糖的化学:分解与合成代谢

合集下载

生物化学 糖代谢

生物化学 糖代谢
2*3
6 ATP
第三阶段:三羧酸循环
2*异柠檬酸→2*α -酮戊二酸 2*α -酮戊二酸 →2*琥珀酰CoA
辅酶
NAD+ NAD+ FAD
ATP
2*3 2*3
2*琥珀酰CoA →2*琥珀酸
2*琥珀酸→2*延胡索酸
2*1
2*2
2*苹果酸→2*草酰乙酸
NAD+
2*3
24ATP
总ATP数: 第一阶段——6或8 第二阶段——6 第三阶段——24 36 或 38ATP
活性受NADP+/NADPH比值的调节,NADPH能强烈
抑制6-磷酸葡萄糖脱氢酶。磷酸戊糖途径的流
量取决于机体对NADPH的需求。
• 概念:有氧,葡萄糖(糖原) → CO2 + H2O • 反应部位:细胞液、线粒体 cytoplasm mitochondria
+ ATP
有氧氧化的概况
有氧氧化的反应过程
• 第一阶段:葡萄糖→ →丙酮酸(胞液) • 第二阶段:丙酮酸→ →乙酰CoA (线粒体) • 第三阶段:乙酰CoA → →CO2 + H2O + ATP (三羧酸循环)(线粒体)

植物和某些藻类能够利用太阳能,将二氧化碳和水合成
糖类化合物,即光合作用。光合作用将太阳能转变成化 学能(主要是糖类化合物),是自然界规模最大的一种 能量转换过程。
一、多糖和低聚糖的酶促降解
1.概述 多糖和低聚糖只有分解成小分子后才 能被吸收利用,生产中常称为糖化。 2. 淀粉
3.淀粉水解 淀粉 糊精
7.无氧发酵 (Fermentation)

⑴乙醇发酵
COOH C CH3
CO2

《医学生物化学》第4章糖代谢重点难点

《医学生物化学》第4章糖代谢重点难点

《医学生物化学》第4章糖代谢重点难点《医学生物化学》第4章糖代谢-重点难点一、糖类的生理功用:①氧化供能:糖类是人体最主要的供能物质,占全部供能物质供能量的70%;与供能有关的糖类主要是葡萄糖和糖原,前者为运输和供能形式,后者为贮存形式。

②作为结构成分:糖类可与脂类形成糖脂,或与蛋白质形成糖蛋白,糖脂和糖蛋白均可参与构成生物膜、神经组织等。

③作为核酸类化合物的成分:核糖和脱氧核糖参与构成核苷酸,DNA,RNA等。

④转变为其他物质:糖类可经代谢而转变为脂肪或氨基酸等化合物。

二、糖的无氧酵解:糖的无氧酵解是指葡萄糖在无氧条件下分解生成乳酸并释放出能量的过程。

其全部反应过程在胞液中进行,代谢的终产物为乳酸,一分子葡萄糖经无氧酵解可净生成两分子ATP。

糖的无氧酵解代谢过程可分为四个阶段:1.活化(己糖磷酸酯的生成):葡萄糖经磷酸化和异构反应生成1,6-双磷酸果糖(FBP),即葡萄糖→6-磷酸葡萄糖→6-磷酸果糖→1,6-双磷酸果糖(F-1,6-BP)。

这一阶段需消耗两分子ATP,己糖激酶(肝中为葡萄糖激酶)和6-磷酸果糖激酶-1是关键酶。

2.裂解(磷酸丙糖的生成):一分子F-1,6-BP裂解为两分子3-磷酸甘油醛,包括两步反应:F-1,6-BP→磷酸二羟丙酮+3-磷酸甘油醛和磷酸二羟丙酮→3-磷酸甘油醛。

3.放能(丙酮酸的生成):3-磷酸甘油醛经脱氢、磷酸化、脱水及放能等反应生成丙酮酸,包括五步反应:3-磷酸甘油醛→1,3-二磷酸甘油酸→3-磷酸甘油酸→2-磷酸甘油酸→磷酸烯醇式丙酮酸→丙酮酸。

此阶段有两次底物水平磷酸化的放能反应,共可生成2×2=4分子ATP。

丙酮酸激酶为关键酶。

4.还原(乳酸的生成):利用丙酮酸接受酵解代谢过程中产生的NADH,使NADH重新氧化为NAD+。

即丙酮酸→乳酸。

三、糖无氧酵解的调节:主要是对三个关键酶,即己糖激酶(葡萄糖激酶)、6-磷酸果糖激酶-1、丙酮酸激酶进行调节。

第六章 糖代谢

第六章 糖代谢

内 容糖第六章 糖的化学和代谢糖的化学 糖代谢 糖的消化与吸收 糖的分解代谢 糖原的合成与分解糖的化学一、糖的概念糖是多羟基醛或多 羟基酮及其聚合物和 衍生物的总称。

P5二、 糖的分布生物界中含糖的比例90% 80% 70% 60% 50% 40% 30% 20% 10% 80%30% 10% 2%0%植物人和动物微生物微生物三、 糖的生物学作用1. 糖是人和动物的主要能源物质 2. 糖类还具有结构功能 3. 糖具有复杂的多方面生物活性与功能四 、糖的分类1. 2. 3.单糖 寡糖 多糖1(一) 单糖概念: 不能被水解成更小分子的糖称为单糖。

特点: 单糖是糖类物质的基本结构单位。

种类: 丙糖、丁糖、戊糖、己糖、庚糖丙糖:甘油醛和二羟丙酮甘油醛二羟丙酮丁糖戊糖赤藓糖赤藓酮糖D-核糖D-核酮糖D-木糖D-木酮糖己糖:葡萄糖和果糖葡萄糖的两种形式D-葡萄糖(G)β -D-葡萄糖 α-D-葡萄糖2D - 果糖(F)(二)寡 糖概念: 由单糖缩合而成的短链结构 (一般含2~6个单糖分子) 特点: 二糖最为广泛葡萄糖 半乳糖 果糖环α-D-果糖 麦芽糖 蔗糖 乳糖(三) 多 糖许多单糖分子缩合而成的长链结构 1. 多糖的分类(1)按照来源分类 (2)按生理功能分类 植物多糖 动物多糖 微生物多糖 海洋生物多糖 储存多糖 结构多糖( 3 )多糖按照其组成成分的分类多糖同聚多糖 杂聚多糖(均一多糖) (不均一多糖)粘多糖结合糖糖蛋白蛋白聚糖糖脂脂多糖O连N连鞘糖脂甘油糖脂 萜醇衍生磷酸多类固醇 衍生同聚多糖与杂聚多糖同聚多糖 杂聚多糖2. 重要多糖的化学结构与生理功能(1)淀粉• 是高等植物的贮存多糖 • 直链淀粉 支链淀粉 α-1,4糖苷键 α-1,6糖苷键α-1,4糖苷键 直链结构 支链结构 直链结构 支链结构直链淀粉3(2)糖 原 支链淀粉• 糖原是动物 体内的贮存 多糖,主要α-1,6糖苷键存在肝及肌 肉中。

