流体动力学基本概念汇总
(完整版)流体力学重点概念总结
第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。
它的大小与作用面积成比例。
剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。
重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)流体的主要物理性质:密度:是指单位体积流体的质量。
单位:kg/m3 。
重度:指单位体积流体的重量。
单位: N/m3 。
流体的密度、重度均随压力和温度而变化。
流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。
静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。
流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。
流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。
任何一种流体都具有粘滞性。
牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。
τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。
动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。
2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。
静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。
流体动力学基础
流体动力学基础流体动力学是研究流体的运动规律和性质的科学,它是流体力学的分支之一,广泛应用于航空、航天、水力、能源等领域。
本文将介绍流体动力学的基础概念、基本方程以及常用方法。
一、流体动力学的基本概念1. 流体力学与流体静力学的区别流体力学研究流体在运动中的行为,包括流体的流动速度、压力、密度等参数的分布规律;而流体静力学则研究流体在静止状态下的平衡规律,主要关注流体的静压力和浮力等性质。
2. 流体的本构关系流体的本构关系描述了流体的应力与变形速率之间的关系。
常见的本构关系有牛顿黏性流体、非牛顿流体以及理想流体等。
3. 流体的运动描述流体的运动可以通过流体速度场来描述,流体速度场是空间中的矢量函数,它描述了流体的速度分布。
流体速度场的描述可以使用欧拉描述方法或者拉格朗日描述方法。
二、流体动力学的基本方程1. 连续性方程连续性方程描述了质量守恒的原理,即单位时间内通过某一截面的质量是恒定的。
对于稳定流动的不可压缩流体来说,连续性方程可表示为流体密度与速度之积在空间中的量级是恒定的。
2. 动量方程动量方程是描述质点运动定律的基本方程,对流体来说,动量方程体现了运动流体的动力学行为。
对于稳定流动的不可压缩流体来说,动量方程可表示为流体的密度乘以速度与压力梯度的叠加等于外力的结果。
3. 能量方程能量方程描述了热力学系统的能量守恒原则,对于流体来说,能量方程考虑了流体的流动对能量转移的影响,以及热源、做功所导致的能量变化。
三、流体动力学的常用方法1. 数值模拟方法数值模拟是流体动力学研究的重要工具,通过在计算机上建立流体动力学方程的数值解,可以模拟复杂流动现象,如湍流、多相流等。
2. 实验方法实验方法是流体动力学研究的另一重要手段,通过搭建实验平台,测量流体的压力、速度等参数,从而验证理论和数值模拟结果的准确性。
3. 理论分析方法理论分析方法是流体动力学研究中的基础,通过建立假设和推导数学表达式,可以得到流体动力学问题的解析解,为实验和数值模拟提供参考。
流体动力学基础
四. 流管和流束
流管——在流场中作一不是流线的封闭周线C,过该周线上 的所有流线组成的管状表面。 流体不能穿过流管,流管就像真正的管子一样将其内外的流 体分开。 稳定流动中,流管的形状和位置不随时间发生变化。
流束——充满流管的一束流体。 微元流束——截面积无穷小的流束。微元流束的极限是 流线。 微元流束和流线的差别: 流束是一个物理概念,涉及流速、压强、动量、能量、 流量等等; 流线是一个数学概念,只是某一瞬时流场中的一条光滑 曲线。
