统计学参数估计精

合集下载

参数估计三要素

参数估计三要素

参数估计三要素参数估计是统计学中非常重要的一部分,它涉及到如何通过样本数据来得到总体参数的估计值。

而参数估计的实质就是利用样本信息来推断总体信息。

在进行参数估计的过程中需要掌握三要素,分别是点估计、区间估计以及最小二乘估计。

一、点估计点估计就是通过样本数据,估计总体参数的具体数值,也就是说利用样本数据来估计总体参数的单个值,这个单个值有可能等于总体参数,但也有可能不等于总体参数。

因为样本数据是有误差的,并且不能代表总体,所以点估计得到的估计量只是在数值上比较接近总体参数,而不是完全等于总体参数。

常见的点估计方法有矩估计和最大似然估计。

矩估计就是通过样本的前几个矩来估计总体参数的值,并且要求估计量是样本矩的函数。

最大似然估计是通过知道样本中观测值的概率分布,来确定估计量的值。

而在实际应用中,矩估计和最大似然估计常常同时使用,这样能够提高估计量的精确度。

点估计通过样本数据,确定总体参数的具体数值,它有其实际意义,但在实际应用中不能确定它的准确性。

二、区间估计点估计得到的估计量通常由于样本误差,不能代表总体参数。

在进行参数估计时,我们还需要确定一个区间,使得这个区间内的任一数值均可能是总体参数的真实值,这个区间就是区间估计。

对于总体参数的区间估计,我们可以利用统计量来求解。

如对于正态分布总体,其参数$\mu$,则样本均值是其最佳估计,而其标准差是未知的,所以我们的目的是得到一个包含总体参数的置信区间来进行估计。

假设总体的分布是正态分布,求出样本均值和样本标准差,以及统计学的知识,可以得到一个置信区间。

这个置信区间就是在某个置信水平下,总体参数落在这个区间内的概率为这个置信水平。

总体参数的置信区间是通过样本统计量计算而来的,而这个样本统计量的置信区间大小和置信水平有关,也和样本数量有关。

在实际应用中,当样本数量越大时,区间估计的精度就会越高。

三、最小二乘估计在线性回归分析中,最小二乘估计是一种广泛使用的估计方法。

统计学中的参数估计方法

统计学中的参数估计方法

统计学中的参数估计方法统计学中的参数估计方法是研究样本统计量与总体参数之间关系的重要工具。

通过参数估计方法,可以根据样本数据推断总体参数的取值范围,并对统计推断的可靠性进行评估。

本文将介绍几种常用的参数估计方法及其应用。

一、点估计方法点估计方法是指通过样本数据来估计总体参数的具体取值。

最常用的点估计方法是最大似然估计和矩估计。

1. 最大似然估计(Maximum Likelihood Estimation)最大似然估计是指在给定样本的条件下,寻找最大化样本观察值发生的可能性的参数值。

它假设样本是独立同分布的,并假设总体参数的取值满足某种分布。

最大似然估计可以通过求解似然函数的最大值来得到参数的估计值。

2. 矩估计(Method of Moments)矩估计是指利用样本矩与总体矩的对应关系来估计总体参数。

矩估计方法假设总体参数可以通过样本矩的函数来表示,并通过求解总体矩与样本矩的关系式来得到参数的估计值。

二、区间估计方法区间估计是指根据样本数据来估计总体参数的取值范围。

常见的区间估计方法有置信区间估计和预测区间估计。

1. 置信区间估计(Confidence Interval Estimation)置信区间估计是指通过样本数据估计总体参数,并给出一个区间,该区间包含总体参数的真值的概率为预先设定的置信水平。

置信区间估计通常使用标准正态分布、t分布、卡方分布等作为抽样分布进行计算。

2. 预测区间估计(Prediction Interval Estimation)预测区间估计是指根据样本数据估计出的总体参数,并给出一个区间,该区间包含未来单个观测值的概率为预先设定的置信水平。

预测区间估计在预测和判断未来观测值时具有重要的应用价值。

三、贝叶斯估计方法贝叶斯估计方法是一种基于贝叶斯定理的统计推断方法。

贝叶斯估计将先验知识与样本数据相结合,通过计算后验概率分布来估计总体参数的取值。

贝叶斯估计方法的关键是设定先验分布和寻找后验分布。

《统计学》第10讲 参数估计(复习+习题)

《统计学》第10讲  参数估计(复习+习题)
22
(二)方差的区间估计
1.总体方差的区间估计
对于来自正态总体的容量为n的简单随机样本,统 计量 n 1s 2 / 2 服从自由度为 n 1 的卡方分布。
n 1 s 2

2
~ 2 n 1
总体方差在1- 置信水平下的置信区间为
2 n 1 s
2
2 2 2 2 s1 s2 s1 s2 , F 2 F1 2
F分布两个自由度
24
(三)总体比率区间估计
1.单样本比率的区间估计
当样本容量充分大时,样本比率p近似服从以总体比
率P为数学期望,以P(1-P)/n为方差的正态分布。
1. 样本比率的数学期望
E (p) P
2. 样本比率的方差
P (1 P ) n
n1 n2
18
( n1 3 0, n 2 3 0 )
大样本,方差已知(两个总体分布没有要求)
1. 两个样本均值之差 x 1 x 2 的抽样分布服从正态
分布,其数学期望为两个总体均值之差
E (x1 x 2 ) 1
2
2. 方差为各自的方差之和

