高一数学寒假作业试题及答案
高一数学寒假作业答案
第1天一、选择题: 1.C 2. D 3.B 4.B 5.B 6.D 7.B 8. D 二、填空题:9. 2a ≤- 10.1 11. ()()()(){}1,1,1,2,2,1,2,2 14. (){}2,3三、解答题: 13: {}AB=2,3,4,5,614: {}A=2,3,,5,7,{}B=2,4,6,8 15:(1): 3m ≥,(2) : 0m ≤ 16: 0p ≥第2天一、选择题: 1.A 2. A 3.C 4.B 5.B 6.A 7.A 8. D 二、填空题: 9. []1,0-,1- 10.(4) 11.12 12. 38或3- 三、解答题: 13:略14: (1) :1,1(),01a g a a a a ⎧≥⎪=⎨⎪<<⎩ (2) : 115: (1) : 1a =- (2) : 11,1()1,01a g a aa a ⎧-≥⎪=⎨⎪-<<⎩ 16: (1) : 2()21f x x x =++ (2) : (][),04,k ∈-∞+∞第3天一、选择题: 1.B 2. D 3.D 4.D 5.C 6.C 7.A 8. D二、填空题: 9.2a ≥- 10. 13- 11. 2 12. 1m >或1m <- 三、解答题: 13:定义法14: []()[]221022,3,61(),3,331022,6,3x x x f x x x x x x ⎧-+-∈⎪⎪=-∈-⎨⎪++∈--⎪⎩ 15:单调增,证明略.16:(1)定义域为R ,值域()1,1- (2)不存在,因为函数为单调增函数 第4天一、选择题: 1.B 2. C 3.B 4.D 5.A 6.C 7.A 8.C二、填空题: 9.1 10.(),0-∞ 11.10,2⎛⎫ ⎪⎝⎭12.()4,0-13:(1)2()1f x x x =-+ (2)max ()3f x = min ()3f x = 14:3b =15: (1)非奇非偶 (2)min 3()4f x =16: (1)122c a -<<- (2)提示21AB x x =-=第5天一、选择题: 1.C 2. C 3.B 4.D 5.B 6.B 7.C 8. D 二、填空题: 9.(]1,0- 10.aa a a a a << 11.()()()245 12.(]4,4-三、解答题: 13:1m > 14:[]0,1m ∈ 15:平方作差法16: (1)(0)1f = (2)略 (3)()f x 在R 上为增函数 第6天一、选择题: 1.D 2. D 3.A 4.B 5.B 6.A 7.D 8. A二、填空题: 9.-45 10.()1,0- 11.10,3⎛⎫ ⎪⎝⎭12.(),0-∞和(]0,1三、解答题:13:0a ≠时,A 为有限集。
高一数学(必修一)寒假作业
高一数学(必修一)寒假作业一、选择题:(每题5分,满分60分) 1、下列四个集合中,是空集的是( )A }33|{=+x xB },,|),{(22R y x x y y x ∈-=C },01|{2R x x x x ∈=+-D }0|{2≤x x2.设A={a ,b},集合B={a+1,5},若A∩B={2},则A ∪B= ( )A 、{1,2}B 、{1,5}C 、{2,5}D 、{1,2,5} 3.函数21)(--=x x x f 的定义域为 ( )A 、[1,2)∪(2,+∞)B 、(1,+∞)C 、[1,2)D 、[1,+∞) 4.设f ,g 都是由A 到A 的映射,其对应法则如下表(从上到下):则与)]1([g f 相同的是 ( ) A .)]3([f gB .)]2([f gC .)]4([f gD .)]1([f g5、下图是指数函数○1x a y =、○2 x b y =、○3 x c y =、○4 x d y =的图象,则d c b a ,,,与1的大小关系是( )A .b a d c <<<<1B .a b c d <<<<1C .a b d c <<<<1D .b a d c <<<<16.函数y= | lg (x-1)| 的图象是 ( )7. 已知3.0log 2=a ,3.02=b ,2.03.0=c ,则c b a ,,三者的大小关系是 ( ) A 、c b a >> B 、c a b >> C 、a c b >> D 、a b c >>8.函数y=ax 2+bx+3在(]1,-∞-上是增函数,在[)+∞-,1上是减函数,则 ( ) A 、b>0且a<0 B 、b=2a<0 C 、b=2a>0 D 、a ,b 的符号不定9.函数]1,0[在xa y =上的最大值与最小值的和为3,则=a ( )A 、21 B 、2 C 、4 D 、41表1 映射f 的对应法则 原像 1 2 3 4 像 3 4 2 1表2 映射g 的对应法则原像 1 2 3 4 像 4 3 1 210.设⎭⎬⎫⎩⎨⎧----∈3,2,1,21,31,21,1,2,3α,则使αx y =为奇函数且在(0,+∞)上单调递减的α值的个数为 ( )A 、1B 、2C 、3D 、411.已知实数00a b ≥≥,且1a b +=,则2211a b +++()()的取值范围为 ( )A .9[5]2,; B .9[2∞,+); C .9[0]2,; D .[05],。
高一数学寒假作业答案
高一数学寒假作业答案作业一答案1、自然语言、列举法、描述法.2、用适当的符号填空.(1)∈⊆, 2)⊆=, (3)⊇⊇, (4),⊆3、(1),(3),(5)4、{x |1<x <2},{x |-1<x <3},{1-≤x x 或}2≥x ,{1≤x x 或}3≥x .5、,),(,B C B A C B A B A B A ⋃⋃⋂⋂6、.,,,,,A A A A φφ 7、{}6,3,2.9、(4)中的两个函数是同一函数,因为,它们的定义域、对应法则相同;(1)(2)中,两个函数的定义域不同,(3)中,两个函数的对应法则不同. 10、(4). 11、-2.12、13、1+. 14、1.15、1,-3. 16、2b ≤-.17、原点,原点,y 轴. 18、增,最小值,-7 . 19、 解:⎭⎬⎫⎩⎨⎧≥=25x x B 因为,A B ⊆ 所以,.25≥a 20、 解:因为{}5,3=A , 集合B 表示满足等式01=-ax 的X 的值,当0=a 时,01=-ax 变为01=-,它不成立,所以0≠a当0≠a 时,01=-ax 是一元一次方程,它的根为ax 1=,因为,B ⊆A ,所以31=a 或51=a , 于是,31=a 或.51=a21、(1)解:由⎩⎨⎧≥+-≠-04303x x 得 ⎭⎬⎫⎩⎨⎧≤34x x所以,此函数定义域为]34,(-∞.(2) 解:由⎩⎨⎧>-≥-0409x x 得 {}94≤<x x 所以,此函数定义域为].9,4(22、 有,是(1). 23、证明:(1)设)1,0(,21∈x x 且21x x <2121212211211)()1(1)()(x x x x x x x x x x x f x f --=+-+=-由假设知,01,0,0212121<-><-x x x x x x ,有)()(21x f x f >所以,x x x f 1)(+= 在(0,1)上是减函数.(2) 设),1[,21+∞∈x x 且21x x <2121212211211)()1(1)()(x x x x x x x x x x x f x f --=+-+=-由假设知,01,0,0212121>-><-x x x x x x ,有)()(21x f x f <所以,xx x f 1)(+= 在),1[+∞上是增函数.24、 (1)(2)(4)是偶函数;(5)是奇函数;(3)(6)是非奇非偶函数.作业二答案一、填空题1、解析: 因为x>1,xa -1<1,所以a -1<0,解得a<1.2、解析:因为函数f(x)=k ·x α是幂函数,所以k =1,又函数f(x)的图象过点⎪⎪⎭⎫ ⎝⎛22,21,所以2221=⎪⎭⎫ ⎝⎛α,解得α=12,则k +α=32.3、解析:∵f(x)=ln(x +3)1-2x,∴要使函数f(x)有意义,需使⎩⎨⎧x +3>01-2x >0,即-3<x<0. 4、当x ≤0时,0<2x≤1,由图象可知方程f(x)-a =0有两个实根,即y =f(x)与y =a 的图象有两个交点,所以由图象可知0<a ≤1.即实数a 的取值范围为(0,1].5、解析: ∵-2<1,∴f(-2)=1+log 2(2+2)=1+log 24=1+2=3.∵log 212>1,∴f(log 212)=2l o g 212-1=122=6.∴f(-2)+f(log 212)=3+6=9.6、解析:当x<0时,-x>0,f(-x)=(-x)3+ln(1-x),∵f(x)是R 上的奇函数,∴当x>0时,f(x)=-f(-x)=-[(-x)3+l n(1-x)],∴f(x)=x 3-ln(1-x). 7、解析:a 与b 比较,幂函数性质,则a>b,且a>1,b 与c 比较,则c>b,则a>c>b 8、a>3 9、(-1,1) 10、a=2 11、()0,∞- 12、[)+∞,4 13、()+∞-,8 14、4115、21三、解答题16、(1)、解:原式=100127232122474223232434143412162131=---+⨯=-⨯-⨯-⎪⎪⎭⎫ ⎝⎛⨯+⎪⎪⎭⎫ ⎝⎛⨯ (2)、解:原式=()()()5lg 2lg 215lg 7lg 2212lg 23347lg 22lg 521+=++⨯-- (3)、解:原式=(lg 2)2+(1+lg 5)lg 2+lg 52=(lg 2+lg 5+1)lg 2+2lg 5=(1+1)lg 2+2lg 5=2(lg 2+lg 5)=2.17、(1)证明略。
高一数学寒假作业及答案
