整式的加减1
第07讲 整式的加减(1) (解析版)
第7讲整式的加减(1)一、知识梳理1.同类项所含字母相同,并且相同字母的指数也相同的项叫做同类项.【例1】.(1)下列单项式中,a2b3的同类项是()A.a3b2B.3a2b3C.a2b D.ab3【分析】依据同类项的定义:所含字母相同,相同字母的指数相同,据此判断即可.【解答】解:A、字母a、b的指数不相同,不是同类项,故本选项不符合题意;B、有相同的字母,相同字母的指数相等,是同类项,故本选项符合题意;C、字母b的指数不相同,不是同类项,故本选项不符合题意;D、相同字母a的指数不相同,不是同类项,故本选项不符合题意;故选:B.(2)下列各选项中的两个单项式,是同类项的是()A.3和2B.﹣a2和﹣52C.﹣a2b和ab2D.2ab和2xy【分析】利用同类项的定义判断即可.【解答】解:A、3和2是同类项;B、﹣52不含字母,与﹣a2不是同类项;C、a与b的指数不同,不是同类项;D、所含字母不同,不是同类项.故选:A.(3)如果3a2b2m﹣1与﹣2a2b m+2是同类项,则m的值为()A.1B.3C.﹣1D.﹣3【分析】根据同类项的定义,含有相同的字母,并且相同字母的指数也相同,列出等式,直接计算即可.【解答】解:根据题意,得:2m﹣1=m+2,解得:m=3.故选:B.(4)如果单项式3x a+3y2与单项式﹣4xy b﹣1的和还是单项式,那么a b的值是()A.﹣6B.﹣8C.8D.﹣27【分析】先根据题意判断出单项式3x a+3y2与单项式﹣4xy b﹣1是同类项,从而依据同类项概念得出a、b的值,继而代入计算可得.【解答】解:∵单项式3x a+3y2与单项式﹣4xy b﹣1的和还是单项式,∴单项式3x a+3y2与单项式﹣4xy b﹣1是同类项,则a+3=1,2=b﹣1,解得a=﹣2,b=3,∴a b=(﹣2)3=﹣8,故选:B.【变式训练1】.(1)下列各选项的式子中,与6ab3是同类项的是()A.3ab6B.6a3b C.﹣6a2b2D.﹣ab3【分析】根据同类项的定义逐个判断即可.【解答】解:A.b的指数不相等,不是同类项,故本选项不符合题意;B.a、b的指数都不相等,不是同类项,故本选项不符合题意;C.a、b的指数都不相等,不是同类项,故本选项不符合题意;D.是同类项,故本选项符合题意;故选:D.(2)下列各组单项式中,不是同类项的是()A.32与23B.﹣5x2与36x2C.a3bc与23a3bc D.x2y与﹣0.9yx3【分析】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.【解答】解:A.所有的常数项都是同类项;B.所含的字母相同,并且相同字母的指数也分别相同,是同类项;C.所含的字母相同,并且相同字母的指数也分别相同,是同类项;D.所含的字母相同,但相同字母的指数不相同,所以不是同类项.故选:D.(3)已知﹣2x4y2n+5与5x m+1y是同类项,那么()A.m=3,n=2B.m=3,n=﹣2C.m=2,n=3D.m=2,n=4【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:由题意得:m+1=4,2n+5=1,∴m=3,n=﹣2,故选:B.(4)若单项式2a m+6b2n+1与a5b7的和仍是单项式,则m+n的值为()A.﹣4B.4C.﹣2D.2【分析】根据差是单项式,可得它们是同类项,在根据同类项,可得m、n的值,根据有理数的加法,可得答案.【解答】解:∵单项式2a m+6b2n+1与a5b7的和仍是单项式,∴单项式2a m+6b2n+1与a5b7是同类项,∴m+6=5,2n+1=7,解得m=﹣1,n=3,∴m+n=﹣1+3=2,故选:D.2.合并同类项把多项式中的同类项合并成一项,叫做合并同类项;合并同类项后,所得项的系数是合并前各项的系数的各,且字母边同它的指数不变.【例2】.(1)计算2a2+3a2﹣a2的结果等于4a2.【分析】根据合并同类项的法则计算即可.【解答】解:原式=(2+3﹣1)a2=4a2,故答案为:4a2.(2)下列各式正确的是()A.5xy2﹣3y2x=2xy2B.4a2b2﹣5ab=﹣aC.7m2n﹣7mn2=0D.2x2+3x4=5x6【分析】先判断两项是否是同类项,再根据合并同类项法则计算,据此逐一判断即可.【解答】解:A.5xy2﹣3y2x=2xy2,此选项正确;B.4a2b2与﹣5ab不是同类项,无法计算,此选项错误;C.7m2n与﹣7mn2不是同类项,无法计算,此选项错误;D.2x2与3x4不是同类项,无法计算,此选项错误;故选:A.【变式训练2】.(1)计算﹣6ab+ab+8ab的结果等于3ab.【分析】合并同类项是指同类项的系数相加,并把得到的结果作为新系数,要保持同类项的字母和字母的指数不变,据此计算即可.【解答】解:原式=(﹣6+1+8)ab=3ab,故答案为:3ab.(2)下面计算正确的是()A.2x2﹣x2=1B.4a2+2a3=6a5C.5+m=5m D.﹣0.25ab+ab=0【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.据此逐一判断即可.【解答】解:A.2x2﹣x2=x2,故本选项不合题意;B.4a2与2a3不是同类项,所以不能合并,故本选项不合题意;C.5与m不是同类项,所以不能合并,故本选项不合题意;D.﹣0.25ab+ab=0,故本选项符合题意.故选:D.3.整式的加减【例3】.(1)化简:5m+2n﹣m﹣3n.【分析】根据合并同类项法则计算即可.【解答】解:5m+2n﹣m﹣3n=(5m﹣m)+(2n﹣3n)=4m﹣n.(2)化简:5a2﹣7﹣3a﹣5+3a﹣2a2.【分析】先找同类项,再根据合并同类项法则合并即可.【解答】解:5a2﹣7﹣3a﹣5+3a﹣2a2=5a2﹣2a2﹣3a+3a﹣7﹣5=3a2﹣12.(3)化简:7ab﹣3a2b2+7+8ab2+3a2b2﹣3﹣7ab﹣5ab2.【分析】关键合并同类项法则计算即可.【解答】解:7ab﹣3a2b2+7+8ab2+3a2b2﹣3﹣7ab﹣5ab2=(7ab﹣7ab)+(﹣3a2b2+3a2b2)+(7﹣3)+(8ab2﹣5ab2)=3ab2+4.【变式训练3】.(1)化简:3b+5a﹣2a+4b.【分析】根据把同类项的系数相加,所得结果作为系数,字母和字母的指数不变解答即可.【解答】解:3b+5a﹣2a+4b=5a﹣2a+3b+4b=(5﹣2)a+(3+4)b=3a+7b.(2)化简:8a2+4﹣2a2﹣5a﹣a2﹣5+7a.【分析】利用合并同类项法则计算可得答案.【解答】解:原式=(8﹣2﹣1)a2+(﹣5+7)a+(4﹣5)=5a2+2a﹣1.(3)化简:4a2+3b2+2ab﹣2a2+4b2﹣ab.【分析】根据合并同类项:系数相加字母部分不变,可得答案.【解答】解:4a2+3b2+2ab﹣2a2+4b2﹣ab=(4a2﹣2a2)+(3b2+4b2)+(2ab﹣ab)=2a2+7b2+ab.二、课堂训练1.下列各组单项式中,不是同类项的是()A.﹣a2与2a2B.23与32C.2ab2与2a2b D.﹣mn与2nm【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.根据同类项的定义即可判断.【解答】解:A.同类项与系数无关,是同类项,不符合题意;B.所有的数字都是同类项,是同类项,不符合题意;C.a的指数,左边是1,右边是2;b的指数,左边是2,右边是1,不是同类项,符合题意;D.同类项与字母的顺序无关.故选:C.2.单项式x m﹣1y3与﹣4xy n是同类项,则m n的值是()A.1B.3C.6D.8【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:根据题意得:m﹣1=1,n=3,解得:m=2,所以m n=23=8.故选:D.3.下列各式的计算结果正确的是()A.2x+3y=5xy B.5x﹣3x=2xC.7y2﹣5y2=2D.9a2b﹣4ab2=5a2b【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此逐一判断即可.【解答】解:A.2x与3y不是同类项,所以不能合并,故本选项不合题意;B.5x﹣3x=2x,故本选项符合题意;C.7y2﹣5y2=2y2,故本选项不合题意;D.9a2b与﹣4ab2不是同类项,所以不能合并,故本选项不合题意;故选:B.4.下列单项式中,可以与x2y3合并同类项的是()A.x3y2B.C.3x2y D.2x2y3z【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可判断.【解答】解:A、x3y2与x2y3,所含字母相同,但是相同字母的指数不相同,不是同类项,所以不能合并,故本选项不合题意;B、与x2y3,所含字母相同,相同字母的指数相同,是同类项,能合并,故本选项符合题意;C、x2y与x2y3,所含字母相同,但是相同字母的指数不相同,不是同类项,所以不能合并,故本选项不合题意;D、2x2y3z与x2y3,所含字母不尽相同,不是同类项,所以不能合并,故本选项不合题意;故选:B.5.写出单项式﹣a3b的一个同类项:a3b(答案不唯一).【分析】根据同类项的概念解答即可.【解答】解:单项式a3b与单项式﹣a3b的是同类项,故答案为:a3b(答案不唯一).6.已知两个单项式3xy m与﹣3x n y2的和为0,则m+n的值是3.