材料力学第五章B
工程力学--材料力学(北京科大、东北大学版)第4版第五章习题答案
第五章习题5-1一矩形截面梁如图所示,试计算I-I截面A、B、C、D各点的正应力,并指明是拉应力还是压应力。
5-2一外伸梁如图所示,梁为16a号槽刚所支撑,试求梁的最大拉应力和最大压应力,并指明其所作用的界面和位置。
5-3一矩形截面梁如图所示,已知P=2KN,横截面的高宽比h/b=3;材料为松木,其许用应力为。
试选择横截面的尺寸。
5-4一圆轴如图所示,其外伸部分为空心管状,试做弯矩图,并求轴内的最大正应力。
5-5一矿车车轴如图所示。
已知a=0.6cm,p=5KN,材料的许用应力,试选择车轴轴径。
5-6一受均布载荷的外伸刚梁,已知q=12KN/m,材料的许用用力。
试选择此量的工字钢的号码.5-7图示的空气泵的操纵杆右端受力为8.5KN,截面I-I和II-II位矩形,其高宽比为h/b=3,材料的许用应力。
试求此二截面的尺寸。
5-8图示为以铸造用的钢水包。
试按其耳轴的正应力强度确定充满钢水所允许的总重量,已知材料的许用应力,d=200mm.5-9求以下各图形对形心轴的z的惯性矩。
5-10横梁受力如图所试。
已知P=97KN,许用应力。
校核其强度。
5-11铸铁抽承架尺寸如图所示,受力P=16KN。
材料的许用拉应力。
许用压应力。
校核截面A-A的强度,并化出其正应力分布图。
5-12铸铁T形截面如图所示。
设材料的许用应力与许用压应力之比为,试确定翼缘的合理跨度b.5-13试求题5-1中截面I-I上A、B、C、D各点处的切应力。
5-14制动装置的杠杆,在B处用直径d=30mm的销钉支承。
若杠杆的许用应力,销钉的,试求许可载荷和。
5-15有工字钢制成的外伸梁如图所示。
设材料的弯曲许用应力,许用且应力,试选择工字钢的型号。
5-16一单梁吊车由40a号工字钢制成,在梁中段的上下翼缘上各加焊一块的盖板,如图所示。
已知梁跨长=8m,=5.2m,材料的弯曲许用应力,许用且应力。
试按正应力强度条件确定梁的许可载荷,并校核梁的切应力。
材料力学性能 第五章 缺口试样的力学性能.
设想有一单位厚度的无限宽形板,对其施 加一拉应力后,与外界隔绝能源。在板内 制造一穿透裂纹,裂纹的扩张来自与系统 内部的弹性能释放。当裂纹扩张时,其表 面能增加了。
u uE us
系弹 统性 总应 能变
表 面 能
能
《材料力学性能》 第六章 断裂韧性基础
冷脆:材料因温度的降低 导致冲击韧性的急剧下降 并引起脆性破坏的现象
《材料力学性能》 第五章 缺口试样的力学性能
5.4.1 系列温度冲击试验
试验表明:随着温度降 低,冲击功由高阶能转 变为低阶能,材料由韧 性断裂过渡到脆性断裂, 断口形式也由纤维状断 口经过混合断口过渡为 结晶状断口,断裂性质 由微孔聚集型断裂过渡 为解理断裂。
定义: G u ( 2a2 ) 2a (2a) (2a) E E
G是弹性应变能的释放率或者裂纹扩展力。
《材料力学性能》 第六章 断裂韧性基础
恒位移条件: 裂纹扩展释 放出的弹性 能是三角形 OAC的面积。
恒载荷条件: 外力做的功一 半用于弹性能 的增加,一半 用于裂纹扩展 裂纹扩展释所 需的弹性能是 三角形OAC的 面积。
以 a 代替 2E a
1
1
2
2
1,
E
2
a
Griffith 公式
《材料力学性能》 第六章 断裂韧性基础
6.1.3 奥罗万(Orowan)的修正
Griffith研究的对象主要是玻璃这类很脆的材料,对于大多数金属材料, 虽然裂纹尖端由于应力集中作用,局部应力很高,但是一旦超过材料的屈 服强度,就会发生塑性变形。在裂纹尖端有一塑性区,材料的塑性越好强 度越低,产生的塑性区尺寸就越大。裂纹扩展必须首先通过塑性区,裂纹 扩展功主要耗费在塑性变形上,金属材料和陶瓷的断裂过程不同,主要区 别也在这里。由此,奥罗万修正了格里菲斯的断裂公式,得出:
材料力学习题解答[第五章]
5-1构件受力如图5-26所示。
试:(1)确定危险点的位置;(2)用单元体表示危险点的应力状态(即用纵横截面截取危险点的单元体,并画出应力)。
题5-1图解:a) 1) 危险点的位置:每点受力情况相同,均为危险点;2)用单元体表示的危险点的应力状态见下图。
b) 1) 危险点的位置:外力扭矩3T与2T作用面之间的轴段上表面各点;2)应力状态见下图。
c) 1) 危险点:A点,即杆件最左端截面上最上面或最下面的点;2)应力状态见下图。
d) 1)危险点:杆件表面上各点;2)应力状态见下图。
5-2试写出图5-27所示单元体主应力σ1、σ2和σ3的值,并指出属于哪一种应力状态(应力单位为MPa)。
10题5-2图解:a)1σ=50 MPa,2σ=3σ=0,属于单向应力状态AAT (a)(c)(d)364dFlπτ=a) b) c) d)a) b) c)b) 1σ=40 MPa, 2σ=0, 3σ=-30 MPa ,属于二向应力状态 c) 1σ=20 MPa, 2σ=10 MPa, 3σ=-30 MPa ,属于三向应力状态5-3已知一点的应力状态如图5-28所示(应力单位为MPa )。
试用解析法求指定斜截面上的正应力和切应力。
题5-3图解:a) 取水平轴为x 轴,则根据正负号规定可知: x σ=50MPa , y σ=30MPa , x τ=0, α=-30 带入式(5-3),(5-4)得 ατασσσσσα2sin 2cos 22x yx yx --++==45MPaατασστα2cos 2sin 2x yx +-== -8.66MPab) 取水平轴为x 轴,根据正负号规定:x σ= -40MPa , y σ=0 , x τ=20 MPa , α=120带入公式,得:240sin 20240cos 20402040---++-=ασ=7.32MPa x τ= 240cos 20240sin 2040+--=7.32MPac) 取水平轴为x 轴,则x σ= -10MPa , y σ=40MPa , x τ= -30MPa,α=30代入公式得:60sin )30(60cos 2401024010----++-=ασ=28.48MPa x τ= 60cos 3060sin 24010---=-36.65MPa5-4已知一点的应力状态如图5-29所示(应力状态为MPa )。