寒假作业三答案1.sin315°-cos495°-tan(-675°)的值是( B ) A. 1B. -1C.D. 2.设12log 3a =,0.21()3b = ,132c =,则a b c ,,的大小顺序为( B )A. c b a <<B. a b c <<C. b a c <<D. c a b << 3.已知a =(4,3),向量b 是垂直于a 的单位向量,则b 等于( D )A.⎝⎛⎭⎫35,45或⎝⎛⎭⎫45,35B.⎝⎛⎭⎫35,45或⎝⎛⎭⎫-35,-45C.⎝⎛⎭⎫35,-45或⎝⎛⎭⎫-45,35D.⎝⎛⎭⎫35,-45或⎝⎛⎭⎫-35,45 4.由表格中的数据,可以判定函数2)(--=x e x f x 的一个零点所在的区间为(),1k k +()k N ∈,则k 的值为( C )A.1-B.0C.1D.25.已知|a |=2|b |≠0,且关于x 的方程x 2+|a |x +a ·b =0有实根,则a 与b 的夹角的取值范围是(B) A.⎣⎡⎦⎤0,π6 B.⎣⎡⎦⎤π3,π C.⎣⎡⎦⎤π3,2π3 D.⎣⎡⎦⎤π6,π 6.已知0,60,|||,cos ,a b c a c b a a b ++==<> 且与的夹角为则等于( D )A.2 B.12 C.—12D.2-7.函数f(x )的图象与函数g (x )=(21)x图象关于直线y =x 对称,则f (2x -x 2)的单调减区间为(C ) A.)1,(-∞B.),1[+∞C.)1,0(D.)2,1[8.在ABC ∆中,D 是BC 边上的一点, 42===λ,若记==,,则用,表示所得的结果为 ( C )A.2121- B.3131- C.3131+- D.3121+ 9.已知命题:①若x 的方程022=-+ax x 一个根比1大,一个根比1小,则1≤a ;②对于任意的]1,1[-∈a ,函数22)2()(2-+--=a x a x x f 的图像位于x 轴的上方,则x 的取值范围是4{-<x x 或}1>x ;③若4π=x 是函数x x a x f cos sin )(-=图像的一条对称轴,则1=a .其中命题正确的个数是( B ) A.0 B.1 C.2 D.310.设()f x 是定义在R 上的偶函数,对任意的x R ∈,都有(2)(2)f x f x -=+,且当[2,0]x ∈-时,1()()12x f x =-,则在区间]10,2(-内关于x 的方程2()log (2)0f x x -+=的零点的个数是( C )A.2B.3C.4D.5 11.函数()f x =的定义域为_____________.)0,21(-12.若sin α2=1+sin α-1-sin α,0≤α≤π,则tan α的值是________. 0或-4313.2==,a 与b 的夹角为3π,则b a +在a 上的投影为 .3 14.已知a =(1,3),b =(1,1),c =a +λb ,a 和c 的夹角为锐角,则实数λ的取值范围是________.⎝⎛⎭⎫-52,0∪(0,+∞) 15.如图,四边形ABCD 是正方形,延长CD 至E ,使得DE =CD .若动点P 从点A 出发,沿正方形的边按逆时针方向运动一周回到A 点,其中AP AB AE λμ=+:①满足2λμ+=的点P 必为BC 的中点;②满足1λμ+=的点P 有且只有两个;③λμ+的最大值为 3 ;④λμ+的最小值不存在.以上命题正确..的是________________.②③16.设全集为U R =,集合}0183{2≥++-=x x x A ,}3)2(log {2<+=x x B .(1)求如图阴影部分表示的集合;(2)已知{}|21C x x a x a =><+且,若C B ⊆,求实数a 的取值范围.解:由已知得}63{≤≤-=x x A ,}62{<<-=x x BU 2{-≤=x x B C 或}6≥x (1)图中阴影部分表示的集合为23{-≤≤-=⋂x x B C A U 或}6=x (2)当φ=C ,即12+≥aa ,即1≥a 满足题意当φ≠C 时,使B C ⊆则⎪⎩⎪⎨⎧≤+-≥+<612212a a a a ,得11`<≤-a 综上,实数a 的取值范围是),1[+∞-17.已知平面xOy 内有向量=(1,7), =(5,1), =(2,1),点T 为直线OP 上 的一个动点.(1)当⋅取最小值时,求的坐标; (2)当点T 满足(1)的条件时,求cos ∠ATB 的值. 解:设)(R ∈=λλ,则),2(λλ=)7,21(λλ--=-=,)1,25(λλ--=-=(1) 12205)1)(7()25)(21(2+-=--+--=⋅λλλλλλ=8)2(52--λ 当2=λ时,⋅取最小值-8,此时)2,4(=; (2)由(1)得)5,3(-=TA ,)1,1(-=TB17174cos -==∠ATB 18.已知函数()sin cos (0)=+>f x a x b x ωωω的部分图象如图所示. (1)求、、a b ω的值; (2)求函数()()()1212=--+g x f x f x ππ在],0[π上的单调区间.(1)由题设图象知,周期11522(),21212=-=∴==T Tππππω ()sin 2cos 2=+f x a x b x ,由5()1,()012==f O f π,得=a 1=b所以1,2===a b ω(2)由(1)得)62sin(2)(π+=x x f ()2sin(2)3∴=-g x x π]35,3[32],,0[ππππ-∈-∈x x当2323πππ≤-≤-x ,即1250π≤≤x 时,)(x g 递增; 当23322πππ≤-≤x ,即1211125ππ≤≤x 时,)(x g 递减;当353223πππ≤-≤x ,即ππ≤≤x 1211时,)(x g 递增; 所以)(x g 的增区间为],1211[],125,0[πππ,减区间为]1211,125[ππ。
高一数学寒假作业详细答案
高一数学寒假作业1参考答案(1)集合与函数1~9. D D C C B A D B B 10. 1; 11.4x x --. 12.12; 13.4231,,,c c c c 14.52a b -= 15.解:由AB B =,得B A ⊆.当B =∅时,有:231m m -≥+,解得14m ≤. 当B ≠∅时,如右图数轴所示,则23121317m m m m -<+⎧⎪-≥-⎨⎪+≤⎩,解得124m <≤.综上可知,实数m 的取值范围为2m ≤. 16.解:(Ⅰ)当a =0时,函数2()()||1()f x x x f x -=-+-+=,此时()f x 为偶函数. 当a ≠0时,2()1f a a =+,2()2||1f a a a -=++,()()f a f a -≠.此时函数f (x )为非奇非偶函数.(Ⅱ)当x ≥a 时,函数2213()1()24f x x x a x a =+-+=+-+.若a ≤-12,则函数()f x 在[,)a +∞上的最小值为13()24f a -=-.若a >-12,则函数()f x 在[,)a +∞上单调递增,从而,函数()f x 在[,)a +∞上的最小值为f (a )=a 2+1.综上,当a ≤-12时,函数f (x )的最小值是34-a . 当a >-12时,函数f (x )的最小值是a 2+1.17.解:(Ⅰ)x =234时,22121133236242424211log log log 4log 4log 2log 442369x x ---===-⨯=-. (Ⅱ)122242224111log log (log log 4)(log log 2)(2)()(32)42222x x y x x t t t t ==--=--=-+.∵ 2≤x ≤4, ∴ 222log 2log log 4x ≤≤,即[1,2]t ∈.∴ 21(32),[1,2]2y t t t =-+∈.18.解:(1)∵ f (-x )=-f (x ),∴111222111log log log 111ax ax x x x ax +--=-=----. ∴1111ax x x ax+-=---,即(1)(1)(1)(1)ax ax x x +-=-+-,∴a =-1. (2)由(1)可知f (x )=121log 1x x +-122log (1)1x =+-(x >1) 记u (x )=1+21x -,由定义可证明u (x )在(1,)+∞上为减函数, ∴ f (x )=121log 1x x +-在(1,)+∞上为增函数.(3)设g (x )=121log 1x x +--1()2x .则g (x )在[3,4]上为增函数. ∴g (x )>m 对x ∈[3,4]恒成立,∴m <g (3)=-98.高一寒假作业2——函数的应用答案一、 选择题BAADC DDAC 二、 填空题10. (16,)+∞ 11. 1 12. 3 13. ⎪⎭⎫⎢⎣⎡+∞,23lg 14. 7- 三、 解答题15.证明:(I )因为(0)0,(1)0f f >>,所以0,320c a b c >++>.由条件0a b c ++=,消去b ,得0a c >>;由条件0a b c ++=,消去c ,得0a b +<,20a b +>. 故21ba-<<-. (II )抛物线2()32f x ax bx c =++的顶点坐标为23(,)33b ac b a a--, 在21b a -<<-的两边乘以13-,得12333b a <-<. 又因为(0)0,(1)0,f f >>而22()0,33b ac acf a a+--=-< 所以方程()0f x =在区间(0,)3b a -与(,1)3ba-内分别有一实根.故方程()0f x =在(0,1)内有两个实根.16.解:设水塔进水量选择第n 级,在t 时刻水塔中的水容量y 等于水塔中的存水量100吨加进水量nt 10吨,减去生产用水t 10吨,在减去工业用水t W 100=吨,即t t nt y 1001010100--+=(160≤<t );若水塔中的水量既能保证该厂用水,又不会使水溢出,则一定有3000≤<y .即30010010101000≤--+<t t nt , 所以1102011010++≤<++-tt n t t 对一切(]16,0∈t 恒成立. 因为272721110110102≤+⎪⎪⎭⎫ ⎝⎛--=++-t t t , 4194141120110202≥-⎪⎪⎭⎫ ⎝⎛+=++t t t ,所以41927≤≤n ,即4=n . 即进水选择4级.高一寒假作业3——必修1综合一、选择题 DADAB DC二、填空题8.21.09 9.14元 10.-1 11.三.解答题12.(1)a=3,b=1 (2) [2,14] 13.解:(1)∵f(t)=34+a ·2-t ×100%(t 为学习时间),且f(2)=60%,则34+a ·2-2×100%=60%,可解得a =4. ∴f(t)=34+a ·2-t ×100%=34(1+2-t )×100%(t ≥0),∴f(0)=34(1+1)×100%=38=37.5%.f(0)表示某项学习任务在开始学习时已掌握的程度为37.5%. (2)令学习效率指数1()2t f t y -=,t ∈(1,2), 即1()322(21)t t f t y -==+,因32(21)ty =+在(0,+∞)上为减函数. t ∈(1,2) ∴31,102y ⎛⎫∈ ⎪⎝⎭.