2 x1 x 2
12 22 n1 n2

分别从两个独立的随机总体中抽取容量为n1和n2的 独立样本,当两个样本都为大样本时,两个样本比 率之差的抽样分布可用正态分布来近似。 数学期望为
• •
E ( p 1 p 2 ) P1 P 2
方差为各自的方差之和

27
2 p1 p 2
P1 (1 P1 ) P2 (1 P2 ) n1 n2

2
2 2 x n

统计学参数估计

统计学参数估计

统计学参数估计参数估计是统计学中的一个重要概念,它是指在推断统计问题中,通过样本数据对总体参数进行估计的过程。

这一过程是通过样本数据来推断总体参数的未知值,从而进行总体的描述和推断。

在统计学中,参数是指总体的其中一种特征的度量,比如总体均值、总体方差等。

而样本则是从总体中获取的一部分观测值。

参数估计的目标就是基于样本数据来估计总体参数,并给出估计的精确程度,即估计的可信区间或置信区间。

常见的参数估计方法包括点估计和区间估计。

点估计是一种通过单个数值来估计总体参数的方法。

点估计的核心是选择合适的统计量作为估计量,并使用样本数据计算出该统计量的具体值。

常见的点估计方法包括最大似然估计和矩估计。

最大似然估计是一种寻找参数值,使得样本数据出现的概率最大的方法。

矩估计则是通过样本矩的函数来估计总体矩的方法。

然而,点估计只能提供一个参数的具体值,无法提供该估计值的精确程度。

为了解决这个问题,区间估计被引入。

区间估计是指通过一个区间来估计总体参数的方法。

该区间被称为置信区间或可信区间。

置信区间是在一定置信水平下,总体参数的真值落在该区间内的概率。

置信区间的计算通常涉及到抽样分布、标准误差和分位数等概念。

在实际应用中,参数估计经常用于统计推断、统计检验和决策等环节。

例如,在医学研究中,研究人员可以通过对患者进行抽样调查来估计其中一种药物的有效性和不良反应的发生率。

在市场调研中,市场研究人员可以通过抽取部分样本来估计一些产品的市场份额或宣传效果。

参数估计的准确性和可靠性是统计分析的关键问题。

估计量的方差和偏倚是影响估计准确性的主要因素,通常被称为估计量的精确度和偏倚性。

经典的参数估计要求估计量是无偏且有效的,即估计量的期望值等于真值,并且方差最小。

总之,参数估计是统计学中的一个重要概念,它通过样本数据对总体参数进行估计,并给出估计值的精确程度。

参数估计在统计推断、统计检验和决策等领域具有广泛的应用。

估计量的准确性和可靠性是参数估计的关键问题,通常通过方差和偏倚的分析来评价估计量的性质。

统计学参数估计PPT课件

统计学参数估计PPT课件
实际应用中需要注意的问题
在应用参数估计时,需要注意样本的代表性、数据的准确性和可靠性等问题, 以保证估计的准确性和可靠性。
对未来研究的建议
01
进一步探讨参数估计的理论基础
可以进一步探讨参数估计的理论基础,如大数定律和中心极限定理等,
以更好地理解和掌握参数估计的方法和原理。
02
探索新的估计方法
随着统计学的发展,可以探索新的参数估计方法,以提高估计的准确性
指导决策
评估效果
基于参数估计结果,制定科学合理的 决策。
利用参数估计,评估政策、项目等实 施效果。
预测未来
通过参数估计,预测未来的趋势和变 化。
02
参数估计的基本概念
点估计
定义
点估计是用一个单一的数值来估 计未知参数的值。
举例
在调查某班级学生的平均身高时, 我们可能使用所有学生身高的总 和除以人数来估计平均身高,这 里的总和除以人数就是点估计。
最小二乘法的缺点是假设误差项独立 同分布,且对异常值敏感,可能影响 估计的稳定性。
最小二乘法的优点是简单易行,适用 于线性回归模型,且具有优良的统计 性质。
贝叶斯估计法
贝叶斯估计法是一种基于贝叶 斯定理的参数估计方法,通过 将先验信息与样本数据相结合 来估计参数。
贝叶斯估计法的优点是能够综 合考虑先验信息和样本数据, 给出更加准确的参数估计。
高维数据的参数估计问题
1 2 3
高维数据对参数估计的影响
随着数据维度的增加,参数估计的复杂度和难度 也会相应增加,容易出现维度诅咒等问题。
高维数据参数估计的方法
针对高维数据,可以采用降维、特征选择、贝叶 斯推断等方法进行参数估计,以降低维度对估计 的影响。