三、.迹线与流线
1.迹线 流体质点在空间运动时描绘的轨迹。它给 出了同一流体质点在不同时刻的空间位置。 2.流线 指某一瞬时流场中一组假想的曲线,曲线 上每一点的切线都与速度矢量相重合。
流线的几个性质:
在稳定流动中,流线不随时间改变其位置和形状,流线 和迹线重合。在非稳定流动中,由于各空间点上速度随时间 变化,流线的形状和位置是在不停地变化的。 流线不能彼此相交和折转,只能平滑过渡。 流线密集的地方流体流动的速度大,流线稀疏的地方流动 速度小。
管径的估算
一般化工管道为圆形,若以d表示管道的内 径,则式 u = V s 可写成
A
u =
Vs d
2
d=
4
4Vs u
此式是设计管道或塔器直径的基本公式。
例 : 某厂要求安装一根输水量为 45m3/h 的管道, 取自来水在管内的流速为 1.5m/s, 试选择一合 适的管子。 解: 4Vs 4 45/ 3600 d= = = 0.103m = 103mm u 3.141.5 算出的管径往往不能和管子规格中所列的 标准管径相符,此时可在规格中选用和计算直 径相近的标准管子。
参考教材附录二十三,本题用 Ø114×4mm 热轧无 缝钢管合适。其管子外径为114mm,壁厚为4mm, 管径确定后,还应重新核定流速。 水在管中的实际流速为
流体动力学基本原理的内容及成立条件
流体动力学基本原理的内容及成立条件一、流体动力学的基本概念流体动力学是研究流体在运动中所表现出来的各种力学现象的科学。
它是研究流体的物理性质、运动规律和应用的基础。
流体包括气体和液体,其特点是没有固定的形状,在受到外力作用时能够变形。
二、流体动力学基本方程1.连续性方程连续性方程描述了质量守恒原理,即在任意给定时刻,单位时间内通过任意给定截面积内的质量保持不变。
2.动量守恒方程动量守恒方程描述了牛顿第二定律,即物体受到外力作用时会发生加速度变化。
3.能量守恒方程能量守恒方程描述了能量守恒原理,即系统内总能量保持不变。
三、成立条件为了使上述基本方程成立,需要满足以下条件:1.连续性假设:假设流体是连续不断的介质,在微观尺度下不存在空隙或孔隙。
这个假设在实际应用中通常是成立的。
2.牛顿第二定律适用:流体的运动速度相对于光速较慢,所以牛顿第二定律可以适用于流体运动。
3.稳态假设:假设流体的物理状态在空间和时间上是恒定不变的。
这个假设在实际应用中通常是成立的。
4.不可压缩性假设:假设流体密度不随时间和位置而变化。
这个假设在实际应用中通常是成立的。
5.粘性效应:粘性是流体内部分子之间相互作用力导致的,它会影响流体的运动规律。
当流体处于高速运动状态时,粘性效应可以忽略不计;但当流体处于低速运动状态时,粘性效应就会显著影响流体运动规律。
四、结论综上所述,流体动力学基本原理包括连续性方程、动量守恒方程和能量守恒方程。
为了使这些基本方程成立,需要满足一定条件,如连续性假设、牛顿第二定律适用、稳态假设、不可压缩性假设以及粘性效应等。
这些基本原理和条件对于研究流体的物理性质、运动规律和应用具有重要意义。
流体力学知识点总结
流体力学知识点总结一、流体的物理性质流体区别于固体的主要特征是其具有流动性,即流体在静止时不能承受切向应力。
流体的物理性质包括密度、重度、比容、压缩性和膨胀性等。
密度是指单位体积流体所具有的质量,用符号ρ表示,单位为kg/m³。
重度则是单位体积流体所受的重力,用γ表示,单位为 N/m³,且γ =ρg(g 为重力加速度)。
比容是密度的倒数,它表示单位质量流体所占有的体积。
流体的压缩性是指在温度不变的情况下,流体的体积随压强的变化而变化的性质。
通常用体积压缩系数β来表示,其定义为单位压强变化所引起的体积相对变化率。
对于液体来说,其压缩性很小,在大多数情况下可以忽略不计;而气体的压缩性则较为明显。
膨胀性是指在压强不变的情况下,流体的体积随温度的变化而变化的性质。
用体积膨胀系数α来表示,它是单位温度变化所引起的体积相对变化率。
二、流体静力学流体静力学主要研究静止流体的力学规律。
静止流体中任一点的压强具有以下特性:1、静止流体中任一点的压强大小与作用面的方向无关,只与该点在流体中的位置有关。
2、静止流体中压强的大小沿垂直方向连续变化,即从液面到液体内部,压强逐渐增大。
流体静力学基本方程为 p = p₀+γh,其中 p 为某点的压强,p₀为液面压强,h 为该点在液面下的深度。
作用在平面上的静水总压力可以通过压力图法或解析法来计算。
