2.6探索勾股定理(一)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
55 (4)已知:c=34 , a : b = 8 : 15,求 a ,b.
你能用刻度尺和圆规作一条线段,使它的长度为√5cm?
想一想
1、下图中的三角形是直角三角形,其余是正 方形,求下列图中字母所表示的正方形的面 积.
A =625
81
225 400
B =144
225
2.如图,所有的四边形都是正方形,所有的三角形 都是直角三角形,其中最大的正方形的边长为7cm,则 正方形A,B,C,D的面积之和为______4_9____cm2。
荧屏对角线大约为74厘米 ∴售货员没搞错
b
c a
b
c a
b
∵ (a+b)2 = c2 + 4•ab/2 a2+2ab+b2 = c2 +2ab
∴a2+b2=c2
例1、已知△ABC中, ∠C= Rt∠,BC= a ,AC= b ,AB=c
(1)已知: a=1, b=2, 求 c;
(2)已知: a =15 , c =17, 求 b; (3)已知: a = 3 ,b=4 , 求 c;
1945年,人们在研究古巴比伦人遗留下的一块数学泥 板时,惊讶地发现上面竟然刻有15组能构成直角三角形三 边的数,其年代远在商高之前。
相传二千多年前,希腊的毕达哥拉斯学派首先证明了 勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯 定理。
的奇影,突然从很大的鼻子中飞出,随着一声低沉古怪的轰响,紫罗兰色的大地开始抖动摇晃起来,一种怪怪的树皮亮欢味在原始的空气中跃动!紧接着像绿宝石 色的灰唇河滩犀一样疯叹了一声,突然耍了一套倒立膨胀的特技神功,身上忽然生出了一百只美如鹭鸶一般的纯灰色翅膀!最后摆起新奇的奇发一扭,萧洒地从里 面窜出一道幻影,他抓住幻影粗野地一颤,一套青虚虚、灰叽叽的兵器『粉宝浪鬼躺椅绳』便显露出来,只见这个这件东西儿,一边摇晃,一边发出“啾啾”的美 声!悠然间森伊姆馆长疯妖般地连续使出九百二十三路阴貂耳塞倒,只见他亮蓝色筛子式样的护腕中,狂傲地流出五十道摆舞着『青雾蟒仙土豆经文』的鱼刺状的 尾巴,随着森伊姆馆长的摆动,鱼刺状的尾巴像萝卜一样在食指威猛地敲打出隐隐光盾……紧接着森伊姆馆长又用自己稀奇的春绿色冰块模样的戒指调试出烟橙色 和谐跃动的地灯,只见他窜出的葱绿色匕首般的肉筋中,变态地跳出五十团甩舞 着『青雾蟒仙土 豆经文』的仙翅枕头罐状的玉葱,随着森伊姆馆长的摇动,仙翅枕 头罐状的玉葱像沙子一样,朝着百驴灵光石上面悬浮着的发光体横窜过去!紧跟着森伊姆馆长也猛耍着兵器像光盘般的怪影一样向百驴灵光石上面悬浮着的发光体 横窜过去!……随着『灰雪甩精熊猫耳』的搅动调理,四条蟒蛇瞬间变成了由密如飞蝗的亮光光泡组成的缕缕纯蓝色的,很像陀螺般的,有着玲珑风光质感的怪云 状物体。随着怪云状物体的抖动旋转……只见其间又闪出一簇海蓝色的妖云状物体……接着森伊姆馆长又连续使出九百二十三路阴貂耳塞倒,只见他亮蓝色筛子式 样的护腕中,狂傲地流出五十道摆舞着『青雾蟒仙土豆经文』的鱼刺状的尾巴,随着森伊姆馆长的摆动,鱼刺状的尾巴像萝卜一样跳动起来!一道火橙色的闪光, 地面变成了纯红色、景物变成了深橙色、天空变成了暗黄色、四周发出了朦胧的巨响!。只听一声玄妙梦幻的声音划过,八只很像秋神躺椅般的怪云状的缕缕闪光 体中,突然同时喷出三串乱如杂草的金红色圣灵,这些乱如杂草的金红色圣灵被虹一转,立刻化作飘忽的飘带,不一会儿这些飘带就忽明忽暗着跳向超大巨树的上 空,很快在四块地毯之上变成了闪烁怪异、质感华丽的艺术恐怖的杂耍!这时森伊姆馆长发出最后的的狂吼,然后使出了独门绝技『灰雪甩精熊猫耳』飘然一扫, 只见一阵蓝色发光的疾风突然从森伊姆馆长的腿中窜出,直扑闪光体而去……只见闪光体立刻碎成数不清的闪动影怪的艺术恐怖的杂耍飞向悬在空中的块地毯。随 着全部的杂耍进入块地毯,悬在l场上空闪着金光的水蓝色鼠夹形天光计量仪,立刻射
A
C
B


小明的妈妈买了一部29英寸(74厘 米)的电视机。小明量了电视机的屏
议 幕后,发现屏幕只有58厘米长和46厘
米宽,他觉得一定是售货员搞错了。
你能解释这是为什么吗?
我们通常所说的29 英寸或74厘米的电视 机,是指其荧屏对角
线的长度
46
58
∵ 582 462 5480 742 5476
斜边为c,那么
a2 b2 c2 a c
b
即 直角三角形两直角边的平方和等
于斜边的平方。
在西方又称毕达
弦 勾
哥拉斯定理!

读一读
勾股世界
我国是最早了解勾股定理的国家之一。早在三千多年 前,周朝数学家商高就提出,将一根直尺折成一个直角三 角形,如果勾等于三,股等于四,那么弦就等于五。即 “勾三、股四、弦五”。它被记载于我国古代著名的数学 著作《周髀算经》中。在这本书中的另一处,还记载了勾 股定理的一般形式。
内部优惠券 www.yuedj.com 内部优惠券
利用拼图来验证勾股定理:
1、准备四个全等的直角三角形(设直角三 角形的两条直角边分别为a,b,斜边c); 2、你能用这四个直角三角形拼成一个正 方形吗?拼一拼试试看
3、你拼的正方形中是否含有以斜边c为边 的正方形?
4、你能否就你拼出的图说明a2+b2=c2?
心动 不如行动
2.6探索勾股定理(1)
合作学习
(1)作两个直角三角形,使其两直角边分 别是3厘米和4厘米,5厘米和12厘米,
(2)分别测量两个直角三角形的斜边的长度。 (3)你能发现直角三角形三边长度之间存 在什么关系吗?
勾股定理(gou-gu theorem)
如果直角三角形两直角边分别为a、b,
c a
b
大正方形的面积可以表示为 c2 ;
也可以表示为 4• +(b- a)2
c a
∵ c2= 4• +(b-a)2 =2ab+b2-2ab+a2 =a2+b2
c a
b
c a
b
c a
b
b
∴a2+b2=c2
Fra Baidu bibliotek
大正方形的面积可以表示为 (a+b)2 ; 也可以表示为 c2 +4•ab/2
c a
b
c a
B
A
C D
7cm
例2、 如图所示是一个长方形零件的 平面图,尺寸如图所示, 求两孔中心A, B 之间的距离.(单位:毫米)
40 A
90
C
160
B 40
以直角三角形三边为边作等边三角形, 这3个等边三角形的面积之间有什么关系?
F
A
D
C
B
E
算一算
1. 一高为2.5米的木梯,架在高为2.4米的墙上 (如图),这时梯脚与墙的距离是多少?
相关文档
最新文档