【分析】两个单项式3xy m与﹣3x n y2的和为0则两个单项式是同类项,根据同类项的定义可得答案.【解答】解:∵两个单项式3xy m与﹣3x n y2的和为0,∴两个单项式是同类项,即m=2,n=1,∴m+n=3.故答案为:3.7.化简:(1)x2y﹣3x2y;(2)7ab﹣3a2b2+7+8ab2+3a2b2﹣3﹣7ab.【分析】合并同类项是指同类项的系数相加,并把得到的结果作为新系数,要保持同类项的字母和字母的指数不变,据此计算即可.【解答】解:(1)x2y﹣3x2y=(1﹣3)x2y=﹣2x2y;(2)7ab﹣3a2b2+7+8ab2+3a2b2﹣3﹣7ab=(7ab﹣7ab)+(3a2b2﹣3a2b2)+8ab2+(7﹣3)=8ab2+4.三、课后巩固1.已知﹣2x m﹣1y3与x n y m+n是同类项,那么(n﹣m)2021的值是()A.1B.﹣1C.22021D.0【分析】利用同类项定义可得m﹣1=n,m+n=3,再计算(n﹣m)2021即可.【解答】解:由题意得:,解得:,则(n﹣m)2021=(1﹣2)2021=﹣1,故选:B.2.下列各式与2a2b是同类项的是()A.2ab2B.C.a2b2D.﹣2ab【分析】直接利用同类项的定义分析得出答案.【解答】解:与2a2b是同类项的是.故选:B.3.若3x2y m与2x m+n﹣1y的和仍为一个单项式,则m2﹣n的值为()A.1B.﹣1C.﹣3D.3【分析】单项式3x2y m与2x m+n﹣1y的和仍是一个单项式,就是说它们是同类项.由同类项的定义(所含字母相同,相同字母的指数相同)可得:m=1,m+n﹣1=2,解方程即可求得m和n的值,从而得出结果.【解答】解:由题意知3x2y m与2x m+n﹣1y是同类项,所以有m+n﹣1=2,m=1,即n=2,m=1,m2﹣n=12﹣2=﹣1,故选:B.4.下列计算中正确的是()A.5a+6b=11ab B.9a﹣a=8C.a2+3a=4a3D.3ab+4ab=7ab 【分析】首先判断是不是同类项,然后再看是否合并正确.【解答】解:A.不是同类项,不能合并,不符合题意;B.应该为8a,不符合题意;C.不是同类项,不能合并,不符合题意;D.合并同类项,系数相加,字母和字母的指数不变,符合题意.故选:D.5.计算:3a﹣5a=(3﹣5)a=﹣2a.(请写出中间步骤)【分析】直接利用合并同类项法则计算得出答案.【解答】解:3a﹣5a=(3﹣5)a=﹣2a.故答案为:(3﹣5),﹣2.6.若多项式x2+2kxy﹣5y2﹣2x﹣6xy+4中不含xy项,则k=3.【分析】先合并同类项,根据已知得出2k﹣6=0,求出即可.【解答】解:x2+2kxy﹣5y2﹣2x﹣6xy+4=x2+(2kxy﹣6xy)﹣5y2﹣2x+4=x2+(2k﹣6)xy﹣5y2﹣2x+4,因为多项式x2+2kxy﹣5y2﹣2x﹣6xy+4中不含xy项,所以2k﹣6=0,解得k=3.故答案为:3.7.化简:(1)5x+2y﹣3x﹣7y;(2)3a2﹣3ab﹣5﹣2a2+3ab+7.【分析】(1)直接合并同类项得出答案;(2)直接合并同类项得出答案.【解答】解:(1)5x+2y﹣3x﹣7y=(5x﹣3x)+(2y﹣7y)=2x﹣5y;(2)3a2﹣3ab﹣5﹣2a2+3ab+7=(3a2﹣2a2)+(3ab﹣3ab)+(7﹣5)=a2+2.。
整式的加减基础知识详解
注:《初中数学典型题思路分析》已被多位老师选用备课。
可提供样本!《初中数学典型题思路分析》亮点:内容为王!A.题目典型易错,重思路分析—“渔、鱼”兼得!按照★到★★★★标注难度。
B.整体难度较大.严格选题,标注难度,不用浪费时间重复做简单题。
二、整式的加减(二)——去括号与添括号基础知识讲解【学习目标】1.掌握去括号与添括号法则,充分注意变号法则的应用;2.会用整式的加减运算法则,熟练进行整式的化简及求值.【要点梳理】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:(1)去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形.要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号是两种相反的变形,因此可以相互检验正误:如:()a b c a b c +-+- 添括号去括号,()a b c a b c -+-- 添括号去括号要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相加减时,减数一定先要用括号括起来.(3)整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.三、《整式的加减》全章复习与巩固【学习目标】1.理解并掌握单项式与多项式的相关概念;2.理解整式加减的基础是去括号和合并同类项,并会用整式的加减运算法则,熟练进行整式的加减运算、求值;3.深刻体会本章体现的主要的数学思想----整体思想.【知识网络】【要点梳理】要点一、整式的相关概念1.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式.要点诠释:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和.2.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.要点诠释:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.3.多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.要点诠释:(1)利用加法交换律重新排列时,各项应连同它的符号一起移动位置;(2)含有多个字母时,只按给定的字母进行降幂或升幂排列.4.整式:单项式和多项式统称为整式.要点二、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.要点诠释:辨别同类项要把准“两相同,两无关”:(1)“两相同”是指:①所含字母相同;②相同字母的指数相同;(2)“两无关”是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.。
整式的加减(1)刘成欣
整式的加减(1)课题:3.4整式的加减(1)授课人:刘成欣教学目标和要求:1.理解同类项、合并同类项的概念,在具体情景中,认识同类项。
掌握合并同类项的法则。
2.经历概念的形成过程和法则的探究过程,培养观察、归纳、概括能力,发展应用意识。
3.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力。
教学重点和难点:重点:理解同类项的概念,正确合并同类项。
难点:根据同类项的概念在多项式中找同类项并正确的合并。
教学方法:分层次教学,讲授、练习相结合。
教学过程:一、预习展示1、同类项:所含相同,并且相同字母的也相同的项,叫做同类项。
2、把合并成一项叫做合并同类项。
3、合并同类项法则:合并同类项时,把同类项的相加,和的指数不变。
二、感悟导入1、创设问题情境⑴、5个人+8个人=⑵、5只羊+8只羊=⑶、5个人+8只羊=(数学教学要紧密联系学生的生活实际、学习实际,这是新课程标准所赋予的任务。
学生尝试按种类、颜色等多种方法进行分类,一方面可提供学生主动参与的机会,把学生的注意力和思维活动调节到积极状态;另一方面可培养学生思维的灵活性,同时体现分类的思想方法。
)2、如图长方形是由两个长方形组成的,求这个长方形的面积。
长方形的面积可以用代数式表示为8n+5n ,或(8+5)n ,从而8n+5n=(8+5)n=13n 。
这就是说到我们计算8n+5n 时,可以先将它们的系数相加,再乘n 就可以了。
利用乘法分配律也可以得到这个结果。
三、合作探究1、观察下列各单项式,把你认为相同类型的式子归为一类。
8x 2y , -mn 2, 5a , -x 2y , 7mn 2,83, 9a , -32xy , 0, 0.4mn 2,95,2xy 2。
由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示。
要求学生观察归为一类的式子,思考它们有什么共同的特征?请学生说出各自的分类标准,并且肯定每一位学生按不同标准进行的分类。
整式的加减(1)
已知两个正方形A、B,边长分别为a,2a. 一、合并同类项
a A 2a B 4a (1)正方形A的周长是_______, 8a 正方形B的周长是________; (2)正方形A的面积是 a2 _________,正方形B的面积是 4a2 ___________; (3)正方形A、B的周长和是 4a+8a __________; (4)正方形A、B的面积和是 ___________. a2+4a2
平行四 边形 梯形
\ \
底×高
½×(上底+下底)×高
序号
类别
长方体
正方体 圆柱
1பைடு நூலகம்
2
立体图形 表面积(S) 体积(V) 2×(ab+ac 长×宽×高 +bc) 6a² a³
底面积+侧面积 S底=πr² S侧=2πr×h
3 4
5
底面积×高 =πr²×h
底面积×高 =π(R²-r² )×h 1/3×底面积×高 =1/3πr²×h
(5)5与 6
注意
关于同类项的两点说明:
(1)两个相同:字母相同,同字母 的指数相同. (2)两个无关:与系数的大小无关, 与字母的顺序无关.
