新人教版九年级数学上册 二次函数 的图像和性质

合集下载

新人教版九年级上册数学22.1.4《二次函数的图象和性质(1)》教案

新人教版九年级上册数学22.1.4《二次函数的图象和性质(1)》教案

22.1.4二次函数y = ax2+ bx+ c的图象与性质第一课时一、教学目标(一)学习目标1. 会用描点法画二次函数y=ax2+bx+c的图象.2. 会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性及最大或最小值.3•经历探索二次函数y = ax2+ bx + c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y= ax2+ bx+ c的性质.4.能运用二次函数的图象和性质解决简单的实际问题,深刻理解数学建模思想以及数形结合的思想.(二)学习重点用描点法画出二次函数y= ax2+ bx+ c的图象和通过配方确定抛物线的对称轴、顶点坐标及其性质。

(三)学习难点理解二次函数y = ax2+ bx + c(a^0)的图象和性质,会利用二次函数的图象性质解决简单的实际问题.二、教学设计(一)课前设计11•预习任务(1) 二次函数y=a(x-h)1 2+k 的顶点坐标是(hk),对称轴 是x=h ,当a>0时,开口 向上,此时二次函数有最小值,当 x >h 时,y 随X 的增大而增大,当x <h 时, y 随x 的增大而减小;当a<0时,开口向下,此时二次函数有最大值,当 x <h时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小.(2) 用配方法将y=ax 2+bx+c 化成y=a(x-h)2+k 的形式为 2值,当a>0时,函数y 有最小值,当a<0时,函数y 有最大值. 2.预习自测(1)抛物线y = 2x 2 — 2x -1的开口 __________ ,对称轴是 _________ 【知识点】二次函数的性质.【解题过程】解:抛物线y = 2x 2 — 2x — 1,v 2>0,二开口向上,对称轴为:b -21 — — — ・2a 2 22【思路点拨】掌握二次函数的性质,正确记忆抛物线对称轴公式是解题关键. 【答案】向上,x =丄2(2)抛物线y = x 2 — 2x + 2的顶点坐标是 _________. 【知识点】二次函数的性质.【解题过程】解:将y = x 2— 2x + 2配方得y=(x-1)2,1,顶点坐标是(1,1) 【思路点拨】将抛物线的一般式,用配方法转化为顶点式,根据顶点式的坐标特” 2 2b j 4ac —b 2 y = a lxV 2a 丿 4a4ac * .则二次函数y=ax2+bx+c的图象的顶点坐标是(-—, 2a4a 2a则h=-A,k=4ac_b ),对称轴是x=-—,当x=-A时,二次函数y=ax2+bx+c有最大(最小) 4a 2a2a点,直接写出顶点坐标.【答案】(1,1)(3)________________________________ 二次函数y = -x2+ 2x+ 1的最是.2【知识点】二次函数的最值.【解题过程】解:将y =丄x2+ 2x+ 1配方得y J(x,2)2_1 , v ->0,.••其最2 2 2小值是-1.【思路点拨】把二次函数的解析式整理成顶点式形式,然后确定出最大值.【答案】小,-1(4)二次函数y=ax2+bx+c的图象如图所示,下列结论:①4ac v b2;②a+c>b;③2a+b> 0.其中正确的有()A.①② B .①③ C.②③ D .①②③【知识点】二次函数图象与系数的关系.【思路点拨】根据抛物线与x轴有两个交点即可判断①正确,根据x=- 1,y v0, 即可判断②错误,根据对称轴x> 1,即可判断③正确,由此可以作出判断.【解题过程】解:v抛物线与x轴有两个交点,•••△ > 0,b2- 4ac> 0,••• 4ac v b2,故①正确,v x= - 1 时,y v 0,••• a- b+c v0,• a+c v b,故②错误,•••对称轴x> 1, a v 0,• - b v 2a,• 2a+b> 0,故③正确.故选B.【答案】B(二) 课堂设计i. 知识回顾(1)二次函数y = a(x -h)2• k(a严0)的图象性质:(h)左加右减,(k)上加下减2•问题探究探究一从旧知识过渡到新知识•活动①复习配方2 2 2 2填空.(1)x +4x+9=(x+ ) + .(2)X 一5x + 8 = (x- ) +生答:(1) 2, 5; (2)-,-2 4总结规律:当二次项的系数为1时,常数项须配一次项系数一半的平方.【设计意图】复习配方,为新课作准备•活动②以旧引新1. 二次函数y = a(x—h)2+ k的图象,可以由函数y= ax2的图象先向 ________ 平移 ________单位,再向___________ 移__________ 单位得到.生答:左或右,|h,上或下,|k2. 二次函数y = a(x—h)2+ k的图象的开口方向 _______ ,对称轴是,顶点坐标是 ________ .生答:a>0,向上;a<0,向下x=h (h,k)3. 二次函数y= 2x2—6x + 21,你能很容易地说出它的图象的开口方向、对称轴和顶点坐标,并画出图象吗?1 2点拨:先将y= 2x —6x+ 21配方,再得出它的图象的开口方向、对称轴和顶点坐标,并画出图象,由此引出新课【设计意图】整合旧知,引出新课探究二用配方法求抛物线y=ax2+bx+c的顶点坐标、对称轴★ ▲ •活动①合作探究1 2例1:画函数y=?x -6x 21的图象,并指出它的开口方向、对称轴和顶点坐标.2分析:首先要用配方法将函数写成y=a(x-h) k的形式;然后,确定函数图象的开口方向、对称轴与顶点坐标;接下来,利用函数的对称性列表、描点、连线.1 2解:y=2x —6x+ 21=1(x2—12x+ 42)=1(x2—12x+ 36—36+ 42)=1(x2—12x+ 36+ 6)=1(x2—12x+ 36) + 3=*(x —6)2+ 3.画图略,所以它的开口向上,对称轴是x=6,顶点坐标是(6,3)归纳:一般式化为顶点式的思路:(1)二次项系数化为1; (2)加、减一次项系数一半的平方;(3)写成平方的形式.【设计意图】引导学生利用配方法,求抛物线的对称轴和顶点坐标,并由此作抛物线。