故所求学习效率指数的取值范围是31,102⎛⎫ ⎪⎝⎭14.15.(3)f(x)=x 2-ax +2,x ∈[a ,a +1],其对称轴为x =a 2.①当a 2≤a ,即a ≥0时,函数f(x)min =f(a)=a 2-a 2+2=2.若函数f(x)具有“DK ”性质,则有2≤a 总成立,即a ≥2. ②当a<a2<a +1,即-2<a<0时,f(x )min =f(a 2)=-a24+2.若函数f(x)具有“DK ”性质,则有-a24+2≤a 总成立,解得a ∈∅.③当a2≥a +1,即a ≤-2时,函数f(x)的最小值为f(a +1)=a +3.若函数f(x)具有“D K ”性质,则有a +3≤a ,解得a ∈∅.综上所述,若f(x)在[a ,a +1]上具有“DK ”性质,则a 的取值范围为[2,+∞).高一数学寒假作业(4)——立体几何答案1. 解析:选B. 由正视图与俯视图可知小正方体最多有7块,故体积最多为7 cm3 2.解析:选D.设直观图中梯形的上底为x ,下底为y ,高为h .则原梯形的上底为x ,下底为y ,高为22h ,故原梯形的面积为4.3.解析:选D.设正方形ABCD 的对角线AC 、BD 相交于点E ,沿AC 折起后,依题意得:当BD =a 时,BE ⊥DE ,∴DE ⊥面ABC ,∴三棱锥D -ABC 的高为DE =22a ,∴V D -ABC =13·12a 2·22a =212a 3.4.解析:选B.有2条:A 1B 和A 1C 1,故选B.5.解析:选D.在A 图中分别连接PS 、QR ,易证PS ∥QR ,∴P 、S 、R 、Q 共面;在C 图中分别连接PQ 、RS ,易证PQ ∥RS ,∴P 、Q 、R 、S 共面.如图,在B 图中过P 、Q 、R 、S 可作一正六边形,故四点共面,D 图中PS 与RQ 为异面直线,∴四点不共面,故选D.6.解析:选B.如图所示,连结AC 交BD 于O 点,易证AC ⊥平面DD 1B 1B ,连结B 1O ,则∠CB 1O 即为B 1C 与对角面所成的角,设正方体棱长为a ,则B 1C =2a ,CO =22a ,∴sin ∠CB 1O =12.∴∠CB 1O =30°.7.答案:①或③ 解析:根据直线与平面平行的性质和平面与平面平行的性质知①③满足条件,在条件②下,m ,n 可能平行,也可能异面.8.答案:3∶1解析:设圆锥底面半径为r ,则母线长为2r ,高为3r ,∴圆柱的底面半径为r ,高为3r ,∴S 圆柱侧S 圆锥侧=2πr ·3r πr ·2r = 3.9.答案:9π2解析:由题意,三角形DAC ,三角形DBC 都是直角三角形,且有公共斜边.所以DC 边的中点就是球心(到D 、A 、C 、B 四点距离相等),所以球的半径就是线段DC 长度的一半,V =43πR 3=9π2.10.答案:①解析:由公理4知①正确;当a ⊥b ,b ⊥c 时,a 与c 可以相交、平行,也可以异面,故②不正确;当a 与b 相交,b 与c 相交时,a 与c 可以相交、平行,也可以异面,故③不正确; a ⊂α,b ⊂β,并不能说明a 与b “不同在任何一个平面内”,故④不正确; 当a ,b 与c 成等角时,a 与b 可以相交、平行,也可以异面,故⑤不正确. 11. 解:(1)证明:因为侧面BCC 1B 1是菱形,所以B 1C ⊥BC 1.又B 1C ⊥A 1B ,且A 1B ∩BC 1=B ,所以B 1C ⊥平面A 1BC 1.又B 1C ⊂平面AB 1C ,所以平面AB 1C ⊥平面A 1BC 1.(2)设BC 1交B 1C 于点E ,连结DE ,则DE 是平面A 1BC 1与平面B 1CD 的交线.因为A 1B ∥平面B 1CD ,所以A 1B ∥DE .又E 是BC 1的中点,所以D 为A 1C 1的中点, 即A 1D ∶DC 1=1.12. 解:(1)证明:连接BD ,∵ABCD 为正方形,∴BD ⊥AC ,又SD ⊥底面ABCD ,∴SD ⊥AC ,∵BD ∩SD =D , ∴AC ⊥平面SDB ,∵BP ⊂平面SDB ,∴AC ⊥BP .(2)当P 为SD 的中点时,连接PN ,则PN ∥DC 且PN =12DC .∵底面ABCD 为正方形,∴AM ∥DC 且AM =12DC ,∴四边形AMNP 为平行四边形,∴AP ∥MN . 又AP ⊄平面SMC ,∴AP ∥平面SMC .(3)V B -NMC =V N -MBC =13S △MBC ·12SD =13·12·BC ·MB ·12SD =16×1×12×12×2=112. 高一数学寒假作业(5)参考答案1、B 2.A 3.B 4. C 5、B 6、A 7、①④ 8、13:9、(1)(2)(4) 10、2+611、(1)∵B 1D ⊥平面ABC ,AC ⊂平面ABC ,∴B 1D ⊥AC . 又∵BC ⊥AC ,B 1D ∩BC =D , ∴AC ⊥平面BB 1C 1C .(2)⎭⎬⎫AB 1⊥BC 1AC ⊥BC 1AB 1与AC 相交⇒⎭⎬⎫BC 1⊥平面AB 1C B 1C ⊂平面AB 1C ⇒BC 1⊥B 1C ,∴四边形BB 1C 1C 为菱形,∵∠B 1BC =60°,B 1D ⊥BC 于D ,∴D 为BC 的中点.连接A 1B ,与AB 1交于点E ,在三角形A 1BC 中,DE ∥A 1C , ∴A 1C ∥平面AB 1D . 12、(1)解:在四棱锥P ABCD -中,因PA ⊥底面ABCD ,AB ⊂平面ABCD ,故PA AB ⊥. 又AB AD ⊥,PAAD A =,从而AB ⊥平面PAD .故PB 在平面PAD 内的射影为PA ,从而APB ∠为PB 和平面PAD 所成的角. 在Rt PAB △中,AB PA =,故45APB =∠.所以PB 和平面PAD 所成的角的大小为45.(2)证明:在四棱锥P ABCD -中,因PA ⊥底面ABCD ,CD ⊂平面ABCD ,故CD PA ⊥. 由条件CD AC ⊥,PAAC A =,CD ∴⊥面PAC .又AE ⊂面PAC ,AE CD ∴⊥.由PA AB BC ==,60ABC =∠,可得AC PA =.E 是PC 的中点,AE PC ∴⊥,A BCDPE MPC CD C ∴=.综上得AE ⊥平面PCD .(3)解:过点E 作EM PD ⊥,垂足为M ,连结AM .由(2)知,AE ⊥平面PCD ,AM 在平面PCD 内的射影是EM ,则AM PD ⊥.(三垂线定理)因此AME ∠是二面角A PD C --的平面角.由已知,得30CAD =∠.设AC a =,得PA a =,3AD a =,3PD a =,2AE a =. 在Rt ADP △中,AM PD ⊥,AD PA PD AM ⋅=⋅∴,则a a aa PDAD PA AM 772321332=⋅=⋅=.在Rt AEM △中,414sin ==∠AM AE AME . 高一数学寒假作业(6)——直线与圆答案1——6 C C D D B B7. [-2,2] 8. ①⑤ 9. (-∞,4)10.3+11.[解析]∵AB 所在直线的方程为3x -4y -4=0,且AD 与AB 垂直,∴直线AD 的斜率为-43. 又点N 在直线AD 上,∴直线AD 的方程为y -13=-43(x +1),即4x +3y +3=0. 由⎩⎨⎧3x -4y -4=04x +3y +3=0,解得点A 的坐标为(0,-1). 又两条对角线交于点M ,∴M 为矩形ABCD 的外接圆的圆心.而|MA |=⎝ ⎛⎭⎪⎫0-122+(-1-0)2=52,∴外接圆的方程为⎝ ⎛⎭⎪⎫x -122+y 2=54.12.[解析] 当0≤x ≤10时,直线过点O (0,0),A (10,20),∴k OA =2010=2, ∴此时直线方程为y =2x ;当10<x ≤40时,直线过点A (10,20),B (40,30),此进k AB =30-2040-10=13,∴此时的直线方程为y -20=13(x -10),即y =13x +503;当x >40时,由题意知,直线的斜率就是相应放水的速度,设进水的速度为v 1,放水的速度为v 2,在OA 段时是进水过程,∴v 1=2.在AB 段是既进水又放水的过程,由物理知识可知,此时的速度为v 1+v 2=13,∴2+v 2=13.∴v 2=-53. ∴当x >40时,k =-53. 又过点B (40,30),∴此时的直线方程为y =-53x +2903.令y =0得,x =58,此时到C (58,0)放水完毕.综上所述:y =⎩⎪⎨⎪⎧2x ,0≤x ≤1013x +503,10<x ≤40-53x +2903,40<x ≤58.高一数学期末复习答案1--8 DDCBC ADB 9. (3,1) ; 10. 3 ; 11. 370x y --=和1x = 12. 5 ; 13. -314.解:(1)由四边形ABCD 为平行四边形知,AC 中点与BD 中点重合.∵ BD 中点为(11),, ∴ 点C 的坐标(33),. (2)由(11)A --,、(22)B -,知,直线AB 方程为340x y ++=,AB =又点(04)D ,到直线AB 的距离d ==∴ 平行四边形ABCD 的面积16S == 15.解:(1)由内角ABC ∠的平分线所在直线方程为2100x y -+=知,点B 在直线2100x y -+=上,设(210)B m m +,,则AB 中点D 的坐标为2214()22m m ++,. 由AB 边上的中线所在直线方程为250x y +-=知,点D 在直线250x y +-=上, ∴221425022m m +++⨯-= ,解得4m =-. ∴ 点B 的坐标为(42)-,. (2)设点()E a b ,与点(24)A ,关于直线2100x y -+=对称,则AE 中点在直线2100x y -+=上,且直线AE 与直线2100x y -+=垂直.∴ 242100224212a b b a ++⎧⨯-+=⎪⎪⎨-⎪⨯=-⎪-⎩,即220210a b a b -=-⎧⎨+=⎩,解得68a b =-⎧⎨=⎩. ∴ 点E 的坐标为(68)-,.由直线2100x y -+=为内角ABC ∠的平分线所在直线,知点E 在直线BC 上.∴ 直线BC 方程为822(4)6(4)y x --=+---,即3100x y ++=.16.解:因为V 半球=V 圆锥=因为V 半球<V 圆锥所以,冰淇淋融化了,不会溢出杯子.17. 