第三节糖原的合成与分解

第三节糖原的合成与分解
分支酶的作用——形成支 链的构。
1 阶段的反应过程 葡萄糖活化生成尿苷二磷酸葡萄糖(UDPG) 的过程。
CH2OH
ADP
O ATP
HK GK
G
CH2O P O
G-6-P
磷酸葡糖 变位酶
CH2OH
PPi
O
UTP
O
P
UDPG焦磷 酸化酶
UDPG
G-1-P
尿苷二磷酸葡萄糖(UDPG)
2 2
II 阶段的反应过程 UDPG是在糖原引物上进行合成的。在糖原 合酶的作用下,通过α-1,4-糖苷键形成糖原 的直链结构。
(三) 糖原分解的反应过程 根据糖原分解的反应特点分为2个阶段: 1 阶段的反应 糖原磷酸化酶和脱枝酶的作用. II 阶段的反应 G-1-P G-6-P 1 阶段的反应过程
糖原在糖原磷酸化酶的作用下,进行磷酸 解释放出1-磷酸葡糖;在脱枝酶的作用下, 生成葡萄糖的过程。
GGGGG G G Gn G G G G
糖原(n)
Pi G-1-P
GGGGG G
磷酸化酶 Gn G G G G
糖原(n-1)
nPi
磷酸化酶 nG-I-P
糖原颗粒变小
G 脱枝酶
nG-I-P
磷酸化酶
Gn G G G G G G G
GGGG Gn G G G G
脱枝酶
α -1,4 α -1,4 葡糖转移酶
G
脱枝酶 α -1,6-糖苷酶
G Gn G G G G G G G
分支酶 形成第二分支
(四)糖原合成的反应特点
1.糖原合成过程中,直链的长度在6个 以上葡糖单位,才能被转移形成新的 分支。二个分支之间相距至少3个以上 葡糖单位。

动物生物化学 第六章 糖的代谢

动物生物化学  第六章  糖的代谢

2. 糖原的 合成
(UDP-葡萄 糖焦磷酸化 酶、糖原合 成酶、糖原 分支酶)
糖原合成酶催化的反应
糖原的合成与分解总反应示意图
3. 糖原代谢的调节
• 葡萄糖分解代谢总反应式 • C6H6O6 + 6 H2O + 10 NAD+ + 2 FAD + 4 ADP +
4Pi 6 CO2 + 10 NADH + 10 H+ + 2 FADH2 + 4 ATP • 按照一个NADH能够产生3个ATP,1个FADH2能够产 生2个ATP计算,1分子葡萄糖在分解代谢过程中共产 生38个ATP: • 4 ATP +(10 3)ATP + (2 2)ATP = 38 ATP
Байду номын сангаас
CH2OH CO
HO C H
CHO
H C OH + H C OH
H C OH H C OH
CH2O P
转醛酶
CH2O P
7-磷酸景天庚酮糖 3-磷酸甘油醛
CHO
H C OH +
H C OH CH2O P
4-磷酸赤藓糖
CH2OH CO HO C H HO C H H C OH CH2O P
6-磷酸果糖
H
O
H
OH H HO
H OH
H2O
H C OH
HO C H
O 内酯酶
H C OH
H C OH
G-6-P
6-磷酸葡萄 糖酸内酯
CH2O P 6-磷酸葡萄糖酸
COOH H C OH
NADP+
+ NADPH + H