材料力学第五章 弯曲应力分析
B
D
1m
1m
1m
y2
20
120
FRA
F1=9kN FRB F2=4kN
A C
BD
1m
1m
1m
2.5 Fs
+
+
4 kN
-
6.5 2.5
M
kNm
-
+
4
解: FRA 2.5kN FRB 10.5kN
88
52
-
+
C 2.5
4 B 80
z
20
120
20
B截面
σ t max
M B y1 Iz
4 • 52 763
20
+
-
+
10
Fs
kN
10
20
30
30
25
25
M
kNm
max
M max W
[ ]
W Mmax 30 187.5cm3
[ ] 160
1)圆 W d 3 187.5
32
d 12.4cm
A d 2 121cm2
4
2)正方形
a3 W 187.5
6
3)矩形
a 10.4cm
A a2 108cm2
压,只受单向拉压. (c)同一层纤维的变形相同。 (d)不同层纤维的变形不相同。
推论:必有一层变形前后长度不变的纤维—中性层
中性轴
中性轴⊥横截面对称轴
中性层
横截面对称轴
二、变形几何关系
dx
dx
图(a)
O
O
zb
O yx b
y
图(b)
《材料力学》 第五章 弯曲内力与弯曲应力
第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。
二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。
变形特点——杆轴线由直线变为一条平面的曲线。
三、梁的概念:主要产生弯曲变形的杆。
四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。
变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。
五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。
2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。
3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。
4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。
5、按杆的横截面上的应力分——纯弯曲;横力弯曲。
六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。
(二)、梁的简化:以梁的轴线代替梁本身。
(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。
2、分布力——荷载作用的范围与整个杆的长度相比不很小时。
3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。
(四)、支座的简化:1、固定端——有三个约束反力。
2、固定铰支座——有二个约束反力。
3、可动铰支座——有一个约束反力。
(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。
超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。
§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。
求:距A 端x 处截面上内力。
解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。
材料力学课后习题答案5章
保留有限量,略去一阶和二阶微量后,得
足标 C 系指梁微段右端面的形心,对题图(b)亦同。 根据题图 b,由
∑F
略去微量 qdx 后,得
y
=0 ,FS左 + qdx − FS右 = 0
FS右 = FS左
仍据题图 b,由
(c)
∑M
C
=0 ,M 右 − M e − qdx(
dx ) − FS左 dx − M 左 = 0 2
11l 处有 FS2 = 0 , M 2 有极大值,其值为 24 121 2 M 2 max = M max = ql 1152
(d)解:1.建立剪力、弯矩方程
8
图 5-9d 坐标如图 5-9d(1)所示,由截面法易得剪力、弯矩方程分别为
q( x1 ) ⋅ x1 qx 2 =− 1 2 l ql FS2 = − + qx2 4 qx 3 M1 = − 1 3l q 2 ql l M 2 = x2 − ⋅ ( + x2 ) 2 4 6 FS1 = −
2 q0l q 0 x2 FS = − + 4 l q x3 ql M = 0 x2 − 0 2 4 3l
l (0 ≤ x2 ≤ ) 2 l (0 ≤ x2 ≤ ) 2
(e) (f)
3.画剪力、弯矩图 依据式(c)和(e)可绘剪力图,如图 5-9b(2)所示;依据式(d)和(f)可绘弯矩图,如图 5-9b(3) 所示。 (c)解:1.求支反力
=0 ,FS左 + F + qdx − FS右 = 0
保留有限量,略去微量 qdx 后,得
FS右 − FS左 = F
为了更一般地反映 F 作用处剪力的突变情况(把向下的 F 也包括在内) ,可将上式改写为
材料力学II材料力学孙训方
(f)
沿 x' 方向的线应变为
εa
3=
P ''' D?? OP
?