解:(1)证明:设AC 和BD 交于点O ,连PO ,由P ,O 分别是DD 1,BD 的中点,故PO ∥BD 1,∵PO ⊂平面PAC ,BD 1⊄平面PAC ,所以,直线BD 1∥平面PAC .(2)长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=1,底面ABCD 是正方形,则AC ⊥BD ,又DD 1⊥面ABCD ,则DD 1⊥AC .∵BD ⊂平面BDD 1B 1,D 1D ⊂平面BDD 1B 1,BD ∩D 1D=D ,∴AC ⊥面BDD 1B 1.∵AC ⊂平面PAC ,∴平面PAC ⊥平面BDD 1B 1 .(3)由(2)已证:AC ⊥面BDD 1B 1,∴CP 在平面BDD 1B 1内的射影为OP ,∴∠CPO是CP 与平面BDD 1B 1所成的角. 依题意得,,在Rt △CPO 中,,∴∠CPO=30°∴CP 与平面BDD 1B 1所成的角为30°.18.解:(1)由()0f x ≤的解集为区间[]02,知,0a >,且()(2)f x ax x =-.又2()(2)(1)f x ax x a x a =-=--,0a >,且()f x 在在区间[]03,上的最大值为3, ∴ (3)33f a ==,1a =. ∴ 2()2f x x x =-.(2)① 20m -<≤或94m =-;924m -<≤-. ② 3 (3)设2()()(1)1(1)1g x f x x x x x x =--=--=--,0x 是方程()1f x x =-在区间0313()28x ∈,内的解. 由331()10222g =⨯-<,13135()10888g =⨯->,25259()10161616g =⨯-<知, 02513()168x ∈,.∵ 132510.181616-=<,∴ 方程()1f x x =-在区间0313()28x ∈,内的一个近似解为2516.友情提示:部分文档来自网络整理,供您参考!文档可复制、编辑,期待您的好评与关注!。
【高一】高一数学上册寒假作业题(附答案)
【高一】高一数学上册寒假作业题(附答案)四川省成都七中11-12学年高一上学期数学寒假作业(一)1、 :1.集合{}的子集有()a、 3 B.6 c.7 d.82.已知是第二象限角,那么是()a、第一象限角B.第二象限角C.第二或第四象限角D.第一或第三象限角 3.下列各式中成立的一项是()a、不列颠哥伦比亚省。
4.是第二象限角,为其终边上一点,,则的值为()a、不列颠哥伦比亚省。
5.函数的定义域是()a、不列颠哥伦比亚省。
6.点a(2,0),b(4,2),若ab=2ac,则点c坐标为()a、(1,-1)B.(1,-1)或(5,-1)C.(1,-1)或(3,1)d7.若函数是函数的反函数,其图像经过点,然后()a.b.c.d.8.图中显示了该功能的一些图像所示,则函数解析式为().a、 b。
c.d.9.以下哪个函数是幂函数()a.b.c.d.10.在下列主张中:①∥存在唯一的实数,使得;② 如果为“”,则单位为“”,单位为“?;③;④与共线,与共线,则与共线;⑤若正确命题的序列号为()a.①⑤b.②③④c.②③d.①④⑤11.设p为内点△ ABC,然后()a.b.c.d.12.如图所示,半圆AB=6的直径,O是圆的中心,C是半圆上与a和B不同的任何点。
如果P是半径OC上的移动点,最小值为()a.;b.9;c.;d.-9;二、问题:13.设集合,,且,则实数的取值范围是。
14.设向量满足,,若,则的值是_________;15.已知,上定义的函数的图像关于坐标原点和直线都是对称的,此时的值为________;16.已知定义域为r的函数对任意实数x、y满足得出以下结论:① ② 是一个奇怪的函数③ 是一个周期函数④内单调递增,其中正确的结论序号是________________;三、答复:17.已知集合,(1)如果有两个元素,找出实数的取值范围;(2)若中至多有一个元素,求实数的取值范围.18.当值已知时,(1)与垂直?(2)平行于?当它们平行时,它们是在同一个方向上还是在相反的方向上?19.对于函数,若存在实数,使=成立,则称为的不动点.(1)那时,寻找生命的固定点;(2)若对于任意实数,函数恒有两个不相同的不动点,求的取值范围.20.(1)如果已知它是奇数函数,求常数M的值;(2)画出函数的图象,并利用图象回答:k为何值时,方程无解?有一解?有两解?21.让函数同时具有,以及何时,,。
【全国通用】2020-2021年高一数学寒假作业全套含答案 (8套)
高一数学寒假作业(1)一、 选择题,每小题只有一项是正确的。
1.下列关系中正确的个数为( ); ①R ∈21 ②Q ∉2 ③*|3|N ∉- ④Q ∈-|3|A .1 个B .2 个C .3 个D .4 个2.设集合A={x |-1≤x ≤2},B={x |0≤x ≤4},则A ∩B=( )A .[0,2]B .[1,2]C .[0,4]D .[1,4]3.已知312.01.0)2(,)22(,2.1-===c b a ,则c b a ,,的大小关系是( ) A.c b a >> B .c a b >> C.a c b >> D .b a c >>4.对于任意实数a ,下列等式一定成立的是( )A .a a =33B . a a -=33C .a a =44D .a a -=445.下列各组函数中,表示同一函数的是 ( )A .xxy y ==,1 B .y y ==C .21,11x y y x x -==+- D . ||,y x y == 6.已知()f x 是R 上的奇函数,且当(],0x ∈-∞时,()lg(3)f x x x =--,那么(1)f 的值为( )A .0B .lg 3C .lg 3-D .lg 4-7.若函数()y f x =是函数()1x y a a a =>≠0,且的反函数,且()42f =-,则()f x =( )A .x 21B .x 21logC .x 2logD .2x8.下列函数中既是偶函数,又在区间(0,1)上是减函数的是A .||y x =B .2y x =-C .x x y e e -=+D .cos y x =9.若定义运算错误!未找到引用源。
,则函数错误!未找到引用源。
的值域是( )A .[1,+∞)B .(0,+∞)C .(-∞,+∞)D .(0,1]二、填空题10.A ={1,2},B ={2,3},则A ∪B = ______________.11.集合{}{}1,062-==<--=x y x B x x x A ,则A B ⋂=_____________12.已知上有两个不同的零点,则m 的取值范围是________.13.给出下列四个命题:①函数1y x=-在R 上单调递增;②若函数221y x ax =++在(,1]-∞-上单调递减,则1a ≤;③若0.70.7log (2)log (1)m m <-,则1m >-;④若()f x 是定义在R 上的奇函数,则(1)(1)0f x f x -+-=. 其中正确的序号是 .三、计算题14.(12分) 集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0}.(Ⅰ)若A ∩B =A ∪B ,求a 的值;(Ⅱ)若∅A ∩B ,A ∩C =∅,求a 的值.15. 已知函数22()log (1)log (1)f x x x =--+(1)求函数()f x 的定义域;(2)求1111()()()()2014201520142015f f f f ++-+-的值. 16.已知函数()f x 是定义在()0,+∞上的函数,且对于任意的实数,x y 有()()()f xy f x f y =+,当1x >时,()0f x >.(1)求证:()f x 在()0,+∞上是增函数(2)若(2)1f =,对任意的实数t ,不等式22(1)(1)2f t f t kt +--+≤恒成立,求实数k 的取值范围。
高一上册数学寒假作业高一上册数学寒假作业及答案
高一上册数学寒假作业高一上册数学寒假作业及答案高一上册数学寒假作业|高一上册数学寒假作业及答案高中新生应该根据自己的情况,以及高中阶段多学科知识、综合性强、知识与思维接触广泛的特点,寻找一套有效的学习方法。
今天,我们为全体学生整理了《高中一册数学寒假作业及答案》。
我希望这将有助于你的学习!高一上册数学寒假作业及答案(一)1.[0,1]上函数f(x)=x2的最小值为()a.1b.0c、 14天。
不存在解析:选b.由函数f(x)=x2在[0,1]上的图象(图略)知,F(x)=x2在[0,1]上单调增加,因此最小值为F(0)=02.函数f(x)=2x+6,x∈[1,2]x+7,x∈[-1,1],则f(x)的值、最小值分别为()a、 10,6b。
10,8c.8,6d.以上都不对分析:选择A.f(x)作为x的递增函数∈ [1,2],f(x)max=f(2)=10,f(x)min=f(-1)=63.函数y=-x2+2x在[1,2]上的值为()a、 1b。
二c.-1d.不存在分析:选择A。
因为函数y=-x2+2x=-(x-1)2+1,对称轴是x=1,开口是向下的,所以它是[1,2]上的单调递减函数,所以ymax=-1+2=14.函数y=1x-1在[2,3]上的最小值为()a、 2b。
十二c.13d.-12分析:选择B.函数y=1x-1作为[2,3]上的减法函数,∴ymin=13-1=12.5.一家公司同时在两地销售一辆品牌汽车,利润(单位:万元)分别为L1=-x2+21x和L2=2x,其中销量(单位:辆)如果公司在两地共销售15辆汽车,则可获得的利润为()a.90万元b.60万元c、 120万元d.1225万元解析:选c.设公司在甲地销售x辆(0≤x≤15,x为正整数),则在乙地销售(15-x)辆,∴公司获得利润l=-x2+21x+2(15-x)=-x2+19x+30.∴当x=9或10时,l为120万元,故选c.6.给定函数f(x)=-x2+4x+A,x∈ [0,1],如果f(x)的最小值为-2,则f(x)的值为()a.-1b.0c、 1d。
高一数学寒假作业答案
一、 选择题
1~5 BBACA 6~9DBDD
二、填空题
10. [-3,Βιβλιοθήκη 3], 11 . ,12.5,13.
三、计算题
14.
15.证明:(1)取CE的中点G,衔接FG,BG.由于F为CD的中点,所以GF∥DE且GF= DE. ----2分
由于AB⊥平面ACD,DE⊥平面ACD,所以AB∥DE,所以GF∥AB.