判断: (1)在一个多项式中,所含字母相
同,并且指数也相同的项,叫同类项. 如2x2y3和y2x3. (2)两个单项式的次数相同 ,所含 的字母也相同,它们就是同类项. 如3x2y3和-2x3y2.
-4(a+b)
(2) -2(a-b) +(a+b)2+7(a-b) -5(a+b)2
5(a-b) -4 (a+b)2
例1:合并下列各式的同类项.
1 2 3 (1) x y x y ; 5 3 2 3 2 ( 2) 4xy 2x y 4xy 3x y;
整式的加减(一)ppt
所含字母相同
3、什么叫合并同类项
相同字母的指数也相同 把多项式中的同类项合并成一项,叫做合并同类项。
4、如何合并同类项
系数相加,字母及其指数不变。
针对问题一:填空 100t-252t=(100-252 )t 3x+2x=( 3+2 )x 3ab-4ab=( )ab 3-4 针对问题二:判断下列各式是否为同类项 2xy和-yx 是 5abc和2ac 不是 3xyz和5xyz 是 -2和3.8 是
制作人:刘家齐
概念:数或字母的积,这样的式子叫单项式,单
单项式
单独的一个数或字母也叫做单项式 系数:单项式中的数字因数,叫做单项式的系数。 次数:所有字母的指数的和叫做这个单项式的次数。
一个单独的不为0的数,次数为0.
整式
概念:几个单项式的和。
多பைடு நூலகம்式
项:每个单项式叫做多项式的项,不含字母的项叫 做常数项 次数:多项式里,次数最高项的次数叫做多项式的 项。
P62-63
1、如何进行100t+252t的运算,他的根据是 什么? 2、什么叫同类项?
3、什么叫合并同类项? 4、如何合并同类项?
1、如何进行100t+252t的运算,他的根据是 什么?
100t+252t =(100+252)t =352t 他的根据是乘法分配律。
2、什么叫同类项?
所含字母相同,并且相同字母的指数也相同 的项,叫做同类项。 同类项
针对问题三、四:合并同类项 -3x-6x-5(-9x-5) =-3x-6x+45x+25 =36x+25
所含字母相同,并且相同字母的指数也相同 的项,叫做同类项。
系数相加,字母及其指数不变。
整式的加减(1)
减2
加上它本身
乘以5 加上3
加上一个小于10的正整数
你会做吗? 3 x + 2 x = ( 5) x
2y 2 x 12 -3 x y
=(9)
=?
2 xy
2
x
+3
2 xy
同类项的概念:
所含字母相同,并且相同字母的指数也相 同的项,叫做同类项。
同类项的特点:
相同字母的指数相同 与项的系数无关 与字母的排列顺序无关 两无关: 同类项所含字母相同 两同:
(3 3) x 2 y (3 2) xy2
(移)
(并)
同类项
xy
2
合并同类项步骤:
带着符号移
系数相加,字母及指数不变
同类项
两个条件
(1)所含字母相同; (2)相同字母的指数分别 相同;
合并同类项
法则
(1)系数相加作为
结果的系数。
(2)字母与字母的
指数不变。
2、合并同类项的法则:
合并同类项时,把同类项的系数相加, 字母和字母的指数不变。
1 2
3
这有一堆水果,里面有苹果、橙子和 火龙果,要怎样才能又快又好的知道 它们有多少个呢?
例1
合并同类项
3x y 3xy 3x y 2xy (找)
2 2 2 2
解:原式 ( 3x 2 y 3x 2 y) (3xy2 2y 3与x 2 y n1 是同类项,那么n的值 是( B )
A、1
B、2
C、3
D、4
把多项式中的同类项合并成一项,叫做 合并同类项。
3x+2x= (3+2)x 5x =5x
2 2 12x2y-3x2y= (12-3) 9x y x y =9x2y
《整式的加减(1)》名师教案
8.2 整式的加减 第一课时(刘绍中)——合并同类项一、教学目标(一)学习目标1.理解同类项的概念,会判断同类项.2.掌握合并同类项的法则,并能正确合并同类项.3.能在合并同类项的基础上进行化简求值.(二)学习重点会判断同类项并能正确合并同类项.(三)学习难点同类项的定义,合并同类项法则的形成过程和应用.二、教学设计(一)课前设计1.预习任务(1)所含字母相同,并且相同字母的指数也相同的项叫做 同类项 ,几个常数项也是同类项.(2)把多项式中的同类项 合并成一项 叫做合并同类项.合并同类项后,所得项的系数是合并前各同类项的系数的 和 ,字母连同它的指数 不变 .(3)观察:b a 22,2a b ,2ba 的共同点是所含 字母 相同,并且 相同字母的指数也相同 ,它们 是 (填“是”或“不是”)同类项.2.预习自测(1)下列各组中的两项,是同类项的组数为( ) ①213x y 与231xy ; ②xy 31与yx 33; ③25与2a ; ④72与27. A . 1组 B .2组 C .3组 D .4组【知识点】同类项的概念.【解题过程】解:①虽含相同字母,但相同字母的指数不同,故错.②所含字母相同且相同字母的指数也相同,故正确.③一个是常数项,一个含有字母,所以不是同类项.④都是常数项,所以是同类项.故选B.【思路点拨】按照同类项两相同两无关的特征判定即可.【答案】B.(2)已知n ab 4与42b a m -是同类项,则有( )A .1m =,2n =B .1m =,4n =C .4m =,2n =-D .2m n ==【知识点】同类项的概念.【解题过程】解:因为n ab 4与42b a m -是同类项,所以1m =,4n =,故选B.【思路点拨】根据同类项定义的特征逆向思维即可.【答案】B.(3)下列计算正确的是( )A .23a b ab +=B .2221a b a b -=C .22222(2)0a a --=D .2242a a a +=【知识点】合并同类项发则.【解题过程】解:A 中不是同类项,不能合并,故错;B 中虽是同类项,但是系数相加,字母和字母指数不能改变,故错;C 正确;D 中是同类项,但是字母和字母指数不能改变,故错.故选C.【思路点拨】合并同类项发则是系数相加所得结果作为和的系数,字母和字母指数不变.【答案】C.(4)如果773+y x n m 与3254n m x +-的和是单项式,那么x ,y 的值是( ).A .1x =,4y = B. 1x =-,4y = C .1x =,4y =- D .4y =-,4y =-.【知识点】同类项和合并同类项的概念.【解题过程】解:因为773+y x n m 与3254n m x +-的和是单项式,所以773+y x n m 与3254n m x +-是同类项,所以752x x =+,73y +=,所以1x =,4y =-,故选C.【思路点拨】因为只有同类项才可以合并,由和是单项式,则说明它们是同类项,根据同类项两相同特征建立方程即可.【答案】C.(二)课堂设计1.知识回顾(1)单项式的定义:数与字母的乘积形式.(2)单项式的系数:单项式中的数字因数,注意包括前面的符号.(3)单项式的次数:所含字母的指数和.2.问题探究探究一 同类项的定义 同类项的特征★▲●活动① (回顾旧知,感受分类的作用)师问:在一次“送温暖、献爱心”活动中,我们班同学非常积极,其中一位同学把储钱罐捐出来,满满的一罐硬币里有一元、五角、一角,你能以最快的方式统计一下这罐硬币共有多少钱吗? 学生抢答.师问:(1)分类需要什么样的标准?(2)分类的作用又是什么?师归纳:生活中处处有分类的现象,我们可以把具有相同特征的事物归为一类,利用好分类将会给我们的生活和学习带来便利.【设计意图】让学生感知分类需要标准,以及分类的数学思想,为同类项概念的学习作准备. ●活动② (整合旧知,探究同类项的定义和特征)师问:游戏一:找朋友,并说明你的分类标准是什么?(1) 325x y ;(2) 3223x y -;(3) 32x y z ;(4) 2315zy x ;(5)-125;(6)12;(7) 3a -; (8) 35a -. 生答:学生通过小组的讨论和交流,学生代表展示,按照所含的字母相同以及相同字母的指数相同为标准判断的(1)与(2);(3)与(4);(5)与(6);(7)与(8).注意:老师在肯定学生众多的答案中,最后确定(1)与(2);(3)与(4);(5)与(6);(7)与(8).师问:每一对“朋友”具有哪些相同的特征?生答:所含的字母相同,相同字母的指数也相同.总结:凡是所含的字母相同,相同字母的指数也相同的几个单项式就叫同类项.几个常数项也是同类项.师问:对于这个概念我们应抓住哪几个关键词理解?生答:①所含字母相同,②相同字母的指数也相同.师问:同类项与系数和字母的顺序有关吗?生答:无关.归纳:同类项的特征是“两相同,两无关”.二相同:字母相同,相同字母的指数也相同;二无关:与系数无关,与字母的顺序无关.游戏二:同类项速配.师问:先判断每一组是同类项吗?为什么?如果不是的,为前者配一个同类项.(1) 22x y 与23x y -;(2) 2abc 与2ab ;(3) 3pq -与3qp ;(4) 24x y -与25xy .生答:(1)是同类项,因为所含字母相同且相同字母的指数也相同;(2)不是同类项,因为所含字母不同,配的同类项为12abc ;(3)是同类项,因为所含字母相同且相同字母的指数也相同;(4)不是同类项,因为相同字母的指数不同,配的同类项为2x y -.总结:同类项的识别:二相同:字母相同,相同字母的指数也相同,这两条件缺一不可;二无关:与系数无关,与字母的顺序无关.