? xy d y cosa d y sina
?
g xy sina cosa
(g)
7
材料力学Ⅱ电子教案
第五章 应变分析 电阻应变计法基础
在ex ,ey ,gxy 同时存在时,沿x' 方向的线应变为
eα ? eα1 ? eα2 ? eα3
沿x' 方向的线应变为
εa
2=
P??D? OP
?
εy d y sina d y sina
?
εy sin 2 a
(d) (e)
6
材料力学Ⅱ电子教案
第五章 应变分析 电阻应变计法基础
3. 只有正值gxy(图d),BB??? PP???? g xy d y , OP 的伸长量为
P'''D'' ? PP???cos a ? g xy d y cosa
只需以为e横坐标,以 ? g / 2为纵坐标(向下为正),即可作出应
变圆。已知:ex?、e y?、g x?y,且ex ? e y。作出应变圆如图所示。
应变圆中,
1
1
D1(ex ,
g
2
xy )
,
D2 (e y ,?
2 g xy
),
OC
?
1 2
(e
x
? e y ),
半径为
CD1 ?
???e x ?
? 2
? ga
2
?
1 2
(e
x
?
e
y
)
sin
材料力学第五章
y
= ∫ y dA
2 A
1 1 π ⋅ d4 π ⋅ d4 I y = Iz = I ρ = ⋅ = z 2 2 32 64
1 π ⋅ (D4 − d 4 ) 对空心圆截面: 对空心圆截面: I = I = I = y z ρ 2 64
第五章 弯曲应力
§5-2 对称弯曲正应力 对称弯曲正应力
M⋅ y 二、弯曲正应力一般公式: 弯曲正应力一般公式: σ= Iz
Ip
弯曲 剪力Q 剪力
?
第五章 弯曲应力
§5-1 引言 y
梁段
M τ Q
z
σ
横截面上剪应力 横截面上正应力
横截面上内力
Q = ∫τdA
剪应力造成剪力
M = ∫σydA
正应力造成弯矩
剪应力和正应力的分布规律是什么? 剪应力和正应力的分布规律是什么?
超静定问题
第五章 弯曲应力
§5-1 引言
§5-2 对称弯曲正应力 对称弯曲正应力 §5-3 对称弯曲切应力 对称弯曲切应力 弯曲 §5-4 梁的强度条件与合理强度设计 梁的强度条件与合理强度设计 §5-5 双对称截面梁的非对称弯曲 双对称截面梁的非对称弯曲 §5-6 弯拉(压)组合 弯拉( 对称弯曲(平面弯曲): 对称弯曲(平面弯曲): 外力作用在纵向对称面内, 外力作用在纵向对称面内,梁轴线变形 后为一平面曲线,也在此纵向对称面内。 后为一平面曲线,也在此纵向对称面内。
(3)
Mz = ∫ σ ⋅ y ⋅ dA = M (5) A E 2 E 2 E (5) M z = ∫ ρ y dA = ∫ y dA = ρ I z = M
A
ρ
A
1 M = ρ EIz
第五章 弯曲应力
材料力学性能学习题与解答[教材课后答案]
度越高。
3、计算: 某低碳钢的摆锤系列冲击实验列于下表, 温度(℃) 60 40 35 25 试计算: a. 绘制冲击功-温度关系曲线; 冲击功(J) 75 75 70 60 温度(℃) 10 0 -20 -50 冲击功(J) 40 20 5 1
冲击吸收功—温度曲线 80 70 60 50
Ak
40 30 20 10 0 -6 -5 -4 -3 -2 -1 0 10 20 30 40 50 60 70 0 0 0 0 0 0 t/℃
第三章 冲击韧性和低温脆性 1、名词解释: 冲击韧度 冲击吸收功 低温脆性
解: 冲击韧度:一次冲断时,冲击功与缺口处截面积的比值。 冲击吸收功:冲击弯曲试验中,试样变形和断裂所吸收的功。 低温脆性:当试验温度低于某一温度时,材料由韧性状态转变为脆性状态。 韧脆转变温度:材料在某一温度 t 下由韧变脆,冲击功明显下降。该温度即韧脆转 变温度。 迟屈服:用高于材料屈服极限的载荷以高加载速度作用于体心立方结构材料时,瞬 间并不屈服,需在该应力下保持一段时间后才屈服的现象。
2) 简述扭转实验、弯曲实验的特点?渗碳淬火钢、陶瓷玻璃试样研究其力学 性能常用的方法是什么? 1 扭转实验的应力状态软性系数较拉伸的应力状态软性系数高。可 解: 扭转实验的特点是○
2 扭转实验 对表面强化处理工艺进行研究和对机件的热处理表面质量进行检验。 ○ 3 圆柱试样在扭转时,不产生缩颈现象,塑 时试样截面的应力分布为表面最大。○
韧脆转变温度 迟屈服