由于BG∥AF,所以BG⊥平面CDE.由于BG 平面BCE,
教员范读的是阅读教学中不可缺少的局部,我常采用范读,让幼儿学习、模拟。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗诵磁带,一边放录音,一边幼儿重复倾听,在重复倾听中体验、品味。所以平面BCE⊥平面CDE. -------------------------------------------10分
又由于AB= DE,所以GF=AB. --------------------------------------------------2分
所以四边形GFAB为平行四边形,那么AF∥BG.由于AF?平面BCE,BG 平面BCE,
所以AF∥平面BCE. --------------------------------------------------5分
融会贯串是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的展开,融会贯串被作为一种僵化的、阻碍先生才干开展的教学方式,渐渐为人们所摒弃;而另一方面,教员们又为提高先生的语文素养煞费苦心。其实,只需运用妥当,〝融会贯串〞与提高先生素质并不矛盾。相反,它恰是提高先生语文水平的重要前提和基础。
(2)由于△ACD为等边三角形,F为CD的中点,所以AF⊥CD,由于DE⊥平面ACD,AF 平面ACD,所以DE⊥AF.又CD∩DE=D,故AF⊥平面CDE. ------------------------8分
寒假作业含答案
高一寒假作业数学注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.已知集合{}1,2,3A =, ()(){}|120, B x x x x =+−<∈Z ,则A B 等于( )A . {}1B . {}1,2C . {}0,1,2,3D . {}1,0,1,2,3−2.点)在直线:10l ax y −+=上,则直线l 的倾斜角为( )A . 120°B . 60°C .45°D . 30°3.函数()f x =的定义域是( )A . {|23}x x <<B .{|23}x x x <>或C .{|23}x x x ≤≥或D .{|23}x x x <≥或4.一个球被两个平行平面截后所得几何体形如我国的一种民族打击乐器“鼓”,该“鼓”的三视图如图所示,则球的表面积为( ) A . 5π B . 10π C . 20πD .5.设,x y 为正数,且34x y =,当3x py =时,p 的值为( ) A . 3log 4 B . 4log 3 C . 36log 2 D . 3log 26.定义域为D 的奇函数()f x ,当0x >时,()()12f x f ≤=.给出下列命题:①[1,1]D −;②对任意, |()|2x D f x ∈≤;③存在0x D ∈,使得0()0f x =;④存在1x D ∈,使得1()1f x =.其中所有正确的命题的个数为( )A .0B .1C . 2D .37.如图,1111ABCD A B C D −为正方体,下列结论错误..的是( )A . 11BD CB D ∥平面 B . 1AC BD ⊥C . 111AC CBD ⊥平面 D . 异面直线AD 与1CB 所成角为60°8.定义在R 上的偶函数()f x 的图象关于直线1x =对称,当[0,1]x ∈时,()21f x x =−+,设函数|1|1()(13)2x g x x − =−<<,则函数()f x 与()g x 的图象交点个数为( )A . 3B . 4C . 5D . 69.如图1,直线EEEE 将矩形纸AAAAAAAA 分为两个直角梯形AAAAEEEE 和AAAAEEEE ,将梯形AAAAEEEE 沿边EEEE 翻折,如图2,在翻折的过程中(平面AAAAEEEE 和平面AAAAEEEE 不重合),下面说法正确的是( )图1 图2A . 存在某一位置,使得AAAA ∥平面AAAAEEEEB . 在翻折的过程中,AAEE ∥平面AAAAEE 恒成立C . 存在某一位置,使得AAEE ⊥平面AAAAEEEE D.在翻折的过程中,AAEE ⊥平面AAAAEEEE 恒成立10.我国魏晋时期的数学家刘徽创立了割圆术,也就是用内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长,这种用极限思想解决数学问题的方法是数学史上的一项重大成就.现作出圆222x y +=的一个内接正八边形,使该正八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该正八边形的一条边所在直线的为( )A .1)0x y +−−= B .1)0x y += C .1)0x y −+= D .1)0x y −−+=11.设集合{|48}x A x =>,集合2{|210,0}B x x ax a =−−≤>,若A B 中恰含有一个整数,则实数a 的取值范围是( )A .34,43B .41,3C .3,4 +∞D .(1,)+∞12.在直角坐标系内,已知(3,3)A 是C 上一点,折叠该圆两次使点A 分别与圆上不相同的两点(异于点A )重合,两次的折痕方程分别为xx −yy +1=0和xx +yy −7=0,若C 上存在点P ,使90MPN ∠=°,其中M 、N 的坐标分别为(,0)m −、(,0)m ,则m 的最大值为( )A . 4B . 5C . 6D . 7第II 卷(非选择题)二、填空题13.已知过点(1,)A m −和(,5)B m 的直线与310x y −−=平行,则m 的值为______. 14.给定下列四个命题:①过直线外一点可作无数条直线与已知直线平行;②如果一条直线不在这个平面内,那么这条直线就与这个平面平行; ③垂直于同一直线的两条直线可能相交、可能平行也可能异面; ④若两个平面分别经过两条垂直直线,则这两个平面互相垂直。
高一数学寒假作业及答案
高一数学寒假作业及答案集合及其运算一、填空题:(本大题共10小题,每小题5分,共50分) 1.集合{}5,4,3,2,1=M 的子集个数是 ▲2.如果集合A={x|ax 2+2x +1=0}中只有一个元素,则a 的值是 ▲ 3.设A={x|1<x <2},B={x|x <a}满足A ⊆B ,则实数a 的取值范围是 ▲ 4.满足{1,2,3} ≠⊂M ≠⊂{1,2,3,4,5,6}的集合M 的个数是 ▲5.全集I={0,1,2,3,4},集合A={0,1,2,3},B={2,3,4},则A C I ∪B C I = ▲6.集合A={a 2,a +1,-1},B={2a -1,| a -2 |, 3a 2+4},A ∩B={-1},则a 的值是 ▲ 7.已知集合M={(x ,y)|4x +y=6},P={(x ,y)|3x +2y=7},则M ∩P 等于 ▲ 8.设集合A={x|x ∈Z 且-10≤x ≤-1},B={x|x ∈Z 且|x|≤5 },则A ∪B 中元素的个数为 ▲ 9.集合M={a|a-56∈N ,且a ∈Z},用列举法表示集合M= ▲ 10.设集合A={x|x 2+x -6=0},B={x|mx +1=0},且A ∪B=A ,则m 的取值范围是 ▲ 答案:1. 2.3. 4. 5. 6. 7. 8. 9. 10.二、解答题:(共4题,11题10分,12题12分13、14题14分,共50分) 11.已知集合A ={x |-1<x <3},A ∩B =∅,A ∪B =R ,求集合B .12.已知集合A={-3,4},B={x|x2-2px+q=0},B≠φ,且B⊆A,求实数p,q的值.13.已知集合A={x∈R|x2-2x-8=0},B={x∈R|x2+ax+a2-12=0},B⊆A,求实数a的取值集合.14.集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0(1)若A∩B=A∪B,求a的值;(2)若∅A∩B,A∩C=∅,求a的值.高一数学寒假作业(二)函 数(A )一、填空题:(本大题共10小题,每小题5分,共50分) 1.已知函数5)(-=ax x f ,f(-1)=1,则=)3(f ▲ 2.函数223)(-+=x x x g 的值域为 ▲ 3.把函数x x x f 2)(2-=的图象向左平移1个单位长度,再向下平移2个单位长度,得到函数图象对应解析式为 ▲4.一次函数)(x f ,满足 19))((+=x x f f ,则)(x f = ▲ 5.下列函数:①y=2x +1②y=3x 2+1③y=x2④y=2x 2+x +1,其中在区间(0,+∞)上不是增函数的函数是 ▲ (填序号)6.函数)(x f 的图像与函数g(x)=3-2x 关于坐标原点对称,则=)(x f ▲7. 函数2x x y -=)(R x ∈的递减区间为 ▲8.已知函数f(x)=a-121+x ,若f(x)为奇函数,则a = ▲ 9.得到函数3lg 10x y +=的图像只需把函数lg y x =的图像上所有的点 ▲10.已知二次函数)()(2R x c bx ax x f ∈++=的部分对应值如下表:则函数)(x f 的最 ▲ 值为 ▲答案:1. 2.3. 4. 5. 6. 7. 8. 9. 10.二、解答题:(共4题,11题10分12题12分,13、14题14分,共50分) 11.已知)1(11)(-≠+=x xx f ,)(,2)(2R x x x g ∈+=. (1)求)2(),2(g f 的值;(2)求)]2([g f 的值.12.函数f(x)在其定义域(-1,1)上单调递增,且f(a-1)<f(1-a 2),求a 的取值范围。
高一数学寒假作业1及答案
(第15题图)寒假作业(1)一、选择题:1.已知MP 、OM 、AT 分别为θ(42ππθ<<)的正弦线、余弦线、正切线,则一定有( )A .MP OM AT << B.OM MP AT <<C.AT OM MP << D.OM AT MP <<2.半径为3cm 的圆中,有一条弧,长度为2πcm ,则此弧所对的圆心角为 ( )A. 30 B .15 C .40 D .203.设34sin ,cos 55αα=-=,那么下列各点在角α终边上的是 ( )A .(3,4)-B .(4,3)-C .(4,3)-D .(3,4)-4.设集合,{|0},A B x x ==>R 则从集合A 到集合B 的映射f 只可能是 ( ) A .||x y x =→ B .xy x 2=→ C .x y x 2log =→ D .22x y x x →=-5.若1tan 2α=-,则2212sin cos sin cos αααα+-的值为 ( ) A .3- B .13- C .13D .36.已知α为第四象限角,则πα-是第几象限角 ( )A.一 B .二 C .三 D .四7.已知函数()sin,()tan()2x f x g x x ππ+==-,则 ( )A .()f x 与()g x 都是奇函数B .()f x 与()g x 都是偶函数C .()f x 是奇函数,()g x 是偶函数D .()f x 是偶函数,()g x 是奇函数8.要得到y=tan2x 的图像,只需把y=tan(2x+6π)的图像 ( )A.向左平移6π个单位 B.向右平移6π个单位C.向左平移12π个单位 D.向右平移12π个单位 9.已知θ为第二象限角,则下列四个值中,一定大于0的是 ( )A. sin 2θ B.cos2θ C.tan2θD.sin2θ10.函数xy a =≠-b(a>0且a 1)的图像不经过第一象限,则 ( )A 、11><-a b 且B 、11<<-a b 且C 、11<≥a b 且D 、11<≤a b 且11.实数x 满足θsin 1log 3+=x ,则|)9||1(|log 2-+-x x 的值为 ( )A .22B .3C .4D .与θ有关12.若函数1()log ()(011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a= ( ) A .12B C .2 D .2二、填空题:13.函数1x sin 2y -=的定义域为_____________________________. 14.函数2sin cos 1y x x =-+15.电流强度I (安培)随时间t I = A sin (ωt+ϕ))0,0(>>A ω则当t = 120716.设)(x f 是定义域为R,且最小正周期为π2的函数,并且 ⎩⎨⎧<<-<≤=)0(cos )0(sin )(x x x x x f ππ则)411(π-f =_______________________.三、解答题:本题17—21小题每题12分,22小题14分,共74分,解答应写出文字说明、证明过程或演算步骤.17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合..18.(12分)(1)已知2tan =α,求)sin()tan()23sin()2cos()sin(αππαπααπαπ----+---的值 (2)已知1cos(75),180903αα+=-<<- 其中,求sin(105)cos(375)αα-+- 的值.19.(12分)如图,在ΔABC 中,D 、E 为边AB 的两个三等分点,CA → =3,CB →=2,试用,表示、CD → 、CE →20.已知函数22sin sin 23cos y x x x =++,求 (1)函数的最小值及此时的x 的集合。