不要忘记几个常数项也是同类项.【设计意图】强化同类项的概念以及基本特征“二相同和二无关”,从而能准确识别同类项.探究二 ★▲●活动① (大胆猜想,探究合并同类项法则).师问:类比数的运算,我们如何化简式子100252t t +呢?(1)运用有理数的运算律计算10022522⨯+⨯= ;100(2)252(2)⨯-+⨯-= .师问:你运用了有理数的哪些运算律?生答:逆用了乘法的分配律.师问:你能根据(1)中的方法完成下面的运算吗?并说明其中的道理.生答:100252t t +=(100252)t +⨯=352t ,逆用了乘法的分配律.归纳:事实上它们都有相同的结构,都是两个数分别与同一个数乘积的和,所以如果把t 看着数2或-2,根据乘法分配律运算就有100252t t +=(100252)t +⨯=352t 师问:填一填:并说明理由.100252t t -=( )t ;2232x x +=( )2x ;2234ab ab -=( )2ab . 生答:100252t t -=(100-252)t ;2232x x +=(3+2)2x ;2234ab ab -=(3-4)2ab师问:上述运算中式子的左边有什么共同特点?右边式子具有什么特征?你能从中得出什么规律?学生举手抢答.总结:左边多项式中各项都是同类项,右边是单项式,几个同类项可以合并为单项式.【设计意图】类比观察从而发现规律,都可以运用乘法的分配律分别合并为一个单项式,通过互动让学生初步知道合并的依据,理解数式的通性,掌握类比的数学思想.●活动② (集思广益,发现合并同类项的法则).师问:由上可知具有什么特征的几个单项式才可以合并成一个单项式?生答:同类项.师问:什么叫合并同类项?生答:把几个同类项合并成一个单项式,叫做合并同类项.师问:合并同类项的依据是什么?生答:乘法分配律.师问:观察上述式子的运算,合并同类项时,几个同类项中的哪部分在参与运算,哪部分不变? 生答:系数在相加所得的和作为结果的系数,而字母和字母的指数不变,简记“一加二不变”. 师问:不是同类项能不能合并?生答:不能.师问:下列合并同类项对吗?不对的,说明理由.①2a a +=; ②325a b ab +=;③22245x y x y x y -=-;④235325x x x +=;⑤ 53a a a a +-= . 生答:①错,因为字母和字母指数部分没有了;②错,因为他们不是同类项;③对;④错,因为他们不是同类项;⑤错,因为系数相加时符号错了.总结:合并同类项法则:几个同类项相加,系数相加所得结果作为结果的系数,字母和字母的指数不变.简记为 “一加二不变”【设计意图】在互动过程中凸显同类项系数相加,字母和指数不变,便于学生发现总结合并同类项的法则,设计一个互动是让学生巩固合并同类项法则.探究三 ★▲●活动① (基础性例题)师问:本节课学习了什么法则生答:我们学习了同类项以及合并同类项法则.师问:利用同类项以及合并同类项法则可以解决什么?生答:整式的化简或求值.例1.化简:222227498667ab a b ab a b ab -+-+--;【知识点】合并同类项.【解题过程】解:原式=222227746968ab ab a b a b ab --++--(用不同的符号划出多项式中的同类项).=222227764968ab ab a b a b ab -+-+--(加法交换律,注意交换时连同符号交换走). =22222(77)(64)(96)8ab ab a b a b ab -+-+--(加法结合律).=222(77)(64)(96)8ab a b ab -+-+--(乘法分配律).=2220238ab a b ab ++-=222283a b ab -+(注意升降幂排列).【思路点拨】按照同类项概念确定出多项式中同类项,再合并,注意每一步的依据.【答案】222283a b ab -+.师归纳:通常把一个多项式的各项按照某个字母的指数从大(小)到小(大)的顺序排列叫做降(升)幂排列常数项视作字母指数为0.师问:多项式的化简实际就是合并多项式中的同类项,化简步骤是什么?生答:先用不同标记确定同类项,再运用加法交换律结合律把同类项结合在一起,第三按照合并同类项法则合并,第四把结果进行升降幂排列.师问:在化简过程中应注意哪几点?生答:交换项的位置时注意项的符号跟着交换走,合并时注意系数相加,子母和字母的指数不变.总结:交换项的位置时注意连同符号交换走,没有同类项的项连同符号写下来,合并时注意“一加二不变”的原则,最后结果应从新升幂或降幂排列.练习:化简:222243244a b ab a b ++--【知识点】同类项的识别和合并.【解题过程】解:222243244a b ab a b ++--=222244342a a b b ab -+-+(加法交换律)=2222(44)(34)2a a b b ab -+-+(结合律)=22(44)(34)2a b ab -+-+(分配律)=22b ab -+【思路点拨】按照同类项概念确定出多项式中同类项,再合并,注意每一步的依据.【答案】22b ab -+.【设计意图】通过例习题的学习使学生熟练掌握同类项的特征,熟练合并同类项,让学生明白数学学习必须弄清算理.例2.求多项式22225432x x x x x -++--的值,其中12x =. 【知识点】多项式的化简求值【解题过程】解:22225432x x x x x -++--=22223542x x x x x +--+-=222(23)(54)2x x x x x +----=2(213)(54)2x x +----=2x -- 当12x =时,原式=15222=--=-. 【思路点拨】先化简,再代入求值,这样更简单. 【答案】52-. 师追问:直接把12x =代入计算又如何? 师问:哪种方法更简单?体会合并同类项的作用.总结:求多项式的值时,一般先化简,再代入指定的数值进行计算,合并时注意系数是负数的情况,必要时要正确使用括号,强调化简求值的格式书写.练习:2222748387y x xy y xy x ---+-,其中21=x ,21-=y .【知识点】化简求值.【解题过程】解:2222748387y x xy y xy x ---+-=2222743788x x y y xy xy -+---=2222(74)(37)(88)x x y y xy xy -+--+=22(74)(37)(88)x y xy -+--+=223164x xy y --当21=x ,21-=y 时 原式=2211113()16()4()2222⨯-⨯⨯--⨯- =1134444⨯+-⨯ =3414+- =154【思路点拨】先化简再求值更简单且不易出错. 【答案】154. 【设计意图】让学生熟练的掌握合并同类项法则,弄清书写格式和步骤,初步理解代数的值得含义.●活动2 (提升型例题)例3.把()x y -当作一个因式,对223()7()8()5()x y x y x y x y ---+---合并同类项.【知识点】合并同类项进行多项式的化简.【数学思想】整体思想.【解题过程】解:223()7()8()5()x y x y x y x y ---+---=223()8()7()5()x y x y x y x y -+-----=[]223()8()7()5()x y x y x y x y ⎡⎤-+---+-⎣⎦=2(38)()(75)()x y x y +--+-=211()12()x y x y ---【思路点拨】把()x y -看作整体,按照多项式的化简步骤依据进行即可.【答案】211()12()x y x y ---练习:22()3()4()5()x y y x y x x y -----+-【知识点】合并同类项进行多项式的化简.【数学思想】整体思想.【解题过程】22()3()4()5()x y y x y x x y -----+-=22()3()4()5()x y x y x y x y -+---+-=22()4()3()5()x y x y x y x y ---+-+-=2(14)()(35)()x y x y --++-=23()8()x y x y --+-【思路点拨】注意()x y -与()y x -互为相反数,()()x y y x -=--,22()()x y y x -=-.【答案】23()8()x y x y --+-.【设计意图】通过例习题的学习使学生熟练掌握同类项的特征,熟练合并同类项. 掌握()()x y y x -=--,22()()x y y x -=-的变形,渗透整体的数学思想.●活动3 (探究型例题)例4.若单项式4252+m b a 与832b a n -的和仍是单项式,则m 与n 的值分别是( ).A .2,4B .4,2C .1,1D .1,3【知识点】同类项的概念.【解题过程】4252+m b a 与832b a n -的和仍是单项式,所以523n =-,248m +=所以4n =,2m =,选A.【思路点拨】由和是单项式确定这两个单项式是同类项,按照两相同特征列出方程解之即可.【答案】A.练习:若347--n b a 与171+m ba 是同类项,求100)(n m - 的值.【知识点】同类项的概念.【解题过程】解:347--n b a 与171+m ba 是同类项,所以31n -=,14m +=所以4n =,3m =,100100()(34)1m n -=-=.