哈夫曼编码

合集下载

哈夫曼树等长编码

哈夫曼树等长编码

哈夫曼树是一种特殊的二叉树,其中的每个叶子节点都代表一个字符,而从根节点到每个叶子节点的路径可以形成一个二进制编码,称为哈夫曼编码。

哈夫曼编码是一种不等长的编码方式,每个字符的编码长度是根据字符出现的频率来决定的。

具体来说,对于一个给定的字符集,我们可以首先根据每个字符的出现频率构造一棵哈夫曼树,然后从根节点到每个叶子节点的路径就可以形成一个二进制编码。

出现频率高的字符的编码长度较短,而出现频率低的字符的编码长度较长。

在哈夫曼编码中,由于每个字符的编码都是从根节点到该字符所代表的叶子节点的路径,因此可以根据编码的长度来判断字符的出现频率。

一般来说,长度较短的编码对应出现频率较高的字符,而长度较长的编码对应出现频率较低的字符。

需要注意的是,哈夫曼编码是一种前缀编码,即任何一个字符的编码都不是另一个字符编码的前缀。

这意味着在解码时,我们可以通过比较编码的长度来逐个解码出原始的字符序列,而不会出现二义性。

哈夫曼编码python

哈夫曼编码python

哈夫曼编码python一、什么是哈夫曼编码?哈夫曼编码(Huffman Coding)是一种可变长度编码(Variable Length Code),它可以将不同长度的字符编码成等长的二进制串,从而实现数据压缩的目的。

哈夫曼编码是由David A. Huffman在1952年发明的,它是一种贪心算法,可以得到最优解。

二、哈夫曼编码原理1.字符频率统计在进行哈夫曼编码之前,需要先统计每个字符出现的频率。

通常使用一个字典来存储每个字符和其出现的次数。

2.构建哈夫曼树根据字符出现频率构建一个二叉树,其中频率越高的字符离根节点越近。

构建过程中需要用到一个优先队列(Priority Queue),将每个节点按照频率大小加入队列中,并将队列中前两个节点合并为一个新节点,并重新加入队列中。

重复这个过程直到只剩下一个节点,即根节点。

3.生成哈夫曼编码从根节点开始遍历哈夫曼树,在遍历过程中,左子树走0,右子树走1,直到叶子节点。

将路径上经过的0和1分别表示为0和1位二进制数,并把这些二进制数拼接起来,就得到了该字符的哈夫曼编码。

三、哈夫曼编码Python实现下面是一个简单的Python实现:1.字符频率统计```pythonfrom collections import Counterdef get_char_frequency(text):"""统计每个字符出现的频率"""return Counter(text)```2.构建哈夫曼树```pythonimport heapqclass HuffmanNode:def __init__(self, char=None, freq=0, left=None, right=None): self.char = charself.freq = freqself.left = leftself.right = rightdef __lt__(self, other):return self.freq < other.freqdef build_huffman_tree(char_freq):"""根据字符频率构建哈夫曼树"""nodes = [HuffmanNode(char=c, freq=f) for c, f inchar_freq.items()]heapq.heapify(nodes)while len(nodes) > 1:node1 = heapq.heappop(nodes)node2 = heapq.heappop(nodes)new_node = HuffmanNode(freq=node1.freq+node2.freq, left=node1, right=node2)heapq.heappush(nodes, new_node)return nodes[0]```3.生成哈夫曼编码```pythondef generate_huffman_codes(node, code="", codes={}): """生成哈夫曼编码"""if node is None:returnif node.char is not None:codes[node.char] = codegenerate_huffman_codes(node.left, code+"0", codes) generate_huffman_codes(node.right, code+"1", codes)return codes```四、使用哈夫曼编码进行压缩使用哈夫曼编码进行压缩的方法很简单,只需要将原始数据中的每个字符用对应的哈夫曼编码替换即可。

哈夫曼树的平均编码长度

哈夫曼树的平均编码长度

哈夫曼树的平均编码长度
哈夫曼树的平均编码长度是指使用哈夫曼编码时,哈夫曼编码的总码长,除以出现的信息总字节数。

它是度量信息压缩技术中重要的参数,可以清楚地反映出编码和信息压缩技术的效率。

一、哈夫曼树的平均编码长度
1. 定义:哈夫曼树的平均编码长度是指使用哈夫曼树编码时,编码的总码长,除
以出现的信息总字节数。

2. 原理:哈夫曼编码的原理是,将较小的权值编码成较短的编码,而将较大的权值编码成较长的编码,这样,编码的总码长度就做出了贡献,使得编码总码长度降低。

3.计算:哈夫曼平均编码长度L = (sum(Pi*Li))/n ,其中Pi为概率,Li为对应的编码长度,n为文件中字节的总数。

4.应用:哈夫曼树的平均编码长度的应用情况非常广泛,常用来衡量压缩文件效果,以及传输数据链路的时延。

二、改进哈夫曼树的平均编码长度
1.动态哈夫曼树的应用:给出的源符号中有一组能够极大地缩减信息压缩时间和空间的改进型哈夫曼树——动态哈夫曼树,它可以计算出最优策略,即编码总数最小,权重最小。

这样,编码长度就比普通哈夫曼树大大缩小,达到了节省时间和空间的效果。

2.属性的重新确定:哈夫曼树的平均编码长度可以通过重新确定源文件属性而实现优化,建立合适的文件数据结构和定义顺序,使编码缩短。

3.编码技术:编码技术也可以显著缩短哈夫曼树的平均编码长度,二进制及其它数据表示法也可以用于改进哈夫曼树的平均编码长度,减少压缩包的容量。

总结:哈夫曼树的平均编码长度对于信息压缩技术中有着重要的意义,可以反映出编码和信息压缩技术的效率,可以从动态哈夫曼树的应用,以及属性的重新确定,以及编码技术等来得到优化改进,并实现了信息压缩的效果。

哈夫曼编码代码

哈夫曼编码代码

哈夫曼编码代码哈夫曼编码代码 1因为哈夫曼树的特点是:叶子结点权值越大的,离根越近。

又因为构造不等长编码的原则是:字符使用频率越高,编码越短,故采用哈夫曼树进行编码可以得到最优前缀编码。

约定左分支标记为0, 右分支标记为 1哈夫曼编码代码 2为不浪费存储空间,动态分配一个长度为n(字符编码长度一定小于n) 的一维数组cd, 用来临时存放当前正在求解的第i 个字符的编码,当第i个字符的编码求解完毕后,根据数组cd的字符串长度分配HC[i]的空间,然后将数组cd中的编码复制到HC[i]中。