高一上学期数学寒假作业(每天一套)(含答案) (6)
高一上学期数学寒假作业06一、选择题(本大题共12小题,共60.0分)1.设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=()A. {x|0<x≤1}B. {x|0<x<1}C. {x|1≤x<2}D. {x|0<x<2}2.直线x-2y+1=0关于直线x=1对称的直线方程是()A. x+2y-1=0B. 2x+y-1=0C. 2x+y-3=0D. x+2y-3=03.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()4.已知a=log2e,b=ln2,c a,b,c的大小关系为()A. a>b>cB. b>a>cC. c>b>aD. c>a>b5.已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A. 若m∥α,n∥α,则m∥nB. 若m⊥α,n⊂α,则m⊥nC. 若m⊥α,m⊥n,则n∥αD. 若m∥α,m⊥n,则n⊥α6.函数y=-x4+x2+2的图象大致为()7.x2+y2-4y所截得的弦长为()A. B. 28.根据有关资料,汽车二级自动驾驶仪能够处理空间复杂度的上限M约为1010,目前人类可预测的地面危机总数N约为36×230.()(参考数据:lg2≈0.30,lg3≈0.48)9.设四面体的六条棱的长分别为2,2,2,2和的两条棱是异面直线,则该四面体的外接球的表面积为()A. 5πB. 20πC. 12πD. 3π10.已知函数f(x)=ln x)+1,f(a)=4,则f(-a)=()A. -4B. 2C. -2D. 311.如图,在正方形SG1G2G3中,E、F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE、SF及EF把这个正方形折成一个四面体,使G1、G2、G3三点重合,重合后的点记为G,那么,二面角S-EF-G的正切值是()A. C. 2 D. 312.设函数f(x)f(x)+f(1的x的取值范围是()A. ()B. (-∞,0)C.D.二、填空题(本大题共4小题,共20.0分)13.已知函数f(x)g(x)=f(x)所有零点之积为______.15.过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C的方程为______.16.如图,在棱长为1的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为______.三、解答题(本大题共6小题,共70.0分)17.(Ⅰ(Ⅱ)在△ABC中,∠B,∠C的内角平分线分别为x=0,y=x,A(3,-1),求BC 边所在的直线方程.18.如图,在正方体ABCD-A1B1C1D1中.(Ⅰ)求证:B1D⊥平面A1C1B;(Ⅱ)求BD1与平面A1C1B所成角的正弦值.19.设函数f(x)是二次函数,且f(x+1)-f(x-1)=3x-2对一切实数x成立,若f(0)=1.(Ⅰ)求f(x)的表达式;(Ⅱ)设A={x|f(x)=x,x∈R},B={x|f(f(x))=x,x∈R}.(i)求证A⊆B;(ii)若2∈A,函数f(x)在区间[m,m+1]上的最小值大于2,求实数m的取值范围.20.视某地全体中小学生为群体S,S的人均回家时间是指某次S中成员从学校到家的平均用时.S的成员以乘私家车方式或绿色出行(乘公交、骑自行车、步行、家长骑电动车接)方式回家.调查发现:当S中x%(0<x<100)的成员乘私家车时,乘私家车群体的人均回家时间为f(x)均回家时间不受x的影响,恒为40分钟,根据上述分析结果回答下列问题:(Ⅰ)当x在什么范围内时,绿色出行群体的人均回家时间小于乘私家车群体的人均回家时间?(Ⅱ)求该地中小学生群体S的人均回家时间g(x)的表达式,讨论g(x)的单调性,求g(x)的最小值,并说明其实际意义.21.如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角P-AC-D的大小;(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由.22.已知圆C经过点P(1,3),Q(2,0),且圆心在直线y=x+1上.(Ⅰ)求圆C的标准方程;(Ⅱ)已知点A与点Q关于y轴对称,点B在圆C上(与点A不重合),记AB的中点为M,且|OA|=|OM|,求直线AB的方程.答案和解析1.【答案】B【解析】【分析】本题考查了集合的化简与运算问题,是基础题.根据补集、交集的定义即可求出.【解答】解:∵A={x|0<x<2},B={x|x≥1},∴∁R B={x|x<1},∴A∩(∁R B)={x|0<x<1},故选B.2.【答案】D【解析】解:解法一(利用相关点法)设所求直线上任一点(x,y),则它关于x=1对称点为(2-x,y)在直线x-2y+1=0上,∴2-x-2y+1=0化简得x+2y-3=0故选答案D.解法二:根据直线x-2y+1=0关于直线x=1对称的直线斜率是互为相反数得答案A或D,再根据两直线交点在直线x=1选答案D故选:D.设所求直线上任一点(x,y),关于x=1的对称点求出,代入已知直线方程,即可得到所求直线方程.本题采用两种方法解答,一是相关点法:求轨迹方程法;法二筛选和排除法.本题还有点斜式、两点式等方法.3.【答案】A【解析】【分析】本题看出简单几何体的三视图的画法,是基本知识的考查.直接利用空间几何体的三视图的画法,判断选项的正误即可.【解答】解:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A.故选:A.4.【答案】D【解析】【分析】本题考查了对数函数及其性质的运用,比较大小,考查了对数运算和变形能力,属于基础题.根据对数函数的单调性和对数运算法则,求出a、b、c的大致范围,即可作出比较.【解答】则a,b,c的大小关系c>a>b,故选D.5.【答案】B【解析】【分析】本题考查空间直线与平面的位置关系,考查直线与平面的平行、垂直的判断与性质,记熟这些定理是迅速解题的关键,注意观察空间的直线与平面的模型,属于基础题.A.运用线面平行的性质,结合线线的位置关系,即可判断;B.运用线面垂直的性质,即可判断;C.运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D.运用线面平行的性质和线面垂直的判定,即可判断.【解答】解:A.若m∥α,n∥α,则m,n相交或平行或异面,故A错;B.若m⊥α,n⊂α,则m⊥n,故B正确;C.若m⊥α,m⊥n,则n∥α或n⊂α,故C错;D.若m∥α,m⊥n,则n∥α或n⊂α或n⊥α或n与α相交,故D错.故选B.6.【答案】D【解析】【分析】本题主要考查函数的图象的识别和判断,利用函数过定点以及判断函数的单调性是解决本题的关键.属于基础题.根据函数图象的特点,求函数的导数利用函数的单调性进行判断即可.【解答】解:函数过定点(0,2),排除A,B.函数的导数f′(x)=-4x3+2x=-2x(2x2-1),由f′(x)>0得2x(2x2-1)<0,得x<0<x由f′(x)<0得2x(2x2-1)>0,得x x<0,此时函数单调递减,排除C,也可以利用f(1)=-1+1+2=2>0,排除A,B,故选D.7.【答案】A【解析】解:根据题意:直线方程为:y,∵圆x2+y2-4y=0,∴圆心为:(0,2),半径为:2,圆心到直线的距离为:d=1,∴弦长为故选:A.先由题意求得直线方程,再由圆的方程得到圆心和半径,再求得圆心到直线的距离,即可求解.8.【答案】B【解析】解:汽车二级自动驾驶仪能够处理空间复杂度的上限M约为1010,目前人类可预测的地面危机总数N约为36×230.两边取常用对数,可得-6×0.48-30×0.30=-1.88.故选:B.本题考查对数的运算性质,考查运算求解能力,是基础题.9.【答案】A【解析】【分析】将四面体放在长方体中,设长方体的长、宽、高分别为x、y、z,根据题中条件列勾股定理,可得出长方体的体对角线长,即为四面体的外接球直径,再利用球体表面积公式可得出答案.本题考查球体表面积的计算,解决本题的关键在于找出合适的模型计算处球体的半径,考查计算能力,属于中等题.【解答】解:如下图所示,四面体ABCD AC=AD=BC=BD=2,可将四面体ABCD放在长方体AEDF-GBHC,设BG=x,CG=y,AG=z,2(x2+y2+z2)=10,则x2+y2+z2=5,设四面体ABCD的外接球直径为2R,则(2R)2=x2+y2+z2=5,因此,该四面体外接球的表面积为4πR2=π×(2R)2=5π.故选:A.10.【答案】C【解析】【分析】根据对数函数的运算性质,结合条件建立方程关系进行求解即可.本题主要考查函数值的计算,结合对数函数的运算性质进行转化是解决本题的关键.【解答】解:∵f(a)=4,。
2022高一数学寒假作业及答案
不同函数模型测试题二 1.某动物数量 y(只)与时间 x(年)的关系为 y=alog2(x+1), 设第一年有 101 只,那么到第七年它们开展到() A.300 只 B.400 只 C.500 只 D.600 只 解析:选 A.由确定第一年有 101 只,得 a=101,将 a=101, x=7 代入 y=alog2(x+1),得 y=300. 2.马先生于两年前购置了一部手机,此时此刻这款手机的价 格已降为 1010 元,设这种手机每年降价 20%,那么两年前这部手 机的价格为() A.1535.5 元 B.1440 元 C.1620 元 D.1562.5 元 解 析 : 选 D. 设 这 部 手 机 两 年 前 的 价 格 为 a , 那 么 有 a(1-0.2)2=1010,解得 a=1562.5 元,应选 D. 3.为了改善某地的生态环境,政府决心绿化荒山,打算第一 年先植树 0.5 万亩,以后每年比上年增加 1 万亩,结果第 x 年植 树亩数 y(万亩)是时间 x(年数)的一次函数,这个函数的图象是() 解析:选 A.当 x=1 时,y=0.5,且为递增函数. 4.某单位为鼓舞职工节约用水,作出了如下规定:每月用水 不超过 10m3,按每立方米 x 元收取水费;每月用水超过 10m3,超 过局部加倍收费,某职工某月缴费 16x 元,那么该职工这个月实
第6页 共9页
家发觉,两岁燕子的飞行速度可以表示为函数 v=5log2Q10,单位 是 m/s,其中 Q 表示燕子的耗氧量.