《二次函数的图像和性质》PPT课件 人教版九年级数学

《二次函数的图像和性质》PPT课件 人教版九年级数学
2
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标

人教版九年级上册数学 讲义 二次函数的图像与性质

人教版九年级上册数学 讲义 二次函数的图像与性质
A. B.
C. D.
【例2】已知二次函数y=ax2+bx+1的大致图象如图所示,则函数y=ax+b的图
象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
【例3】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③a-b+c<0;④a+c>0,其中正确结论的个数为().
3、抛物线 ( )的顶点坐标公式:( , );对称轴是直线: ;当 时,函数有最值: 。
4、二次函数图像的平移:只要抛物线解析式中的a相同,它们之间可以相互平移得到,平移规律:左加右减,上加下减。
二、典型例题:
考点一:二次函数的定义
【例1】下列函数中,关于 的二次函数是( )。
A、 B、 C、 D、
A.y1<y2<y3B.y2<y1<y3
C.y3<y1<y2D.y1<y3<y2
【例2】已知二次函数 ,若自变量 分别取 , , ,且 ,则对应的函数值 的大小关系正确的是()
A. B. C. D.
三、强化训练:
【夯实基ห้องสมุดไป่ตู้】
1、二次函数 的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是()
【例2】已知函数 ( 为常数)。
(1) 为何值时,这个函数为二次函数?
(2) 为何值时,这个函数为一次函数?
考点二:二次函数的顶点、对称轴、最值
【例1】写出下列抛物线的对称轴方程、顶点坐标及最大或最小值;
(1) (2) (3)
考点三:抛物线的平移(上加下减,左加右减)
【例1】把抛物线 向左平移2个单位,再向下平移2个单位,则所得的抛物线的表达式是;
A、4个B、3个C、2个D、1个
考点五:直线与抛物线的位置关系

