简单的线性规划及实际应用-课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
那么V、W分别是多少时,走得最经济?此时 需花费多少元?
y
14
12.5
9
2y+3x=0
2.5
o
3
2y+3x=38 9 10
3 x 10
5
2
y
25 2
9 x y 14
x 14
3x2yk
【解题回顾】要能从实际问题中,建构有关 线性规划问题的数学模型
例4(优化设计P110页) 某矿山车队有4辆载重 量为10吨的甲型卡车和7辆载重量为6吨的乙 型卡车,有9名驾驶员,此车队每天至少要运360 吨矿石至冶炼厂。已知甲型卡车每辆每天可 往返6次,乙型卡车每辆每天可往返8次。甲 型卡车每辆每天的成本费为252元,乙型卡车 每辆每天的成本费为160元。问每天派出甲型 车与乙型车各多少辆,车队所花费成本最底?
3
x
来自百度文库
5y
25
x 1
分别求:(1)z=6x+10y,(2)z=2x-y,(3)z=2x-y, (x,y均为整数)的最大值,最小值。
y
A:(5, 2) B:(1, 1)
5 C C:(1, 4.4)
A B
O1
5
x=1
x 4y 3
3
x
5
y
25
x 1
x-4y+3=0
x
3x+5y-25=0
(1)z=6x+10y , (2)z=2x-y,(3)z=2x-y , (x,y 均 为整数)
1 x 2 y 1 0
1
x2
3
(2)(优化设计P109例1)求不等式
|x1||y1|2 表示的平面区域的面积。
y
y
x x
图2 图1
【评述】画图时应注意准确,要注意边界,若不 等式中不含“=”号,则边界应画成虚线,否则应 画成实线。
2、应用线性规划求最值
x 4 y 3
例2、设x,y满足约束条件
②若B>0,A0xB0yC0 ,则点P在直线 的下方,此时不等式 A xB yC0 表示 直线 AxB yC0 的下方的区域;
(注:若B为负,则可先将其变为正)
(2)线性规划: ①求线性目标函数在约束条件下的最值问题, 统称为线性规划问题; ②可行解:指满足线性约束条件的解(x,y);
可行域:指由所有可行解组成的集合; 2重点难点: 准确确定二元一次不等式表示 的平面区域,正确解答简单的线性规划问 题。
3思维方式: 数形结合.
4特别注意: 解线性规划时应先确定可行域;
注意不等式中 () 与 () 对可行域的 影响;还要注意目标函数 zaxby中 b 0和 b 0 在求解时的区别.
二、问题讨论
1、二元一次不等式(组)表示的平面区域 例1、画出下列不等式(或组)表示的平面区域
x 2y 1 0
. 几个结论:
(1)、线性目标函数的最大(小)值一般在可 行域的顶点处取得,也可能在边界处取得。
(如:上题第一小题中z=6x+10y的最大值可以 在线段AC上任一点取到)
(2)、求线性目标函数的最优解,要注意分 析线性目标函数所表示的几何意义 ——在y轴上的截距或其相反数。
3、线性规划的实际应用
(4)求:通过解方程组求出最优解; (5)答:作出答案。

9、有时候读书是一种巧妙地避开思考 的方法 。2021/3/52021/3/5Fr iday, March 05, 2021

10、阅读一切好书如同和过去最杰出 的人谈 话。2021/3/52021/3/52021/3/53/5/2021 9:04:28 AM

11、越是没有本领的就越加自命不凡 。2021/3/52021/3/52021/3/5M ar-215- Mar-21

12、越是无能的人,越喜欢挑剔别人 的错儿 。2021/3/52021/3/52021/3/5Fr iday, March 05, 2021

13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/3/52021/3/52021/3/52021/3/53/5/2021
y
x y 9 10 6x 6 8 y 360 0 x 4 0 y 7
o
x+y=9
x
5x+4y=30
l0
l1
z25x216y0
x、yN
【解题回顾】由于派出的车辆数为整数, 所以必须寻找最优整数解。这对作图的要 求较高,平行直线系的斜率要画准,可行 域内的整点要找准,最好使用“网点法” 先作出可行域内的各整点,然后以z取得最 值的附近整数为基础通过解不等式组可以 找出最优解。

17、一个人即使已登上顶峰,也仍要 自强不 息。2021/3/52021/3/52021/3/52021/3/5
谢谢观赏
You made my day!
我们,还在路上……
高考数学复习 强化双基系列课件
66《简单的线性规划 及实际应用》
一、内容归纳 1、知识精讲: (1)二元一次不等式表示的平面区域: 在平面直角坐标系中,设有直线 AxByC0 (B不为0) 及点 P(x0, y0),则 ①若B>0, A0xB0yC0 , 则点P在直线的上 方,此时不等式 A xB yC0表示直线 AxByC0 的上方的区域;

14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021年3月5日星期 五2021/3/52021/3/52021/3/5

15、最具挑战性的挑战莫过于提升自 我。。2021年3月2021/3/52021/3/52021/3/53/5/2021

16、业余生活要有意义,不要越轨。2021/3/52021/3/5Marc h 5, 2021
例3、(优化设计P109例2)某人上午7时,乘摩 托艇以匀速V海里╱时(4≤V≤20)从A港出发 到距50海里的B港去,然后乘汽车以匀速W 千米╱时(30≤W≤100)自B港向距300千米的C 市驶去,应该在同一天下午4至9点到达C市。 设汽车、摩托艇所需的时间分别是x、y小时。
(1)作出表示满足上述条件的x、y范围; (2)如果已知所要经费P=100+3·(5-x)+2·(8-y)(元),
备用题
例5、要将两种大小不同的钢板截成A、B、
C三种规格,每张钢板可同时截得三种规格
的小钢板的块数如下表:
块数 规格
A
B
C
种类
第一种钢板
1
2
1
第二种钢板
1
1
3
每 张 钢 板 的 面 积 为 : 第 一 种 1m2 , 第 二 种 2 m2,今需要A、B、C三种规格的成品各12、 15、27块,问各截这两种钢板多少张,可得 所需的三种规格成品,且使所用钢板面积最 小?
x2y20的整数解,可将 y 10 x 代入约束条
件,得 4x6,又x为偶数, 2 故 x 4或 6
三、课堂小结:
解线性规划问题的步骤:
(1)设:先设变量,列出约束条件和目标函数;再 作出可行域,
(2)画:画出线性约束条件所表示的可行域;
(3)移:在线性目标函数所表示的一组平行线 中,利用平移的方法找出与可行域有公共点且纵 截距最大或最小的直线;
y
x y 12 2 x y 15
例5图
x
3
y
27
x 0, y 0, x, y N
16
zx2y
12 A
28
8
O
12
x
l2 l1
l3
[思维点拔]在可行域内找整点最优解的常用方法 有:(1)打网格,描整点,平移直线,找出整 点最优解;(2)分析法:由于在A点,z19.5 而 比19.5大的最小整数为20,在约束条件下考虑
相关文档
最新文档