生物化学复习笔记-糖原代谢与合成

生物化学复习笔记-糖原代谢与合成

糖原代谢与合成糖原有支链也有直链, 有许多非还原性末端和一个还原性末端. 一般分解糖原需要从链的非还原性末端入手, 如果支链较多, 那么就可以同时分解多个支链, 加快糖原分解速度. 糖原一般储存在肝, 肌肉中1.糖原的第一步降解称为磷酸解发生在糖原的非还原性末端, 由糖原磷酸化酶催化, 消耗一个磷酸根. 生成G1P和缩短的糖原.磷酸解的好处在于直接生成带磷酸根的葡萄糖, 不需要消耗ATP了. 只有水解下来的才是普通的葡萄糖.需要磷酸吡哆醛做辅酶(转氨基作用也需要这个)2.糖原脱支糖原磷酸化酶只能作用在1,4糖苷键上, 故分支点上的用不了, 这时候需要脱支酶, 它既可以把剩的的很短的一段支链拿走3个到别的支链上, 又可以把剩下的最后一个支点水解掉. 产生脱支的糖原和一分子葡萄糖. 也就是说脱支酶既有转移酶的活性, 又有糖苷酶的活性.3.G1P变位使用磷酸葡萄糖变位酶可以把G1P变为G6P, 从而进入糖酵解, 或者通过葡萄糖6磷酸酶变为葡萄糖运输到其它地方.糖原的合成之前说糖原代谢可以直接磷酸解, 从而看起来省了能量, 但是有代价的, 那就是合成糖原时需要额外消耗ATP.1.合成糖原需要首先活化葡萄糖, 并不是用ATP, 而是用UTP, 并且不是上磷酸根, 而是去掉磷酸根上UDP. 首先葡萄糖用HK变G6P, 然后用磷酸葡萄糖变位酶, 变成G1P, 与UTP反应生成UDPGlc与焦磷酸PPi, 焦磷酸极易水解, 所以推动该反应发生. 酶是UDPGlc焦磷酸化酶. 这种PPi推动反应的例子还有很多2.糖原合酶催化合成. UDP-G直接加在已有糖原的非还原性末端. 这是糖原合成需要引物的体现. UDP被脱掉.3.形成引物. 糖原素引起引物合成, 糖原素不断催化UDP-G到自己身上来,直到形成7个分子长的链, 就形成了引物, 但糖原素并未解离.4.形成分支. 分支酶能够将一个7糖单位转移到临近的糖链上糖原代谢的调节糖原磷酸化酶和糖原合酶应该交互调节.1.别构调节肌糖原磷酸化酶的别构调节它有a, b, 两种形式, a有活性而b没有活性. 只是前者被磷酸化修饰了. 两种形式的酶都有T和R两种构象, a形的R多, b形的T多, T态的活性较低.肌糖原磷酸化酶的别构效应物有ATP, G6P, AMP, 只作用于b形, 该酶可以结合核苷酸, 从而改变构象. 高浓度的ATP可以与b形结合, 转化为无活性的T态, 而高浓度的AMP则促使转变为R态. 同样的, G6P多了也可以抑制该酶.大多数情况下, ATP与G6P共同抑制该酶的b形, 但a形总是有活性. 如果受到肾上腺素的刺激, b形会变成a形.肝糖原磷酸化酶的别构调节.与肌细胞中类似, 但是a形对别构效应物反应强烈, 并且a形的别构效应物是葡萄糖.糖原合酶的别构调节其也有a, b形, 但a为去磷酸化状态, b为磷酸化状态, G6P是其正别构效应物1.可逆磷酸化调节糖原磷酸化酶b激酶可以使b变为a形, 也可以磷酸化糖原合酶a其有4个亚基, 被肾上腺素或胰高血糖素激活后, β亚基被磷酸化修饰, 此时有部分活性, 若想有完全活性, 则要有钙离子结合. 这两个是与门. 有活性的糖原磷酸化酶b激酶可以把b形转化为有活性的a形, 做到升血糖.磷蛋白磷酸酶PP-1,PP1可以与糖原结合, 可以催化有磷酸的蛋白质去磷酸化. 这正是上述的两种反应的a,b形磷酸化恰好相反的原因. 在PP1活性高的情况下, 所及之处, 没有磷酸化的蛋白, 即糖原磷酸化酶处于b形, 磷酸化酶b激酶与门条件不达成, 糖原合酶处于a形, 即糖原合成处于活性, 而糖原降解被抑制。

糖原的分解与合成的调节-糖代谢

糖原的分解与合成的调节-糖代谢

葡萄糖
ADP
ADP
1-P-果糖 激酶
1,6-二磷酸果糖
ATP ADP
甘油 磷酸二羟丙酮
3-P-甘油醛 ADP
ATP
异构酶
6-P-甘露糖 ADP ATP 甘露糖激酶
D-甘露糖
HMS
戊糖
ATP
乙醇
乙醛
丙酮酸
乳酸
CO 2
其他单糖分解
三羧酸
ADP
循环
ATP
CO 2 +H 2 O
第四节 糖原(glycogen)的合成代谢
1)保护某些巯基酶或蛋白质免受过氧化物 (H2O2、O2˙¯ 等)的损害。
2)维持红细胞膜的完整性:
红细胞缺乏6-磷酸葡萄糖脱氢酶 磷酸戊糖途径受阻 NADPH+H+ G-SH 膜蛋白受损 膜破裂 溶血 黄疸
蚕豆病(胡豆黄)
氧 遗 于蚕进本于蚕化传不豆食病儿豆,性能病蚕与童中多重6-是豆遗,的磷巴新后传特6裂酸胺还-磷发 有 别解能葡原生 关 是酸素萄激氧的 , 5葡、脱发化急 岁9萄锁红氢型0性 以糖%未酶细的溶 下脱为尔糖胞谷血 儿氢男使的缺胱性 童酶性谷乏自甘贫 。缺,胱者身肽血乏多甘破,來。者见肽由坏保。 护起红病血急球,细在胞吃膜蚕,豆导几致小红时细至胞几大天量内溶突解 而然发发生病蚕,豆表病现。为头昏、心慌、乏力、
一) HMP的主要反应
可分2个阶段:
1、氧化脱羧阶段:
2、非氧化阶段:分子 重排
1)异构化 2)通过转酮及转醛反
应与EMP途径连接
1、氧化脱羧
G-6-P G-6-P脱氢酶 6 磷酸葡萄糖酸内酯
Mg2
NADP+ + NADPH+H+

糖原的分解合成代谢

糖原的分解合成代谢

腺苷环化酶
腺苷环化酶(有活性)
(无活性) ATP
cAMP
PKA
(无活性)
PKA
(有活性)
磷酸化酶b激酶 磷酸化酶b激酶-P
Pi
磷蛋白磷酸酶-1

糖原合酶
糖原合酶-P
磷酸化酶b 磷酸化酶a-P
Pi
糖原的分解合成代谢
磷蛋白磷酸酶-1
Pi

PKA(有活性)
磷蛋白磷酸酶-1

磷蛋白磷酸酶抑制剂-P
磷蛋白磷酸酶抑制剂
葡萄糖-6-磷酸酶(肝,
肾)
葡萄糖-6-磷酸
葡萄糖
葡萄糖-6-磷酸酶只存在于肝、肾中,而不存在
于肌中。所以只有肝和肾可补充血糖;而肌糖原不
能分解成葡萄糖,只能进行糖酵解或有氧氧化。
糖原的分解合成代谢
第15页
肌糖原分解
➢ 肌糖原分解前三步反应与肝糖原分解过程相同, 不过生成6-磷酸葡萄糖之后,因为肌肉组织中 不存在葡萄糖-6-磷酸酶,所以生成6-磷酸葡萄 糖不能转变成葡萄糖释放入血,提供血糖,而 只能进入酵解路径深入代谢。
合成部位: 组织定位:主要在肝脏、肌肉 细胞定位:胞浆
糖原的分解合成代谢
第4页
糖原合成路径:
1.葡萄糖磷酸化生成葡萄糖-6-磷酸
ATP
ADP
葡萄糖 己糖激酶;
葡萄糖-6-磷酸
葡萄糖激酶(肝)
糖原的分解合成代谢
第5页
2.葡萄糖-6-磷酸转变成葡萄糖-1-磷酸
磷酸葡萄糖变位酶
葡萄糖-6-磷酸
葡萄糖-1-磷酸
➢ 当糖原合成路径活跃时,分解路径则被抑制, 才能有效地合成糖原;反之亦然。
糖原的分解合成代谢