人教版九年级数学上册22.1.3二次函数 的图像和性质(第一课时)

人教版九年级数学上册22.1.3二次函数 的图像和性质(第一课时)
4.若y=x2+(k-2)的顶点是原点,则k____
>2
x轴上方,则k____;若顶点位于x轴下方
,则k
<2
.
课堂检测
基础巩固题
5.不画函数y=-x2和y=-x2+1的图象回答下面的问题:
(1)抛物线y=-x2+1经过怎样的平移才能得到抛物线y=-x2.
向下平移1个单位.
>0
(2)函数y=-x2+1,当x
对称轴右侧y随x增大而减小
__________________________
探究新知
二次函数y=ax2+k(a≠0)的性质
y=ax2+k
a>0
a<0
开口方向
向上
向下
对称轴
y轴(x=0)
y轴(x=0)
顶点坐标
(0,k)
(0,k)
最值
增减性
当x=0时,y最小值=k 当x=0时,y最大值=k
当x<0时,y随x的
是 y轴 ,在 对称轴左 侧,y随着x的增大而增大;
在 对称轴右侧,y随着x的增大而减小.
探究新知
知识点 4
二次函数y=ax2+k的图象及平移
从数的角度探究
解析式
点的坐标
y=2x2-1
-1
(x, 2x2-1 )
+1
y=2x2
(x, 2x2 )
y=2x2+1
(x, 2x2+1)
函数对应值表
x

y=2x2-1
(0,-1)
y=x
2
探究新知
素养考点 1
二次函数y = ax2 +k的图象的画法

人教版数学九年级上册《二次函数的图像和性质》课件PPT

人教版数学九年级上册《二次函数的图像和性质》课件PPT

2
2
2
2
b
1
1,
4ac b2

4



1 2



5 2


12

4
2

2a
y
21
1 2
x


1
2
4a
2

4



1 2

2
2
∴顶点为(1,-2),对称轴为直线 x=1。
练习2 用公式法把y 2x2 8x 6 化成

b 2a
,
4ac 4a
b2
;
(2)对称轴是直线 x b
2a
(3)开口方向:当 a>0时,抛物线开
口向上;当 a<0时,抛物线开口向下。
(4)最值:
如果a>0,当 x
b 2a
时,函数有最小值,
y最小=
4ac 4a
b
2
,
如果a<0,当
x


b 2a
时,函数有最大值,
y最大=
那么一般地,函数y ax2 的图象怎样平 移就得到 y ax2 bx c 的图象呢?
1.用配方法把 y ax2 bx c 化为
y a x h2 k 的形式。
例1
用配方法把 y 1 x2 3x 5
2
2
化为
y a x h2 k 的形式,求出顶点坐标和对称轴。
分析:我们可以用顶点坐标公式求出图 象的顶点,过顶点作平行于y轴的直线就 是图象的对称轴.在对称轴的一侧再找 两个点,则根据对称性很容易找出另两 个点,这四个点连同顶点共五个点,过 这五个点画出图像.

