专题04 函数实际问题之行程问题与函数解析式求解题型(原卷版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题04 函数实际问题之行程问题与函数解析式求解题型学习函数过程中除了掌握其图象和性质外,还要能利用函数图象解决实际应用问题,在真正意义上理解数形结合的含义. 解决行程问题的关键是读懂题意,根据题意求得函数解析式,进而解答.

实际问题的函数解析式求解中,要看清题目中平面直角坐标系是如何建立的,根据不同的图象设出符合要求的解析式,代入点求解.

下面几个实例,帮助同学们体会此类问题的做法.

题型一、一次函数与行程类问题

1. (2019·浙江台州中考)

某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=

3

10

x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图所示.(1)求y关于x的函数解析式;

(2)请通过计算说明甲、乙两人谁先到达一楼地面.

2.(2019·山东济宁中考)小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y(km)与小王的行驶时间x (h)之间的函数关系.

请你根据图象进行探究:

(1)小王和小李的速度分别是多少?

(2)求线段BC所表示的y与x之间的函数解析式,并写出自变量x的取值范围.

3.(2019·浙江绍兴中考)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.

(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.

(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.

4.(2019·重庆市中考)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是米.

5.(2019·浙江宁波中考)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.

(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.

(2)求第一班车从入口处到达塔林所需的时间.

(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)

6.(2019·湖北咸宁中考)小慧家与文具店相距960m,小慧从家出发,沿笔直的公路匀速步行12min来到文具店买笔记本,停留3min,因家中有事,便沿着原路匀速跑步6min返回家中.

(1)小慧返回家中的速度比去文具店的速度快多少?

(2)请你画出这个过程中,小慧离家的距离y与时间x的函数图像.

(3)根据图象回答,小慧从家出发后多少分钟离家距离为720m?

题型二、一次函数与相遇(交点)问题

7.(2019·浙江金华中考)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是.

8.(2019·山东聊城中考)某快递公司每天上午9:00﹣10:00为集中揽件和派件时段,甲仓库用来搅

收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为()

A.9:15B.9:20C.9:25D.9:30

题型三、一次函数与收费问题

9.(2019·湖北宜昌中考)《人民日报》点赞湖北宜昌“智慧停车平台”.作为“全国智慧城市”试点,我市通过“互联网”、“大数据”等新科技,打造“智慧停车平台”,着力化解城市“停车难”问题.市内某智慧公共停车场的收费标准是:停车不超过30分钟,不收费;超过30分钟,不超过60分钟,计1小时,收费3元;超过1小时后,超过1小时的部分按每小时2元收费(不足1小时,按1小时计).

(1)填空:若市民张先生某次在该停车场停车2小时10分钟,应交停车费元.

若李先生也在该停车场停车,支付停车费11元,则停车场按小时(填整数)计时收费.

(2)当x取整数且x≥1时,求该停车场停车费y(单位:元)关于停车计时x(单位:小时)的函数解析式.

题型四、一次函数与销售问题

10.(2019·江苏泰州中考)小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于100kg,超过300kg时,所有这种水果的批发单价均为3元/kg.图中折线表示批发单价y (元/kg)与质量x(kg)的函数关系.

(1)求图中线段AB所在直线的函数表达式;

(2)小李用800元一次可以批发这种水果的质量是多少?

11.(2019·湖北仙桃中考)某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x 千克,付款金额为y 元.

(1)求y 关于x 的函数解析式;

(2)某农户一次购买玉米种子30千克,需付款多少元?

题型五、二次函数与运动实际问题

12.(2019·四川巴中月考)一足球从地面上被踢出,它距地面高度y (米)可以用二次函数y =-4.9x 2+19.6x

来刻画,其中x (秒)表示足球被踢出后经过的时间,则足球被踢出后到离开地面达到最高点所用的时间是 秒.

13.(2019·四川巴中月考)杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其

身体(看成一个点)的路线是抛物线y =-35

x 2+3x +1的一部分,如图. (1)求演员弹跳离地面的最大高度;

(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?说明理由.

相关文档
最新文档