对于矩形平面,采用压力图法较为简便;对于不规则平面,则通常使用解析法。
三、流体动力学流体动力学研究流体的运动规律。
连续性方程是流体动力学的基本方程之一,它基于质量守恒定律。
对于不可压缩流体,在定常流动中,通过流管各截面的质量流量相等。
伯努利方程则是基于能量守恒定律得出的,它表明在理想流体的定常流动中,单位体积流体的动能、势能和压力能之和保持不变。
其表达式为:p/ρ + 1/2 v²+ gh =常数其中 p 为压强,ρ 为流体密度,v 为流速,g 为重力加速度,h 为高度。
流体动力基本概念
2、流线 定义:流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线 方向与该点的流速方向重合。流线是欧拉法描述流体运动的基础。图为流线谱中显示的流 线形状。
流线的作法: 在流场中任取一点,绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近 的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …, 若各点无限接近,其极限就是某时刻的流线。
ρdV 0 A ρv ndA t V
由奥-高公式
A
ρv n dA ( ρv ) dV
V
根据控制体与时间的无关性
ρ ρdV dV t V t V
直角坐标系下连续性方程的微分形式
ρ ( ρv ) 0 t
二、欧拉法与控制体
欧拉法(Euler method)是以流体质点流经流场中各空间点的运动即以流场作为 描述对象研究流动的方法——流场法 。它不直接追究质点的运动过程,而是以充满 运动流体质点的空间——流场为对象。研究各时刻质点在流场中的变化规律。将个 别流体质点运动过程置之不理,而固守于流场各空间点。通过观察在流动空间中的 每一个空间点上运动要素随时间的变化,把足够多的空间点综合起来而得出的整个 流体的运动情况。 (设立观察站的方法) 流场运动要素是时空(x,y,z,t)的连续函数: 速度 (x,y,z,t)——欧拉变量
控制体:将孤立点上的观察站扩大为一个有适当规模的连续区域。控制体相对于坐 标系固定位置,有任意确定的形状,不随时间变化。控制体的表面为控制面,控制 面上有流体进出。
流体力学基础知识汇总
流体力学基础知识汇总流体力学是研究流体静力学和流体动力学的学科。
流体力学是物理学领域中的一个重要分支,广泛应用于工程学、地球科学、生物学等领域。
本文将从流体力学的基础知识出发,概述流体力学的相关内容。
一、流体静力学流体静力学研究的是静止的流体以及受力平衡的流体。
静止的流体不受外力作用时,其内部各点的压力相等。
根据帕斯卡定律,压强在静止的流体中均匀分布。
流体静力学的重要概念包括压强、压力、密度等。
压强是单位面积上受到的力的大小,而压力是单位面积上受到的力的大小和方向。
密度是单位体积内质量的多少,与流体的压力和温度有关。
二、流体动力学流体动力学研究的是流体在受力作用下的运动规律。
流体动力学的重要概念包括流速、流量、雷诺数等。
流速是单位时间内流体通过某一截面的体积。
流速与流量之间存在着直接的关系,流量等于流速乘以截面积。
雷诺数是描述流体流动状态的无量纲参数,用于判断流体流动的稳定性和不稳定性。
三、伯努利定律伯努利定律是流体力学中的一个重要定律,描述了流体在沿流线方向上的压力、速度和高度之间的关系。
根据伯努利定律,当流体在流动过程中速度增加时,压力会降低;当流体在流动过程中速度减小时,压力会增加。
伯努利定律在飞行、航海、液压等领域有着重要的应用。
四、黏性流体黏性流体是指在流动过程中会发生内部层滑动的流体。
黏性流体的流动过程受到黏性力的影响,黏性力会导致流体的内部发生剪切变形。
黏性流体的流动规律可以通过纳维-斯托克斯方程来描述。
黏性流体在润滑、液体运输、地质勘探等领域有着广泛的应用。
五、边界层边界层是指在流体与固体表面接触的区域,流体的速度在边界层内逐渐从0增加到与远离表面的流体速度相等。
边界层的存在会导致流体的阻力增加。
研究边界层的特性可以帮助理解流体与固体的相互作用,对于设计高效的流体系统具有重要意义。
流体力学是研究流体静力学和流体动力学的学科。
流体力学的基础知识包括流体静力学、流体动力学、伯努利定律、黏性流体和边界层等内容。
流体力学的基本概念与原理
流体力学的基本概念与原理引言:流体力学是研究流体运动规律的学科,涉及广泛且应用领域广泛。