人教版九年级数学上册《二次函数y=ax2的图象与性质》二次函数PPT课件

人教版九年级数学上册《二次函数y=ax2的图象与性质》二次函数PPT课件

第二十二章 二次函数
∴正方形的边长为
cm,
∴S与C之间的关系式为S =

(2)作图如右:
(3)当S = 1cm2时,C2 =16,即C =4cm.
(4)若S ≥ 4cm2,即 因此C ≥ 8cm.
≥4,解得C,≥或8c≤-8(舍去).
巩固练习
第二十二章 二次函数
变式题2 已知二次函数y=2x2.
(1)若点(-2,y1)与(3,y2)在此二次函数的图象上, 则
巩固练习
第二十二章 二次函数
变式题1
已知 0时,y随ห้องสมุดไป่ตู้增大而增大2,则k=
是二次函数,且当x> .
分析
是二次函数,即二次项的系数不
为0,x的指数等于2.又因当x>0时,y随x增大而增大,即
说明二次项的系数大于0. 因此,
,解得k=2 .
巩固练习
对应训练
第二十二章 二次函数
《超越训练》 P33:例1+达标训练
问题1 画出二次函数y=x2的图象.
1. 列表:在y = x2 中自变量x可以是任意实数,列表 表示几组对应值:
x … -3 -2 -1 0 1 2 3 …
y=x2 … 9
41
0
1
4
9…
知识探究
第二十二章 二次函数
2.描点:根据表中x,y的数值在坐标平面中描点(x,y) 3.连线:如图,再用平滑曲线顺次连接各点,就得 到y = x2 的图象.
系是什么?
y y=ax2
二次项系数互为 相反数,开口相反 ,大小相同,它们 关于x轴对称.
O
x
y=-ax2
知识探究
第二十二章 二次函数
知识点 3 二次函数y=ax2的性质

人教版九年级初中数学上册第二十二章二次函数-二次函数的图像和性质PPT课件全文

人教版九年级初中数学上册第二十二章二次函数-二次函数的图像和性质PPT课件全文
你还记得如何画出一次函数的图像吗?
描点法画函数图像的一般步骤如下:
描点法
第一步,列表—表中给出一些自变量的值及其对应的函数值;
第二步,描点—在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,
描出表格中数值对应的各点;
第三步,连线—按照横坐标由小到大顺序,把所描出的各点用平滑的曲线连接起来。
抛物线y=ax2的图象性质:
(1)抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物线的最高点.
(3)|a|越大,抛物线的开口越小.
课堂练习
1.填表:
抛物线
y = ax2(a>0)
y = ax2(a<0)
顶点坐标
你能通过这种方法画出二次函数的图像吗?
新知探究
二次函数=^2 的图像
通过描点法画出 = 的图像?
【列表】
在 = 中,自变量可以取任意实数,列表取几组对应值:

-2
-1
0
1
2


4
1
0
1
2

新知探究
二次函数=^2 的图像
y
通过描点法画出 = 的图像?
9
【描点】
事实上,二次函数的图象都是抛物线,它们的开口或者
3
向上或者向下.一般地,二次函数 y =ax2+bx +c(a≠0)
的图象叫做抛物线y=ax2+bx+c.
-3
O
3
x
新知探究
二次函数=^2 的性质
观察 = 2 的图像,它有对称轴在哪里?图像与y轴的交点在哪里?

22.1.3 二次函数的y=a(x-h)2+k的图像和性质2024-2025学年人教版数学九年级上册

22.1.3 二次函数的y=a(x-h)2+k的图像和性质2024-2025学年人教版数学九年级上册
− 3
的解析式为 = −. − ,则=____
(3) 若抛物线 = + 的最小值为 4,且经过点(1,5),
则该抛物线的解析式是_________,将此抛物线向下平移
3
= +
= +
个单位,得到的新的抛物线的解析式是__________.
课堂小结
第二十二章 二次函数
22.1 二次函数的图象和性质
第3课时 二次函数的

= ( − ) +的图像和性质
第1节 二次函数 = + 的图像和性质
第2节 二次函数 = ( − ) 的图象和性质
第3节 二次函数 = ( − ) +的图象和性质
九年级上册•人教版
学习目标
中的三条抛物线分别表示桥上的三条钢梁,轴表示桥面,轴经过中
间抛物线的最高点,左右两条抛物线关于轴对称.经过测算,中间抛
物线的函数解析式为 =



+ .
你能计算出中间抛物线的最高点离轴的高度吗?
O
猎豹图书
x
获取新知
例1
在同一直角坐标系中,通过画出二次函数 = + ,
1 x2
y

;把抛物线
2 向右 平移 1 个单位就
得到抛物线y - 12(x-1)
2
(
− )
平移
的图象还可以由抛物线
2
个单位得到.
y
O
-4
-2
2
y - 1(x-1)
2
2
4 x
-2
2
y - 1(x+1)
2
-4
-6
-8

人教九年级数学上册《二次函数图像与性质》课件(共14张PPT)