【思路点拨】注意同类项两相同两无关的特征.【答案】1.【设计意图】通过例习题的学习,熟练掌握同类项的特征,准确判断识别.3. 课堂总结知识梳理(1)所含字母相同,且相同字母的指数也相同的单项式是同类项,两相同、两无关.(2)几个同类项合并成一项叫合并同类项,合并同类项法则是系数相加,字母和字母的指数不变.(3)多项式的化简实际就是合并同类项.重难点归纳(1)同类项的特征:两相同、两无关.(2)合并同类项的法则.(3)多项式的化简求值及步骤.(三)课后作业基础型 自主突破1.下列不是同类项的是( )A.-25和1B.224z xy -和224yz x -C.y x 2和2yx -D.3a -和34a【知识点】同类项的定义.【解题过程】解:A.都是常数项,故是同类项.B.虽所含字母相同,但相同字母的指数不相同,故不是同类项.C.所含字母相同且相同字母的指数也相同,与顺序无关,故是同类项.D.所含字母相同且相同字母的指数也相同,与系数无关,故是同类项.【思路点拨】根据同类项的定义判断.【答案】B.2.下列合并同类项正确的是( )①325a b ab +=;②33a a -=;③532523x x x =+;④770ab ba -=;⑤32323254y x y x y x -=-;⑥235--=-;A .①②③④B .③④⑤C .③④⑤⑥D .④⑤⑥【知识点】合并同类项.【解题过程】解:①多项式各项不是同类项,不能合并,故错;②各项是同类项,但应是系数相加,字母及指数不能变,故错;③多项式各项不是同类项,不能合并,故错;④系数是相反数的同类项合并为0,故对;⑤各项是同类项,系数相加仍是系数,字母及指数不变,故对;⑥是常数项,故对;所以选D.【思路点拨】按照合并同类项的法则逐一判断排除.【答案】D.3. 若单项式22m x y 与313n x y -是同类项,则m n +的值是 . 【知识点】同类项定义.【解题过程】解:单项式22m x y 与313n x y -是同类项,所以2n =,3m =,所以235m n +=+=.【思路点拨】根据同类项的定义逆向思维求出m 和n 的值,代入m n +计算即可.【答案】5.4. 化简:(1)22318115a b ab a b ab +--+-;(2)223()4()8()5()x y x y y x y x ---+---.【知识点】多项式的化简.【解题过程】解:(1)22318115a b ab a b ab +--+-=22381151a b a b ab ab --+-+=2(31)(811)(51)a b ab -----=2234a b ab +-;(3)223()4()8()5()x y x y y x y x ---+---=223()4()8()5()x y x y x y x y ---+-+-=223()8()4()5()x y x y x y x y -+---+-=211()()x y x y -+-.【思路点拨】根据合并同类项的法则,进行计算即可.合并同类项的法则是系数相加作为系数,字母和字母的指数不变.x y -与y x -是互为相反数的,注意()x y y x -=--,22()()x y y x -=-的变形.【答案】(1)2234a b ab +-;(2)211()()x y x y -+-.5.当4x =-, 2y =时,求代数式2232233333x y xy x x y xy y -+++--的值.【知识点】化简求值.【解题过程】解:2232233333x y xy x x y xy y -+++--=2222333333x y x y xy xy x y -++-+-=33x y -当4x =-, 2y =时,原式=33(4)2--=648--=72-.【思路点拨】先化简,在代入求值.【答案】72-.6.已知x 和y 的多项式22222ax bxy x x xy y +--++合并后不含二次项,求34a b -的值.【知识点】多项式的化简求值.【解题过程】解:22222ax bxy x x xy y +--++=2(1)(22)2a x b xy x y -++-+,又知合并后不含二次项,故1a =,1b =-,即34314(1)7a b -=⨯-⨯-=.【思路点拨】根据题意关于x 和y 的22222ax bxy x x xy y +--++不含二次项,由此可解出a ,b 的值,将其代入34a b -即可求解.【答案】7.能力型 师生共研1.若 2313a x y +与140.4b x y -是同类项,求2222221152346a b ab a b ab a b +---的值. 【知识点】多项式的化简求值 【解题过程】解:2313a x y +与140.4b x y -是同类项, 所以12b -=,34a +=,即1a =,1b =-.2222221152346a b ab a b ab a b +--- =2222221152346a b a b a b ab ab --+- =2211(523)()46a b ab --+- =112ab 当1a =,1b =-时,原式=11(1)12⨯⨯-=112-. 【思路点拨】根据同类项的定义求出a ,b 的值,再化简多项式后代入求值. 【答案】112-. 2..若当1x =时,多项式31ax bx ++的值为5,则当1x =-时,求多项式311122ax bx ++的值. 【知识点】多项式的化简求值.【数学思想】整体思想.【解题过程】解:因为31ax bx ++的值为5,即31ax bx ++=5,所以34ax bx +=当1x =时,4a b +=当1x =-,311122ax bx ++=1()12a b --+=1()12a b -++=-1. 【思路点拨】先根据当1x =时,多项式31ax bx ++的值为5,求出4a b +=,再求出当1x =-时,1()12a b -++,整体代入求值. 【答案】-1.探究型 多维突破1.有这样一道题:当0.35a =,0.28b =-时,求333337636310a a b a a b a -++--的值.小明说:本题中0.35a =,0.28b =-是多余的条件,小强马上反对说:这多项式中每一项都含有a 和b ,不给出a ,b 的值怎么能求出多项式的值呢?你同意哪位同学的观点?请说明理由.【知识点】多项式的化简求值.【解题过程】解:同意小明的说法,理由如下:333337636310a a b a a b a -++--=333337310663a a a a b a b +--+-=-3化简后不含有a 和b 的项,所以多项式的值就与a 和b 的取值无关.【思路点拨】先把多项式进行化简,看最后的结果是否含有a 和b .【答案】同意小明的说法. 2.(1)水库水位第一天连续下降了ah ,每小时平均下降2cm ,第二天连续上升了a h ,每小时平均上升了0.5cm ,这两天水位的变化情况如何?(2)某商店原有5袋大米,每袋重:r kg .上午卖出3袋,下午又购进同样包装的大米4袋.商店现有大米多少千克?【知识点】整式表示数量关系.【解题过程】(1)解:∵水库中水位第一天连续下降了a 小时,每小时平均下降2cm , ∴第一天水位的变化量是:2a -cm ,∵第二天连续上升了a 小时,每小时平均上升0.5 cm ,∴第二天水位的变化量是:0.5a cm ,∴这两天水位的总变化量为: 2a -cm +0.5a cm = 1.5a -cm ,即水位下降了1.5a cm(2)∵商店原有5袋大米,每袋重r kg ,上午卖出3袋,下午又购进同样包装的大米4袋 ∴商店现有大米=534r -+() =6r kg【思路点拨】(1)分别求出第一天水位的变化量,第二天水位的变化量,相加即可;(2)原有的大米减去上午卖出的大米加上下午购进的大米数量等于商店现有的大米数量.【答案】(1) 1.5a -cm ;(2)6r kg .自助餐下列各式中,是23x y 的同类项的是( )A .23a bB .22xy -C .2x yD .3xy【知识点】同类项的定义.【解题过程】解:A.字母不同, 不是同类项,故A 不符合题意;B.相同字母的指数不同,不是同类项,故B 不符合题意;C.23x y 的同类项的是2x y ;D.相同字母的指数不同不是同类项,故D 不符合题意;故选:C .【思路点拨】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【答案】C.2.合并同类项正确的是( ).A .2222x x x +=B .2244x x x +=C .2222x x -=D .2222x x x -=【知识点】合并同类项【解题过程】解:A.系数相加字母及指数不变,故A 正确;B.系数相加字母及指数不变,故B 错误;C.系数相加字母及指数不变,故C 错误;D.系数相加字母及指数不变,故D 错误;故选:A .【思路点拨】根据合并同类项的法则把系数相加即可.【答案】A.3.若24m m n x y +与623x y -的和是单项式,则mn = .【知识点】单项式定义和合并同类项发则.【解题过程】解:∵24m m n x y +与623x y -的和是单项式,∴26m =,2m n +=,∴3m =,1n =-,∴3mn =-,故答案为﹣3.