FAB∴EC=BF∠ECA=∠F (2)(2)延长FB与EC的延长线交于点G∵∠ECA=∠F(已证)∴∠G=∠CAF∵∠CAF=90度∴EC⊥BF25.证明:(1)∵BE⊥AC,CF⊥AB∴∠ABM+∠BAC=90°,∠ACN+∠BAC=90°∴∠ABM=∠ACN∵BM=AC,CN=AB∴△ABM≌△NAC∴AM=AN(2)∵△ABM≌△NAC∴∠BAM=∠N∵∠N+∠BAN=90°∴∠BAM+∠BAN=90°即∠MAN=90°∴AM⊥AN26.连接BF、CE,证明△ABF≌△DEC(SAS)然后通过四边形BCEF对边相等的证得平行四边形BCEF从而求得BC平行于EF27.在AB上取点N ,使得AN=AC ∠CAE=∠EAN ,AE为公共边,∴△CAE≌△EAN∴∠ANE=∠ACE又∵AC平行BD∴∠ACE+∠BDE=180而∠ANE+∠ENB=180∴∠ENB=∠BDE∠NBE=∠EBNBE为公共边,∴△EBN≌△EBD∴BD=BN∴AB=AN+BN=AC+BD28.证明:∵AD是中线∴BD=CD∵DF=DE,∠BDE=∠CDF∴△BDE≌△CDF∴∠BED=∠CFD∴BE∥CF29.证明:∵DE⊥AC,BF⊥AC,∴∠DEC=∠AFB=90°,在Rt△DEC和Rt△BFA中,DE=BF,AB=CD,∴Rt△DEC≌Rt△BFA,∴∠C=∠A,∴AB∥CD.30.结论:CE>DE。

相关文档
最新文档