人教九年级数学上册《二次函数图像与性质》课件(共14张PPT)

(3) 二次函数的图象是什么 形 状呢?
结合图象讨论
性质是数形结合
的研究函数的重要 方法.我们得从最 简单的二次函数开 始逐步深入地讨论 一般二次函数的图 象和性质.
画最简单的二次函数 y = x2 的图象
1. 列表:在y = x2 中自变量x可以是任意实数,列表表示几组对应值:
x ··· -3 -2 -1 0
2 0.5
0 0.5 2 4.5
···
8
x
·· -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ···
·
y 2x2 ·· 8 4.5 2 0.5 0 0.5 2 4.5 8 ···
·
y x2
y 2x2
8
6
4
y 1 x2
2
2
-4 -2
24
函数 y 1 x2 , y 2x2 的图象与函数 y=x2 的图象相比 ,有什么共同2 点和不同点?
相同点:开口:向上, 顶点:原点(0,0)——最低点 对称轴: y 轴
增减性:y 轴左侧,y随x增大而减小
y 轴右侧,y随x增大而增大
y x2
8 6
y 2x2
不同点:a 值越大,抛物线的开 口越小.
4 2 -4 -2
y 1 x2 2
24
探究
画出函数 yx2,y1x2,y2x2 的图象,并考虑这些抛物 2
1
2
3 ···
y = x2 ··· 9 4 1 0 1 4 9 ···
2. 根据表中x,y的数值在坐标平面中描点(x,y)
3.连线 如图,再用平滑曲线顺次
9
连接各点,就得到y = x2 的图象

6
y = x2

人教版数学九年级上册22.1《二次函数的图象和性质(1)》教学设计

人教版数学九年级上册22.1《二次函数的图象和性质(1)》教学设计

人教版数学九年级上册22.1《二次函数的图象和性质(1)》教学设计一. 教材分析人教版数学九年级上册第22.1节《二次函数的图象和性质(1)》是本册教材的重要内容,主要介绍二次函数的一般形式、图象特点以及一些基本性质。

通过本节内容的学习,学生可以掌握二次函数的基本知识,为后续学习二次函数的应用打下基础。

二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数的性质,具备一定的函数知识基础。

但二次函数相对复杂,学生对其理解和掌握可能存在一定的困难。

因此,在教学过程中,需要注重引导学生通过观察、思考、探索等方式,自主发现和总结二次函数的性质。

三. 教学目标1.理解二次函数的一般形式和图象特点。

2.掌握二次函数的顶点坐标、开口方向和判别式的概念。

3.能够运用二次函数的性质解决一些实际问题。

四. 教学重难点1.二次函数的一般形式和图象特点。

2.二次函数的顶点坐标、开口方向和判别式的理解与应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、探索等方式自主学习。

2.利用多媒体课件辅助教学,直观展示二次函数的图象和性质。

3.注重数学语言的训练,引导学生规范表达。

六. 教学准备1.多媒体课件。

2.相关练习题。

七. 教学过程1.导入(5分钟)通过展示一些实际问题,引导学生思考如何用数学模型来描述这些问题。

例如,抛物线运动、物体抛掷等。

从而引出二次函数的概念。

2.呈现(10分钟)利用多媒体课件,呈现二次函数的一般形式和图象特点。

引导学生观察并总结二次函数的性质。

3.操练(10分钟)让学生通过计算器或者绘图软件,自己动手绘制一些二次函数的图象,并观察其性质。

同时,教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些练习题,让学生运用所学的二次函数知识解决问题。