依照上一篇文章的哈夫曼树:哈夫曼编码表HC:注意:由于哈夫曼树不唯一,故哈夫曼编码也不唯一。

代码如下:#include<stdio.h>#include<iostream>typedefstruct{int weight;int parent, lchild,rchild;}HTNode,*HuffmanTree;voidSelect(HuffmanTree&HT,int n,int&s1,int&s2){int min;for(int i =1; i <= n; i++){if(HT[i].parent ==0){min = i;break;}}for(int i =1; i <= n;i++){if(HT[i].parent ==0){if(HT[i].weight <HT[min].weight){min = i;}}}s1 = min;for(int i =1; i <= n;i++){if(HT[i].parent ==0&& i != s1){min = i;break;}}for(int i =1; i <= n;i++){if(HT[i].parent ==0&& i != s1){if(HT[i].weight < HT[min].weight){min = i;}}}s2 = min;}voidprintln(HuffmanTree &HT,intm){printf("==============================\n");for(inti =1; i <= m; i++){printf("%d, ", i);printf("%d ", HT[i].weight);printf("%d ", HT[i].parent);printf("%d ", HT[i].lchild);printf("%d \n",HT[i].rchild);printf("---------------------------\n");}}voidCreateHuffmanTree(HuffmanTree &HT,intn,int*ht){int i, m =2* n -1, s1, s2;if(n <=1)return;HT =new HTNode[m +1];for(i =1; i <= m;++i){HT[i].parent =0;HT[i].lchild =0;HT[i].rchild =0;}for(i =1; i <= n;++i){HT[i].weight = ht[i -1];}printf("\nHT的初态\n");println(HT, m);for(int i = n +1; i <=m;++i){Select(HT, i -1, s1, s2);HT[s1].parent = i;HT[s2].parent = i;HT[i].lchild = s1;HT[i].rchild = s2;HT[i].weight = HT[s1].weight +HT[s2].weight;}printf("\nHT的终态\n");println(HT, m);}typedefchar**HuffmanCode;char*cd;intstart;voidCreatHuffmanCode(HuffmanTree HT, HuffmanCode &HC,int n){int i, c, f;HC =newchar*[n +1];cd =newchar[n];cd[n -1]='\0';for(i =1; i <= n;++i){start = n -1;c = i;f = HT[i].parent;while(f !=0){if(HT[f].lchild == c) cd[--start]='0';else cd[--start]='1';c = f;f = HT[f].parent;}HC[i]=newchar[n -start];strcpy(HC[i],&cd[start]);printf("第%d组--->", i);for(int j = start; j <= n -1;++j){printf("%c ",cd[j]);}printf("\n");}delete cd;}intmain(){HuffmanTree HT;HuffmanCode HC;int n =8;intht[8]={5,29,7,8,14,23,3,11};CreateHuffmanTree(HT, n, ht);CreatHuffmanCode(HT, HC, n);}运行结果:。

哈夫曼编码名词解释

哈夫曼编码名词解释

哈夫曼编码名词解释哈夫曼编码是一种用于数据压缩的编码方式。

由于它可以减小文件的体积,并且在传输文件时速度更快,因此在实际应用中非常重要。

哈夫曼编码一些重要的名词解释如下:一、频率频率是指特定字符在文本中出现的次数。

在哈夫曼编码中,频率用于计算每个字符的权重,权重越高的字符,使用的编码位数越少。

二、前缀码前缀码是指没有任何码字是其它码字的前缀的编码方式。

哈夫曼编码就是一种前缀码,没有任何哈夫曼编码的码字是其它码字的前缀,这是保证哈夫曼编码解码准确性的关键所在。

三、码树码树是一种包含权重、编码、二进制位数的树形数据结构。

在哈夫曼编码中,码树由文本中出现的字符的频率构成,每个字符用一个叶节点代表,叶节点和中间节点通过一个编码连接起来。

四、权重权重是指字符在文本中出现的频率,在哈夫曼编码中,它用于计算每个字符在编码中的位数,权重越高的字符使用的编码位数越少。

五、码字码字是指表示一个字符的二进制编码,长度不同的码字代表着不同权重的字符。

六、编码编码是将字符或数据转化为码字的过程,在哈夫曼编码中,通过经过计算得出的权重来生成码字。

七、解码解码是将码字转化为字符或数据的过程,在哈夫曼编码中,根据每个字符的码字和频率生成码树,在树中查找出对应的字符,从而将码字还原为原始的字符。

八、二进制二进制是计算机中表示数字的一种方式,它只包含0和1两种数值,在哈夫曼编码中,使用二进制来表示每个字符的码字。

总之,哈夫曼编码在很多领域都有着重要的应用,了解这些关键名词的含义将更好的理解和掌握它的原理,也会帮助你更好的使用它。

哈夫曼编码原理及方法

哈夫曼编码原理及方法

哈夫曼编码原理及方法哈夫曼编码(Huffman Coding)是一种变长编码(Variable Length Code)的压缩算法。

它的原理是将频率较高的字符用较短的编码,频率较低的字符用较长的编码,以此降低数据的传输成本。

下面将详细介绍哈夫曼编码的原理及方法。

一、哈夫曼编码的原理哈夫曼编码的原理基于贪心算法(Greedy Algorithm),即对每个要编码的字符进行评估,按照字符在文本中出现的频率多少,将频率高的字符赋予较短的编码,频率低的字符赋予较长的编码。

这样在实际使用中,字符出现频率越高的编码长度越短,从而达到压缩数据的目的。

二、哈夫曼编码的方法1. 构建哈夫曼树(Huffman Tree)构建哈夫曼树的过程首先要确定每个字符在文本中出现的频率,然后将每个字符看作一个节点,并按照其频率大小建立一个小根堆(Min Heap)。

接下来,选取频率最小的两个节点,将它们合并到一起作为一个新的节点,并更新频率值,然后继续重复以上步骤,直到堆中只剩下一个节点,即为哈夫曼树的根节点。

2. 生成哈夫曼编码生成哈夫曼编码可以采用递归的方式,从根节点开始向左遍历时,将标记为 0,向右遍历时,将标记为 1,直到叶节点为止,然后向上回溯,将遍历的结果保存下来,得到该叶节点的哈夫曼编码。