2、简答 1) 缺口冲击韧性实验能评定哪些材料的低温脆性?哪些材料不能用此方法 检验和评定?[提示:低中强度的体心立方金属、Zn 等对温度敏感的材料,高强 度钢、铝合金以及面心立方金属、陶瓷材料等不能]
解:缺口冲击韧性实验能评定中、低强度机构钢的低温脆性。面心立方金属及合金如氏 体钢和铝合金不能用此方法检验和评定。
05工程力学(静力学和材料力学)第2版课后习题答案_范钦珊主编_第5章_轴向拉伸与压缩
eBook工程力学(静力学与材料力学)习题详细解答(教师用书)(第5章)范钦珊 唐静静2006-12-18第5章轴向拉伸与压缩5-1试用截面法计算图示杆件各段的轴力,并画轴力图。
解:(a)题(b)题(c)题(d)题习题5-1图F NxF N(kN)x-3F Nx A5-2 图示之等截面直杆由钢杆ABC 与铜杆CD 在C 处粘接而成。
直杆各部分的直径均为d =36 mm ,受力如图所示。
若不考虑杆的自重,试求AC 段和AD 段杆的轴向变形量AC l Δ和AD l Δ解:()()N N 22ssππ44BCAB BC AB ACF l F l l d dE E Δ=+33321501020001001030004294720010π36.××+××=×=××mm ()3N 232c100102500429475286mm π10510π364..CDCD AD AC F l l l d E ΔΔ×××=+=+=×××5-3 长度l =1.2 m 、横截面面积为1.10×l0-3 m 2的铝制圆筒放置在固定的刚性块上;-10F N x习题5-2图刚性板固定刚性板A E mkN习题5-4解图直径d =15.0mm 的钢杆BC 悬挂在铝筒顶端的刚性板上;铝制圆筒的轴线与钢杆的轴线重合。
若在钢杆的C 端施加轴向拉力F P ,且已知钢和铝的弹性模量分别为E s =200GPa ,E a =70GPa ;轴向载荷F P =60kN ,试求钢杆C 端向下移动的距离。
解: a a P A E l F u u ABB A −=−(其中u A = 0)∴ 935.0101010.11070102.1106063333=×××××××=−B u mm钢杆C 端的位移为33P 32s s601021100935450mm π20010154...BC C B F l u u E A ×××=+=+=×××5-4 螺旋压紧装置如图所示。
材料力学(土木类)第五章 梁弯曲时的位移(2)
3 3 3
利用叠加原理求图示弯曲刚度为EI的悬臂梁 例5-6 利用叠加原理求图示弯曲刚度为 的悬臂梁 自由端B截面的挠度和转角 截面的挠度和转角。 自由端 截面的挠度和转角。
F A l C EI l F D l B
原荷载可看成为图a和 两种荷载的叠加 两种荷载的叠加, 解:原荷载可看成为图 和 b两种荷载的叠加,对应 的变形和相关量如图所示。 的变形和相关量如图所示。
Fl θ C1 = 2 EI
2
3
由位移关系可得此时B截面的挠度和转角为: 由位移关系可得此时 截面的挠度和转角为: 截面的挠度和转角为
Fl 3 Fl 2 4 Fl 3 wB1 = wC1 + θ C1 ⋅ BC = + × 2l = 向下) (向下) 3EI 2 EI 3EI Fl θ B1 = θ C1 = 2 EI
q ( x) x 2 dθ B = dθ ( x) = dx 2 EI
范围对q(x)dx的作用进行叠加,相当于 的作用进行叠加, 在x=0, l范围对 范围对 的作用进行叠加 对上两式在前述范围内积分, 对上两式在前述范围内积分,即:
wB = ∫ d wB = ∫
0
l
l
0
11q 0 l q ( x ) x (3l − x ) dx = 6 EI 120 EI
上次课回顾: 上次课回顾:
1、度量梁变形的两个基本位移量:挠度和转角 度量梁变形的两个基本位移量: 2、挠曲线近似微分方程
EIw′′ = − M ( x )
3、挠曲线近似微分方程的积分 、
EIw ' ( x ) = ∫ ( − M ( x )) dx + C1
EIw ( x ) =
材料力学(刘鸿文)第五章-弯曲应力
关于中性层的历史
1620年,荷兰物理学家、力学家比克门首先发现中性层; 英国科学家胡克于1678年也阐述了同样现象, 但没有涉及中性轴的位置问题; 法国科学家纳维于1826年,出版《材料力学》讲义, 给出结论: 中性轴 过截面形心。
观察建筑用的预制板的特征,并给出合理解释
P
为什么开孔?孔开在何处? 可以在任意位置随便开孔吗? 为什么加钢筋? 施工中如何安放?