教师及时批改并给予反馈,帮助学生巩固所学知识。

5.拓展(10分钟)引导学生思考二次函数在实际生活中的应用,例如抛物线射门、跳水运动等。

九年级数学上册22.1.3 二次函数的图像和性质

九年级数学上册22.1.3 二次函数的图像和性质
则y1,y2,y3的大小关系是(B )
A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y1 (2).已知A(-1,y1),B(-2,y2),C(3,y3)三点都在二次函数y=-2(x+2)2的图象
上,则y1,y2,y3的大小关系是y2>y1>y.3
5. 抛物线y=a(x+1)2经过点(1,-12). 求:(1)a的值; (2)当x在什么范围内取值时,y随x的增大而增大? 解: (1)∵抛物线y=a(x+1)2经过点(1,-12)
A.向上平移1个单位; C.向左平移1个单位;
B.向下平移1个单位; D.向右平移1个单位.
2.抛物线y= 2x2 向上平移5个单位,会得到哪条抛物线. 向下平移3.4个单位呢?
3、把抛物线y= 2x2-4x+2化成y= a(x-h)2的形式,并指出抛物线的开口 方向,对称轴,顶点坐标;函数有最大值还是最小值?是多少?
O
开开口口向上
开口向下
a的绝对值越大,开口越小
对称性 关于y轴对称
顶点坐标是原点(0,0)
顶点
顶点是最低点
顶点是最高点
在在对对增称称减轴轴性左右侧侧递递减增
在对称轴左侧递增 在对称轴右侧递减
二次函数y=ax2+c的性质
y=ax2+c
a>0
a<0
图象
开口 对称性 顶点 增减性
c>0
c<0
c>0
c<0
y 1 x2 2
y 1 (x 2)2 2
观察三条抛物线的 相互关系,并分别指 出它们的开口方向, 对称轴及顶点.

人教版九年级上册数学4二次函数的图象和性质

人教版九年级上册数学4二次函数的图象和性质

22.1.4 二次函数 )0(2≠++=a c bx ax y 的图象和性质知识点:1、二次函数c bx ax y ++=2的对称轴为 ,顶点坐标为 ,它的最高(低)点在 点,当=x 时,它有最大(小)值,值为 。

2、在抛物线c bx ax y ++=2中,c 为抛物线与 交点的纵坐标。

当0>a 时,图象开口 ,有最 点,且x 时,y 随x 的增大而增大,x 时,y 随x 的增大而减小;当0<a 时,图象开口 ,有最 点,且x 时,y 随x 的增大而增大,x 时,y 随x 的增大而减小;3、抛物线c bx ax y ++=2可由抛物线2ax y =进行左(右)、上(下)平移得到。

一、选择题:1、抛物线742++-=x x y 的顶点坐标为( )A 、(-2,3)B 、(2,11)C 、(-2,7)D 、(2,-3) 2、若抛物线c x x y +-=22与y 轴交于点(0,-3),则下列说法不正确的是( )A 、抛物线开口方向向上B 、抛物线的对称轴是直线1=xC 、当1=x 时,y 的最大值为-4D 、抛物线与x 轴的交点为(-1,0),(3,0) 3、要得到二次函数222-+-=x x y 的图象,需将2x y -=的图象( )A 、向左平移2个单位,再向下平移2个单位B 、向右平移2个单位,再向上平移2个单位C 、向左平移1个单位,再向上平移1个单位D 、向右平移1个单位,再向下平移1个单位4、在平面直角坐标系中,若将抛物线3422+-=x x y 先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后,所得到的抛物线的顶点坐标为( )A 、(-2,3)B 、(-1,4)C 、(1,4)D 、(4,3)5、抛物线c bx x y ++=2的图象向右平移2个单位,再向下平移3个单位,所得图象的解析式为322--=x x y ,则b 、c 的值为( )A 、2,2==c bB 、0,2==c bC 、1,2-=-=c bD 、2,3=-=c b 6、二次函数y=ax 2+bx+1(a ≠0)的图象的顶点在第一象限,且过点(-1,0).设t=a+b+1,则t 值的变化范围是( )A .0<t <1B .0<t <2C .1<t <2D .-1<t <1 7、已知二次函数)0(2≠++=a c bx ax y 的图象如图所示对称轴为x=12-.下列结论中,正确的是( )A .0>abcB .0=+b aC .02>+c bD .b c a 24<+ 8、二次函数c bx ax y ++=2的图像如图所示,反比列函数xay =与正比列函数bx y =在同一坐标系内的大致图像是( )二、填空题:1、抛物线3842-+-=x x y 的开口方向向 ,对称轴是 ,最高点的坐标是 ,函数值得最大值是 。