本文将介绍流体力学的基本概念与原理,包括流体、流体静力学、流体动力学以及相关应用等方面的内容。
一、流体的基本特性流体是指能够流动的物质,主要包括液态流体和气态流体。
相较于固体,流体具有以下基本特性:1. 流动性:流体能够在物体表面滑动或流动。
2. 不可压缩性:理想流体在正常条件下几乎不可压缩,而实际流体也只在极高压力下才会发生明显的压缩。
3. 连续性:流体不存在间断,可以填充空间。
4. 流体内部分子间力的相对较小:流体分子间的相互作用力相对较弱,以致于在外力作用下,流体分子会相对较快地改变位置。
二、流体静力学流体静力学研究的是处于静止状态的流体,主要涉及以下概念与原理:1. 压强:压强是流体对单位面积上的压力。
根据帕斯卡原理,流体中的压强在各个方向上都是相等的。
2. 大气压:大气压是指大气对物体单位面积上的压力,通常用标准大气压作为基准。
3. 浮力:根据阿基米德原理,浸在液体中的物体会受到一个向上的浮力,其大小等于物体排斥液体的重量。
4. 斯托克斯定律:斯托克斯定律描述了粘性流体中小球的受力情况,根据该定律,小球的阻力与小球半径、流体黏度以及小球速度有关。
三、流体动力学流体动力学研究的是流体在运动过程中的行为,主要涉及以下概念与原理:1. 流速与流量:流速是单位时间内通过某个截面的流体体积,流量是单位时间内通过某个截面的流体质量或体积。
2. 流体动能:流体动能是流体由于运动而具有的能量,与流体的质量和速度有关。
3. 费诺特定律:费诺特定律是描述粘性流体内摩擦力与流速梯度之间关系的定律,根据该定律,粘性流体内部存在着滑动摩擦和黏滞摩擦。
4. 贝努利定律:贝努利定律描述了在不可压缩、稳定流动的流体中,沿着流线速度增大的地方,压强会减小;反之,速度减小的地方,压强会增大。
四、流体力学的应用流体力学的研究内容和应用广泛,常见的应用领域包括但不限于:1. 水力学:研究水的流动、水耗等问题,广泛应用于水利工程、水电站等领域。
流体动力学的基本知识
• 2)液体流体在管道或水渠中能够形成自由表面。
• 压力流和无压流的图解如图1.4(a)~(c)所示。
图1.4 压力流、无压流图解
• 2.流体的黏滞性 • 流体流动时,流体内部各质点间或流层间因相对运动而产生
内摩擦力以反抗流体质点间相对运动的性质,称作流体的黏 滞性。管段中断面流速分布如图1.1所示。
图1.1 平板间的速度分布
根据牛顿摩擦定律,可得到流体黏滞力的表达式为
T=μ·A·du/dy(1.4) 式中:μ——流体的黏滞系数; A ——流层间的接触面积(m2); du/dy ——流速梯度,表示流速沿垂直于流速方向的变化率。 若用τ代表单位面积上流体的黏滞力,又称作切向力
• 2.局部阻力和局部损失
• (2)气体的压缩性和热胀性 • 气体的压缩性和热胀性比液体较明显,在常温常压下,气体的压强p、
比容v、温度T三个基本参数之间满足理想气体状态方程式 pv=RT(1.7)
•
通过以上的介绍,我们知道流体的物理性质是
比较复杂的,如果在研究流体的运动规律时,考虑
全部因素,则无法进行准确的研究,而我们在实际
dQ=u·dA
• 则单位时间内流过全部断面A的流体体积Q即为
Q=∫ u·dA
(1.8)
式中:Q——该断面的流量。
• v——断面平均流速,即过流断面面积乘断面平均流速v所得到 的流量,等于该断面以实际流速通过的流量,即
Q=v·A
(1.9)
则
v=Q/A=∫ u·dA/A (1.10)
1.1.3 流体运动的分类
流体动力学知识点
流体动力学知识点流体动力学是研究流体运动规律的科学,它在物理学、工程学和地球科学等领域中有着广泛的应用。
本文将主要介绍流体动力学中的一些重要知识点,帮助读者更好地理解和应用这一领域的知识。
1. 流体的定义在流体动力学中,流体是一种连续的物质,它没有固定的形状和体积,能够流动。
流体可以分为液体和气体两种状态,液体是一种近似不可压缩的流体,而气体则是一种高度可压缩的流体。
2. 流体的性质流体具有一些特殊的性质,包括粘性、密度、压力、流速等。
其中,粘性是流体的一种内在性质,它决定了流体的黏滞阻力。
流体的密度是流体在单位体积内所含物质的质量,而压力则是流体在单位面积上的作用力。
流速是流体通过单位面积的速度。
3. 流体的流动流体的流动是流体动力学中的核心概念,它描述了流体在空间中的运动规律。