【思路点拨】根据同类项的概念列出方程求得m ,n 的值即可.【答案】﹣3.4.已知多项式224223mx xy x x nxy y +--+-合并后不含二次项,则m n 的值是 .【知识点】同类项的定义.【解题过程】解:原式=2(2)(24)3m x n xy x y -++--由于不含二次项,故20m -=,240n +=,∴2m =,2n =-∴2(2)4m n =-=,故答案为:4.【思路点拨】先合并同类项,然后令二次项的系数为0即可.【答案】4.5.合并同类项:(1)22318115a b ab a b ab +--+-;(2)2222222a ab b a ab b -+++-;(3)223()7()8()5()x y y x y x x y -+---+-.【知识点】合并同类项【解题过程】解:(1)22318115a b ab a b ab +--+-=2(31)(811)(15)a b ab ---+-=2234a b ab +-;(2)2222222a ab b a ab b -+++-=23a ;(3)223()7()8()5()x y y x y x x y -+---+-=223()7()8()5()x y x y x y x y -----+-=2(38)()(75)()x y x y -----=25()2()x y x y ----【思路点拨】根据合并同类项的法则,进行计算即可.合并同类项的法则是系数相加作为系数,字母和字母的指数不变.【答案】(1)2234a b ab +-;(2)23a ;(3)25()2()x y x y ----.6.对于代数式22222735x xy y x kxy y +++-+,老师提出了两个问题,第一个问题是:当k 为何值时,代数式中不含xy 项,第二个问题是:在第一问的前提下,如果2x =,1y =-,代数式的值是多少?(1)小明同学很快就完成了第一个问题,也请你把你的解题写在下面吧.(2)在做第二个问题时,马小虎同学把1y =-,错看成1y =,可是他得到的最后结果却是正确的,你知道这是为什么吗?【知识点】整式表示数量关系.【解题过程】解:(1)因为22222735x xy y x kxy y +++-+=2222(2)(35)(7)x x y y xy kxy ++++-=2238(7)x y k xy ++-所以只要70k -=,这个代数式就不含xy 项,即7k =时,代数式中不含xy 项.(2)因为在第一问的前提下原代数式化简为:2238x y +当2x =,1y =-时,原式=2238x y +22328112820=⨯+⨯=+=(-).马小虎同学的计算过程应该为:当2x =,1y =时,原式=2238x y +22328112820=⨯+⨯=+=. 因为1±的平方都等于1,所以马小虎的最后结果是正确的.【思路点拨】(1)代数式中不含xy 项就是合并同类项以后xy 项得系数等于0,据此即可求得;(2)把2x =,1y =-和2x =,1y =-代入(1)中的代数式求值即可判断.【答案】(1)7k =;(2)当2x =,1y =-时,原式=2238x y +22328112820=⨯+⨯=+=(-).马小虎同学的计算过程应该为:当2x =,1y =时,原式=2238x y +22328112820=⨯+⨯=+=. 所以马小虎的最后结果是正确的.。
整式的加减1
3
2
例三
已知代数式- 3x2 y 5x 0.5x2 y 2, x 1 , y 7,求代数式的值
5
随堂练习
(1)一个长方形的宽为acm,长比宽的2 倍多1,这个长方形的周长为_______
(2)三个连续整数中,n是最小的一个, 这三个数的和为_______
谢谢观赏
3.4整式的加减1
——合并同类项
你可以对它们进行分类吗?
你可以将下列单项式进行分类吗?
4x2 y 2x 5xy 5a2 7xy
2
10a
3x
6x2y
同类项:
字母相同 相同字母的指数相同
随堂练习
1.下列单项式中与a 2b是同类项的是(A)
A.2a 的是(D)
A.52 与25 B. ab与ba C.0.2a2b与 1 a2b
5
所有常数项 都是同类项
D.a 2b 3与5a 3b 2
3.已知2x6 y2和 - 1 x3m yn是同类项, 3
则m2 n2的值为 ___0____
合作探究
(1)3×5+2×5= (3+2)×5=25 (2)0.6×9+1.4×9=(0.6+1.4)×9=18 (1)3n+2n= (2)0.6x+1.4x=
8n+5n=(8+5)n=13n
把同类项合并成一项叫做合并同类项
例一
(1) xy2 3xy2 (2)7a 3a2 2a a2 3
注意 合并同类项时:
(1)寻找同类项 (2)同类项系数相加 (3)字母和字母指数不变
例二
13a 2b 5a b
2 4ab 1 b2 9ab 1 b2
整式的加减(一)说课稿
整式的加减(一)说课稿今天我说课的题目是《整式的加减(一)》,下面我将从教材地位及作用分析、教学目标、教法与学法、教学过程及板书设计等方面进行说课。
一、教材地位及作用分析本节课选自新人教版数学七年级上册第二章第二节第一课时,是在结合学生已有的生活经验,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题。
“合并同类项”这一知识点是整式部分的核心,因为它是本章重点“整式加减”的基础,其法则以及去括号的法则应用是整式加减的重点。
合并同类项这一节的教学内容有同类项的概念、合并同类项法则及其运用,其法则的应用是整式加减的基础,另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上;在合并同类项过程中,要不断运用数的运算。
可以说合并同类项是有理数加减运算的延伸与拓广。
因此学好本节知识是学好后续知识的主要纽带,同时在合并同类项过程中不断运用数的运算,又合并同类项是建立在数的运算律的基础上,让学生体会到认识事物是一个由特殊到一般,又由一般到特殊的过程,从而培养学生初步的辩证唯物主义思想。
(1)教学重点:同类项的概念、合并同类项的法则及应用。
(2)教学难点:正确判断同类项;准确合并同类项。
(3)关键:正确理解同类项概念和合并同类项法则。
二、教学目标:1、知识目标:(1)使学生理解多项式中同类项的概念,会识别同类项。
(2)使学生掌握合并同类项法则。
(3)利用合并同类项法则来化简整式。
2、能力目标:(1)通过具体情境的观察、思考、类比、探索、交流和反思等数学活动培养学生创新意识和分类思想,使学生掌握研究问题的方法,从而学会学习。
(2)通过具体情境贴近学生生活,让学生在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化。
会利用合并同类项的知识解决一些实际问题。
(3)通过知识梳理,培养学生的概括能力、表达能力和逻辑思维能力。
3、情感、态度与价值观:(1)在整式的加减运算中体会数学的简洁美。
整式的加减(1)教案
2.2整式的加减(1)—同类项、合并同类项、升(降)幂排列【学习目标】1.理解同类项的概念,在具体情景中,认识同类项。
2. 理解合并同类项的概念,领会合并同类项法则。
3.理解多项式的升(降)幂排列的概念,会进行多项式的升(降)幂排列。
【学习重难点】重点:理解同类项的概念;领会合并同类项法则。
难点:根据同类项的概念在多项式中找同类项。
【学习过程】一、创设问题情境:1、⑴、5个人+8个人=⑵、5只羊+8只羊= ⑶、5个人+8只羊=2、观察下列各单项式,把你认为相同类型的式子归为一类。
8x 2y , -mn 2, 5a , -x 2y , 7mn 2,83, 9a , -32xy , 0, 0.4mn 2,95,2xy 2.观察归为一类的式子,思考它们有什么共同的特征?说出各自的分类标准。
和 , 和 , 和 , 和 分别是同一类。
因为: 。
3、运用加法交换律,任意交换多项式x 2+x +1中各项的位置,可以得到几种不同的排列方式?在众多的排列方式中,你认为那几种比较整齐? 二、自主学习与合作探究: (一)自学提纲:请同学们围绕着“什么叫做同类项?什么叫做合并同类项?合并同类项法则是什么?多项式的升(降)幂排列?”这些问题,自学课文第63页开始到65页“例题1”为止。
并把课文中的空填好。
(二)、自学检测:1:判断下列说法是否正确,正确地在括号内打“√”,错误的打“×”。
(1)3x 与3mx 是同类项。
( ) (2)2a b 与-5a b 是同类项。
( )(3)3x 2y 与-31yx 2是同类项。
( ) (4)5a b 2与-2a b 2c 是同类项。
( ) (5)23与32是同类项。
( )2. 若2a m b 2m+3n 与a 2n-3b 8可以合并成一项,则m 与 n 的值分别是______3.把多项式x 4-y 4+3x 3y -2xy 2-5x 2y 3用适当的方式排列。
3.2整式的加减(1)+合并同类项、去括号课件2024-2025学年北师大版数学七年级上册
D.−2(3 − 1) = −6 + 2
和娜姐一起学数学—2.2整式的加减(1)——合并同类项、去括号
练习11、 已知
+ = 2, = −3,则多项式( + ) − [( − 2) − ] − (−)的
值是
.