第二十四章 糖原的分解与合成代谢

第二十四章 糖原的分解与合成代谢

ATP
Mg2+
ADP
H OH HO H OH H H
O H
葡萄糖激酶
OH
2.
6-磷酸葡萄糖转变成1-磷酸葡萄糖(异构)
OH O P O CH2 OH OH OH
HO CH2 O
O
磷酸葡萄糖变位酶
OH
OH
OH OH OH O P HO O
OH
6-磷酸葡萄糖
1-磷酸葡萄糖
3.1- 磷酸葡萄糖转变成尿苷二磷酸葡萄糖 (转形) CH OH
2、作用
在高等动植物体内,糖核苷酸是合成双 糖和多糖过程中单糖的活化形式与供体。
3、形成
1-磷酸葡萄糖(G-1-P)+尿苷三磷酸(UTP) UDPG焦磷酸化酶 尿苷二磷酸葡萄糖(UDPG)
二、蔗糖的生物合成
1、蔗糖磷酸化酶(微生物)
蔗糖磷酸化酶
G-1-P + F 2、蔗糖合酶
蔗糖+Pi
蔗糖合酶
UDPG + 果糖 糖 3、蔗糖磷酸合酶
G-6-P在糖代谢中的作用
G (补充血糖) (分解代谢)
(糖原合成)
Gn
G-6-P UDPG G-1-P 6-磷酸葡萄糖酸 内酯 (磷酸戊糖途径)(糖异生) (酵解途径) (糖原分解)
F-6-P 丙酮酸 (有氧氧化) CO2+H2O
(无氧酵解)
乳酸
肝脏:肝糖原,70—100g,维持血糖水平
• 糖原的结构特点及其意义
1. 葡萄糖单元以α-1,4-糖苷 键 形成长链。 2. 约10个葡萄糖单元处形成分 枝,分枝处葡萄糖以α-1,6糖苷键连接,分支增加,溶 解度增加。 3. 每条链都终止于一个非还原 端.非还原端增多,以利于其

第十一章糖类代谢--王镜岩《生物化学》第三版笔记(完美打印版)

第十一章糖类代谢--王镜岩《生物化学》第三版笔记(完美打印版)

第⼗⼀章糖类代谢--王镜岩《⽣物化学》第三版笔记(完美打印版)第⼗⼀章糖类代谢第⼀节概述⼀、特点糖代谢可分为分解与合成两⽅⾯,前者包括酵解与三羧酸循环,后者包括糖的异⽣、糖原与结构多糖的合成等,中间代谢还有磷酸戊糖途径、糖醛酸途径等。