(1)试计算:燕子静止时的耗氧量是多少个单位? (2)当一只燕子的耗氧量是 80 个单位时,它的飞行速度是多 少? 解:(1)由题意知,当燕子静止时,它的速度为 0,代入题目 所给公式可得 0=5log2Q10,解得 Q=10, 即燕子静止时的耗氧量为 10 个单位. (2)将耗氧量 Q=80 代入公式得 v=5log28010=5log28=15(m/s), 即当一只燕子耗氧量为 80 个单位时,它的飞行速度为 15m/s. 高一数学寒假作业及答案 5 集合的含义与表示练习一 1.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是 () A.{x|x 是小于 18 的正奇数} B.{x|x=4k+1,k∈Z,且 k0,所以 m<1. 答案:m<1 4. 用适当的方法表示以下集合: (1)全部被 3 整除的整数;
高一数学(必修二)寒假作业(立体几何)Word版含答案
高一数学(必修二)寒假作业(立体几何)第Ⅰ卷(选择题,48分)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求。
)1.若α、β是不重合的平面,a 、b 、c 是互不相同的空间直线,则下列命题中为真命题的是 ( ) ① 若α//a ,α//b ,则b a // ; ② 若α//c ,α⊥b ,则b c ⊥ ; ③ 若α⊥c ,β//c ,则βα⊥ ;④ 若α⊂b ,α⊂c 且b a ⊥,c a ⊥,则α⊥a A.③④ B. ①② C. ①④ D. ②③2.下列四个命题:①平行于同一平面的两条直线相互平行 ②平行于同一直线的两个平面相互平行 ③垂直于同一平面的两条直线相互平行 ④垂直于同一直线的两个平面相互平行 其中正确的有A .4个 B.3个 C.2个 D.1个3.某几何体的三视图如图所示,则该几何体的体积为( )A 、163πB 、203πC 、403πD 、5π4.已知正四棱锥的各棱棱长都为23,则正四棱锥的外接球的表面积为( ) A .π12B .π36C .π72D .π1085.某几何体的三视图如图所示,则该几何体的体积为A.168π+B.88π+C.1616π+D.816π+6..a ,b 表示空间不重合两直线,α,β表示空间不重合两平面,则下列命题中正确的是( )A.若α⊂a ,β⊂b ,且b a ⊥,则βα⊥B.若βα⊥,α⊂a ,β⊂b 则b a ⊥C.若α⊥a ,β⊥b ,βα//则b a //D.若βα⊥,α⊥a ,β⊂b ,则b a //7.下列命题中为真命题的是( ) A .平行于同一条直线的两个平面平行 B .垂直于同一条直线的两个平面平行C .若—个平面内至少有三个不共线的点到另—个平面的距离相等,则这两个平面平行.D .若三直线a 、b 、c 两两平行,则在过直线a 的平面中,有且只有—个平面与b ,c 均平行.8.如图是一个组合几何体的三视图,则该几何体的体积是 . A 36128π+ B 3616π+ C 72128π+ D 7216π+9.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( ) A .若l m ⊥,m α⊂,则l α⊥ B .若l α⊥,l m //,则m α⊥ C .若l α//,m α⊂,则l m // D .若l α//,m α//,则l m //10.已知某几何体的三视图如右图所示,其中,主(正)视图,左(侧)视图均是由直角三角形与半圆构成,俯视图由圆与内接直角三角形构成,根据图中的数据可得此几何体的 体积为( )16+ (B) 4136π+12+ (D)2132π+11.已知圆柱1OO 底面半径为1,高为π,ABCD 是圆柱的一个轴截面.动点M 从点B 出发沿着圆柱的侧面到达点D ,其距离最短时在侧面留下的曲线Γ如图所示.现将轴截面ABCD 绕着轴1OO 逆时针旋转 (0)θθπ<≤后,边11B C 与曲线Γ相交于点P ,设BP 的长度为()f θ,则()y f θ=的图象大致为( )12.某三棱锥的侧视图和俯视图如图--1所示,则该三棱锥的体积为( )A .4 3B .8 3C .12 3D .243第Ⅱ卷(非选择题,共72分)二、填空题(本大题共4个小题,每小题4分,共16分)13.如图,在三棱柱ABC C B A -111中, F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V _____.14. 已知圆的方程为22680x y x y +--=.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为 .15.如右图为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成..ABC1ADE F1B1C16.已知某个几何体的三视图如图(正视图中的弧线是半圆),图中标出的尺(单位:㎝), 可得这个几何体表面是 cm 2。
高一数学寒假作业同步练习题函数的应用含解析
函数的应用1.函数()1x f x e x =++零点所在的区间是( )A .()0,1B .()1,0-C .()2,1--D .()1,2【答案】C 【详解】()00120f e =+=>,()11120f e e =++=+>,()111110f e e ---=-+=>,()2222110f e e ---=-+=-<,()2222130f e e =++=+>()()210f f ∴-⋅-< ()f x ∴零点所在区间为()2,1--故选:C 。
2.函数()11,01,0x f x x x x ⎧+>⎪=⎨⎪+≤⎩的零点是()A .1-B .0C .1D .2【答案】A【详解】当0x >时,令0f x ,则110x+=,解得1x =-,不满足0x >,舍去;当0x ≤时,令0fx,则10x +=,解得1x =-,满足0x ≤.所以,函数()f x 的零点是1-.故选:A.3.下列函数中,在()1,1-内有零点且单调递增的是( ) A .212y x =-B .3y x =-C .13log y x =D .31xy =-【答案】D 【详解】对于A ,212y x =-,为二次函数,在(1,0)-上为减函数,不符合题意;对于B ,3y x =-,在(1,1)-上为减函数,不符合题意;对于C,13y log x =,其定义域为(0,)+∞,在(1,0)-上没有定义,不符合题意;对于D,31x y =-,在(1,1)-上有零点0x =,且在(1,1)-为增函数,符合题意;故选:D4.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系( 2.718kx by ee +==⋯为自然对数的底数,k b ,为常数)。
若该食品在0℃的保鲜时间是192h ,在22℃的保鲜时间是48h ,则该食品在33℃的保鲜时间是( ) A .16h B .20h C .24h D .26h【答案】C【详解】由题可知当0x =时,192y =;当22x =时,48y =,2219248bk b e e +⎧=∴⎨=⎩,解得1119212b k e e ⎧=⎪⎨=⎪⎩,则当33x =时,()3333111192242k bk b y e ee +⎛⎫==⋅=⨯= ⎪⎝⎭.故选:C.5.某种杂志原以每本2.5元的价格销售,可以售出8万本.据市场调查,杂志的单价每提高0。
高一数学寒假作业1答案
高一数学寒假作业(一)一、选择题1.下列图形中不一定是平面图形的是( )A. 三角形B. 四边相等的四边形C. 梯形D.平行四边形 2.图(1)是由下面哪个平面图形旋转得到的( )A B C D3.若直线经过(1,0)A 、(43B ,)两点,则直线AB 的倾斜角是( ) A. 30º B. 45º C. 60º D. 120º 4.以(1,2)-为圆心,5为半径的圆的方程为 ( )A .x 2+y 2-2x +4y =0 B .x 2+y 2+2x +4y =0 C .x 2+y 2+2x -4y =0 D .x 2+y 2-2x -4y =0 5.直线134x y+=与x 、y 轴所围成的三角形的周长等于( ) A. 6 B. 12 C. 24 D. 606.一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A.8π2cm B.12π2cmC.16π2cmD.20π2cmππ1243323222==⇒=⇒==⇒=R S R a R a7.一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如右图(2)所示(单位cm ),则该三棱柱的表面积为( )A.24π2cm B.2483+2cmC.1432cmD.1832cm8.设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥;②若αβ//,βγ//,m ⊥α,则m ⊥γ;③若m //α,n //α,则m n //;④若αγ⊥,βγ⊥,则//αβ。
其中正确命题的序号是 ( ) A .①和② B .②和③C .③和④D .①和④9.已知实数,x y 满足2222(5)(12)25,x y x y ++-=+那么的最小值为( ) A .5B . 8C . 13D .1810.如图(3),正方体ABCD-A 1B 1C 1D 1中,1M A B ∈,1,N B C ∈111113A MB N A B BC ==,A A MN ⊥AC MN 正视图322侧视图俯视图图(2)图(1)平面ABCD .其中正确结论的序号是( )(请写出所有正确的结论) A .①②④ B .①④ C .①③④ D .②④11.若动点P 1(x 1,y 1),P 2(x 2,y 2)分别在直线l 1: x – y – 5 =0 与l 2: x –y –15 =0 上移动,则P 1P 2 的中点到原点的距离的最小值是( ) A .522 B .52 C .1522D .152 12.如图(7),正方体ABCD -1111A B C D 的棱长为2,动点E 、F 在棱11A B 上,动点P ,Q 分别在棱AD ,CD 上,若EF=1,1A E= x ,DQ= y ,D P=z(x,y,z大于零),则三棱锥P-E FQ的体积A .与x,y,z都有关B .与x有关,与y,z无关C .与y有关,与x,z无关D .与z有关,与x,y无关 ; 其中正确的结论是( ). 二、填空题13.如图(4)所示,在正方体1111ABCD A B C D -中,E 是棱1CC 的中点,则直线AE 与平面11ADD A 所成的角的正弦值为32. 14.若直线12:310:2(1)10l ax y l x a y ++=+++=与平行,则a = -3或2 . 15.如果对任何实数k ,直线(3)(12)10k x k y ++-+=都过一个定点A ,那么点A 的坐标是 )71,72(--. 16.如图(5),AB 是⊙O 的直径,C 是圆周上不同于A 、B 的任意一点,⊥PA 平面ABC ,则四面体ABC P -的四个面中,直角三角形的个数有 4 个.17. 在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB 、AD 边分别在x 轴、y 轴的正半轴上,点A 与坐标原点重合(如右图(6)所示).将矩形沿斜率为1-的直线折叠一次,使点A 落在线段DC 上,则这条直线的方程为 1+-=x y .18.已知直线m 、n 及平面α,其中m//n ,那么在平面α内到两条直线m 、n 距离相等的点的集合可能是:(1)一条直线;(2)一个平面;(3)一个点;(4)空集.其中正确的是 (1)(2) (请填正确序号) 三、解答题19.已知直线l 经过直线1l :50ax y +-=与2l :20x y -=的交点P (1)若直线1l 和2l 垂直,求a 的值;(a =2)(2)在(1)的前提下,若点(5,0)A 到l 的距离为3,求直线l 的方程.