(3)特别注意正应力沿高度呈线性分布;
(4)中性轴上正应力为零, 而在梁的上下边缘处分别是最大拉应力和最大压应力。
注意
(5)梁在中性轴的两侧分别受拉或受压; 正应力的正 负号(拉或压)可根据弯矩的正负 及梁的变形状态来 确定。
(6)熟记矩形、圆形截面对中性轴的惯性矩的计算式。
例1 T型截面铸铁梁,截面尺寸如图。
a 无论截面形状如何, 无论内力图如何
梁内最大应力 其强度条件为
σmax
σmax
M y max max
M
Iyz
max max
Iz
σ
b 但对于塑性材料,通常将梁做成矩形、圆形、工字形等
对称于中性轴的截面;
此类截面的最大拉应力与最大压应力相等。
因此:
强度条件可以表示为
σmax
M max wz
σ
3m
180
30 K
z
1、C 截面上K点正应力
y
2、C 截面上最大正应力
3、全梁上最大正应力
4、已知E=200GPa,C 截面的曲率半径ρ
180
1、截面几何性质计算
120
z
确定形心的位置 确定形心主轴的位置
确定中性轴的位置
IZ
bh 3 12
材料力学练习册5-6详细答案
第五章弯曲应力5-1 直径为d的金属丝,环绕在直径为D的轮缘上。
试求金属丝内的最大正应变与最大正应力。
已知材料的弹性模量为E。
解:5-2 图示直径为d的圆木,现需从中切取一矩形截面梁。
试问:(1) 如欲使所切矩形梁的弯曲强度最高,h和b应分别为何值;(2) 如欲使所切矩形梁的弯曲刚度最高,h和b应分别为何值;解:(1) 欲使梁的弯曲强度最高,只要抗弯截面系数取极大值,为此令(2) 欲使梁的弯曲刚度最高,只要惯性矩取极大值,为此令5-3 图示简支梁,由№18工字钢制成,在外载荷作用下,测得横截面A 底边的纵向正应变ε=3.0×10-4,试计算梁内的最大弯曲正应力。
已知钢的弹性模量E =200GPa ,a =1m 。
解:梁的剪力图及弯矩图如图所示,从弯矩图可见:5-4 No.20a 工字钢梁的支承和受力情况如图所示。
若[]MPa 160=σ,试求许可载荷F 。
5-5 图示结构中,AB 梁和CD 梁的矩形截面宽度均为b 。
如已知AB 梁高为1h ,CD 梁高为2h 。
欲使AB 梁CD 梁的最大弯曲正应力相等,则二梁的跨度1l 和2l 之间应满足什么样的关系?若材料的许用应力为[σ],此时许用载荷F 为多大?5-6 某吊钩横轴,受到载荷kN 130F =作用,尺寸如图所示。
已知mm 300=l ,mm 110h =,mm 160b =,mm 75d 0=,材料的[]MPa 100=σ,试校核该轴的强度。
5-7 矩形截面梁AB,以固定铰支座A及拉杆CD支承,C点可视为铰支,有关尺寸如图所示。
设拉杆及横梁的[]MPaσ,试求作用于梁B端的许可载荷F。
=1605-8 图示槽形截面铸铁梁,F=10kN,M e=70kN·m,许用拉应力[σt]=35MPa,许用压应力[σc]=120MPa。
试校核梁的强度。
解:先求形心坐标,将图示截面看成一大矩形减去一小矩形惯性矩弯矩图如图所示,C截面的左、右截面为危险截面。
材料力学简明教程(景荣春)课后答案第五章
材料力学简明教程(景荣春)课后答案第五章5-1 最大弯曲正应力是否一定发生在弯矩值最大的横截面上?答不一定。
最大弯曲正应力发生在弯矩与弯曲截面系数比值最大的横截面上。
5-2 矩形截面简支梁承受均布载荷q作用,若梁的长度增加一倍,则其最大正应力是原来的几倍?若截面宽度缩小一倍,高度增加一倍,则最大正应力是原来的几倍?答若梁的长度增加一倍,则其最大正应力是原来的4倍;若截面宽度缩小一倍,高度增加一倍,则最大正应力是原来的1/2倍。
5-3 由钢和木胶合而成的组合梁,处于纯弯状态,如图。
设钢木之间胶合牢固不会错动,已知弹性模量EsEw,则该梁沿高度方向正应力分布为图a,b,c,d中哪一种。
思考题5-3图答(b)5-4 受力相同的两根梁,截面分别如图,图a中的截面由两矩形截面并列而成(未粘接),图b中的截面由两矩形截面上下叠合而成(未粘接)。
从弯曲正应力角度考虑哪种截面形式更合理?思考题5-4图答(a)5-5从弯曲正应力强度考虑,对不同形状的截面,可以用比值理性和经济性。
比值请从W来衡量截面形状的合AW较大,则截面的形状就较经济合理。
图示3种截面的高度均为h,A W的角度考虑哪种截面形状更经济合理?A思考题5-5图答(c)5-6 受力相同的梁,其横截面可能有图示4种形式。
若各图中阴影部分面积相同,中空部分的面积也相同,则哪种截面形式更合理?思考题5-6图答(b)(从强度考虑,(b),(c)差不多,从工艺考虑,(b)简单些)*FSSz5-7 弯曲切应力公式τ=的右段各项数值如何确定?Izb答FS为整个横截面上剪力;Iz为整个横截面对中性轴的惯性矩;b 为所求切应力所在位置横截面的宽度;Sz为横截面上距中性轴为y(所求切应力所在位置)的横线以下面积(或以上面积)对中性轴静矩的绝对值。