糖代谢受神经、激素和酶的调节。

同⼀⽣物体内的不同组织,其代谢情况有很⼤差异。

脑组织始终以同⼀速度分解糖,⼼肌和⾻骼肌在正常情况下降解速度较低,但当⼼肌缺氧和⾻骼肌痉挛时可达到很⾼的速度。

葡萄糖的合成主要在肝脏进⾏。

不同组织的糖代谢情况反映了它们的不同功能。

⼆、糖的消化和吸收(⼀)消化淀粉是动物的主要糖类来源,直链淀粉由300-400个葡萄糖构成,⽀链淀粉由上千个葡萄糖构成,每24-30个残基中有⼀个分⽀。

糖类只有消化成单糖以后才能被吸收。

主要的酶有以下⼏种:1.α-淀粉酶哺乳动物的消化道中较多,是内切酶,随机⽔解链内α1,4糖苷键,产⽣α-构型的还原末端。

产物主要是糊精及少量麦芽糖、葡萄糖。

最适底物是含5个葡萄糖的寡糖。

2.β-淀粉酶在⾖、麦种⼦中含量较多。

是外切酶,作⽤于⾮还原端,⽔解α-1,4糖苷键,放出β-麦芽糖。

⽔解到分⽀点则停⽌,⽀链淀粉只能⽔解50%。

3.葡萄糖淀粉酶存在于微⽣物及哺乳动物消化道内,作⽤于⾮还原端,⽔解α-1,4糖苷键,放出β-葡萄糖。

可⽔解α-1,6键,但速度慢。

链长⼤于5时速度快。

4.其他α-葡萄糖苷酶⽔解蔗糖,β-半乳糖苷酶⽔解乳糖。

⼆、吸收D-葡萄糖、半乳糖和果糖可被⼩肠粘膜上⽪细胞吸收,不能消化的⼆糖、寡糖及多糖不能吸收,由肠细菌分解,以CO2、甲烷、酸及H2形式放出或参加代谢。

三、转运1.主动转运⼩肠上⽪细胞有协助扩散系统,通过⼀种载体将葡萄糖(或半乳糖)与钠离⼦转运进⼊细胞。

此过程由离⼦梯度提供能量,离⼦梯度则由Na-K-ATP酶维持。

细菌中有些糖与氢离⼦协同转运,如乳糖。

另⼀种是基团运送,如⼤肠杆菌先将葡萄糖磷酸化再转运,由磷酸烯醇式丙酮酸供能。

生物化学糖的各种代谢途径

生物化学糖的各种代谢途径

生物化学糖的各种代谢途径糖是生物体内重要的能量来源,它经过一系列代谢途径转化成为能够供给细胞进行生命活动所需能量的物质。

本文将从不同角度介绍糖的代谢途径。

1. 糖的消化与吸收糖的消化与吸收是糖的代谢的第一步。

在消化道中,碳水化合物被酶水解成单糖,如葡萄糖、果糖和半乳糖等。

这些单糖通过细胞膜上的特定转运蛋白进入肠细胞,并进一步转运到血液中。

2. 糖的糖酵解糖酵解是糖的代谢重要途径之一,其主要发生在细胞质中。

在糖酵解过程中,葡萄糖分子通过一系列酶的催化,最终转化为丙酮酸和乳酸。

这个过程产生了少量的ATP,同时还释放出能量。

3. 糖的糖异生糖异生是一种逆向的糖代谢途径,它发生在肝脏、肾脏和肌肉等组织中。

在糖异生过程中,非糖物质如乳酸、氨基酸和甘油等被转化为葡萄糖。

这个过程在低血糖状态下起到维持血糖平衡的作用。

4. 糖的糖原代谢糖原是一种多糖,是动物体内储存能量的主要形式。

糖原代谢包括糖原的合成和降解两个过程。

在糖原合成中,多个葡萄糖分子通过糖原合成酶连接成为长链状的糖原分子。

而在糖原降解中,糖原酶将糖原分子逐步分解成为葡萄糖分子,供给机体能量需求。

5. 糖的糖酮体代谢当机体处于长时间低血糖状态或长期饥饿状态时,脂肪组织会分解脂肪生成酮体,其中乙酰酮酸和羟基丁酸是两种主要的酮体。

在饥饿状态下,脑细胞主要利用酮体供能。

6. 糖的糖醇代谢糖醇是一种糖的衍生物,如甘露醇和山梨醇等。

糖醇可以通过酶的催化作用与糖酮体和糖酵解产物相互转化。

糖醇在机体中具有调节渗透压和抗氧化等功能。

7. 糖的糖基转移糖基转移是一种重要的糖代谢途径,它参与了糖的合成、降解以及信号传导等过程。

糖基转移酶可以将糖基从一种底物转移到另一种底物上,形成新的糖分子。

总结起来,糖的代谢途径涵盖了糖的消化与吸收、糖酵解、糖异生、糖原代谢、糖酮体代谢、糖醇代谢和糖基转移等多个方面。

糖作为生物体内重要的能量来源,其代谢途径的研究不仅有助于理解生命活动的基本过程,还为糖代谢相关疾病的治疗提供了理论依据。

糖原合成与分解的原理

糖原合成与分解的原理

糖原合成与分解的原理糖原合成和分解是机体中糖类代谢的重要过程,既是能量存储的一种形式,也是供给机体运动和生物合成所需的重要物质。

糖原是由葡萄糖分子通过糖合酶的作用在细胞质中合成的多聚糖,是一种高度分支的链状聚合物,由数千个葡萄糖分子组成。

糖原合成从糖原核心部分的基板开始,通过连续添加葡萄糖分子生成一个高度分支的糖原分子。

糖原分解则是通过糖原分解酶的作用,将糖原分子中的葡萄糖分子逐渐剥离出来,以供能量供应或转化为其他有机物质。

糖原合成的原理主要与糖原合成酶以及相关调节因子的作用有关。

糖原合成酶主要由磷酸葡萄糖单酯合成酶(UDP-Glc合成酶)和糖原合成酶(GS)组成。

在糖原合成过程中,糖原核心部分的基板首先通过UDP-Glc合成酶的作用将葡萄糖与尿苷酸结合形成UDP-Glc,然后通过糖原合成酶的作用将UDP-Glc添加到已存在的糖原链上,形成新的糖原分子。

同时,还有一些辅助因子对糖原合成的调节起到重要作用,如磷酸化酶和糖源性转录调控因子等。

磷酸化酶主要通过对GS的磷酸化和去磷酸化来调节GS的活性,进而影响糖原合成速率。

糖源性转录调控因子主要参与调节相关基因的转录水平,从而控制糖原合成酶和其他调节因子的表达水平。

糖原分解的原理主要与糖原分解酶以及相关调节因子的作用有关。

糖原分解酶主要由糖原磷酸酶(GP)和磷酸葡萄糖磷酸酶(PP)组成。

在糖原分解过程中,糖原磷酸酶将糖原链中的葡萄糖分子从糖原链上剥离下来,形成糖-1-磷酸(G1P)。

然后,磷酸葡萄糖磷酸酶将G1P进一步催化为葡萄糖-6-磷酸(G6P)。

G6P可以进一步通过糖酮酸途径产生ATP或者通过磷酸异构酶的作用转化为葡萄糖,以供给机体细胞能量需要。

同时,糖原分解也受到一些调控因子的调节,如激素和神经调节因子等。

胰岛素作为一种重要的激素,能够通过激活糖原合成酶和抑制糖原分解酶的活性来促进糖原合成和抑制糖原分解。

而其他激素如肾上腺素和胰高血糖素等则能够通过反向的作用来抑制糖原合成和促进糖原分解。

糖 代谢

糖 代谢

(1)低血糖是指血糖浓度<3.33mmol/L
空腹血糖浓度低于3.33~3.89mmol/L时称为低血糖(hypoglycemia) 。血 糖水平过低会影响脑细胞功能,出现 头晕、倦怠无力、心悸等症状, 严重时出现昏迷,称为低血糖休克。
低血糖的病因有: ① 胰性(胰岛β-细胞功能亢进、胰岛α-细胞功能低 下等);② 肝性(肝癌、糖原积累病等);③ 内分泌异常(垂体功能 低下、肾上腺皮质功能低下等);④ 肿瘤(胃癌等);⑤ 饥饿或不能 进食;
无氧代谢不能将葡萄糖完全分解为二氧化碳,部分能量仍积累在其 代谢产物中; 有氧代谢通过呼吸链将葡萄糖完全氧化为二氧化碳和水 ,可将葡萄糖的能量全部释放出来为生物体利用;
有氧氧化是糖分解代谢的主要途径。
重要概念
糖酵解(glycolysis):一分子葡萄糖裂解为两分子丙酮酸的过程。 乳酸发酵(lactic acid fermentation):在缺氧条件下,葡萄糖经酵解生 成的丙酮酸还原为乳酸(2-羟基丙酸,lactate) 。 乙醇发酵(ethanol fermentation):在某些植物、脊椎动物组织和微生 物,酵解产生的丙酮酸转变为乙醇和CO2,即乙醇发酵。(丙酮酸脱羧产生 乙醛,乙醛在醇脱氢酶催化下被NADH还原成乙醇) 有氧氧化(aerobic oxidation):在有条件下,需氧生物和哺乳动物组织 内的丙酮酸彻底氧化分解为CO2和H2O,即糖的有氧氧化 。
糖代谢异常与临床疾病
(一)先天性酶缺陷导致糖原累积症
糖原累积症(glycogen storage disease)是一类遗传性代谢病,其 特点为体内某些器官组织中有大量糖原堆积。
引起糖原累积症的原因是患者先天性缺乏与糖原代谢有关的酶类。
糖原积累症分型