流体的流动可以分为层流和湍流两种状态,层流是指流体在管道或河道中以层状、有序的方式流动,而湍流则是指流体在空间中以不规则、混乱的方式流动。
4. 流体的流量在流体动力学中,流体的流量是指单位时间内通过某个截面的流体体积。
流体的流量受到流体密度、流速和截面积的影响,可以用公式Q=Av来表示,其中Q表示流量,A表示截面积,v表示流速。
5. 流体的动量流体的动量是描述流体运动的一个重要物理量,它表示流体在单位时间内通过某个截面的动量。
根据动量守恒定律,流体在运动过程中动量守恒,可以用公式ρAv=常数来表示,其中ρ表示流体密度,A表示截面积,v表示流速。
6. 流体的能量流体的能量是流体动力学中的另一个重要物理量,它表示流体在运动过程中所具有的能量。
流体的能量可以分为动能、势能和压力能三种形式,动能是流体由于运动而具有的能量,势能是流体由于位置而具有的能量,压力能是流体由于受到压力而具有的能量。
7. 流体的控制方程流体的控制方程是描述流体运动规律的数学方程,包括连续性方程、动量方程和能量方程。
连续性方程描述了流体在流动过程中质量的守恒,动量方程描述了流体在流动过程中动量的守恒,能量方程描述了流体在流动过程中能量的守恒。
流体动力学基础
流体动力学基础流体动力学是一个操作系统的一部分,主要研究流体运动规律和流体力学的原理。
无论是研究天气变化的气象学家,还是设计飞机、火箭的工程师,都离不开流体动力学的科学知识。
下面让我们从基础知识开始,深入了解流体动力学。
一、概述流体动力学分为静止流体动力学和运动流体动力学两大类。
前者研究的是静止流体的压力、浮力等问题,后者则是研究运动流体的物理过程和原理,包括涡旋、流动阻力、热输运等问题。
二、基础概念在流体动力学中,我们需了解几个基本概念。
首先,流体。
流体是一种液体和气体通称,其特点是无法保持固定的形状,而且会随外力作用发生变形。
其次,继原理。
继原理是流体动力学中极其重要的一项原则,用以研究保质量、能量以及动量。
又如雷诺数,这是判断流体的流动方式是层流还是湍流的无量纲数。
三、基础原理流体动力学原理中,最核心的就是质点和控制体系。
质点是流体动力学假设中的一个理论模型,它具有质量,但没有体积和形状和能够省去在实际研究中的空间集中和温度等因素。
控制体系则是流体动力学中控制流体流动的体积元素,包括控制面和控制体。
四、基础公式在流体动力学中,有许多重要的公式。
例如伯努利方程,它是流体动力学中的一个重要原理,告诉我们流速快的地方,流体的压力就小。
再例如动量定理,它告诉我们流体动力学中系统的总动量是守恒的。
五、应用领域流体动力学的应用领域极其广泛,如航天飞机设计,气象学研究,地球物理探测,海洋动力发电等。
能够说,生活中的许多领域都离不开流体动力学的应用。
流体动力学,作为物理学的一个重要分支,旨在研究流体运动的规律,及其与周围物体的相互作用。
同时,它也是如火箭、飞机等依托的科学理论基础,因此其理论研究和应用价值不可忽视。
大学物理流体力学基础知识点梳理
大学物理流体力学基础知识点梳理一、流体的基本概念流体是指能够流动的物质,包括液体和气体。
与固体相比,流体具有易变形、易流动的特点。
流体的主要物理性质包括密度、压强和黏性。
密度是指单位体积流体的质量,用ρ表示。
对于均质流体,密度等于质量除以体积;对于非均质流体,密度是空间位置的函数。
压强是指流体单位面积上所受的压力,通常用 p 表示。
在静止流体中,压强的大小只与深度和流体的密度有关,遵循着著名的帕斯卡定律。
黏性是流体内部抵抗相对运动的一种性质。
黏性的存在使得流体在流动时会产生内摩擦力,阻碍流体的流动。
二、流体静力学流体静力学主要研究静止流体的力学规律。
(一)静止流体中的压强分布在静止的均质流体中,压强随深度呈线性增加,其关系式为 p =p₀+ρgh,其中 p₀为液面处的压强,h 为深度,g 为重力加速度。
(二)浮力定律当物体浸没在流体中时,会受到向上的浮力。
浮力的大小等于物体排开流体的重量,即 F 浮=ρgV 排,这就是阿基米德原理。
三、流体动力学(一)连续性方程连续性方程是描述流体在流动过程中质量守恒的定律。
对于不可压缩流体,在稳定流动时,通过管道各截面的质量流量相等,即ρv₁A₁=ρv₂A₂,其中 v 表示流速,A 表示横截面积。
(二)伯努利方程伯努利方程反映了流体在流动过程中能量守恒的关系。
其表达式为p +1/2ρv² +ρgh =常量。
即在同一流线上,压强、动能和势能之和保持不变。
伯努利方程有着广泛的应用。