( + ) − [( − 2) − ] − (−)
(4)30 − = 5 6 −
错误
和娜姐一起学数学—2.2整式的加减(1)——合并同类项、去括号
练习8、下列去括号错误的个数为
(
C
)
① + ( + ) = + ; + +
② − ( + − ) = − − + ;
③ + 2( − ) = + 2 − + 2 − 2
(1)−2 2 + 3 2
解: − 2 2 + 3 2
(2) − − 2 − 4
解: − − 2 − 4
= −2 + 3 2
= −1 − 2 − 4
= 2
= −7
和娜姐一起学数学—2.2整式的加减(1)——合并同类项、去括号
= −4 3 + −2 + 2 2 − 6
练习3、 若多项式−4
3
− 2 2 + 2 2 − 6合并同类项后是一个三次
−2 + 2 = 0
二项式,则满足的条件是 ( C )
A. = −1
B. ≠ −1
C. = 1
D. ≠ 1
和娜姐一起学数学—2.2整式的加减(1)——合并同类项、去括号
练习4、若−4
《整式的加减》教案1
2.2 整式的加减(一)教学目标1.知识与技能(1) 了解同类项、合并同类项的概念,掌握合并同类项法则,能正确合并同类项.(2)能先合并同类项化简后求值。
2.过程与方法经历类比有理数的运算律,探究合并同类项法则,培养学生观察、探索、分类、归纳等能力.3.情感态度与价值观掌握规范解题步骤,养成良好的学习习惯。
重、难点与关键1.重点:掌握合并同类项法则,熟练地合并同类项.2.难点:多字母同类项的合并.3.关键:正确理解同类项概念和合并同类项法则.教具准备投影仪.教学过程一、创设问题情境,引入新课1.运用有理数的运算律计算:100×2+252×2= 100×(-2)+252×(-2)=我们来看本章引言中的问题(2).青藏铁路线上,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,在西宁到拉萨路段,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍,如果通过冻土地段需要t小时,则这段铁路的全长是多少?(单位:千米)解:这段铁路的全长是:100t+120×2.1t 即 100t+252t2. 类比数的运算,如何化简100t+252t,并说明你的道理。
思路点拨:教师引导,启发学生类比数的运算,逆用乘法分配律。
对比:100×2+252×2 100t+252t=(100+252) ×2 =(100+252)t=704 =352t这就是我们这节课要学习的内容:2.2.1整式的加减二、探究新知事实上,100t+252t与100×2+252×2和100×(-2)+252×(-2)有相同的结构,都是两个数分别与同一个数相乘的和,这里t表示同一个因数,因此根据分配律也应该有:100t+252t=(100+252)t=352t.1.填空(1)100t-252t=( )t (2)3x2+2x2=( )x2 (3)3ab2-4ab2=( )ab2小组讨论:上述运算有什么共同特点,你能从中得出什么规律?(鼓励学生用自己语言表述)对于上面的(1)、(2)、(3),都逆用乘法对加法的分配律100t-252t=(100-252)t=-152t3x2+2x2=(3+2)x2=5x23ab2-4ab2=(3-4)ab2=-ab2这就是说,上面的三个多项式都可以合并为一个单项式。
整式的加减(1)最新版
合并同类项
思考 问题
青藏铁路线上,在格尔木到拉萨之间有一段 很长的冻土地段。列车在冻土地段的行驶速度是 100千米/时,在非冻土地段的行驶速度可以达到 120千米/时,请根据这些数据回答下列问题:
在西宁到拉萨路段,列车通过非冻土地段所 需时间是通过冻土地段所需时间的2.1倍,如果通
过冻土地段需要t小时,能用含t的式子表示这段
铁路的全长吗?
我思,我进步1
知识的探究ຫໍສະໝຸດ (1) 运用有理数的运算律计算: 100×2+252×2=_________, 100×(-2)+252×(-2)=_________;
(2) 根据(1)中的方法完成下面的运算, (3) 并说明其中的道理: (4) 100t+252t=_________.
且相同字母的指数也相同的项叫做同类项。
几个常数项也是同类项。
火眼金睛
1、你能写出两个项是同类项的例子吗?
如-2abc与4abc; 0.8m2n与2nm2
2、下列各组是同类项的是( D ) A 2x3与3x2 B 12ax与8bx
C x4与a4 D π与-3
3、5x2y 和42ymxn是同类项,则 m=___1___, n= 2 ____________
成长的足迹
课本P66练习 1(1)(3)(5), 2,3
同类项的定义:所含_字__母__相__同___,并且_相__同__字__母__ 的_指__数__也相同的项,叫做同类项。几个常数项也是 _同__类__项__。
判断同类项:1、字母_相__同__;2、相同字母的指 数也_相__同__。与_系__数___无关,与_字__母__顺__序__无关。
4、 –xmy与45ynx3是同类项,则 m=___3___, n=__1____
浙教版七年级上册数学第4章 4.6整式的加减(1)去括号法则 基础知识、课后巩固练习
4.6整式的加减(1)——去括号法则学习指要知识要点1.去括号法则:括号前是”+”号,把括号和它前面的“+”号去掉,括号里各项都不变号;括号前是”一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号、即“变则全变,不变全不变”例如,+(a+b-c)=a+b-c,-(a+b-c)=-a-b+c2.整式加减的一般步骤:(1)如果有括号,那么先去括号,有多重括号时,一般从里到外,依次进行;也可以由外向里逐层去括号,但这时要把内层括号当成一项处理(2)如果有同类项,要合并同类项重要提示1.在整式的加减运算中,如果遇到括号就根据去括号法则,先去括号,再合并同类项2.若括号前有数字因数时,应利用分配律先将该数与括号内的各项分别相乘,再去括号,以免发生符号错误.3.整式加减的结果仍是整式,一般按某个字母的降幂(或升幂)排列.结果中不能含有同类项,即要合并到不能再合并为止4.如果把十(a+bーc)看做1・(a+b-c),把一(a+b-c)看做(一1)・(a+b-c),那么去括号的实质就是分配律的运用.5.去括号时,首先看括号前面的符号,根据不同的符号选择合适的法则,且去括号时,要将括号和它前面的符号一同去掉6.当减数是多项式时,减数要添上括号.课后巩固之夯实基础一、选择题1.(2018·温州期末)化简-(m -n)的结果是( )A .m -nB .m +nC .-m -nD .-m +n2.下列运算正确的是( )A .-3(x -1)=-3x -1B .-3(x -1)=-3x +1C .-3(x -1)=-3x -3D .-3(x -1)=-3x +33.(2018·杭州下城区期末)下列去括号正确的是() A .-2(12x -y)=-x -2yB .-0.5(1-2x)=-0.5+xC .-(2x 2-x +1)=-2x 2-x +1D .3(2x -3y)=6x -3y4.计算-3(x -2y)+4(x -2y)的结果是( )A .x -2yB .x +2yC .-x -2yD .-x +2y5.当a =5,b =3时,a -[b -2a -(a -b)]的值为( )A .10B .14C .-10D .46.如果长方形的周长为4,一边长为m -n ,那么另一边长为( )A .3m +nB .2m +2nC .2-m +nD .m +3n二、填空题7.(2017·龙岩上杭县期末)在括号内填上恰当的项使等式成立:x 2-y 2+8y -4=x 2-(__________).8.(2018·杭州萧山区期末)已知x =2,则代数式-12x -(x -3)的值为________. 9.实数a ,b 在数轴上对应的点的位置如图K -26-1所示,则|a|-||a -b =________.图K -26-110.一根钢筋长a 米,第一次用去了全长的13,第二次用去了余下的12,则剩余部分的长度为__________米.(结果要化简)三、解答题11.化简:(1)(-x +2x 2+5)+(4x 2-3-6x);(2)(3a2-ab+7)-(-4a2+2ab+7).12.先化简,再求值:(1)(ab-3b2+2a2-2)-(2a2+2b2-3ab+1),其中a=-12,b=2;(2)-3(a2-2b2)+(-2b2-a2)-12(3a2+b2),其中a=-2,b=4.13.对于实数a,b,定义一种新运算“※”:a※b=3a+2b,化简:(x+y)※(x-y).14.某轮船顺水航行了4小时,逆水航行了2小时.已知船在静水中的速度为每小时a 千米,水流速度为每小时b千米,求轮船共航行了多少千米.15.(2018·河北嘉淇)准备完成题目:化简(x2+6x+8)-(6x+5x2+2).K发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)-(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中的“”是几.16.