生物化学糖代谢知识点总结

生物化学糖代谢知识点总结

肠粘膜上皮细胞体循环小肠肠腔第六章糖代谢糖(carbohydrates)即碳水化合物,是指多羟基醛或多羟基酮及其衍生物或多聚物。

根据其水解产物的情况,糖主要可分为以下四大类:单糖:葡萄糖(G)、果糖(F),半乳糖(Gal),核糖双糖:麦芽糖(G-G),蔗糖(G-F),乳糖(G-Gal)多糖:淀粉,糖原(Gn),纤维素结合糖: 糖脂,糖蛋白其中一些多糖的生理功能如下:淀粉:植物中养分的储存形式糖原:动物体内葡萄糖的储存形式纤维素:作为植物的骨架一、糖的生理功能1. 氧化供能2. 机体重要的碳源3. 参与组成机体组织结构,调节细胞信息传递,形成生物活性物质,构成具有生理功能的糖蛋白。

二、糖代谢概况——分解、储存、合成三、糖的消化吸收食物中糖的存在形式以淀粉为主。

1.消化消化部位:主要在小肠,少量在口腔。

消化过程:口腔胃肠腔肠黏膜上皮细胞刷状缘吸收部位:小肠上段吸收形式:单糖吸收机制:依赖Na+依赖型葡萄糖转运体(SGLT)转运。

2.吸收吸收途径:SGLT肝脏各种组织细胞门静脉过程第二阶段:丙酮酸的氧化脱羧 第三阶段:三羧酸循环 第四阶段:氧化磷酸化TAC 循环四、糖的无氧分解第一阶段:糖酵解 第二阶段:乳酸生成反应部位:胞液产能方式:底物水平磷酸化 净生成ATP 数量:2×2-2= 2ATPE1 E2E3 调节:糖无氧酵解代谢途径的调节主要是通过各种变构剂对三个关键酶进行变构调节。

生理意义:五、糖的有氧氧化1、反应过程E1:己糖激酶E2: 6-磷酸果糖激酶-1E3: 丙酮酸激酶NAD +乳 酸NADH+H + 关键酶 ① 己糖激酶 ② 6-磷酸果糖激酶-1 ③ 丙酮酸激酶调节方式 ① 别构调节② 共价修饰调节 ➢ 糖无氧氧化最主要的生理意义在于迅速提供能量,这对肌收缩更为重要。

➢ 是某些细胞在氧供应正常情况下的重要供能途径。

① 无线粒体的细胞,如:红细胞 ② 代谢活跃的细胞,如:白细胞、骨髓细胞 第一阶段:糖酵解途径 G (Gn )乙酰CoA胞液 线粒体○1糖酵解途径(同糖酵解,略)②丙酮酸进入线粒体,氧化脱羧为乙酰CoA (acetyl CoA)。