遍历完所有的叶子节点后,即可得到所有字符的哈夫曼编码。

3. 压缩数据在使用哈夫曼编码进行数据压缩时,将字符替换为其对应的哈夫曼编码,这样可以将原始数据压缩为更小的数据量,达到压缩数据的目的。

在解压数据时,需要根据已生成的哈夫曼树,将压缩后的数据转换为原始数据,即将哈夫曼编码转换为对应的字符。

三、哈夫曼编码的优缺点哈夫曼编码的优点是具有压缩比高、压缩速度快、压缩后的数据无损还原等特点,可以广泛用于图像、音频、视频等多种数据类型的压缩。

同时,由于哈夫曼编码采用变长编码方式,所以可以使用相对较短的编码表示经常出现的字符,从而达到更好的压缩效果。

定长编码与哈夫曼编码

定长编码与哈夫曼编码

定长编码与哈夫曼编码一、定长编码1.1 定长编码的定义和特点定长编码是一种将每个符号用固定长度的二进制代码表示的编码方式。

在定长编码中,每个符号的编码长度是固定的,不同的符号有不同的编码。

定长编码的特点包括:•每个符号的编码长度是相等的。

•不同的符号有不同的编码,因此可以唯一地解码出原始符号。

•编码长度固定,不依赖于符号的出现频率。

1.2 定长编码的应用和优缺点定长编码广泛应用于各种领域,例如通信、数据存储和信息传输等。

定长编码的主要优点和缺点如下:1.2.1 优点•简单易实现:定长编码的编解码过程简单,实现起来相对容易。

•解码效率高:由于每个符号的编码长度是固定的,解码时无需考虑编码长度的变化,因此解码效率较高。

•适用于等概率符号:对于每个符号出现的概率相等的情况,定长编码是一种很好的编码方式。

1.2.2 缺点•无法充分利用信息的统计特性:定长编码无法根据符号的出现频率来灵活地确定编码长度,因此在处理非等概率符号时,会导致编码的冗余度较高。

•编码效率较低:由于编码长度固定,无法根据符号的出现频率进行适当的压缩,因此编码效率较低。

二、哈夫曼编码2.1 哈夫曼编码的定义和原理哈夫曼编码是一种根据符号出现的概率进行变长编码的方法。

在哈夫曼编码中,频率较高的符号用较短的编码表示,频率较低的符号用较长的编码表示,从而提高编码效率。

哈夫曼编码的原理包括:1.统计每个符号出现的频率。

2.构建哈夫曼树:根据符号频率构建一棵二叉树,频率较低的符号在树的底部,频率较高的符号在树的顶部。

3.分配编码:从根节点开始,对树中的每个节点进行编码,左节点为0,右节点为1。

对于叶子节点,将其路径上的编码连接起来即为该符号的编码。

2.2 哈夫曼编码的应用和优缺点哈夫曼编码被广泛应用于数据压缩和信息传输等领域。

哈夫曼编码的主要优点和缺点如下:2.2.1 优点•编码效率高:根据符号出现的概率,将频率较高的符号用较短的编码表示,频率较低的符号用较长的编码表示,从而提高了编码效率。

哈夫曼编码

哈夫曼编码

哈夫曼编码一、概述哈夫曼编码(Huffman Coding)是一种编码方式,哈夫曼编码是可变字长编码(VL C)的一种。

Huffman于1952年提出一种编码方法,该方法完全依据字符出现概率来构造异字头的平均长度最短的码字,有时称之为最佳编码,一般就叫作Huffman编码。

以哈夫曼树─即最优二叉树,带权路径长度最小的二叉树,经常应用于数据压缩。

在计算机信息处理中,“哈夫曼编码”是一种一致性编码法(又称"熵编码法"),用于数据的无损耗压缩。

这一术语是指使用一张特殊的编码表将源字符(例如某文件中的一个符号)进行编码。

这张编码表的特殊之处在于,它是根据每一个源字符出现的估算概率而建立起来的(出现概率高的字符使用较短的编码,反之出现概率低的则使用较长的编码,这便使编码之后的字符串的平均期望长度降低,从而达到无损压缩数据的目的)。

这种方法是由David.A.Huffman发展起来的。

例如,在英文中,e的出现概率很高,而z的出现概率则最低。

当利用哈夫曼编码对一篇英文进行压缩时,e极有可能用一个位(bit)来表示,而z则可能花去25个位(不是26)。

用普通的表示方法时,每个英文字母均占用一个字节(byte),即8个位。

二者相比,e使用了一般编码的1/8的长度,z则使用了3倍多。

倘若我们能实现对于英文中各个字母出现概率的较准确的估算,就可以大幅度提高无损压缩的比例。

哈夫曼压缩是个无损的压缩算法,一般用来压缩文本和程序文件。

哈夫曼压缩属于可变代码长度算法一族。

意思是个体符号(例如,文本文件中的字符)用一个特定长度的位序列替代。

因此,在文件中出现频率高的符号,使用短的位序列,而那些很少出现的符号,则用较长的位序列。

二、C语言程序实现文件的huffman编码#include <stdio.h>#define MAX 1000#define MAXSYMBS 30#define MAXNODE 59typedef struct{int weight;int flag;int parent;int lchild;int rchild;}huffnode;typedef struct{int bits[MAXSYMBS];int start;}huffcode;void main(){huffnode huff_node[MAXNODE];huffcode huff_code[MAXSYMBS],cd;int i,j,m1,m2,x1,x2,n,c,p; /*char symbs[MAXSYMBS],symb;*//*数组buff_node初始化*/printf("please input the leaf num of tree:\n");scanf("%d",&n);for(i=0;i<2*n-1;i++){huff_node[i].weight=0;huff_node[i].parent=0;huff_node[i].flag=0;huff_node[i].lchild=-1;huff_node[i].rchild=-1;}printf("please input the weight of every leaf\n");for(i=0;i<n-1;i++)scanf("%d",&huff_node[i].weight);/*构造哈弗曼树*/for(i=0;i<n-1;i++){m1=m2=MAX;x1=x2=0;for(j=0;j<n+i;j++){if(huff_node[j].weight <m1&&huff_node[j].flag ==0){m2=m1;x2=x1;m1=huff_node[j].weight ;x1=j;}else if (huff_node[j].weight <m2&&huff_node[j].flag ==0) {m2=huff_node[j].weight;x2=j;}}huff_node[x1].parent=n+i;huff_node[x2].parent=n+i;huff_node[x1].flag =1;huff_node[x2].flag =1;huff_node[n+i].weight =huff_node[x1].weight +huff_node[x2].weight ; huff_node[n+i].lchild =x1;huff_node[n+i].rchild =x2;}/*求字符的哈弗曼编码*/for(i=0;i<n;i++){cd.start =n;c=i;p=huff_node[c].parent ;while(p!=0){if(huff_node[p].lchild ==c)cd.bits [cd.start ]=0;elsecd.bits [cd.start ]=1;cd.start=cd.start -1;c=p;p=huff_node[p].parent ;}cd.start ++;for(j=cd.start ;j<=n;j++)huff_code[i].bits[j]=cd.bits [j];huff_code[i].start =cd.start ;}/*输出字符的哈弗曼编码*/puts("the hafman code are:");for(i=0;i<n;i++){for(j=huff_code[i].start;j<=n;j++)printf("%10d",huff_code[i].bits [j]);printf("/n");}puts("press any key to quit...");}三、运行界面please input the leaf num of tree:8please input the weight of every leaf 1 2 3 4 5 6 7 1输出:11010 1100 100 101 1110001 11011。