5-8 非对称的薄壁截面梁承受横向力作用时,怎样保证只产生弯曲而不发生扭转变形?答使梁承受的横向力过弯曲中心,并与形心主惯性轴平行。
材料力学-弯曲应力
超静定梁
q
Hale Waihona Puke L/2L/2q
L
M
M
*
5-6 提高梁强度的主要措施
合理设计截面
合理放置截面
增大 WZ
*
5-6 提高梁强度的主要措施
合理放置截面
*
5-6 提高梁强度的主要措施
合理设计截面
*
5-6 提高梁强度的主要措施
合理设计截面
*
充分利用材料特性合理设计截面
脆性材料:
宜上下不对称截面:
T 形,不等边工字型,不等边矩形框等;
中性轴偏向受拉区的一侧
理想的中性轴的位置: 应是最大拉应力和最大压应力同时达到许用应力。
*
讨论:钢筋混凝土楼板,钢筋应该铺设在哪一边?
等强梁的概念与应用
等截面梁WZ为常数,横力弯曲时弯矩M是随截面位置变化的。只有|M|max位置的横截面上应力达到[]。 不合理!
某车间欲安装简易吊车,大梁选用工字钢。已知电葫芦自重
材料的许用应力
起重量
跨度
试选择工字钢的型号。
例题
(4)选择工字钢型号
(5)讨论
(3)根据
计算
(1)计算简图
(2)绘弯矩图
解:
36c工字钢
*
作弯矩图,寻找需要校核的截面
要同时满足
分析:
非对称截面,要寻找中性轴位置
T型截面铸铁梁,截面尺寸如图示。
强度条件
h
max
*
叠合梁问题
悬臂梁由三块木板粘接而成。跨度为1m。胶合面的许可切应力为0.34MPa,木材的〔σ〕= 10 MPa,[τ]=1MPa,求许可载荷
1.画梁的剪力图和弯矩图
材料性能学第5章
图5-9 F-R再生核模型
24
a—交变应力为零,循环开 始时,裂纹处于闭合状态。 b—随拉应力增加,裂纹前 端因解理断裂向前扩展。 c—在切应力作用下,沿 45°方向在很窄范围内产生 局部塑性变形。 d—发生塑性钝化,裂纹停 止扩展。 e—应力为零或进入压应力 周期,裂纹闭合,其尖端重 图5-10 脆性疲劳条带形成过程示意图 新变得尖锐,但裂纹已经向 前扩展了一个条带的距离。
以提高疲劳抗力。 ▶ 晶界开裂产生裂纹
晶界弱化、粗化等也会使晶界开裂。强化、净化、 细化晶界,可提高材料的疲劳抗力。 ▶ 材料内部的缺陷(如气孔、夹杂、分层、各向异 性、相变或晶粒不均匀等),都会因局部的应力集 中而引发裂纹。
19
疲劳裂纹扩展的方式和机理 ▶ 疲劳裂纹扩展,按扩展方向可分为两个阶段
常将0.05~0.10mm的裂纹定义为疲劳裂纹核, 由此来确定疲劳裂纹的萌生期。
14
疲劳裂纹一般都萌生于零件的表面,可能有三 个位置: 对纯金属或单相合金,尤其是单晶体,裂纹多 萌生在表面滑移带处,即所谓驻留滑移带的地方。 当经受较高的应力/应变幅时,裂纹萌生在晶 界处,特别是在高温下更为常见。 对一般的工业合金,裂纹多萌生在夹杂物或第 二相与基体的界面上。
在电子显微镜下可显示出疲劳条带。疲劳带是每次循环 加载时形成的。
20
图5-7 疲劳条带 (a)韧性条带×1000 (b)脆性条带×600
21
► 裂纹扩展的塑性钝化模型(L-S模型)
a—交变应力为零,循环开始时, 裂纹处于闭合状态。 b—拉应力增加,裂纹张开,且 顶端沿最大切应力方向产生滑移。 c—拉应力达到最大时,滑移区 扩大,裂纹顶端变为半圆形,并 停止扩展。裂纹顶端由于塑性变 形产生塑性钝化,应力集中减少。 d—应力反向,滑移方向改变, 裂纹表面被压拢,裂纹顶端弯折 成一对耳状切口。 e—压应力最大值时,裂纹完全 图5-8 韧性疲劳条带形成过程示意图 闭合,并恢复到开始状态。
工程力学--材料力学(北京科大、东北大学版)第4版第五章习题答案
工程力学--材料力学(北京科大、东北大学版)第4版第五章习题答案-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII第五章习题5-1一矩形截面梁如图所示,试计算I-I截面A、B、C、D各点的正应力,并指明是拉应力还是压应力。
5-2一外伸梁如图所示,梁为16a号槽刚所支撑,试求梁的最大拉应力和最大压应力,并指明其所作用的界面和位置。
5-3一矩形截面梁如图所示,已知P=2KN,横截面的高宽比h/b=3;材料为松木,其许用应力为。
试选择横截面的尺寸。
5-4一圆轴如图所示,其外伸部分为空心管状,试做弯矩图,并求轴内的最大正应力。
5-5 一矿车车轴如图所示。
已知 a=,p=5KN,材料的许用应力,试选择车轴轴径。
5-6 一受均布载荷的外伸刚梁,已知q=12KN/m,材料的许用用力。
试选择此量的工字钢的号码.5-7 图示的空气泵的操纵杆右端受力为,截面I-I和II-II位矩形,其高宽比为h/b=3,材料的许用应力。