例如,在喷雾器中,通过减小管径增加流速,从而降低压强,使得液体被吸上来并雾化;在飞机机翼的设计中,利用上下表面流速的差异产生压强差,从而提供升力。
四、黏性流体的流动(一)层流与湍流当流体流速较小时,流体呈现出有规则的层状流动,称为层流;当流速超过一定值时,流体的流动变得紊乱无序,称为湍流。
(二)黏性流体的流动阻力黏性流体在管道中流动时会受到阻力。
阻力的大小与流体的黏度、流速、管道的长度和直径等因素有关。
流体动力学
p60例4-7
(4-2)
4 倾斜式微压计 (p60)
当测量的压力很小时,由于在竖直的玻璃管中液面
高度变化很小,给读数造成困难,使测量误差增大。为 了提高测量的精确度,可以采用倾斜式微压计,如图411。当单管压力计的玻璃管倾斜角为α时,倾斜管中液 面高度由h1变为L
L h sin
由上式得知,
L比h1扩大了1/sin α倍。 由此可见,在相同的压
三、流体的压缩性与膨胀性 (p53)
流体的体积还随温度变化而变化,当温度升高,
则体积膨胀,这称流体的膨胀性。用膨胀系数表示,
它表示流体压力不变时,温度每增加1℃,单位体积的
增加量。即
v = (ΔV/V)/Δt v ——流体膨胀系数,1/K;
ΔV/V ——单位体积的膨胀量; Δt ——温度增加量,K。
g
由图可知,任一点的位置能头 与压力能头之和为一常数H, 即:
Z A hA ZB hB
Z A pA / g ZB pB / g
Z p / g 常数
(4-13)
5 静止液体的能头 (p61)
上式(式4-13)说明,容器内任一点的压力 能头与位置能头随点的位置不同而不同, 但是这两个能头的和却是一个常数。所以 液体内任一点位置发生变化时能头的和都 是一个常数。又因为如此,所以液体内任 一点位置变化时,其位置能头增加若干米, 则压力能头就减少若干米,反之,点的位 置能头减少若干米,则压力能头就增加若 干米。
由于液体所受压力和温度变化不大时,所引起的 液体体积变化量很小,故液体称不可压缩流体。
四、流体的黏滞性 (p54)
流体运动时,流体间产生内摩擦力的性质叫流体的黏 滞性。内摩擦力具有阻止运动的性质,是流体运动时产生 能量损失的原因。
流体力学3-动力学
二、流体动力学基本概念
1. 流束:指在流体中沿流动方向分离出一块基本元面积dA、长为 L的一束流体。 元流(微细流):指断面无穷小的流束。 总流:指无数微细流的总和。
微元流束
图 3-2 总流和微元流束
3. 流速
质点流速(点速):指过流断面上各质点的速度,以“u”表示,m/s 断面平均流速(流速): 指过流断面上各质点的速度的平均值,以“W” 表示,m/s 4.流量:指单位时间内通过某一断面积流体的量。 ① 体积流量(Q):指单位时间内通过某一断面积流体的体积。m3/s ② 质量流量(m):指单位时间内通过某一断面积流体的质量。Kg/s ③ 重量流量(G):指单位时间内通过某一断面积流体的重量。 三者之间关系: m = ρQ G = mg = ρQg 体积流量Q与流速W之间关系: Q = WA (A—流体通过的某一断面面积)
Q1 = Q2
W1 A1 = W2 A2
Q1 = Q2 + Q3
分流时:
W1 A1 = W2 A2 + W3 A3
Q1 + Q2 = Q3
合流时:
W1 A1 + W2 A2 = W3 A3
§3-4 流体流动伯努利方程
伯努利方程从功能原理出发,描述流体在外力作用下是按照什 么规律来运动的,从而求出流速的绝对值等。
ρw12
2
= ( ρ − ρ a ) gZ 2 + P2 +
2 ρ w2
2
+ ∆ P1− 2
对于1,3 断面的伯努利方程如下:
不同条件下临界流速Wk不同;但是临界雷诺数Rek都是相同的, 其值约为2000,
Re ≤ 2000 层流 2000 < Re < 4000 过渡态 Re ≥ 4000 紊流
流体动力学的基本概念和原理
流体动力学的基本概念和原理流体动力学是研究流体在运动中的行为和性质的学科。
它探究了流体的静力学、动力学以及其它相关问题。
本文将介绍流体动力学的基本概念和原理,包括流体的性质、力学原理和其应用。
一、流体的性质流体是指可以流动的物质,通常分为液体和气体两种状态。
液体具有固定体积和可变形状的特性,而气体具有可变体积和可变形状的特性。
流体具有以下基本性质:1. 静力学性质:包括流体的压强和密度等。
压强是单位面积上的力的作用,常用帕斯卡(Pa)作为单位;密度是单位体积上的质量,常用千克/立方米(kg/m³)作为单位。