统计学总体参数估计

统计学总体参数估计
习题三
配对号
来自总体A 旳样本
来自总体B旳样本
1
2
0
2
5
7
3
10
6
4
8
5
第六章 总体参数估计
第六章 总体参数估计
1、假定条件两个总体服从二项分布能够用正态分布来近似两个样本是独立旳2、两个总体百分比之差P1-P2在1- 置信水平下旳置信区间为
第六章 总体参数估计
【例】在某个电视节目旳收视率调查中,农村随机调查了400人,有32%旳人收看了该节目;城市随机调查了500人,有45%旳人收看了该节目。试以95%旳置信水平估计城市与农村收视率差别旳置信区间
【例】一家瓶装饮料制造商想要估计顾客对一种新型饮料认知旳广告效果。他在广告前和广告后分别从市场营销区各抽选一种消费者随机样本,并问询这些消费者是否据说过这种新型饮料。这位制造商想以10%旳误差范围和95%旳置信水平估计广告前后懂得该新型饮料消费者旳百分比之差,他抽取旳两个样本分别应涉及多少人?(假定两个样本容量相等)
10名学生两套试卷旳得分
学生编号
试卷A
试卷B
差值d
1
78
71
7
2
63
44
19
3
72
61
11
4
89
84
5
6
91
74
17
5
49
51
-2
7
68
55
13
8
76
60
16
9
85
77
8
10
55
39
16
第六章 总体参数估计
解: 根据样本数据计算得
两种试卷所产生旳分数之差旳置信区间为6.33分~15.67分

统计学参数估计公式

统计学参数估计公式

统计学参数估计公式统计学参数估计公式指的是通过统计学方法估计参数的一组数学公式。

不同的统计学参数估计公式各有特点、应用场景和优劣,它们通常用来估计描述性统计或者回归系统的参数。

本文将讨论统计学参数估计公式,并详细说明下面常见参数估计公式:极大似然估计、贝叶斯估计、最小二乘估计、局部加权线性回归和最小化重要性采样。

极大似然估计(MLE)也叫最大似然估计,是一种基于极大似然法的估计统计量的方法。

它的目的是最大化制定概率模型的参数的后验概率。

MLE得出的结果往往比矩估计更加精确。

与贝叶斯估计不同,MLE不需要选择先验分布,且不考虑实证概率,只考虑已知数据。

贝叶斯估计(Bayesian Estimation)是基于概率模型进行参数估计时,结合预先取得的知识,使用条件概率的方法。

基于已有的先验知识,贝叶斯估计将未知参数的概率分布转化为后验的概率,以此来进行估计。

贝叶斯估计法可以克服极大似然估计出现的不平滑问题,而且还能考虑实证概率的影响。

最小二乘估计(Least Square Estimation,LSE)是一种基于数据拟合的参数估计方法。

它将未知数参数表示为一个函数,并使得残差平方和最小,最小化残差平方和来估计未知参数,也就是拟合曲线最适合数据点。

实际运用中往往会遇到过度拟合和欠拟合等问题,所以LSE在多项式回归时需要采用正则化项依据损失函数来控制模型的复杂度,以避免过拟合的情况。

局部加权线性回归(Local Weighted Linear Regression,LWLR)是一种用来解决非线性问题的回归方法。

它的特点是对未知的值的预测引入了权重,在线性回归的基础上引入一个滑动窗口,把预测点以外的点的权重不断减少,越靠近预测点的点的权重越大,这样做的目的是为了使参数估计更加准确和稳定。

最小化重要性采样(Minimum Importance Sampling,MIS)是一种非参数估计参数的方法,它不会估计参数本身,而是通过采样数据而且采样频次是以后验分布的形式定义的,从而用采样数据来估计参数的分布。

统计学总体参数估计

统计学总体参数估计
第六章 总体参数估计
例题:一家保险公司收集到由36投保人组成的随机样本,得到每个投保人的年龄数据如表所示。试建立投保人年龄90%的置信区间。样本标准差: 表:36个投保人年龄的数据 S=
23
35
39
27
36
44
36
42
46
43
31
33
42
53
45
54
第六章 总体参数估计
1 12, 22已知时,两个总体均值之差1-2在1- 置信水平下的置信区间为 2
2 12、 22未知时,两个总体均值之差1-2在1- 置信水平下的置信区间为
第六章 总体参数估计
例1 某地区教育委员会想估计两所中学的学生高考时的英语平均分数之差,为此在两所中学独立抽取两个随机样本,有关数据如右表 ,建立两所中学高考英语平均分数之差95%的置信区间
第六章 总体参数估计
例题: 一家食品生产企业以生产袋装食品为主,每天的产量大约为8000袋左右。按规定每袋的重量应为100g。为对产量质量进行监测,企业质监部门经常要进行抽检,以分析每袋重量是否符合要求。现从某天生产的一批食品中随机抽取了25袋,测得每袋重量(单位:g)如表所示。
第六章 总体参数估计
二、总体比例的区间估计(大样本) 总体比例P在 置信水平下的置信区间 当P未知时,用p来代替P
第六章 总体参数估计
例题: 某城市要估计下岗职工中女性所占的比例,随机抽取了100名下岗职工,其中65人为女性。试以95%的置信水平估计该城市下岗职工中女性比例的置信区间。
A
B
较小的样本容量
较大的样本容量
P( )
第六章 总体参数估计
第二节 一个总体参数的区间估计