论述糖代谢各途径之间的联系

论述糖代谢各途径之间的联系

论述糖代谢各途径之间的联系糖代谢是指葡萄糖在细胞内发生的一系列化学反应过程,其中包括糖的分解与合成。

糖代谢途径主要分为糖酵解途径(糖分解)和糖异生途径(糖合成),这两条途径相互联系并共同调控,以维持细胞内的糖平衡,同时也与其他代谢途径密切相关。

本文将从以下几个方面来论述糖代谢各途径之间的联系:糖酵解及其在能量产生中的作用、糖异生途径及其调控以及糖代谢与其他代谢途径的关系。

首先,糖酵解途径是指将葡萄糖分解为丙酮酸以产生能量的过程。

这个过程主要发生在细胞质中,被称为细胞质糖酵解途径。

细胞质糖酵解途径的关键酶是糖解酶,它能将葡萄糖分解成两个分子的丙酮酸,并通过生成ATP来产生能量。

这个过程可以继续进行,将丙酮酸进一步分解为乙酸来产生更多的ATP。

同时,在细胞器线粒体中,葡萄糖的糖酵解也可以继续进行,通过柠檬酸循环来产生更多的ATP。

与此同时,糖异生途径是指细胞内合成葡萄糖的过程。

糖异生途径是糖酵解途径的逆过程,通过多个关键酶的参与,包括磷酸糖异构酶、磷酸糖酸化酶和磷酸糖酶等,将乙酸、丙酮酸、甘油等非糖类物质转化为葡萄糖。

糖异生途径主要发生在肝脏和肌肉等组织中,可以通过调节酶的活性来满足细胞和组织的需求。

糖酵解途径和糖异生途径之间的联系是通过共享一些中间产物来实现的。

例如,丙酮酸是糖酵解途径的产物,也是糖异生途径中的一个关键中间产物。

在细胞质糖酵解途径中,丙酮酸会被转运到线粒体中,通过柠檬酸循环进一步分解产生能量。

然而,在某些情况下,细胞需要将丙酮酸转化为糖来进行糖异生,以满足能量需求。

此外,糖酵解途径和糖异生途径还通过共享底物来联系。

例如,葡萄糖-6-磷酸是糖异生途径的起始物质,也是糖酵解途径中的一个中间产物。

葡萄糖-6-磷酸可以被磷酸葡萄糖异构酶转化为磷酸葡萄糖,进而参与糖酵解途径生成能量。

此外,糖异生途径中的丙酮酸也可以被通过磷酸化作用转化为葡萄糖-6-磷酸,进一步参与糖酵解途径产生能量。

另外,糖代谢途径还与其他代谢途径密切相关。

糖的化学分解与合成代谢

糖的化学分解与合成代谢

(二)糖的吸收
1. 吸收部位
小肠上段
2. 吸收形式
单糖
3. 吸收机制
刷状缘 肠 腔
Na+
G
小肠粘膜细胞
ATP ADP+Pi Na+泵
细胞内膜 门静脉
K+
Na+依赖型葡萄糖转运体
(Na+-dependent glucose transporter, SGLT)
4. 吸收途径 小肠肠腔 SGLT 肠粘膜上皮细胞
消化部位: 主要在小肠,少量在口腔
消化过程
口腔 胃 肠腔
淀粉
唾液中的α-淀粉酶 胰液中的α-淀粉酶
肠粘膜 上皮细胞 刷状缘
麦芽糖+麦芽三糖 α-临界糊精+异麦芽糖 (40%) (25%) (30%) (5%)
α-葡萄糖苷酶
α-临界糊精酶
葡萄糖
食物中含有的大量纤维素,因人体 内无-糖苷酶而不能对其分解利用,但却 具有刺激肠蠕动等作用,也是维持健康 所必需。
1,6-双磷酸果糖
CH2 O P
C O 磷酸二羟丙酮
C H 2O H
+
CHO
C H O H 3-磷酸甘油醛 CH2 O P
磷酸烯醇式丙酮酸
ADPቤተ መጻሕፍቲ ባይዱ
ATP
丙酮酸
Glu
ATP
ADP
G-6-P
⑸ 磷酸丙糖的同分异构化
F-6-P
ATP ADP
F-1,6-2P
CH2 O P
CHO
磷酸二 3-磷酸 羟丙酮 甘油醛
2-磷酸甘油酸
磷酸烯醇式丙酮酸
ADP
ATP
丙酮酸
己糖异构酶
6-磷酸果糖 (fructose-6-phosphate, F-6-P)

