浅谈细胞生物学未来情况
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈细胞生物学未来情况
11生科111003015 康明辉
摘要:著名生物学家威尔逊早在20世纪20年代就提出“一切生物学关键问题必须在细胞中找寻”。细胞是一切生命活动结构与功能的基本单位,细胞生物学是研究细胞生命活动基本规律的科学。细胞生物学的研究范围广泛,其核心可归结为遗传和发育问题。遗传是在发育中实现的,而发育又要以遗传为基础。当前细胞生物学的主要发展趋势是用分子生物学及物理、化学方法,深入研究真核细胞基因组的结构及其表达的调节和控制,以期从根本上揭示遗传和发育的关系,以及细胞衰老、死亡和癌变的原因等基本生物问题,并为把遗传工程技术应用到高等生物,改变其遗传性提供理论依据。20世纪90年代以来,分子生物学取得很大进展,这些进展促进了细胞结构和功能调控在分子水平上的研究
关键词:细胞遗传生物学发育
细胞生物学的研究范围广泛,其核心可归结为遗传和发育问题。遗传是在发育中实现的,而发育又要以遗传为基础。当前细胞生物学的主要发展趋势是用分子生物学及物理、化学方法,深入研究真核细胞基因组的结构及其表达的调节和控制,以期从根本上揭示遗传和发育的关系,以及细胞衰老、死亡和癌变的原因等基本生物问题,并为把遗传工程技术应用到高等生物,改变其遗传性提供理论依据。20世纪90年代以来,分子生物学取得很大进展,这些进展促进了细胞结构和功能调控在分子水平上的研究。
目前对细胞研究在方法学上的特点是高度综合性,使用分子遗传学手段,对新的结构成分、信号或调节因子的基因分离、克隆和测序,经改造和重组后,将基因(或蛋白质产物)导入细胞内,再用细胞生物学方法,如激光共聚焦显微镜、电镜、免疫细胞化学和原位杂交等,研究这些基因表达情况或蛋白质在活细胞或离体系统内的作用。分子遗传学方法和细胞生物学的形态定位方法紧密结合,已成为当代细胞生物学研究方法学上的特点。另一方面,用分子遗传学和基因工程方法,如重组DNA技术、PCR、同源重组和转基因动植物等,对高等生物发育的研究也取得出乎意料的惊人进展。对高等动物发育过程,从卵子发生、成熟、模式形成和形态发生等方面,在基因水平的研究正全面展开并取得巨大进展。自从“人类基因组计划”实施以来,取得了出乎意料的迅速进展。2000年6月,国际人类基因组计划发布了“人类基因组工作框架图”,可称之为“人类基因草图”,这个草图实际上涵盖了人类基因组97%以上的信息。从“人类基因组工作框架图”中我们可以知道这部“天书”是怎样写的和用什么符号写的。2001年2月,包括中国在内的六国科学家发布人类基因组图谱的“基本信息”,这说明人类现在不仅知道这部“天书”是用什么符号写的,而且已经基本读懂了这部“天书”。其他典型生物的基因组研究有的已经完成,有的正在进行。在对从低等到高等的不同生物门类的基因组、调控基因群,以及发育调控模式比较研究的基础上,已开始对发育和进化的关系进行探索。在基因和细胞水平,对遗传、发育和进化关系的探索已展现出乐观的前景。“后基因组时代”的生物学任务是基因组功能的研究,即对细胞的基因表达谱和蛋白质谱的研究,这些都将从根本上影响未来细胞生物学的发展趋向。正如过去各种生命现象的奥秘都要从细胞的结构和功能活动中寻求解答一样,目前对细胞的结构和功能,也要从基因组的结构和功能活动中寻求解答。基因、细胞和发育将是贯穿细胞生物学研究的主
线。真核细胞基因组结构及其功能调控,是未来细胞生物学研究的核心问题。另一方面是基因产物如何构建细胞结构,以及如何调节和行使细胞功能。细胞生物学和分子生物学将在对这两方面的研究中结合在一起,构成新世纪细胞生物学研究的主要内容——分子细胞生物学①。从科学研究的历史来看,形成一门学科并非一件容易的事。但在人类基因组计划实施的短短几年间,以××组学(-omics)构成的学科如雨后春笋般,迅速地在生命科学界蔓延。最早出现的是与DNA相关的“基因组学”(genomics),随后又产生了许多与各种生物大分子或小分子相关的“组学”,如蛋白质组学(proteomics)、转录组学(transcriptomics)、代谢组学(metabolomics)等②。复合名词则更是不可胜数,以基因组学为例,在文献中就可以看到结构基因组学、功能基因组学、癌症基因组学、药物基因组学、毒理基因组学、环境基因组学和营养基因组学等。这些术语的出现,从积极的方面来看,表现了生命科学的活力和迅速发展的势头。从消极的方面来看,则暗示了一种浮躁和轻率。本文试图对后基因组时代出现的这诸多的“组学”进行一番梳理,并对这些新兴学科进行反思和讨论。
工程型与概念型大科学
人类基因组计划常被人们誉为生命科学的“登月计划”。这一比喻应该说是很恰当的,不仅说明这两者都是大科学,有大量人力物力的投入,而且表明两者都拥有一个清晰、具体的目的。对于前者而言,是测出人类基因组所含的32亿个碱基对;对于后者来说,则是让人类跨越38.4万千米的空间距离,登上月球。换句话说,这两个计划都属于科学工程。凡是工程都具有这样一个特点:目的明确,可进行评估和度量。比如要建造一幢楼房或架设一座桥梁,显然我们是有着明确的目的,而且可以对工程的实施进度和完成情况进行具体的和定量的评判。尽管“登月计划”和人类基因组测序工作要远比盖房子复杂和困难,但本质上都符合工程的范畴。根据这一标准,笔者把生命科学领域中研究目的可以被明确界定和度量的大科学,如测定物种基因组全序列的基因组学,称为“工程型大科学”。生命科学领域中还存在另外一类大科学,例如“相互作用组学”(interactomics)、药物基因组学、环境基因组学等。它们与工程型大科学有着很大的区别,因为其研究目的不是明确可辨的,通常也难以对其进行具体的评估。这类大科学通常围绕着某种概念来进行研究,例如相互作用组学是以“相互作用”这一概念为主导,环境基因组学则以“环境”这一概念为核心。但是,在“相互作用”和“环境”指导下的研究内容是模糊的,研究边界也是变化的。此外,这类大科学不同于工程型大科学的另一特点是,研究永无止境,没有结束的客观依据或判定标准。人类基因组序列一旦测完,就可宣称人类基因组计划结束。但是根据什么来判断酵母相互作用组的研究工作完成与否呢?笔者把这类没有明确目的和判定尺度的大科学研究称为“概念型大科学”。
当然,对这两种类型的大科学的区别有时是很微妙的。美国国立癌症研究在1997年发起了一个“癌基因组解剖学计划”(Cancer Genome Anatomy Project,CGAP),其目的是要收集和分析与癌症有关的遗传和基因组数据。这个计划内的两个子计划——哺乳动物基因收集(Mammalian Gene Collection)和癌细胞染色体畸变计划(Cancer Chromosome Aberration Project),则分别属于工程型和概念型大科学。因为前者有可以判据的目标——收集所有人和小鼠的基因表达产物,后者却无法判定其目标的实现——收集所有癌细胞的染色体畸变类型。从这个意义上说,代谢组学或蛋白质组学都更接近概念型大科学,因为没有标尺测量它们的完成情况③。