统计学 第七章 参数估计

统计学 第七章 参数估计

[
]
2 χα (n) (n)的α 分位数,记为k≜ n k≜
抽样分布
(3)性质 • 若X服从χ2 (n),则均值E(X)=n ,方差 D(X) =2n 。 • χ2分布具有可加性。若 X1,X2相互独立,
X1~ χ2(n1) ,X2~χ2(n2)
则(X1+X2)~χ2(n1+n2) • 当n→∞时,χ2分布渐进于正态分布
σ
2
~ χ (n −1)
2
第三节两个总体参数的区 间估计(112页)
• • • • • • • 一、两个总体均值之差的区间估计 (一)两个总体均值之差的估计:独立样本 大样本:近似于正态分布 小样本: (1)两个总体的方差均已知,近似于正态分布 (2)两个总体的方差均未知但相等,近似于t分布 (3)两个服从正态分布的总体的方差均未知且不等, 但样本容量相等,近似于t分布 • (4)两个总体的方差均未知且不等,样本容量也不 等,近似于t分布,自由度为V
• 解:求(3)的计算步骤: • ①求样本指标:
x =1000小时
σ=50 (小时)
µ x=
σ
n

50 100
=(小时) 5
• ②根据给定的F(t)=95%,查概率表得t=1.96。 • ③根据∆x=t×µx=1.96×5=9.8,计算总体平均耐 用时间的上、下限: x − ∆ x=1000-9.8=990.(小时) 2 • 下限 x +∆ x=1000+9.8=1009 .(小时) 8 • 上限 • 所以,以95%的概率保证程度估计该批产品的平均耐 用时间在990.2~1009.8小时之间。
f (x;θ ) 其中 θ
或概率密度为
是未知参数。 是未知参数。
如何求极大似然估 计量呢? 计量呢?

统计学中的参数估计方法

统计学中的参数估计方法

统计学中的参数估计方法统计学是一门研究收集、分析和解释数据的学科。

在统计学中,参数估计是其中一个重要的概念,它允许我们通过样本数据来推断总体的特征。

本文将介绍统计学中常用的参数估计方法,包括点估计和区间估计。

一、点估计点估计是一种通过样本数据来估计总体参数的方法。

在点估计中,我们选择一个统计量作为总体参数的估计值。

常见的点估计方法有最大似然估计和矩估计。

最大似然估计是一种基于样本数据的估计方法,它通过选择使得观察到的数据出现的概率最大的参数值来估计总体参数。

最大似然估计的核心思想是找到一个参数估计值,使得观察到的数据在该参数下出现的概率最大化。

最大似然估计方法在统计学中被广泛应用,它具有良好的渐进性质和统计学性质。

矩估计是另一种常用的点估计方法,它基于样本矩的性质来估计总体参数。

矩估计的核心思想是将样本矩与总体矩相等,通过求解方程组来得到参数的估计值。

矩估计方法相对简单,易于计算,但在样本较小或总体分布复杂的情况下,可能会出现估计不准确的问题。

二、区间估计区间估计是一种通过样本数据来估计总体参数的方法,它提供了参数估计的置信区间。

在区间估计中,我们通过计算样本数据的统计量和抽样分布的性质,得到一个包含真实参数的区间。

置信区间是区间估计的核心概念,它是一个包含真实参数的区间。

置信区间的计算依赖于样本数据的统计量和抽样分布的性质。

常见的置信区间计算方法有正态分布的置信区间和bootstrap置信区间。

正态分布的置信区间是一种常用的区间估计方法,它基于样本数据的统计量服从正态分布这一假设。

通过计算样本数据的均值和标准差,结合正态分布的性质,我们可以得到一个包含真实参数的置信区间。

Bootstrap置信区间是一种非参数的区间估计方法,它不依赖于总体分布的假设。

Bootstrap方法通过从原始样本中有放回地抽取样本,生成大量的重采样数据集,并计算每个重采样数据集的统计量。

通过分析这些统计量的分布,我们可以得到一个包含真实参数的置信区间。

统计学第7讲参数估计

统计学第7讲参数估计
• 1544,1468,1399,1759,1526,1212,1256,1456,1553, 1259,1469,1366,1197,1178
• 将此数据作为样本,商店开张后经过该地的人数作为总体。 在95%的置信度下,能否知道每天经过此地的人数?
案例二: 参数估计在品牌认知度中应用
例 某食品厂准备上市一种新产品,并配合以相应的广告 宣传,企业想通过调查孩子们对其品牌的认知情况来 评估广告的效用,以制定下一步的市场推广计划。他 们在该地区随机抽取350个小孩作访问对象,进行儿童 消费者行为与消费习惯调查,其中有一个问句是“你 听说过这个牌子吗?”,在350个孩子中,有112个小 孩的回答是“听说过”。根据这个问句,可以分析这 一消费群体对该品牌的认知情况。食品厂市场部经理 要求,根据这些样本,给定95%的置信度,估计该地 区孩子认知该品牌的比例。
优点:简单、具体明确
缺点:没有给出估计值接近总体参数的程度,也无法说明估 计结果有多大的把握程度。
(一)常用的点估计量
1.总体均值点估计量(样本均值)