哈夫曼编码算法详解

哈夫曼编码算法详解

哈夫曼编码算法详解在计算机科学中,哈夫曼编码是一种压缩算法,也叫做霍夫曼编码,是由霍夫曼(Huffman)在1952年首创的。

霍夫曼编码是一种无损压缩算法,可以对文本文件、音频文件、图像文件等各种类型的文件进行压缩。

1. 哈夫曼编码的原理哈夫曼编码是基于频率统计的思想,通过统计每个字符在文件中出现的频率,选择出现频率最高的字符,将其映射为一组比特位,出现频率较低的字符则映射为比高的比特位,从而实现对文件的压缩。

通过哈夫曼编码,可以将文件压缩到原始大小的一半甚至更小。

2. 哈夫曼编码的实现哈夫曼编码的实现需要进行几个步骤:2.1 统计字符的出现频率从文件中读取字符,统计每个字符在文件中出现的次数,可以使用一个数组或字典来保存每个字符的出现次数。

对于英文文本来说,出现频率最高的字符是空格,其次是字母“e”。

2.2 构建哈夫曼树将所有的字符按照出现频率从小到大排序,选出出现频率最小的两个字符作为左右子节点,其父节点的出现频率为左右子节点出现频率之和。

重复这个过程,直到节点数为1,这样就得到了一棵哈夫曼树。

2.3 生成哈夫曼编码从哈夫曼树的根节点开始,遍历所有的节点,将左子节点标记为0,将右子节点标记为1,将所有的叶子节点的字符和对应的哈夫曼编码保存到一个字典中。

最终得到了每个字符对应的哈夫曼编码。

2.4 进行压缩将文件中每个字符替换为对应的哈夫曼编码,然后将所有的哈夫曼编码拼接成一个二进制数,在最后不足8位的位置补零,将其存储到文件中。

这样就完成了文件的压缩。

3. 哈夫曼编码的优点哈夫曼编码具有以下优点:3.1 压缩率高由于哈夫曼编码是根据不同字符的出现频率来进行编码的,出现频率高的字符用较短的编码表示,出现频率低的字符用较长的编码表示,能够最大限度地减少文件的大小,从而达到高的压缩率。

3.2 唯一解哈夫曼编码是通过构建哈夫曼树来得到每个字符对应的编码,哈夫曼树的构建是唯一的,因此哈夫曼编码也是唯一的。

《信息论与编码》第5章哈夫曼编码

《信息论与编码》第5章哈夫曼编码
编码简介
什么是哈夫曼编码方法
1952年由美国计算机科学家戴维· 哈夫曼先生提出 是一种数据压缩技术 该方法依据字符出现的概率进行编码 ,其基本思想为: 出现概率高的字符使用较短的编码 出现概率低的则使用较长的编码 使编码之后的码字的平均长度最短
哈夫曼编码方法

哈夫曼编码方法包含两个过程

哈夫曼编码方法包含两个过程
编码过程和译码过程

编码过程 译码过程
构建哈夫曼树 CreatHT(W,&HT)

输入是字符频度表W
表中记录的是原码报文中出现的不同符号个数和频率

输出是哈夫曼树HT
进行哈夫曼译码 HuffmanDecod(HT,CC,W,&OC)
输入的是哈夫曼树HT、代码报文CC和字符频度表W 输出的是原码报文OC
OC
输出OC 到哈夫曼译码系统之外 返回开头
字母a的编码为110 字母n的编码为111
1
4 n
因此,在电文中出现频率 高的字母的编码相对短, 而出现频率低的字母的编 码相对长
111 字符编码表HC=((d,0),(i,10),(a,110),(n,111))
哈夫曼编码过程演示
编码 A1 A2 A3 0.23 0.21 0.18
1
0 1 0 1 0.10 0
编码过程和译码过程

编码过程
构建哈夫曼树 CreatHT(W,&HT)

输入是字符频度表W
表中记录的是原码报文中出现的不同符号个数和频率

输出是哈夫曼树HT
进行哈夫曼编码 HuffmanCoding(HT,&HC)
输入是哈夫曼树HT 输出是字符编码表HC

信息论 第4章(哈夫曼编码和游程编码)

信息论 第4章(哈夫曼编码和游程编码)
我们介绍的哈夫曼编码方法是对具有多个 独立消息的信源进行二进制编码,如果编码符 号(码元)不是二进制的0和1,而是D进制,同 样可以按照哈夫曼编码的方法来完成:只要将 哈夫曼编码树由二叉树换成D叉树,每次合并的 节点由两个改为D个,分配码元时,从左到右将0 到D-1依次分配给各个路段,最后从根节点到 各个叶节点(消息)读出编码结果即可.
游程编码的基本原理
很多信源产生的消息有一定相关性,往往 连续多次输出同样的消息,同一个消息连续输 出的个数称为游程(Run-Length).我们只需要 输出一个消息的样本和对应重复次数,就完全 可以恢复原来的消息系列.原始消息系列经过 这种方式编码后,就成为一个个编码单元(如下 图),其中标识码是一个能够和消息码区分的特 殊符号.
文件传真压缩方法具体流程
主要利用终止码和形成码(见书本P43-44), 一般A4的纸每行的像素为1728,具体编码规则 如下: (1)当游程长度小于64时,直接用一个对应 的终止码表示。 (2)当游程长度在64到1728之间时,用一个 形成码加一个终止码表示。 例如:白游程为662时用640形成码(白)加22终 止码(白)表示,即:01100111 0000011. 黑游程为256时用256形成码(黑)加0终止码(黑) 表示,即:000001011011 0000110111.
哈夫曼(Huffman) (3)哈夫曼(Huffman)编码
哈夫曼编码:将信源中的各个消息按概率排序, 不断将概率最小的两个消息进行合并,直到合 并为一个整体,然后根据合并的过程分配码字, 得到各个消息的编码。 该方法简单明了,并且可以保证最终的编 码方案一定是最优编码方案。
哈夫曼(Huffman) 哈夫曼(Huffman)编码的例子
香农编码的例子