(01134,2=-+=y x x) 图(4)图(7)CB o (A)xD y 图(6)图(5)20.如图,在三棱锥P ABC -中,E F 、分别为AC BC 、的中点. (1) 求证:EF 平面PAB ;(2) 若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=º,求证:平面PEF ⊥平面PBC21.如图所示是长方体截去一个角后得到的几何体,其中底面ABCD 是边长为23的正方形,且高2BE =,H 为AG 中点. (I )求四棱锥E-ABCD 的体积;(8)(II )正方形ABCD 内(包括边界)是否存在点M ,使三棱锥H-AMB 体积是四棱锥E-ABCD 体积的18?若存在,请指出满足要求的点M 的轨迹,并在图中画出轨迹图形;若不存在,请说明理由.22.如图(1),边长为2的正方形ABEF 中,D 、C 分别为EF 、AF 的点,且ED CF =.现沿DC 把CDF ∆剪切、拼接成如图(2)的图形,再将BEC ∆、CDF ∆、ABD ∆沿BC 、CD 、BD 折起,使E F A 、、三点重合于点A '. (1) 求证:BA CD '⊥; (2) 求四面体B A CD '-体积的最大值.(31)23、如图,已知点(0,3)A -,动点P 满足2PA PO =,其中O 为坐标原点,动点P 的轨迹为曲线C . 过原点O 作直线11:,l yk x 交曲线C 于点11(,)E x y 、22(,)F x y ,再过原点O 作直线22:l yk x ,交曲线C 于点33(,)G x y 、44(,)H x y (其中240,0y y ).(1)求曲线C 的轨迹方程;(4)1(22=-+y x ) (2)求证:2341121234k x x k x x x x x x 。
高一数学寒假作业答案
高一数学寒假作业答案高一数学寒假作业答案高一数学寒假作业答案一、选择题1.对于集合A,B,AB不成立的含义是A.B是A的子集B.A中的元素都不是B的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A[答案] C[解析] AB成立的含义是集合A中的任何一个元素都是B的元素.不成立的含义是A中至少有一个元素不属于B,应选C.A.{a}?MB.a?MC.{a}MD.aM[答案] A[解析] ∵a=3536=6,aM,{a}?M.3.以下四个集合中,是空集的是[答案] B[解析] 选项A、C、D都含有元素.而选项B无元素,应选B.A.A=BB.A?BC.B?AD.以上都不对[答案] A[解析] A、B中的元素显然都是奇数,A、B都是有所有等数构成的集合.故A=B.选A.[探究] 假设在此题的根底上演变为kN.又如何呢?答案选B你知道吗?A.1B.-1C.0,1D.-1,0,1[答案] D[解析] ∵集合A有且仅有2个子集,A仅有一个元素,即方程ax2+2x+a=0(aR)仅有一个根.当a=0时,方程化为2x=0,x=0,此时A={0},符合题意.当a0时,=22-4aa=0,即a2=1,a=1.此时A={-1},或A={1},符合题意.a=0或a=1.A.PQB.PQC.P=QD.以上都不对[答案] D[解析] 因为集合P、Q代表元素不同,集合P为数集,集合Q为点集,应选D.二、填空题[答案] m1[解析] ∵M=,2mm+1,m1.8.集合x,yy=-x+2,y=12x+2{(x,y)}y=3x+b},那么b=________.[答案] 2[解析] 解方程组y=-x+2y=12x+2得x=0y=2代入y=3x+b得b=2.[答案] M=P[解析] ∵xy0,x,y同号,又x+y0,x0,y0,即集合M 表示第三象限内的点.而集合P表示第三象限内的点,故M=P.三、解答题10.判断以下表示是否正确:(1)a(2){a}{a,b};(3)?{-1,1};(4){0,1}={(0,1)};[解析] (1)错误.a是集合{a}的元素,应表示为a{a}.(2)错误.集合{a}与{a,b}之间的关系应用?表示.(3)正确.空集是任何一个非空集合的真子集.(4)错误.{0,1}是一个数集,含有两个元素0,1,{(0,1)}是一个以有序实数对(0,1)为元素的集合,所以{0,1}{(0,1)}.[解析] 由AB.(1)当A=时,应有2a-2a+24.得2a-212.设S是非空集合,且满足两个条件:①S{1,2,3,4,5};②假设aS,那么6-aS.那么满足条件的S有多少个?[分析^p ] 此题主要考察子集的有关问题,解决此题的关键是正确理解题意.非空集合S所满足的第一个条件:S是集合{1,2,3,4,5}的任何一个子集,第二个条件:假设aS,那么6-aS,即a和6-a都是S中的元素,且它们允许的取值范围都是1,2,3,4,5.[解析] 用列举法表示出符合题意的全部S:{3},{1,5},{2,4},{1,3,5},{2,3,4},{1,2,4,5},{1,2,3,4,5}.共有7个.[点评] 从此题可以看出,S中的元素在取值方面应满足的条件是:1,5同时选,2,4同时选,3单独选.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019学年高一数学寒假作业试题及答案
数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科。
小编准备了高一数学寒假作业试题及答案,具体请看以下内容。
2019学年高一数学寒假作业试题及答案
一、选择题
1.对于集合A,B,AB不成立的含义是()
A.B是A的子集
B.A中的元素都不是B的元素
C.A中至少有一个元素不属于B
D.B中至少有一个元素不属于A
[答案] C
[解析] AB成立的含义是集合A中的任何一个元素都是B的元素.不成立的含义是A中至少有一个元素不属于B,故选
C.
2.若集合M={x|x6},a=35,则下列结论正确的是()
A.{a}?M
B.a?M
C.{a}M
D.aM
[答案] A
[解析] ∵a=3536=6,
即a6,a{x|x6},
aM,{a}?M.
[点拨] 描述法表示集合时,大括号内的代表元素和竖线后的制约条件中的代表形式与所运用的符号无关,如集合
A={x|x1}=B{y|y1},但是集合M={x|y=x2+1,xR}和
N={y|y=x2+1,xR}的意思就不一样了,前者和后者有本质的区别.
3.下列四个集合中,是空集的是()
A.{0}
B.{x|x8,且x5}
C.{xN|x2-1=0}
D.{x|x4}
[答案] B
[解析] 选项A、C、D都含有元素.而选项B无元素,故选
B.
4.设集合A={x|x=2k+1,kZ},B={x|x=2k-1,kZ},则集合A,B间的关系为()
A.A=B
B.A?B
C.B?A
D.以上都不对
[答案] A
[解析] A、B中的元素显然都是奇数,A、B都是有所有等数构成的集合.故A=B.选A.
[探究] 若在此题的基础上演变为kN.又如何呢?答案选B你知道吗?
5.已知集合A={x|ax2+2x+a=0,aR},若集合A有且只有2个子集,则a的取值是()
A.1
B.-1
C.0,1
D.-1,0,1
[答案] D
[解析] ∵集合A有且仅有2个子集,A仅有一个元素,即方程ax2+2x+a=0(aR)仅有一个根.
当a=0时,方程化为2x=0,
x=0,此时A={0},符合题意.
当a0时,=22-4aa=0,即a2=1,a=1.
此时A={-1},或A={1},符合题意.
a=0或a=1.
6.设集合P={x|y=x2},集合Q={(x,y)}y=x2},则P,Q的关系是()
A.PQ
B.PQ
C.P=Q
D.以上都不对
[答案] D
[解析] 因为集合P、Q代表元素不同,集合P为数集,集合Q为点集,故选D.
二、填空题
7.已知集合M={x|2m
[答案] m1
[解析] ∵M=,2mm+1,m1.
8.集合x,yy=-x+2,y=12x+2{(x,y)}y=3x+b},则b=________.
[答案] 2
[解析] 解方程组y=-x+2y=12x+2得x=0y=2
代入y=3x+b得b=2.
9.设集合M={(x,y)}x+y0,xy0}和P={(x,y)|x0,y0},那么M与P的关系为________.
[答案] M=P
[解析] ∵xy0,x,y同号,又x+y0,x0,y0,即集合M表示第三象限内的点.而集合P表示第三象限内的点,故M=P.
三、解答题
10.判断下列表示是否正确:
(1)a
(2){a}{a,b};
(3)?{-1,1};
(4){0,1}={(0,1)};
(5){x|x=3n,nZ}={x|x=6n,nZ}.
[解析] (1)错误.a是集合{a}的元素,应表示为a{a}.
(2)错误.集合{a}与{a,b}之间的关系应用?()表示.
(3)正确.空集是任何一个非空集合的真子集.
(4)错误.{0,1}是一个数集,含有两个元素0,1,{(0,1)}是一个以有序实数对(0,1)为元素的集合,所以{0,1}{(0,1)}.
(5)错误.集合{x|x=3n,nZ}中的元素表示所有能被3整除的
数,或者说是3的倍数,而{x|x=6n,nZ}中的元素表示所有能被6整除的数,即是6的倍数,因此应有{x|x=6n,nZ}?{x|x=3n,nZ}.
11.已知集合A={x|2a-2
[解析] 由已知AB.
(1)当A=时,应有2a-2a+24.
(2)当A时,由A={x|2a-2
得2a-2
综合(1)(2)知,所求实数a的取值范围是{a|01,或a4}.
12.设S是非空集合,且满足两个条件:①S{1,2,3,4,5};
②若aS,则6-aS.那么满足条件的S有多少个?
[分析] 本题主要考查子集的有关问题,解决本题的关键是正确理解题意.非空集合S所满足的第一个条件:S是集合{1,2,3,4,5}的任何一个子集,第二个条件:若aS,则6-aS,即a和6-a都是S中的元素,且它们允许的取值范围都是1,2,3,4,5.
[解析] 用列举法表示出符合题意的全部S:{3},{1,5},{2,4},{1,3,5},{2,3,4},{1,2,4,5},{1,2,3,4,5}.共有7个.
[点评] 从本题可以看出,S中的元素在取值方面应满足的条件是:1,5同时选,2,4同时选,3单独选.
死记硬背是一种传统的教学方式,在我国有悠久的历史。
但
随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。
其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。
相反,它恰是提高学生语文水平的重要前提和基础。
高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高一数学寒假作业试题及答案,希望大家喜欢。
“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
其中“师傅”更早则意指春秋时国君的老师。
《说文解字》中有注曰:“师教人以道者之称也”。
“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。
“老师”的原意并非由“老”而形容“师”。
“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。
“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。
慢慢“老师”之说也不再有年龄的限制,老少皆可适用。
只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。
今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。