试求此二截面的尺寸。
5-8 图示为以铸造用的钢水包。
试按其耳轴的正应力强度确定充满钢水所允许的总重量,已知材料的许用应力,d=200mm.5-9 求以下各图形对形心轴的z的惯性矩。
5-10 横梁受力如图所试。
已知P=97KN,许用应力。
校核其强度。
5-11 铸铁抽承架尺寸如图所示,受力P=16KN。
材料的许用拉应力。
许用压应力。
校核截面A-A的强度,并化出其正应力分布图。
5-12 铸铁T形截面如图所示。
设材料的许用应力与许用压应力之比为,试确定翼缘的合理跨度b.5-13 试求题5-1中截面I-I上A、B、C、D各点处的切应力。
5-14 制动装置的杠杆,在B处用直径d=30mm的销钉支承。
若杠杆的许用应力,销钉的,试求许可载荷和。
5-15 有工字钢制成的外伸梁如图所示。
设材料的弯曲许用应力,许用且应力,试选择工字钢的型号。
5-16 一单梁吊车由40a号工字钢制成,在梁中段的上下翼缘上各加焊一块的盖板,如图所示。
材料力学第五章扭转应力
建筑工业中的应用
建筑结构中的梁、柱等构件在承受扭矩时会产生扭转应力。
在建筑设计过程中,工程师需要考虑材料的抗扭性能,合理 设计梁、柱等构件的截面尺寸和连接方式,以确保建筑结构 的稳定性和安全性。
学习有限元分析方法,掌 握如何利用计算机软件进 行结构分析,提高解决实 际问题的能力。
ABCD
结合实际工程问题,分析 不同材料的抗扭性能,以 及如何优化设计以提高结 构的稳定性。
关注相关领域的最新研究 进展,了解材料力学在工 程实践和科学研究中的应 用。
THANKS
感谢观看
扭转应力的计算公式
计算公式
扭转应力的大小可以通过以下公式计算:$tau = frac{T}{A}$,其中$tau$是扭转应 力,$T$是扭矩,$A$是物体的截面面积。
截面面积
截面面积是指物体横截面的面积,通常用于计算物体在扭矩作用下的扭转应力。
扭转应力的单位和符号
单位
扭转应力的单位是帕斯卡(Pa),在国际单位制中,1Pa=1N/m²。
弹性模量
弹性模量是材料在弹性变形范围内,抵抗外力作用的能力, 它反映了材料的刚度。对于同一材料,弹性模量越大,抵抗 扭转变形的能力越强,因此,弹性模量越大,扭转应力也越 大。
总结
在材料力学中,弹性模量是影响材料扭转应力的关键因素之 一。高弹性模量的材料具有较高的抵抗扭转变形的能力,因 此会产生较大的扭转应力。
剪切模量对扭转应力的影响
剪切模量
剪切模量是指在剪切应力作用下,材料抵抗剪切变形的刚度。剪切模量的大小与材料的剪切应力成正比,即剪切 模量越大,材料抵抗剪切变形的能力越强,因此,扭转应力也越大。
材料力学第五版课后习题答案修订版
材料力学第五版课后习题答案Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】二、轴向拉伸和压缩2-1试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:;;(b)解:;;(c)解:;。
(d)解:。
2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
解:2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
解:2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE和EG横截面上的应力。
解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5(2-6)图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6(2-8) 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。
解:(压)(压)2-7(2-9)一根直径、长的圆截面杆,承受轴向拉力,其伸长为。
试求杆横截面上的应力与材料的弹性模量E。
解:2-8(2-11)受轴向拉力F作用的箱形薄壁杆如图所示。
已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。
解:横截面上的线应变相同因此2-9(2-12) 图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量E=210GPa,已知,,,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Problem 5.7
Please determine the probable locations of the shear centers of the following sections.