哈夫曼编码

哈夫曼编码
哈夫曼(Huffman)编码
• 哈夫曼(Huffman)编码是一种常用的压缩编码方法, 是Huffman于1952年为压缩文本文件建立的。
• 基本思想 – 通过减少编码冗余来达到压缩的目的。 – 统计符号的出现概率,建立一个概率统计表 • 将最常出现(概率大的)的符号用最短的编码, • 最少出现的符号用最长的编码。
01 20 0 1
40 0 1 0 1 30
0
10
(7)分配码字。将形成的二叉树的左节点标0,右节点 标1。把从最上面的根节点到最下面的叶子节点途中遇到的 0,1序列串起来,就得到了各级灰度的编码.
30 10 20 40 20 40 0 20 20 20 30 30 20 40 40 20
01 20 0 1
霍夫曼编码举例
30 10 20 40 20 40 0 20 20 20 30 30 20 40 40 20
(1) 统计出每级灰度出现的频率: 灰度值: 0 10 20 30 40 出现频率: 1/16 1/16 7/16 3/16 4/16
30 10 20 40 20 40 0 20 20 20 30 30 20 40 40 20
2/16 3/16 5/16 7/16
5/16 30 10 20 40
20 40 0 20
2/16
20 20 30 30
3/16
20 40 40 20
1/16
1/16
(4) 选出频率最小的两个值(2/16,3/16)作为二叉 树的两个叶子节点,将频率和5/16作为它们的根节点,新的 根节点再参与其它频率排序:
(2)从左到右把上述频率按从小到大的顺序排列。 灰度值: 0 10 30 40 20 出现频率: 1/16 1/16 3/16 4/16 7/16

哈夫曼编码详解(C语言实现)

哈夫曼编码详解(C语言实现)

哈夫曼编码详解(C语言实现)哈夫曼编码是一种常见的前缀编码方式,被广泛应用于数据压缩和传输中。

它是由大卫·哈夫曼(David A. Huffman)于1952年提出的,用于通过将不同的字符映射到不同长度的二进制码来实现数据的高效编码和解码。

1.统计字符频率:遍历待编码的文本,记录每个字符出现的频率。

2.构建哈夫曼树:根据字符频率构建哈夫曼树,其中出现频率越高的字符位于树的较低层,频率越低的字符位于树的较高层。

3.生成编码表:从哈夫曼树的根节点开始,遍历哈夫曼树的每个节点,为每个字符生成对应的编码。

在遍历过程中,从根节点到叶子节点的路径上的“0”表示向左,路径上的“1”表示向右。

4.进行编码:根据生成的编码表,将待编码的文本中的每个字符替换为对应的编码。

5.进行解码:根据生成的编码表和编码结果,将编码替换为原始字符。

下面是一个用C语言实现的简单哈夫曼编码示例:```c#include <stdio.h>#include <stdlib.h>#include <string.h>//定义哈夫曼树的节点结构体typedef struct HuffmanNodechar data; // 字符数据int freq; // 字符出现的频率struct HuffmanNode *left; // 左子节点struct HuffmanNode *right; // 右子节点} HuffmanNode;//定义编码表typedef structchar data; // 字符数据char *code; // 字符对应的编码} HuffmanCode;//统计字符频率int *countFrequency(char *text)int *frequency = (int *)calloc(256, sizeof(int)); int len = strlen(text);for (int i = 0; i < len; i++)frequency[(int)text[i]]++;}return frequency;//创建哈夫曼树HuffmanNode *createHuffmanTree(int *frequency)//初始化叶子节点HuffmanNode **leaves = (HuffmanNode **)malloc(256 * sizeof(HuffmanNode *));for (int i = 0; i < 256; i++)if (frequency[i] > 0)HuffmanNode *leaf = (HuffmanNode*)malloc(sizeof(HuffmanNode));leaf->data = (char)i;leaf->freq = frequency[i];leaf->left = NULL;leaf->right = NULL;leaves[i] = leaf;} elseleaves[i] = NULL;}}//构建哈夫曼树while (1)int min1 = -1, min2 = -1;for (int i = 0; i < 256; i++)if (leaves[i] != NULL)if (min1 == -1 , leaves[i]->freq < leaves[min1]->freq) min2 = min1;min1 = i;} else if (min2 == -1 , leaves[i]->freq < leaves[min2]->freq)min2 = i;}}}if (min2 == -1)break;}HuffmanNode *parent = (HuffmanNode*)malloc(sizeof(HuffmanNode));parent->data = 0;parent->freq = leaves[min1]->freq + leaves[min2]->freq;parent->left = leaves[min1];parent->right = leaves[min2];leaves[min1] = parent;leaves[min2] = NULL;}HuffmanNode *root = leaves[min1];free(leaves);return root;//生成编码表void generateHuffmanCode(HuffmanNode *root, HuffmanCode *huffmanCode, char *code, int depth)if (root->left == NULL && root->right == NULL)code[depth] = '\0';huffmanCode[root->data].data = root->data;huffmanCode[root->data].code = strdup(code);return;}if (root->left != NULL)code[depth] = '0';generateHuffmanCode(root->left, huffmanCode, code, depth + 1);}if (root->right != NULL)code[depth] = '1';generateHuffmanCode(root->right, huffmanCode, code, depth + 1);}//进行编码char *encodeText(char *text, HuffmanCode *huffmanCode)int len = strlen(text);int codeLen = 0;char *code = (char *)malloc(len * 8 * sizeof(char));for (int i = 0; i < len; i++)strcat(code + codeLen, huffmanCode[(int)text[i]].code);codeLen += strlen(huffmanCode[(int)text[i]].code);}return code;//进行解码char* decodeText(char* code, HuffmanNode* root) int len = strlen(code);char* text = (char*)malloc(len * sizeof(char)); int textLen = 0;HuffmanNode* node = root;for (int i = 0; i < len; i++)if (code[i] == '0')node = node->left;} elsenode = node->right;}if (node->left == NULL && node->right == NULL) text[textLen] = node->data;textLen++;node = root;}}text[textLen] = '\0';return text;int maichar *text = "Hello, World!";int *frequency = countFrequency(text);HuffmanNode *root = createHuffmanTree(frequency);HuffmanCode *huffmanCode = (HuffmanCode *)malloc(256 * sizeof(HuffmanCode));char code[256];generateHuffmanCode(root, huffmanCode, code, 0);char *encodedText = encodeText(text, huffmanCode);char *decodedText = decodeText(encodedText, root);printf("Original Text: %s\n", text);printf("Encoded Text: %s\n", encodedText);printf("Decoded Text: %s\n", decodedText);//释放内存free(frequency);free(root);for (int i = 0; i < 256; i++)if (huffmanCode[i].code != NULL)free(huffmanCode[i].code);}}free(huffmanCode);free(encodedText);free(decodedText);return 0;```上述的示例代码实现了一个简单的哈夫曼编码和解码过程。