x
1 n
n i 1
xi
2.总体方差与标准差点估计量(样本方差与标准差)
2

S2

1 n 1
n i 1
( xi
x)2
S
lnL(, 2 ; x1,
, xn ) n ln
2

n 2
ln
2

1
2
2
n i 1
( xi )2
对, 2求偏导数并令其为零.
ln L 1 n
2 i1
(xi ) 0
ln L
2

统计学 参数估计

统计学 参数估计
1. 假定条件


总体服从正态分布,且方差(2) 已知
如果不是正态分布,可由正态分布来近似 (n 30)
2. 使用正态分布统计量 z
x
z
~ N (0,1)
n
3. 总体均值 在1- 置信水平下的置信区间为

s
x z 2
或 x z 2
( 未知)
n
n
总体均值的区间估计
的比例为0.323~0.517
【练习】某保险 解:已知 n=100,p=25% , 1- =
95%,z/2=1.96
公司欲了解本地
区汽车保险的出
p(1 p)
p z 2
险情况。随机抽
n
查 了 100 辆 机 动
25%(1 25%)
车过去一年的保
25% 1.96
100
单,其中有25份
2. 使用正态分布统计量 z
p
z
~ N (0,1)
(1 )
3.
n
总体比例 在 1- 置信水平下的置信区间为
p (1 - p )
p z 2
n
【例】某所大学想要了解应届毕业生在大
四找到工作的学生中女生所占的比例,随
机抽取了100名找到工作的应届毕业生,其
中42人为女生。试以95%的置信水平估计该
保单பைடு நூலகம்出险记录
16.51%,33.49%
。 试 以 95% 的 置
该城市下岗职工中女性比例的置
信度估计该地区
信区间为16.51%~33.49%
汽车保险出险率
的置信区间。
三、总体方差的区间估计
总体方差的区间估计
1. 估计一个总体的方差或标准差

统计学中的参数估计与假设检验

统计学中的参数估计与假设检验

统计学中的参数估计与假设检验统计学是一门研究如何收集、整理、分析和解释数据的学科。

参数估计和假设检验是统计学中两个重要的概念和方法,用于推断总体参数和判断假设是否成立。

本文将详细介绍参数估计与假设检验的基本原理和应用。

一、参数估计参数估计是通过样本数据推断总体的未知参数。

在统计学中,总体是指研究对象的全体,而样本是从总体中抽取的一部分。

参数是总体的特征指标,例如均值、方差、比例等。

参数估计旨在通过样本数据对总体参数进行估计,并给出估计的精度。

参数估计分为点估计和区间估计两种方法。

点估计是通过样本数据计算得到的单个数字,用来估计总体参数的具体数值。

常见的点估计方法有最大似然估计、矩估计和贝叶斯估计等。

区间估计是通过样本数据计算得到的一个范围,该范围包含总体参数真值的概率较高。

置信区间是区间估计的一种形式,它可以用来描述估计值的不确定性。

二、假设检验假设检验是用于检验研究问题的特定假设是否成立的一种统计推断方法。

在假设检验中,我们提出一个原假设和一个备择假设,并根据样本数据对两个假设进行比较,进而判断原假设是否应该被拒绝。

原假设通常表示一种无关,即不发生预期效应或差异。

备择假设则表示研究者所期望的效应或差异。

在进行假设检验时,我们首先选择一个适当的统计检验方法,例如t检验、F检验或卡方检验等。

然后,计算出样本数据的检验统计量,并根据相关的分布理论和显著性水平进行推论。

最后,比较检验统计量与临界值,以决定是否拒绝原假设。

三、参数估计与假设检验的应用参数估计和假设检验在实际问题中有广泛的应用。

以医学研究为例,研究人员可能希望通过抽样来估计某种药物的有效剂量,并对药效进行假设检验。

在市场调研中,我们可以使用参数估计和假设检验来推断总体的需求曲线和做出市场预测。

在质量控制中,我们可以利用参数估计和假设检验来判断产品是否符合标准。

四、总结参数估计和假设检验是统计学中重要的方法,可以通过样本数据来推断总体参数和判断假设是否成立。

《统计学》第4章 参数估计

《统计学》第4章 参数估计
此,在用点估计值代表总体参数值时,还应考虑点估计值的可靠性及其
与总体参数之间的偏差。然而,由于可靠性由抽样标准误差决定,一个
具体的点估计值无法给出可靠性的度量。此外,总体参数的真值未知,
我们也无法得到点估计值与总体参数之间的偏差大小。这个问题可以通
过区间估计来解决。
第四章 参数估计
《统计学》
17
4.2 区间估计
求得的መ 1 , 2 , … , 称为的极大似然估计值,相应的估计量
መ 1 , 2 , … , 称为的极大似然估计量。
第七章 参数估计
《统计学》
14
4.2 点估计与区间估计
极大似然估计(MLE) 的一般步骤如下:
(1) 由总体分布导出样本的联合概率函数(或联合密度函数);
平表示所有区间中有95% 的区间包含总体参数真值,因此A 队的估计结果
中有5% 的区间(1 个) 未包含总体平均身高的真值。同理,90% 的置信水
平表示所有区间中有90% 的区间包含总体参数真值,因此B 队的估计结果
中有10% 的区间(2 个) 未包含总体平均身高的真值。由该例也可以看到,
尽管总体参数的真值是固定的,但基于样本构造的置信区间会随着样本的
计方法,其实质是根据样本观测值发生的可能性达到最大这一原则来选
取未知参数的估计量,理论依据就是概率最大的事件最可能出现。
设X1, X2 , … , Xn是从总体X中抽取的一个样本,样本的联合密度函数(连续
型) 或联合概率函数(离散型) 为