2. 动力学性质:包括流体的运动速度和流量等。
运动速度是流体中某点在单位时间内通过该点的位移,常用米/秒(m/s)作为单位;流量是单位时间内通过某一横截面的流体体积,常用立方米/秒(m³/s)作为单位。
3. 黏性:流体的相对运动会产生内部的摩擦力。
黏性是流体抵抗剪切性变形的能力,通常用粘度来表示,其单位为帕斯卡秒(Pa·s)。
二、流体的力学原理流体动力学依赖于一些重要的力学原理,包括质量守恒定律、动量定律和能量守恒定律。
1. 质量守恒定律:它描述了在封闭系统中质量的守恒。
即在单位时间内通过某一横截面的流体质量相等于该段时间内流入和流出的质量之和。
2. 动量定律:流体动量变化率等于合外力的作用。
这个原理描述了流体在流动过程中受到的力和力的变化情况。
动量定律可以用来推导流体的运动方程和流体的受力情况。
3. 能量守恒定律:它讲述了能量的守恒。
流体在运动过程中一般存在着压力能、动能和重力势能等形式的能量,并且能量守恒定律可以用来分析流体在不同形式能量之间的转化。
三、流体动力学的应用流体动力学的应用广泛,以下是一些典型的应用领域:1. 工程应用:流体动力学可以应用于液体和气体的管道系统、水力发电、空气动力学等工程领域,通过分析流体的行为来优化系统设计和改进效率。
2. 生物医学:流体动力学在生物医学领域中的应用包括血液循环、呼吸系统等的研究,通过模拟和分析流体行为来了解生物体内部的生理过程。
流体动力学基础
1.3 流体动力学基础 教案目录 电子课件【掌握内容】(1)基本概念:流量、流速、压头等(2)质量流量、体积流量之间关系(3)流态判断(4)连续性方程的表达式、物理意义及计算(5)伯努利方程的表达式、物理意义及计算(6)流体阻力的种类及产生的原因【理解内容】(1)管道截面上的速度分布(2)阻力计算(3)简单管路、串联管路、并联管路计算【了解内容】(1)伯努利方程的应用(2)动量方程1.3.1基本概念1.3.1.1流量与流速(1)流量:单位时间内流过管道任一截面的流体量,称为流量。
①体积流量:单位时间内流过管道任一截面的流体体积,以符号V 表示,单位为m 3/s ②质量流量:单位时间内流过管道任一截面的流体质量,以符号M 表示,单位为kg/s(2)流速:单位时间内流体的质点在流动方向上流过的距离称为流速.FV w = (m/s ) (3)质量流量与体积流量和平均流速间的关系。
wF V =(m 3/s )ρρwF V M == (kg/s )对于气体: 222111T V p T V p = 122112T T p p V V = (m 3/s ) 122111221122T T p p w T T p p F V F V w === (m/s ) [例题1-4] 某硅酸盐窑炉煅烧后产生的烟气量为10万m 3/h ,该处压强为负100Pa ,气温为800℃,经冷却后进入排风机,这时的风压为负1000Pa ,气温为200℃,求这时的排风量(不计漏风等影响)。
解: 1p =101325-100=101225Pa , 2p =101325-1000=100325Pa1T =273+800=1073K 2T =273+200=473K1V =1.0×105m 3/h 2V =1073473100325101225100.15⨯⨯⨯ =4.44×104 (m 3/h)硅酸盐窑炉系统中,可近似认为1p =2p =0p (大气压),1211212273273t t V T T V V ++== (m 3/s ) 1.3.1.2稳定流与非稳定流运动流体全部质点所占的空间称为流场。
流体动力学
H
q 4q u3 = = = 2 A3 π d 3 4 × 14 × 10 2 π × 0 . 05
2 2
d2 4 ρH v [1 − ( ) ] = 2 gb ( − 1) d1 ρ
2 2
v2 =
ρH 2 gb ( − 1) ρ
d2 4 1− ( ) d1
=
2 × 9 . 8 × 0 . 1(13 .6 − 1) 1 − (15 / 30 ) 4
v 2 = 5 . 132 m / s
q=
π d 22
α
ξ
v2
q2
η
v1
q1
令:β = 1
v
A
α
由动量方程:
Σ Fη i = 0 = ρ q1v − ρ q 2 v − ρ qv cos α
q1 − q 2 = q cos α v 2 q2 由连续性方程:q1 + q 2 = q