哈夫曼编码简介(doc)

哈夫曼编码简介(doc)

哈夫曼编码简介(doc)哈夫曼编码(Huffman Coding),又称霍夫曼编码,是一种编码方式,哈夫曼编码是可变字长编码(VLC)的一种。

Huffman于1952年提出一种编码方法,该方法完全依据字符出现概率来构造异字头的平均长度最短的码字,有时称之为最佳编码,一般就叫做Huffman编码(有时也称为霍夫曼编码)。

哈夫曼编码的原理哈夫曼编码的基本思路:输入一个待编码的串,首先统计串中各字符出现的次数,称之为频次,假设统计频次的数组为count,则哈夫曼编码每次找出count数组中的值最小的两个分别作为左右孩子,建立父节点,循环这个操作2*n-1-n次,这样就把霍夫曼树建好了,建树的过程需要注意,首先把count数组里面的n个值初始化为霍夫曼树的n个叶子节点,他们的孩子节点标号初始化为-1,父节点初始化为他本身的标号。

接下来是编码,每次从霍夫曼树的叶子节点出发,依次向上找,假设当前的节点标号是i,那么他的父节点必然是myhuffmantree.parent,如果i是myhuffmantree.parent的左节点,则该节点的路径为0,如果是右节点,则该节点的路径为1。

当向上找到一个节点,他的父节点标号就是他本身,就停止。

哈夫曼编码的具体步骤1、准备待编码的字符串;2、统计字符串中每个字符出现的次数;3、根据上面的数组,生成节点;4、构建霍夫曼树,每次删除链表中的两个节点,生成一个新节点,并将这个节点重新插入到链表合适位置;5、通过前序遍历,求出每个字符的二进制编码,同样设置一个长度为256的数组,下标为字符对应的ASCII码,没出现的字符编码为null,不考虑;6、根据求出的二进制编码替换原来的每个字符,得到整个字符串对应的二进制编码;7、将二进制编码按照没8位生成一个新字符,最后剩的不足8位的在后面补上count个0,计算一个新字符,补0的个数解码时需要使用;8、将生成的新字符替换二进制编码字符串,即可得到编码后的内容,长度将在一定程度变短;哈夫曼编码的特点1、哈夫曼编码方式保证了概率大的符号对应短码,概率小的符号对应长码,充分利用了短码;2、哈夫曼是一种即时码:由于代表信源符号的节点都是终端节点,因此其编码不可能是其他终端节点对应的编码的前缀,即哈夫曼编码所得的码字为即时码;3、哈夫曼编码是一种分组码,各个信源符号都被映射成一组固定次序的码符号;4、哈夫曼编码是一种唯一可解的码,任何符号序列只能以一种方式译码。

数据结构 哈夫曼编码与译码

数据结构 哈夫曼编码与译码

数据结构哈夫曼编码与译码哈夫曼编码与译码是数据结构中的重要概念,它是一种可变长度编码的方法,用于压缩数据。

在本文中,我将详细介绍哈夫曼编码与译码的原理、步骤以及应用。

一、哈夫曼编码的原理哈夫曼编码是一种根据字符出现的频率来构建编码表的方法,使得频率较高的字符使用较短的编码,频率较低的字符使用较长的编码。

这样可以有效地减少数据的存储空间。

二、哈夫曼编码的步骤1. 统计字符频率:遍历待编码的文本,统计每个字符出现的频率。

2. 构建哈夫曼树:根据字符频率构建哈夫曼树。

首先将每个字符作为一个独立的树节点,然后合并频率最低的两个节点,生成一个新的节点,频率为这两个节点的频率之和。

重复此过程,直到所有节点都合并为一个根节点,得到哈夫曼树。

3. 生成编码表:从根节点开始遍历哈夫曼树,左子树路径为0,右子树路径为1,将路径上的0和1依次添加到对应字符的编码中,得到编码表。

4. 进行编码:根据编码表,将待编码的文本中的每个字符替换为对应的编码。

5. 完成编码:得到编码后的文本。

三、哈夫曼译码的步骤1. 根据编码表,将编码后的文本逐个字符地进行译码。

从根节点开始,根据字符是0还是1,选择左子树或右子树进行下一步操作。

2. 如果到达叶子节点,则找到对应的字符,并将该字符添加到译码结果中。

3. 重复上述步骤,直到译码结束,得到原始文本。

四、哈夫曼编码与译码的应用哈夫曼编码与译码广泛应用于数据压缩领域。

通过使用哈夫曼编码,可以大大减小数据的存储空间,提高数据传输的效率。

在图像、音频、视频等大数据文件的传输和存储中,哈夫曼编码被广泛使用。

总结:哈夫曼编码与译码是一种基于字符频率的编码方法,可以有效地压缩数据。

通过统计字符频率、构建哈夫曼树、生成编码表等步骤,可以实现对数据的编码和译码。

哈夫曼编码在数据压缩领域有着广泛的应用,可以大大减小数据的存储空间,提高数据传输的效率。

使用哈夫曼编码方法,求出编码和平均码长。

使用哈夫曼编码方法,求出编码和平均码长。

哈夫曼编码是一种常用的数据压缩算法,它能够根据不同字符出现的频率来构建不等长的编码,以实现数据的高效压缩。

在这篇文章中,我们将深入探讨哈夫曼编码方法,并求出编码和平均码长。

1. 了解哈夫曼编码哈夫曼编码是由大卫·哈夫曼于1952年提出的一种编码算法,它利用频率较高的字符用较短的编码,而频率较低的字符用较长的编码,从而实现数据的高效压缩。