ෑ ( , ) 。
=1
第七章 参数估计
《统计学》
13
区间估计(Interval estimate) 指在点估计的基础上,给出总体参数

统计学参数估计

统计学参数估计

统计学参数估计统计学是一门研究如何收集、处理、分析和解释数据的学科,参数估计是统计学中的重要内容之一。

参数估计旨在利用样本数据来推断总体参数的取值范围,从而为决策和推断提供依据。

本文将介绍统计学参数估计的基本概念和方法。

一、参数估计的概念在统计学中,参数是描述总体特征的数字指标,如总体均值、方差、比例等。

总体是指我们研究的对象的全体,参数是对总体特征的数值度量。

而样本是从总体中抽取的一部分个体,样本统计量是对总体参数的估计。

参数估计就是通过样本数据推断总体参数的过程。

二、最大似然估计最大似然估计是一种常用的参数估计方法。

它基于一个假设:样本观察值是从总体中独立抽取的,并且满足某种概率分布。

最大似然估计的目标是找到一个参数值,使得观察到的样本出现的概率最大。

以估计总体均值为例,假设总体服从正态分布。

根据最大似然估计的原理,我们需要找到一个样本均值和样本方差,使得样本观察值出现的概率最大。

通常情况下,我们使用样本均值作为总体均值的估计值,并使用样本方差除以样本容量的平方根作为总体均值的标准误差的估计值。

三、区间估计除了点估计,我们经常需要给出参数估计的置信区间。

置信区间是估计总体参数的取值范围,其中包含了真实参数值的可能性特定置信水平。

常见的置信水平有95%和99%,意味着我们有95%或99%的置信度相信参数落在该区间内。

求解置信区间的方法有很多,其中一种常用的方法是使用样本均值加减总体均值的标准误差乘以相应的分位数来计算。

这样得到的区间便是总体参数的置信区间。

四、样本容量对参数估计的影响样本容量对参数估计的精度具有重要影响。

当样本容量较小时,估计的不确定性较高;而样本容量增加时,估计的精度会提高。

这是由于大样本可以更好地反映总体特征,减少抽样误差的影响。

五、假设检验在进行参数估计时,我们常常需要对总体参数是否等于某个给定的值进行假设检验。

假设检验的目的是评估参数估计结果的显著性,判断其是否具有实际意义。

统计学参数估计

统计学参数估计

统计学参数估计统计学参数估计是统计学中一种重要的方法,它通过观察样本数据来估计总体参数的值。

参数是描述总体特征的数值,例如总体均值、总体比例等。

参数估计的目的是根据样本信息对总体参数进行推断,从而得到总体特征的近似值。

参数估计的过程通常分为点估计和区间估计两种方法。

点估计是指根据样本数据求出总体参数的一个数值估计量,例如样本均值、样本比例等。

点估计的基本思想是用样本统计量作为总体参数的估计值,它是参数的无偏估计量时,表示点估计是一个良好的估计。

区间估计是指根据样本数据求出一个区间,这个区间包含总体参数的真值的概率较高,通常用置信区间表示。

区间估计的基本思想是总体参数位于一个区间中的可能性,而不是一个确定的值。

置信区间的构造依赖于样本统计量的分布以及总体参数的估计量的抽样分布。

点估计和区间估计的方法有很多,其中最常用的是最大似然估计和矩估计。

最大似然估计是指根据已知样本观测值,选择使样本观测值出现的概率最大的总体参数作为估计值。

最大似然估计的基本思想是找到一个参数值,使得已观测到的样本结果出现的概率尽可能大。

矩估计是指根据样本矩的观测值,选择使样本矩的偏差与总体矩的偏差最小的总体参数作为估计值。

矩估计的基本思想是利用样本矩估计总体矩,从而近似估计总体参数。

参数估计在实际应用中具有广泛的应用价值。

例如,在医学研究中,需要对患者的疾病概率进行估计,以帮助医生做出正确的诊断和治疗决策。

在经济学研究中,需要对经济指标(如GDP、通胀率等)进行估计,以帮助政府制定宏观经济政策。

在市场调研中,需要对消费者行为进行估计,以帮助企业确定产品定价和市场策略。

然而,参数估计也存在一些局限性。

首先,参数估计的结果仅仅是对总体参数的估计,并不是总体参数的确切值。

其次,参数估计的结果受到样本容量的影响,样本容量越大,估计结果越可靠。

另外,参数估计还需要满足一些假设条件,如总体分布的形式、样本的独立性等,如果这些假设条件不满足,估计结果可能会失效。

参数估计量的评价标准

参数估计量的评价标准

参数估计量的评价标准参数估计量是统计学中一项重要的工作,它用于从样本数据中推断出总体参数的数值。

在实际应用中,对于参数估计量的质量评价非常关键,因为它直接影响了统计推断的准确性和可靠性。

建立一套完善的参数估计量评价标准对于统计学领域的发展和应用具有重要意义。

1. 估计精度估计精度是评价参数估计量的一个关键指标,它反映了估计结果与真实参数值之间的偏差程度。