糖代谢包括糖的分解代谢和糖的合成代谢

糖代谢包括糖的分解代谢和糖的合成代谢

五、糖酵解第二阶段——放能阶段
⑩ 磷酸烯醇式丙酮酸转变为丙酮酸并产生一个ATP—第三个不可逆
产生两个ATP, 可被视为糖酵解 途径最后的能量 回报。 ∆G 0’ = -61.92 kJ/mol ΔG为大的负 值——受到调控!
丙酮酸(烯醇式)
丙酮酸(酮式)
丙酮酸激酶: 抑制剂:ATP、长链脂肪酸、乙酰CoA、丙氨酸 激活剂:1,6-二磷酸果糖、磷酸烯醇式丙酮酸
③ 6-磷酸果糖形成1,6-二磷酸果糖—第二个不可逆,第二次引发
消耗第2个ATP,磷酸果糖激酶催化果糖-6-磷酸磷酸化,反应不可逆 ,且限速。
☞ 磷酸果糖激酶(PFK)是变构酶,是糖酵解途径的调控关键酶(限速酶), ▼ 受ATP抑制,AMP可解除抑制;
低能量状态(ATP浓度低)激活PFK 高能量状态(ATP浓度高)抑制PFK ▼ pH下降,H+对酶有抑制作用,避免酸中毒; ▲有大的自由能降低,受到高度的调控,2,6-二磷酸果糖是变构激活剂
糖代谢
糖是生物体重要的物质和能量来源; 糖代谢包括糖的分解代谢和糖的合成代谢;
糖的分解(catabolism) —— 糖酵解、三羧酸循环、磷酸戊糖途径、糖原分解 糖的合成(anabolism) —— 糖原合成、糖异生 糖代谢受神经、激素和别构物的调节控制
糖——自然界分布广,数量最多的 有机化合物。尤以植物含量最多, 约为85%~95%。生命活动中主要作 用——提供能量和碳源。人体所需能 量的50%~70%来自于糖。食物中的 糖类主要是淀粉,被机体消化成其 基本组成单位葡萄糖后,以主动吸 收方式入血。本章重点讨论葡萄糖 在机体内的代谢。
能量收获阶段
甘油醛-3-磷酸 (2 - 3C) (G3P 或 GAP)
4ADP + P 4ATP
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Glu
ATP ADP
G-6-P
F-6-P
ATP ADP
F-1,6-2P
⑽ 磷酸烯醇式丙酮酸转变成丙酮酸, 并通过底物水平磷酸化生成ATP
磷酸二 3-磷酸 羟丙酮 甘油醛
NAD+
NADH+H+
1,3-二磷酸甘油酸
ADP ATP
3-磷酸甘油酸
COOH
CO P
CH2
ADP
ATP
K+ Mg2+
丙酮酸激酶 (pyruvate kinase)
CO
羟丙酮 甘油醛 H O C H
NAD+ NADH+H+
1,3-二磷酸甘油酸
ADP ATP
3-磷酸甘油酸
2-磷酸甘油酸
H C O H 醛缩酶 H C O H (aldolase)
C H 2O P
1,6-双磷酸果糖
CH2 O P
C O 磷酸二羟丙酮
C H 2O H
+
CHO
C H O H 3-磷酸甘油醛 CH2 O P
过程称之为糖酵解。
* 糖酵解的反应部位:胞浆
* 糖酵解分为两个阶段 ➢ 第一阶段 由葡萄糖分解成丙酮酸(pyruvate),称之 为糖酵解途径(glycolytic pathway)。 ➢ 第二阶段 由丙酮酸转变成乳酸。
Glu
ATP
ADP
G-6-P
(一)葡萄糖分解成丙酮酸
F-6-P
ATP
⑴ 葡萄糖磷酸化为6-磷酸葡萄糖
ADP
F-1,6-2P
HO
磷酸二 3-磷酸
H
羟丙酮 甘油醛
NAD+
HO
NADH+H+
1,3-二磷酸甘油酸
ADP ATP
3-磷酸甘油酸
CH2 OH
H OH H
OH
H OH
葡萄糖
P O CH2
ATP
ADP
Mg2+
H H
OH
己糖激酶
OH H
HO
OH
(hexokinase)
H OH
6-磷酸葡萄糖
(glucose-6-phosphate,
α-葡萄糖苷酶
α-临界糊精酶
葡萄糖
食物中含有的大量纤维素,因人体 内无-糖苷酶而不能对其分解利用,但却 具有刺激肠蠕动等作用,也是维持健康 所必需。
(二)糖的吸收
1. 吸收部位
小肠上段
2. 吸收形式
单糖
3. 吸收机制
刷状缘 肠 腔
Na+
G
小肠粘膜细胞
ATP ADP+Pi Na+泵
细胞内膜 门静脉
磷酸烯醇式丙酮酸
ADP
ATP
丙酮酸
Glu
ATP
ADP
G-6-P
⑺ 1,3-二磷酸甘油酸转变成3-磷酸甘油酸
F-6-P
ATP
O = C O P ADP
ATP
COOH
ADP
F-1,6-2P
C OH
磷酸甘油酸激酶
C OH
CH2 O P
CH2 O P
磷酸二 3-磷酸 羟丙酮 甘油醛
NAD+
1,3-二磷酸 甘油酸
磷酸烯醇式丙酮酸
ADP
ATP
丙酮酸
Glu
ATP
ADP
G-6-P
⑸ 磷酸丙糖的同分异构化
F-6-P
ATP ADP
F-1,6-2P
CH2 O P
CHO
磷酸二 3-磷酸 羟丙酮 甘油醛
NAD+
NADH+H+
1,3-二磷酸甘油酸
ADP ATP
3-磷酸甘油酸
2-磷酸甘油酸
磷酸烯醇式丙酮酸
ADP
ATP
丙酮酸
CO
F-1,6-2P
COOH
磷酸二 3-磷酸 羟丙酮 甘油醛
NAD+
NADH+H+
1,3-二磷酸甘油酸
ADP ATP
3-磷酸甘油酸
2-磷酸甘油酸
磷酸烯醇式丙酮酸
ADP
ATP
丙酮酸
CO P
CH2 OH
2-磷酸甘油酸
烯醇化酶 (enolase)
COOH
C O P + H2O
CH2
磷酸烯醇式丙酮酸 (phosphoenolpyruvate, PEP)
① 活性中心底物结合部位(低浓度时) ② 活性中心外别构调节部位(高浓度时)
胰高血糖素
AMP 柠檬酸
+–
ATP
cAMP
ATP
PFK-2
FBP-2
(有活性) (无活性)
6-磷酸果糖激酶-2
活化
F-6-P
PKA
磷蛋白磷酸酶
果糖双磷酸酶-2
ATP
ADP
P
P
+
ADP
PFK-2
–/+
(无活性)
PFK-1 + ++ –
二、糖酵解的调节
关键酶
① 己糖激酶 ② 6-磷酸果糖激酶-1 ③ 丙酮酸激酶
调节方式
① 别构调节 ② 共价修饰调节
(一) 6-磷酸果糖激酶-1(PFK-1) * 别构调节
别构激活剂:AMP; ADP; F-1,6-2P; F-2,6-2P 别构抑制剂: 柠檬酸; ATP(高浓度)
• F-1,6-2P 正反馈调节该酶 • 此酶有二个结合ATP的部位:
K+
Na+依赖型葡萄糖转运体
(Na+-dependent glucose transporter, SGLT)
4. 吸收途径 小肠肠腔 SGLT 肠粘膜上皮细胞
GLUT : 葡 萄 糖 转 运 体 (glucose transporter) , 已发现有5种葡萄糖转运 体(GLUT 1~5)。
门静脉 肝脏
Glu
ATP
ADP
G-6-P
⑶ 6-磷酸果糖转变为1,6-双磷酸果糖
F-6-P
ATP ADP
F-1,6-2P
磷酸二 3-磷酸 羟丙酮 甘油醛
NAD+
NADH+H+
1,3-二磷酸甘油酸
ADP ATP
3-磷酸甘油酸
2-磷酸甘油酸
磷酸烯醇式丙酮酸
ADP
ATP
丙酮酸
ATP
ADP
Mg2+
6-磷酸果糖激酶-1
磷酸烯醇式丙酮酸
ADP
ATP
丙酮酸
COOH
COOH
C OH
CH2 O P
磷酸甘油酸 变位酶
3-磷酸甘油酸
CO P
CH2 OH
2-磷酸甘油酸
磷酸甘油酸变位酶 (phosphoglycerate mutase)
Glu
ATP
ADP
G-6-P
⑼ 2-磷酸甘油酸转变为磷酸烯醇式丙酮酸
F-6-P
ATP ADP
磷酸二 3-磷酸 羟丙酮 甘油醛
NAD+
NADH+H+
1,3-二磷酸甘油酸
ADP ATP
3-磷酸甘油酸
CH OH
3-磷酸甘油醛脱氢酶
CH2 O P
3-磷酸甘油醛
3-磷酸甘油醛脱氢酶
C OH
CH2 O P 1,3-二磷酸
甘油酸
2-磷酸甘油酸
(glyceraldehyde-3-phosphate dehydrogenase)
F-6-P
ATP
ADP
F-1,6-2P
P O CH2
磷酸二 3-磷酸 羟丙酮 甘油醛
NAD+
H H OH
HO
OH H
OH
NADH+H+
1,3-二磷酸甘油酸
ADP ATP
3-磷酸甘油酸
H OH
6-磷酸葡萄糖
2-磷酸甘油酸
磷酸烯醇式丙酮酸
ADP
ATP
丙酮酸
己糖异构酶
6-磷酸果糖 (fructose-6-phosphate, F-6-P)
磷酸烯醇式丙酮酸
ADP
ATP
丙酮酸
level phosphorylation) 。
Glu
ATP
ADP
G-6-P
⑻ 3-磷酸甘油酸转变为2-磷酸甘油酸
F-6-P
ATP ADP
F-1,6-2P
磷酸二 3-磷酸 羟丙酮 甘油醛
NAD+
NADH+H+
1,3-二磷酸甘油酸
ADP ATP
3-磷酸甘油酸
2-磷酸甘油酸
3-磷酸甘油酸
NADH+H+
1,3-二磷酸甘油酸
磷酸甘油酸激酶(phosphoglycerate kinase)
ADP ATP
3-磷酸甘油酸
※在以上反应中,底物分子内部能量重新
2-磷酸甘油酸 分布,生成高能键,使ADP磷酸化生成ATP 的 过 程 , 称 为 底 物 水 平 磷 酸 化 (substrate
糖的化学:分解与合成代谢
第一节
概述
Introduction
一、糖的生理功能
1. 氧化供能
这是糖的主要功能。
2. 提供合成体内其他物质的原料
如糖可提供合成某些氨基酸、脂肪、胆固醇、 核苷等物质的原料。
3. 作为机体组织细胞的组成成分
如糖是糖蛋白、蛋白聚糖、糖脂等的组成成分。
二、糖的消化与吸收
(一)糖的消化
第一阶段:酵解途径
胞液
丙酮酸
相关文档
最新文档