哈夫曼编码的核心思想是通过构建一棵最优二叉树来实现编码,使得出现频率较高的字符距离根节点较近,而出现频率较低的字符距离根节点较远。

2. 构建哈夫曼树为了求解哈夫曼编码,首先需要构建哈夫曼树。

哈夫曼树的构建过程是一个逐步合并的过程,首先将所有的字符按照出现频率进行排序,然后依次选取频率最小的两个字符合并成一个新的节点,其频率为两个字符的频率之和。

重复这一步骤,直到所有字符都合并成了一个根节点,这棵树就是哈夫曼树。

3. 求解哈夫曼编码在构建好哈夫曼树之后,就可以开始求解每个字符的哈夫曼编码。

从根节点出发,遍历哈夫曼树的左子树走向0,右子树走向1,直到达到叶子节点,记录下路径上的编码即为该字符的哈夫曼编码。

这样,所有字符的哈夫曼编码就求解出来了。

4. 计算平均码长计算平均码长是评价哈夫曼编码效率的重要指标。

平均码长的计算公式为:平均码长=Σ(字符频率*编码长度)。

通过对所有字符的频率乘以对应的编码长度求和,可以得到平均码长。

哈夫曼编码的优势在于,由于频率高的字符编码长度较短,而频率低的字符编码长度较长,因此平均码长相对较短,实现了对数据的高效压缩。

总结:通过本文对哈夫曼编码方法的全面介绍和讨论,我们深入理解了哈夫曼编码的原理和实现过程,以及如何求解编码和平均码长。

哈夫曼编码作为一种高效的数据压缩算法,在实际应用中有着广泛的应用前景。

通过对哈夫曼编码的深入理解,我们可以更好地应用于实际场景中,实现数据的高效压缩和传输。

个人观点:哈夫曼编码作为一种经典的数据压缩算法,具有较高的实用价值和理论研究意义。

哈夫曼编码

哈夫曼编码

例2:假设用于通信的电文仅由8个字母
{a, b, c, d, e, f, g, h} 构成,它们在电文中出现的概率分别为{ 0.07, 0.19, 0.02, 0.06, 0.32, 0.03, 0.21, 0.10} ,试为这8个字母设计 哈夫曼编码。如果用0~7的二进制编码方案又如何?
解:先将概率放大100倍,以方便构造哈夫曼树。 权值集合 w={7, 19, 2, 6, 32, 3, 21, 10}, 按哈夫曼树构造规则(合并、删除、替换),可得到哈夫曼树。
14
采用顺序表实现对Huffman编码的存储 //---------------Huffman编码存储结构-----------------typedef struct { char ch; int start; char bits[n+1]; }HuffmanCode; typedef HuffmanCode HCode[n]; ch存放对应的字符,start存放Huffman编码在字符 数组bits[]中开始的位置。
17
FileExtract(void) 初始条件:压缩结果文件Code.txt和tail.txt存在。 操作结果: 将code.txt和tail.txt中的字符写成编码的二进制字符形式, 写进file00.txt。 FileTrans(HTree T,HCode H,int N) 初始条件: 已生成File00,txt并已求得各个字符的Huffman编码, Huffman树已建立。 操作结果:将Huffman编码翻译成原文件,写入translated.txt。 }ADT 还需要包含调用若干库文件:stdio.h, malloc.h, string.h。
13
概要分析
采用顺序表实现对Huffman树的存储 //---------------Huffman树存储结 构-----------------typedef struct { int weight; int lchild, rchild, parent; }HuffmanTree; typedef HuffmanTree HTree[m]; weight域存有该节点字符的权值,lchild、 rchild、parent分别存放该节点的左孩子、 右孩子和双亲节点在顺序表中的位置。