通常采用置信区间的长度或均方误差来度量估计精度,较小的置信区间长度或者均方误差意味着估计精度较高,反之则意味着估计精度较低。

2. 一致性参数估计量的一致性是指在样本容量逐渐增大的情况下,估计值能够无偏地收敛于真实参数值。

一致性可以通过大数定律来进行评价,如果估计量在样本容量增大时具有一致性,就可以认为其具有良好的性质。

3. 有效性有效性是指在所有无偏估计中,方差最小的那个估计被称为有效估计。

有效性评价的是估计量对参数的敏感程度,对于同一参数,若能够得到更小的方差,则具有更高的有效性。

4. 渐进正态性对于大样本来说,参数估计量的分布应当接近正态分布。

通过检验参数估计的渐进正态性,可以评价其在大样本下的稳定性和可靠性。

5. 偏差和标准误差偏差和标准误差是衡量估计量准确性的两个重要指标。

偏差反映了估计值与真实参数之间的平均误差,标准误差则表示了估计量的离散程度。

这两个指标通常可以通过模拟实验或者数学推导来进行评价。

6. 有效边界有效边界是指在一定程度的限制条件下估计量的最佳性。

在实际应用中,由于样本容量、采样方法等限制条件的存在,估计量的有效边界成为了评价其质量的重要标准之一。

7. 鲁棒性估计量的鲁棒性是指对于异常值和分布假设的敏感性。

在实际数据中,往往存在一些异常值或者分布假设并不准确的情况,这时候估计量的鲁棒性就显得尤为重要。

8. 直观度直观度指的是估计方法的直观性和可解释性。

一个好的估计方法应该能够被解释和理解,并且在实际应用中具有直观性,这也是评价估计方法的一个重要方面。

《卫生统计学》第六章 参数估计基础

《卫生统计学》第六章  参数估计基础
.
二、总体概率可信区间的计算
1.查表法:n≤50,特别是p接近0或100%时,可查 附表6(P478-480),二项分布概率的置信区间表, 例6-4。
注意:附表6中X值只列出了X≤n/2部分,当X>n/2 时,应以n - X值查表,然后用100减去查得的数 值,即为所求的区间。
2.正态近似法**:当n较大且np和n(1-p)均大于5 时,二项分布接近正态分布,则总体率的双侧 (1-α)可信区间为: P ± Ζα/2· Sp
f(t)
0.4
υ=∞
υ=5
0.3
υ=1
0.2
0.1
0.0
t
-5 -4 -3 -2 -1 0 1 2 3 4 5
图6-4 自由度为1、5、∞的t分布
.
t分布的特征:只有一个参数ν 以0为中心,左右对称的单峰分布; t分布是一簇曲线,形态变化与n(即自由度)大
小有关。自由度ν越小,t分布曲线越低平;自 由度ν越大,t分布曲线越接近标准正态分布 (Ζ分布)曲线。 t分布峰部较矮,尾部翘得较高,说明远侧的t值 的个数相对较多,即尾部面积(概率P)较大。 自由度ν越小这种情况越明显,ν渐大时,t分 布渐逼近标准正态分布;当ν=∞时,t分布就成 为标准正态分布了。 附表2,t界值表P467
.
均数的抽样误差——指由抽样而造成的样本均数 与总体均数之间的差异。
x 称标准误,它说明均数抽样误差的大小。
x / n
n越大,标准误越小,样本均数的抽样误差亦越小 实际工作中,σ常未知,而是用样本标准差s来估
计,则有 sx s/ n
常用来说明均数的抽样误差的大小。
.
即使从偏态总体抽样,当n足够大时, 样本均数也近似正态分布(见实验6-2, 观察图6-1及图6-2的变化)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 估计量:用于估计总体参数的随机变量
– 如样本均值,样本比例、样本方差等
– 例如: 样本均值就是总体均值 的一个估计量
2. 参数用 表示,估计量用ˆ 表示
3. 估计值:估计参数时计算出来的统计量的 具体值
– 如果样本均值 x =80,则80就是的估计值
二战中的 点估计
点估计与区间估计
点估计 (point estimate)
无偏性
(unbiasedness)
无偏性:估计量抽样分布的数学期望等于被 估计的总体参数
P(ˆ)
无偏
有偏
A
B
ˆ
有效性
(efficiency)
有效性:对同一总体参数的两个无偏点估计
量,有更小标准差的估计量更有效
P(ˆ)
ˆ1 的抽样分布
B
A
ˆ2 的抽样分布
ˆ
一致性
(consistency)
一致性:随着样本容量的增大,估计量的 值越来越接近被估计的总体参数
1. 用样本的估计量直接作为总体参数的估计值 用什么样的估计量来估计参数呢? 实际上没有硬性限制。任何统计量,只要人们觉得 合适就可以当成估计量。 ▪ 例如:用样本均值直接作为总体均值的估计 ▪ 例如:用两个样本均值之差直接作为总体均 值之差的估计
2. 没有给出估计值接近总体参数程度的信息
区间估计
表示了0.05上侧分位数zα=z0.05及相应的尾概率( α =0.05)。有些书用符号z1-α而不是Zα ;因此在
看参考文献时要注意符号的定义。
N(0,1)分布右侧尾概率P(z>z)=的示意