已知多项式(2x2+ax-y+6)-(2bx2-3x+5y-1).(1)若多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3(a2-ab+b2)-(3a2+ab+b2),再求它的值.课后巩固之能力提升17.拓展延伸为节约用水,某市做出了对用水大户限制用水的规定:每一户月用水量不超过规定标准m吨时,按每吨2元的价格收费;若超过了标准用水量,则超出部分每吨加收0.5元的附加费用.(1)若规定标准用水量为17吨,某用户4月份用水15吨,5月份用水20吨,分别求该用户这两个月的水费;(2)若某用户在6月份用水x吨,则该用户应交水费多少元?18.将式子3x+(2x-x)=3x+2x-x,3x-(2x-x)=3x-2x+x分别反过来,你得到两个怎样的等式?(1)根据你得到的等式,你能总结出添括号的法则吗?(2)根据上面你总结出的添括号法则,不改变多项式x3-3x2+3x-1的值,把它的后两项放在:①前面带有“+”号的括号里;②前面带有“-”号的括号里.详解详析1.[答案] D2.[解析] D 去括号时,要按照去括号法则,将括号前的-3与括号内每一项分别相乘,尤其需要注意,-3与-1相乘时,应该是+3而不是-3.3.[答案] B4.[答案] A5.[答案] B6.[答案] C7.[答案] y 2-8y +48.[答案] 09.[答案] -b10.[答案] 13a 11.解:(1)(-x +2x 2+5)+(4x 2-3-6x)=-x +2x 2+5+4x 2-3-6x=6x 2-7x +2.(2)(3a 2-ab +7)-(-4a 2+2ab +7)=3a 2-ab +7+4a 2-2ab -7=7a 2-3ab.12.解:(1)原式=ab -3b 2+2a 2-2-2a 2-2b 2+3ab -1=(-3-2)b 2+(2-2)a 2+(1+3)ab -(2+1)=-5b 2+4ab -3.当a =-12,b =2时,原式=-5×22+4×⎝⎛⎭⎫-12×2-3=-27. (2)-3(a 2-2b 2)+(-2b 2-a 2)-12(3a 2+b 2)=-3a 2+6b 2-2b 2-a 2-32a 2-12b 2 =(-3-1-32)a 2+(6-2-12)b 2 =-112a 2+72b 2. 当a =-2,b =4时,原式=-112×(-2)2+72×42=-22+56=34. 13.解:(x +y)※(x -y)=3(x +y)+2(x -y)=3x +3y +2x -2y =5x +y.14.[解析] 船顺水航行时的速度=船在静水中的速度+水流速度,船逆水航行时的速度=船在静水中的速度-水流速度.解:4(a +b)+2(a -b)=4a +4b +2a -2b=(6a +2b)千米.答:轮船共航行了(6a +2b)千米.15.解:(1)(3x 2+6x +8)-(6x +5x 2+2)=3x 2+6x +8-6x -5x 2-2=-2x 2+6. (2)( x 2+6x +8)-(6x +5x 2+2)=( -5)x 2+6.∵标准答案的结果是常数, ∴ =5.16.解:(1)原式=2x 2+ax -y +6-2bx 2+3x -5y +1=(2-2b)x 2+(a +3)x -6y +7, 由多项式的值与x 的取值无关,得到a +3=0,2-2b =0,解得a =-3,b =1.(2)原式=3a 2-3ab +3b 2-3a 2-ab -b 2=-4ab +2b 2.当a=-3,b=1时,原式=-4×(-3)×1+2×12=12+2=14.17.解:(1)4月份应交水费2×15=30(元);5月份应交水费2×17+(2+0.5)×(20-17)=41.5(元).(2)当0≤x≤m时,应交水费2m元;当x>m时,应交水费2m+(2+0.5)(x-m)=(2.5x-0.5m)元.18.解:3x+2x-x=3x+(2x-x),3x-2x+x=3x-(2x-x).(1)能.所添括号前是“+”号,括到括号里的各项都不改变符号;所添括号前是“-”号,括到括号里的各项都改变符号.(2)①x3-3x2+3x-1=x3-3x2+(3x-1);②x3-3x2+3x-1=x3-3x2-(-3x+1).。
整式的加减1学案
第23课时《整式的加减》1导学案知识目标:1、整式的概念;2、整式的加减(整式的代数和)。
能力目标:整式的加减转化成几个单项式进行合并同类项知识点一:整式的概念整式的概念:单项式与多项式统称整式。
练习:根据整式的概念,指出下列不属于整式的是()A、xB、πC、x1D、π+ x知识点二:整式的加减(整式的代数和)1、由整式的概念可知:整式包括、,所以整式的加减就是指、它们相互之间的加减运算。
2、由于加减运算都可以看成代数和的形式,所以整式的加减也就是求整式的代数和。
整式加减题型一:合并下列各式的同类项:1、2 251xy xy-2、yx23-22xy-yx22+23xy+xy2-解:原式=yx22yx23-23xy+22xy-xy2-=22xyyx+-xy2-3、222244234baabba--++4、22amam-+-学习方法指导整数与分数构成有理数,请猜想:整式与构成代数式。
左边题目中不属于整式的式子就是你所猜到的。
第1题是单项式与单项式的代数和,可一步得出结果。
注意2xy的系数为第2题中有4个单项式,但它们并非都是同类项,所以可用不同符号先标记出同类项,第一步:让互为同类项的单项式放在一起,一般要求系数为正的单项式放前面,系数为负的单项式放后面。
没有同类项的放在最后。
由划单横线一组同类项合并而得到由划双横线一组同类项合并而得到第三步:仔细检查,第二步之后结果,是否还有同类项,一般到此为止。
第二步:分别合并每一组同类项,没有同类项的照写。
整式加减题型二:化简下列各式 例:a 2()3b -2-a 3( )b -分析:如上面所画的线,发现a 2与a 3是同类项,b 3-与b -是同类项,但它们被括号所限置,不能自由移动,因此,需要先 。
复习去括号知识:1、括号前面是“+”或“-”时,根据如下方法去括号。
“+”是对括号内每一项的肯定, “-”是对括号内每一项的否定=+-+)3(y x ,=+--)3(y x ,2、括号前面是正数或负数时,根据分配律去括号。
整式的加减1(新编教材)
学习目标: 1、理解同类项概念并会合并同类项 2、Байду номын сангаас正确的进行整式的加减运算
复习:
1、乘法分配律(用字母表示)
a(b+c)=ab+ac
先看看下面的题目:
每本练习本x元,小明买5本,小刚买2本,两人一 共花了多少钱?小明比小刚多花了多少钱?
小明用了__5_x___元 小刚用了__2_x___元
小明与小刚一共用了_____5_x_+__2_x___元 小明比小刚多花了_______5_x_-__2_x____元
5x+2x=(5+2)x=7x 5x-2x=(5-2)x=3x
可以知道小明与小刚买练习本一共用了7x元, 小明比小刚多花了3x元.
优游 优游 优游 优游 合乐 合乐 博猫 博猫 优游 优游 2号站 2号站 优游 优游 信游 信游 合乐 合乐 优游 优游 优游 博猫 博猫 合乐 合乐 优游,成立于2007年,优游从始至终坚守信誉,时刻以客户为上帝的经营理念,以客户满意足为唯一服务宗旨,现已成为中国公认最活跃的场所
优游 ;
长子景早卒 元会特为设床 因统诸军奉迎大驾于长安 豫诛贾谧 贼将匡术以台城来降 中夜闻荒鸡鸣 亮排闼入 至于伯也 为众率先 将斩之 琨在路上表曰 元显弃船退屯国子学堂 乃与荣及陆玩等各解船弃车牛 刘琨承制 皆南金也 进位侍中 与系争军事 可一解禁止 天不违愿 阳翟令 故汉祖指 麾而六合响应 宗庙无主 虽有不请之嫌 葬襄阳之岘山 以明穆皇后之兄受顾命之重 国耻未雪 又问曰 又孙仲谋 以务勿尘为大单于 吾州将荷国重恩 必协济康哉 太兴中 城内莫知 遣就谷冀州 送马八十五匹 班剑二十人 峤先有齿疾 转尚书 故吏刊石立碑画像于武昌西 领北军中候 泓乘胜至于
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自学检测
1.下列各组的式子中,不是同类项的是( )
A.2 a2与 a 2 B. x3y与y3x C.3mn与3nm D.-1与 1
3
2
2.指出下列多项式中的同类项:
1 x3 2x2 y 2 x3 3x2 y 5xy2 7 5xy2
3
3Leabharlann 学指导自学课本P64页例1, 5分钟 后能够做出与例1相类似的题.
2.2整式的加减(一)
学习目标
1.理解同类项的概念.
2.掌握合并同类项的法则, 能灵活运用法则对多项式进 行化简.
自学指导
阅读教科书第62-63页,思考下列问题: 1、认真完成探究1的填空,并说明其中的道理。 2、仿照探究1的运算完成探究2的填空。 3、理解并熟记同类项的概念,请列举一组同类项。 4、怎样合并同类项?
小结
谈谈本节课的收获 ?
作业
教科书P69页1.