人教版九年级数学上册第22章第1节二次函数的图像和性质(共46张PPT)

人教版九年级数学上册第22章第1节二次函数的图像和性质(共46张PPT)

1.y=x2 8x 7
2.y=-2x2 9x 17
3.y=mx2 kx-4k2
x
⑶a,b决定抛物线对称轴的位置: 对称轴是直线x =
b 2a
① a,b同号<=> 对称轴在y轴左侧;
② b=0 <=> 对称轴是y轴;
③ a,b异号<=> 对称轴在y轴右侧
y
左同右异
o
x
练习:
1.若抛物线yax2 bxc的图象如图,说出a,b,
c的符号。
2.若抛物线yax2 bxc经过原点和第一二三
象限,则a,b,c的取值范围分别是
3.若抛物线yax2 bxc的图象
如图所示,则一次函数y=ax+bc
的图象不经过
。y
。 y ox
o 图1
x 图2
y abc 0 ( 4 ) 与 直 线 x1 交 点 y a b c 0
y a b c 0
方法归纳
1
配方法
2
公式法
二次函数y=ax2+bx+c(a≠0)的图象和性质
1.顶点坐标与对称轴 2.位置与开口方向 3.增减性与最值 根据图形填表:
抛物线 顶点坐标
对称轴 位置
y=ax2+bx+c(a>0)
b 2a
,
4acb2 4a
直线x b
2a
由a,b和c的符号确定
y=ax2+bx+c(a<0)
小结 拓展 回味无穷 驶向胜利 的彼岸
二次函数y=ax2+bx+c(a≠0)与=ax²的关系
2.不同点:
(1)位置不同(2)顶点不同:分别是
b 2a
,
4acb2 4a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4 y 3 2 1 O 1 2 3 4
x
10:38
答:水管长应为2.25m.
C
C
牛刀小试
D
10:38
灵活变通
y 1 ( x 2) 2 3 2
y 2( x 2)2 2
想一想
10:38
3.学会运用函数知识解决问题的基本方法.
10:38
在数学的天地里,重要的并不是我们已经知道了 什么,而是我们该怎样去知道什么! ----毕达哥拉斯
再见!
10:38
目的已知条件,正确设出 解析式,再用待定系数法求出待定系数,从而求出函数解析式.
10:38
上式恒成立.
10:38
y
C
O
A
x
M
B
10:38
例4.要修建一个圆形喷水池,在池中心竖直安装一根水管. 在水管的顶端安装一个喷水头,使喷出的抛物线形水柱在 与池中心的水平距离为1m处达到最高,高度为3m,水柱落 地处离池中心3m,水管应多长? 解: 如图建立直角坐标系,点(1,3)是图中这段抛物线 的顶点.因此可设这段抛物线对应的函数是 ∵这段抛物线经过点(3,0) 解得: 因此抛物线的解析式为:
10:38
10:38
1.它们具有相同的开口方向、开口大小.
3.一定条件下互相可以转化. 左右平移
上下平移 左右平移
10:38
上下平移
二次函数
开口方向
向上 向下 向上
对称轴
顶点坐标
( 1 , -2) ( 3 , 7) ( 2 , -6 )
向下
答:向右平移3个单位,再向上0平移7个单位.
答:不能,因为它们形状虽然相同,但开口方向相反.
1.开口:具有相同的开口方向、开口大小,只是位置不同. 2.顶点、对称轴: 抛物线 顶点位置 对称轴
3.联系
上下平移
左右平移
10:38
1.
分析:(1).说出你预测的结论.
10:38
(2).画图验证你的结论.
–4 –3 –2 –1
y O
–1 –2 –3 –4 –5 –6 1 2 3 4
x
还有其他 平移方法吗?
相关文档
最新文档