ξ
q 5 × 0 . 008 ∴ q1 = (1 + cos α ) = (1 + 0 . 5 ) = 0 . 03 m 3 / s 2 2 5 × 0 . 008 q q 2 = (1 − cos α ) = (1 − 0 . 5 ) = 0 . 01 m 3 / s 2 2
q = ∫ udA
A
2R
( 平均流速: 平均流速: m / s, m / min)
u
v = q/ A
一维流动: 一维流动:流体的动力参数均是坐标的一元函数 二维流动(平面)、三维流动(空间) )、三维流动 二维流动(平面)、三维流动(空间) 封闭容器中液体的流动按一维流动处理
流体力学知识点总结
流体力学知识点总结x一、流体力学基本概念1、流体:指气体和液体,其中气体又称气态物质,液体又称液态物质,也指过渡态的固、液、气。
2、流体静力学:指研究流体在外力作用下的静态特性、压强及重力场等的一般理论。
3、流体动力学:指研究复杂流动现象的动态特性,如流速、湍流及涡流等。
4、流体性质:指流体具有的物理性质,如密度、粘度、比容、表面张力和热特性等。
二、基本假定1、流体的原子间的相互作用是可以忽略的,可以认为是稀薄的。
2、可以假设流体每@点的性质是一致的,允许有速度和温度的变化,其变化有连续性。
3、流体的流动受力不受力,受力的变化很小。
4、流体流动的程度比凝固物体的几何比例大,可以忽略凝固物体对流体流动的影响。
三、流体力学基本概念1、流体质量流率:是流体中的所有物质在某一时刻的移动量,单位为千克/秒(千克/秒)。
2、流体动量流率:是流体中所有物质在某一时刻的动量的移动量,单位是千克·米/秒(千克·米/秒)。
3、流体的动量守恒:流体系统中的动量移动量不变,即:动量进入系统等于动量离开系统。
4、流体的动量定理:假定流体的粘度是恒定的,在流体力学中,运动的流体的动量守恒定理如下:5、流体的能量守恒:流体系统中的能量移动量不变,即:能量的一部分进入系统、离开系统或转移到其他系统中等于能量的一部分离开系统或转移到系统中。
6、绝对动量守恒:在不考虑粘度、流体的办法、温度及热量的变化的情况下,流体系统的绝对动量总量不变。
四、流体力学基本公式1、流体的动量定理:即Bernoulli定理,它用来描述非稳定流动中的动量转换,其形式为:p+ρv2∕2+ρgz=P+ρV+2;2、流体的能量定理:即费休定理,它用来描述流体中的施加动能和升能变化,其形式为:p+ρv2∕2+ρgz=P+ρV∕2+ρgz;3、流体力学定理:即拉格朗日定理,它用来描述流体的流动变化,其形式为:p+ρv2∕2+ρgz=p0+ρv02∕2+ρgz0;4、流体的动量方程:用来描述流体的动量变化,其形式为:(ρv)t+·ρvv=p+·μv+ρf。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体输送及设备操作
2、质量流速 单位时间内流经管道单位面积的流体质量,称为质量流 速,以符号Gs表示,其单位为kg /(m2s)。 质量流速与质量流量及流速之间的关系为 :
Gs
qm , s A
u
气体的体积流量是随压强和温度变化而变化,其流速将 随之变化;但流体的质量流量是不变的,当管道截面积不 发生变化时,质量流速不会变化,对气体,采用质量流速 计算较为方便。
职业教育环境监测与治理技术专业教学资源库《化工单元操作》课程
项目一流体输送及设备操作
南京科技职业学院
分项目二、流体输送过程工艺参数的确定 任务三、流体动力学的基本概念
一、流量及流速
(一)流量 1、体积流量 单位时间内流经管道任一截面上的体积量,称为体积流量,用符 号qv,s或qv,h表示,单位为m3/s或m3/h。 2、质量流量 单位时间内流经管道任一截面上的质量,称为质量流量,用符号 qm,s或qm,h,单位为kg/s或kg/h表示。 体积流量与质量流量之间的关系为:qm , s qV , s 由于气体的体积随压强和温度的变化而变化,当气体流量以体积流 量表示时,应注明压强和温度。
流体输送及设备操作
(二)流速 流体在单位时间内、在流动方向上所流经的距离称为流速。 1、平均流速 平均流速的定义是:流体的体积流量qv,s 除以管道的流通截面 积A,以符号u表示,单位为m/s。 体积流量与流速(平均流速)之间的关系为:
u
qV , s A
质量流量与流速之间的关系为
qm,s ቤተ መጻሕፍቲ ባይዱqV ,s uA