哈夫曼编码

哈夫曼编码

哈夫曼编码哈夫曼编码的本意是在不完全理解文本意义的前提下对信息进行编码。

下面我们一起看看哈夫曼编码的定义。

哈夫曼编码是最为著名的一种代码转换方法,也称为选择性匹配。

哈夫曼编码能够将符号、表格或图形等不相关信息与明确而有意义的信息联系起来。

我们都知道,编码可分为自然语言处理中的编码和计算机编程中的编码。

不管哪种类型的编码,都需要将输入数据转换为有意义的信息,这就叫做编码。

我们平常所说的编程就是指后者,即计算机编程。

现实生活中,编码的种类很多。

比如,电话号码的编码、邮政编码的编码等等。

可是,不同种类的编码,转换的原则却不一样。

比如,要把长短不一的英语字母表转换成可以通过键盘输入的符号,使用的编码应该是哪种呢?3。

适合学生实际情况的教学。

首先,初中生有独立思考能力较差的特点。

在高中数学的课堂教学中教师应注重培养他们的思维能力,启发他们探究新问题的积极性,鼓励他们主动去学习数学。

其次,在教学中教师要善于设计一些能调动学生学习兴趣的问题情景。

再次,在数学课堂教学中要培养学生良好的数学素质,包括独立思考能力、分析问题和解决问题的能力以及良好的学习习惯。

高中数学教学中应避免因为考试压力而导致偏题、怪题出现。

文中例举了《圣经》中的两个故事:“上帝给亚伯拉罕树木的故事”和“上帝给夏甲和以实玛利羊的故事”。

圣经中的这两个故事没有什么现实意义,但用哈夫曼编码技术编出的文字仍然可以传递具有现实意义的信息。

教师应引导学生用哈夫曼编码技术分析故事内容,找到它们各自反映的现实意义,从而更深刻地理解故事的内涵。

4。

体现学生的创造力。

在高中数学的课堂教学中,老师应着重培养学生的创造能力。

比如,某道计算题由于某种原因有三种不同的解题思路。

这时,教师可以让学生自己思考,想一想可能还有哪几种解题思路。

接着,教师可以让学生自己动手写出三种解题思路,并进行比较分析。

这样,就可以培养学生的逻辑推理能力、综合分析能力和独立思考能力。

编码方式不同,它们表达的意思自然也不同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15
例:证明:一棵二叉树的前序序列和中序序 列可以唯一的确定这棵二叉树。
用归纳法证明: 1、当 n = 1时,结论显然成立; 2、假定当 n <= k 时,结论成立; 3、当 n = k + 1 时,假定前序序列为和中序序列 分别为: {a1,…,am} 和 {b1, … ,bm}
16
如 中 序 序 列 中 与 前 序 序 列 a1 相 同 的 元 素 为 b j 。 j =1时,二叉树无左子树,由 {a2,…,am} 和
先举例!
3
例1:设有4个字符d,i,a,n,出现的频度分别为7,5,2, 4,
怎样编码才能使它们组成的报文在网络中传得最快? 法1:等长编码。例如用二进制编码来实现。 取 d=00,i=01,a=10,n=11
法2:不等长编码,例如用哈夫曼编码来实现。 取 d=0; i=10, a=110, n=111 最快的编码是哪个?是非等长的Huffman码!
提示2:霍夫曼树的存储结构可采用顺序存储结构: 将整个霍夫曼树的结点存储在一个数组中:HT[1..n]; 将结点的编码存储在HC[1..n]中。 提示3:霍夫曼树如何构造?构造好之后又如何求得 各结点对应的霍夫曼编码?——算法参见教材P147。
参考 实验二补充材料中的方案二程序; 资料 喻信星空FTP网站上的“数据结构”演示程序
注:若圆满实现了此方案,平时成绩将以满分计。
字符 空格 频度 186 a 64 b 13 c 22 d 32
e
103
f 21
g 15
h 47
i 57
字符 频度
字符 频度
j 1
k 5
u 23
l 32
v 8
m 20
w 18
n 57
x 1
o 63
y 16
p 15
z 1
q 1
r 48
s 51
t
80
11
提示1:霍夫曼树中各结点的结构可以定义为如下 5个分量: char weight parent lchild Rchild
——将 Huffman树 与 Huffman编码
0 d 1
挂钩
0
i 0 a
1
1 n
Huffman编码结果:d=0, i=10, a=110, WPL=1bit×7+2bit×5+3bit(2+4)=35
n=111
特点:每一码都不是另一码的前缀,绝不会错译! 称为前缀码
6
霍夫曼编码的基本思想是:概率大的字符用短码,概率小的用 长码。由于霍夫曼树的WPL最小,说明编码所需要的比特数最 少。这种编码已广泛应用于网络通信中。
怎样实现Huffman编码?先要构造Huffman树!
4
构造Huffman树的步骤:
操作要点1:对权值的合并、删除与替换
——在权值集合{7,5,2,4}中,总是合并当前值最小的两个权
注:方框表示外结点(叶子,字符对应的权值), 圆框表示内结点(合并后的权值)。
5
操作要点2:按左0右1对Huffman树的所有分支编号!
6.5
Huffman树及其应用
b d e
a c f g
一、最优二叉树(霍夫曼树)
预备知识:若干术语 路 径: 由一结点到另一结点间的分支所构成
路径长度: 路径上的分支数目
a→e的路径长度= 2
树长度= 10 树的路径长度:从树根到每一结点的路径长度之和。 带权路径长度:结点到根的路径长度与结点上权的乘积 树中所有叶子结点的带权路径长度之和 树的带权路径长度: 霍 夫 曼 树: 带权路径长度最小的树。
解:先将概率放大100倍,以方便构造哈夫曼树。 权值集合 w={7, 19, 2, 6, 32, 3, 21, 10}, 按哈夫曼树构造规则(合并、删除、替换),可得到哈夫曼树。
7
为清晰起见,重新排序为: w={2, × 6, 7, 10, 19, 21, 32} × 3, w1={5, × 7, 10, 19, 21, 32} × 6, w2={7, 10, 11, 19, 21, 32} × × w3={11, 17, 19, 21, 32} × × w4={19, 21, 28, 32} × × w5={28,32,40} ×× w6={40,60} × × w7={100} 哈夫曼树 19 b
{b2, … ,bm} 可以唯一的确定二叉树的右子树;
j= m时,二叉树无右子树,由 {a2,…,am} 和
{b1, … ,bm-1} 可以唯一的确定二叉树的左子树;
如2<=j<=m-1,则子序列 {a2,…,aj} 和 {b1, …
,bj-1}唯一的确定二叉树的左子树;子序列{aj+1,
…,am} 和 {bj+1, … ,bm}唯一的确定二叉树的右
例2(严题集6.26③):假设用于通信的电文仅由8个字母
{a, b, c, d, e, f, g, h} 构成,它们在电文中出现的概率分别 为{ 0.07, 0.19, 0.02, 0.06, 0.32, 0.03, 0.21, 0.10}, 试为这8个字母设计哈夫曼编码。如果用0~7的二进制编码方 案又如何?
子树
17
{a1,a2 , …,aj, aj+1, …,am}
个数相同
{b1,… ,bj-1,bj ,bj+1,… ,bm }
唯一的确定左子树
唯一的确定右子树
18
100
40
21 32 g e 17 7 a
60
28 11 10 h 6 d 2 c 5 3 f
8
对应的哈夫曼编码(左0右1):
符 编码 频率 符 编码 频率
100
a
b
1100
00
0.07
0.19
a
b
000
001
0.07
0 40
1
60 0 1 1 28 21 32 g e 0 1 17 11 0 1 0 1 5 7 10 6 a d 0 1 h 2 3 f c
1
Huffman树简介:
Weighted Path Length
树的带权路径长度如何计算? WPL = 哈夫曼树则是:WPL 最小的树。
w kl k
k=1
n
经典之例:
2 c 7 a 5 2 b c 4 d
Huffman树
7 a
4 d
7 a (b)
5 b
5 b
2 c (c)
4 d
(a)
WPL=36
12
二叉树小结
1、定义和性质 树
顺序结构
2、存储结构
链式结构
二叉链表
森林
二叉树
先序遍历
三叉链表
3、遍历
中序遍历
后序遍历
先序线索树
中序线索树
4、线索化:线索树 霍夫曼树
后序线索树
霍夫曼编码
13
附:中序遍历迭代算法(利用堆栈)
void iter_inorder(tree_pointer node) { int top= -1; /* initialize stack */ tree_pointer stack[MAX_STACK_SIZE]; for (;;) { for (; node; node=node->left_child) add(&top, node);/* add to stack */ node= delete(&top); /* delete from stack */ if (!node) break; /* empty stack */ printf(“%D”, node->data); node = node->right_child; } } 时间复杂度O(n)
=1.44+0.92+0.25=2.61
二进制码 WPL=3(0.19+0.32+0.21+0.07+0.06+0.10+0.02+0.03)=3
9
另一26个英文字母,其出 现频度如下表所示。 要求编程实现: 先建哈夫曼树,再利用此树对报文“This program is my favorite”进行编码和译码。
14
附:层序遍历算法(利用队列)
void level_order(tree_pointer ptr) /* level order tree traversal */ { +*E*D /CAB int front = rear = 0; tree_pointer queue[MAX_QUEUE_SIZE]; if (!ptr) return; /* empty queue */ addq(front, &rear, ptr); for (;;) { ptr = deleteq(&front, rear);
WPL=46
WPL= 35
2
构造霍夫曼树的基本思想: 权值大的结点用短路径,权值小的结点用长路径。 构造Huffman树的步骤(即Huffman算法):
(1) 由给定的 n 个权值{w0, w1, w2, …, wn-1},构造具有 n 棵扩充 二叉树的森林F = { T0, T1, T2, …, Tn-1 },其中每一棵扩充二叉树 Ti 只有一个带有权值 wi 的根结点,其左、右子树均为空。 (2) 重复以下步骤, 直到 F 中仅剩下一棵树为止: ① 在 F 中选取两棵根结点的权值最小的扩充二叉树, 做为左、 右子树构造一棵新的二叉树。置新的二叉树的根结点的权值为 其左、右子树上根结点的权值之和。 ② 在 F 中删去这两棵二叉树。 ③ 把新的二叉树加入 F。
c
d
11110
1110
0.02
0.06
相关文档
最新文档