•
•
•
• •
Probons of shear flows and the probable distribution of shearing stresses of following sections.
If the origin of coordinates is at the centroid, y1 and z1 are called the centroidal principal axes.
If the origin of coordinates is at the centroid, Imax and Imin are called the centroidal principal moments of inertia.
z0 z
y0 y
Mz (Iy y0–Iyz z0)+My (Iz z0–Iyz y0) = 0
(Mz Iy-My Iyz)y0+(My Iz-Mz Iyz)z0= 0 —— the function of neutral axis.
z0
tan = y0 = -
Mz Iy-My Iyz My Iz-Mz Iyz
Read the Example 5.10 in page 129 and answer questions.
Problems of Chapter 12 :
5 . 25 5 . 42
Problem 5.6
An unsymmetrical thin-walled beam is subjected to the transverse loads, for only producing plane bending and not torsion the acting conditions of the loads are ( C ).
z1
O
z
y1 y
B
E
Cz
D
z1
dA
A
y y1
We get
Iy1z1 =
Iy – 2
Iz
sin2
+
Iyz cos2
(5.23)
Similarly
Iy1 = Iz1 =
Iy + 2
Iz
+
Iy + Iz 2
–
Iy
– 2
Iz
cos2
–
Iyz
sin2
Iy
– 2
Izcos2
+ Iyz sin2
(5.21) (5.22)
11 70
80 11
80 C
1z
z1
11 y y1
Iy = 2Iy1+Iy2= 2 (11593/12+5911352) +160 113/12 = 1.9810-6 m4 Iyz = 2Iyz1+Iyz2= 2 [ 59 11 (-74.5) 35 ] + 0 = – 3.3810-6 m4
2. Determine Imax and Imin
Example 5.4
Find: the centroidal principal moments of
inertia of the area as shown in the figure.
Solution:
1. Determine Iy , Iz and Iyz
Iz = 2Iz1+Iz2= 2 (59113/12+591174.52) + 111603/12 = 10.97106 mm4= 10.9710-6 m4
C. Through the shear center and parallel to the centroidal principal plane of inertia.
C is correct.
A is not complete; B is generally impossible to realize.
5.5 Principal moment of inertia
1. Product of inertia of the section
O
Iyz = A yz dA
A
Iyz may be positive, negative or zero.
z y
If y or z is symmetrical axis, Iyz must be zero.
(2)
Similarly, (only My )
=
My ( Iz z - Iyz y ) Iy Iz - Iyz2
(3)
Mz and My
=
Mz (Iyy Iy Iz -
-Iyzz) Iyz2
+
My (Izz Iy Iz -
-Iyzy) Iyz2
tan = Iy / Iyz (1) From = 0 and (4)
Imax Imin
=
Iy + Iz 2
+–
Iy
– 2
Iz
2
+
Iyz2
=
1.98+10.97
2
+–
1.98-10.97 2
2
+(-3.38)2
10-6
=
12.110-6 m4 0.8510-6 m4
3. Determine 1
tan21 = –2Iyz / (Iy–Iz)= 23.38/(1.98 –10.97)= – 0.752 1 = –18.5
3. Which method was used in order to enduce the formula of ?
The equilibrium method of infinitesimal element. 4. How can the shearing stresses of thin-walled beams be calculated ? According to (5.27), the key is to calculate Sz . 5. Whats the definition of the shear center ? The intersection of lines on which FSy and FSz act respectively.
z y dA
2. Parallel axis theorem
O
z
y
Iyz = A yz dA = A (a + yC) (b + zC) dA
-z z
= A yC zCdA + aA zCdA + bA yCdA + AabdA
y
= Iyczc+ a Syc+ b Szc+ abA = Iyczc+ abA
Chapter 12 Bending of Special Beams
Contents:
1. Normal stresses in unsymmetrical bending 2. Shearing stresses in open thin-walled members ;
Shear center
A. The plane the loads act on is parallel to or superposes on the centroidal principal plane of inertia;
B. Through the shear center and act in the principal plane of inertia;
z
2. Physical relation
= E =E
3. Statical relation
From (b) :
axaixsis
(b)
=
E
(
ysin
-
zcos
)
(f )
From (d),(f ) :
zz
O yy
z z ddAA
FN = A dA = 0 My = A z dA = 0 Mz = A y dA From (b), (c):A dA=
We can find: Iy1 + Iz1 = Iy + Iz = constant There must be the coordinate system, the moment of inertia about
its one axis is maximum and that about its another axis is minimum.
(c) (d) (e)
My = =
E
E
E
A
dA
=
0
yy
(sin AzydA-cos Az2dA)
( Iyz sin - Iy cos ) = 0 tan = Iy / Iyz
From (e),(f ) :
(1)
A dA = 0
Mz =
E
(sin
A y2dA-cos
A yzdA)
Neutral axis must be across centroid.
4. Principal moments of inertia
z1
From
d Iy1
d
=
0,
d Iz1
d
=
0,we
get:
Iy1z1=
0
And we obtained :