Tail Probability for N(0,1)
0.4
0.35
0.3
Density of N(0,1)
P( X x )
这里的a也称为上(右)侧尾概率 (upper/right tail probability)。
显然,对于连续对称分布,α上侧分位数等 于(1-α)下侧分位数,而(1-α)下侧分位 数等于α上侧分位数。
通常用zα表示标准正态分布的α上侧分位数,即对于 标准正态分布变量Z,有P(Z>zα)= α 。
– 我们只能是希望这个区间是大量包含总体参数真 值的区间中的一个,但它也可能是少数几个不包 含参数真值的区间中的一个
点估计值
置信区间
(95%的置信区间)
重复构造出的20个置信区间
置信区间与置信水平
均值的抽样分布
x
/2
1 –
/2
x x
(1 - ) % 区间包含了 % 的区间未包含
评价估计量的标准
P(ˆ) 较大的样本容量 B
较小的样本容量
A
ˆ
5.2 一个总体参数的区间估计
5.2.1 总体均值的区间估计 5.2.2 总体比例的区间估计 5.2.3 总体方差的区间估计
一个总体参数的区间估计
总体参数 均值 比例 方差
符号表示 样本统计量
x
p
2
s2
分位数
我们有必要引进总体的下侧分位数、上侧分位数以 及相应的尾概率的概念。
0.25
0.2
0.15
0.1
P(z<z0.05)=1- =0.95
2. 根据样本统计量的抽样分布能够对样本统计量与总 体参数的接近程度给出一个概率度量
– 比如,某班级平均分数在75~85之间,置信水平是95%
•点估计给出一个数
字,用起来很方便;
而区间估计给出一
个区间,说起来留
有余地;不像点估
计那么绝对。
置信下限
置信区间
样本统计量 (点估计)
置信上限
区间估计的图示
第 5 章 参数估计
5.1 参数估计的一般问题 5.2 一个总体参数的区间估计 5.3 两个总体参数的区间估计 5.4 样本容量的确定
学习目标
1. 估计量与估计值的概念 2. 点估计与区间估计的区别 3. 评价估计量优良性的标准 4. 一个总体参数的区间估计方法 5. 两个总体参数的区间估计方法 6. 样本容量的确定方法
3. 常用的置信水平值有 99%, 95%, 90%
相应的 为0.01,0.05,0.10
置信区间
(confidence interval)
1. 由样本统计量所构造的总体参数的估计区间称 为置信区间
2. 统计学家在某种程度上确信这个区间会包含真 正的总体参数,所以给它取名为置信区间
3. 用一个具体的样本所构造的区间是一个特定的 区间,我们无法知道这个样本所产生的区间是 否包含总体参数的真值
对于连续型随机变量X,a下侧分位数(又称为a分 位数,a-quantile)定义为数xa,率(lower/left tail probability)
而a上 侧分 位 数 ( 又 称a 上分 位数 ,a-upper
quantile)定义为数xa,它满足关系
x z 2 x
x
- 2.58x
x
-1.65 x
+1.65x + 2.58x
-1.96 x
+1.96x
90%的样本
95% 的样本
99% 的样本
置信水平
1. 将构造置信区间的步骤重复很多次,置 信区间包含总体参数真值的次数所占的 比例称为置信水平
2. 表示为 (1 -
为是总体参数未在区间内的比例
• 从不同的样本得到的结论也不会完全一样。虽 然真实的比例在这种抽样过程中永远也不知道; 但可以知道估计出来的比例和真实的比例大致 差多少。
5.1 参数估计的一般问题
5.1.1 估计量与估计值 5.1.2 点估计与区间估计 5.1.3 评价估计量的标准
估计量与估计值
估计量与估计值
(estimator & estimated value)
• 估计就是根据你拥有的信息来对现实世界进行 某种判断。
• 你可以根据一个人的衣着、言谈和举止判断其 身份
• 你可以根据一个人的脸色,猜出其心情和身体 状况
• 统计中的估计也不例外,它是完全根据数据做 出的。
• 如果我们想知道北京人认可某饮料的比例,人 们只有在北京人中进行抽样调查以得到样本, 并用样本中认可该饮料的比例来估计真实的比 例。
(interval estimate)
当描述一个人的体重时,你一般可能不会说这个 人是76.35公斤,你会说这个人是七八十公斤, 或者是在70公斤到80公斤之间。这个范围就是区 间估计的例子。
区间估计 (interval estimate)
1. 在点估计的基础上,给出总体参数估计的一个区间 范围,该区间由样本统计量加减抽样误差而得到的
相关文档
最新文档