结构力学——矩阵位移法

合集下载

结构力学——矩阵位移法

结构力学——矩阵位移法
自由式单元的单元刚度矩阵不要求背记,但要领会其物 理意义,并会有它推出特殊单元的单元刚度矩阵。
整理版ppt
4
第一节 矩阵位移法概述
矩阵位移法以传统的结构力学作为理论基础; 以矩阵作为数学表达形式; 以电子计算机作为计算手段
三位一体的解决各种杆系结构受力、变形等计算的方法。
采用矩阵进行运算,不仅公式紧凑,而且形式统一,便 于使计算过程规格化和程序化。这些正是适应了电子计 算机进行自动化计算的要求。
结构力学
整理版ppt
学习内容
有限单元法的基本概念,结构离散化。 平面杆系结构的单元分析:局部坐标系下的单元刚度矩
阵和整体坐标系下的单元刚度矩阵。 平面杆系结构的整体分析:结构整体刚度矩阵和结构整
体刚度方程。 边界条件的处理,单元内力计算。 利用对称性简化位移法计算。 矩阵位移法的计算步骤和应用举例。
整理版ppt
16
第二节 单元分析(局部坐标系下的单元分析 )
3、局部坐标系中的单元刚度矩阵性质
与单元刚度方程相应的正、反两类问题
力学 模型
解的 性质
正问题 e
F e
将单元视为两端有人为 约束控制的杆件。
控e 制附加约束加以指
定。
e 为任何值时,F e都
有对应的唯一解,且总 是平衡力系。
整理版ppt
1、整体刚度矩阵的集成 将单元刚度矩阵按单元定位向量扩展为单元贡献矩阵
(换码扩阵)
1
1
3
K
1
k11
0
1
k21
1
0 0
0
k12
1
0
k22
1
2
2
3
0
K 2

结构力学十三讲矩阵位移法

结构力学十三讲矩阵位移法

-6EI l2
4EI l
4
§13-3 单元刚度矩阵(整体座标系)
一、单元座标转换矩阵 Y1
X1
X1
Y1
MM21
e
x
M2 X2
正交矩阵 [T]-1 =[T]T
e e
e T T e
v1
y e
X 2
Y2
Fⓔ T T F ⓔ
ee
F T F ee
座标转换矩阵
5
二、整体座标系中旳单元刚度矩阵
[k] e = [T]T k e [T]
(4)
(6)
00
(5)
y
单元 局部码总码
单元 局部码总码
(1) 1 (2) 2 (3) 3 (4) 0 (5) 0 (6) 4
1
2
3 0
0
4
(1) 1
1
(2) 2
2
(3) 3 (4) 0
3 0
(5) 0
0
(6) 0
0
18
1 2
[k] 1 = 3
0 0 4
1 2
[k] 2= 3
0 0 0
123004 101 102 103 104 105 106 201 202 203 204 205 206 301 302 303 304 305 306 401 402 403 404 405 406 501 502 503 504 505 506 601 602 603 604 605 606 123000 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 65 66

结构力学:矩阵位移法

结构力学:矩阵位移法

2 i2 i
3
k21 k31
=1 k22
k32
若 1 1,2 3 0
P1 P2 p3
k11 k21 k31
kij ---发生 j 1, 其它结点位
移为零位移时在 i结点所需
加的结点力.
k13
k23 k33
=1
结构刚度矩阵性质:对称矩阵
总刚的形成方法 ---“对号入座”
P3
k22112
k222
2 2
结构刚度矩阵中元素的物理意义
k11 k12 k13
k k21
k22
k23
k31 k32 k33
P1 k11 k12 k13 1
P2
k21
k22
k23
2
p3 k31 k32 k33 3
1 P1 1
1 i1 i
k11
=1
k12
P2
2
2
P3
3
k31 0 k32 k221 k33 k222
四.计算杆端力
P k 计算结点位移 Fe ke e 计算杆端力
1 P1 1
1 i1 i
P2
2
2
P3
3
2 i2 i
3
四.计算杆端力
6kN.m 3kN.m 3kN.m
P k 计算结点位移 Fe ke e 计算杆端力
i1 1
i2 2
1
2
1/ 2
3
7/2
3.解方程,求位移 17 /12
变形条件
P1

P2

P3
F11
F21
F12
F22
单元刚度方程
F1e
k1e11e

《结构力学》第十章矩阵位移法

《结构力学》第十章矩阵位移法

《结构力学》第十章矩阵位移法矩阵位移法是结构力学中的一种重要分析方法,通过将结构的受力分析转化为矩阵运算,可以有效地求解复杂结构的位移和应力分布。

本文将分为四个部分来介绍矩阵位移法的基本原理和应用。

第一部分将介绍矩阵位移法的基本原理。

矩阵位移法基于结构的受力平衡方程和变形条件,建立了适用于不同类型结构的一般形式的位移函数。

通过对这些位移函数进行适当组合,可以得到一个较为简化的位移矩阵方程。

这个方程可以通过矩阵运算求解,从而得到结构的位移和应力分布。

第二部分将介绍矩阵位移法的应用。

矩阵位移法可以用于求解各种类型的结构,包括梁、柱、框架等。

具体应用时,首先需要确定结构的边界条件和受力情况,然后根据结构的几何形状和材料性质,建立相应的位移函数。

之后,将位移函数按照一定的规则组合起来,建立一个位移矩阵方程。

通过解这个方程,可以得到结构的位移和应力分布。

第三部分将介绍矩阵位移法的优点。

相比于传统的力方法,矩阵位移法具有计算简单、准确性高、适用范围广等优点。

这是因为矩阵位移法可以通过矩阵运算将结构的受力分析转化为代数运算,减少了繁琐的计算过程,并且可以应用于各种不规则结构。

第四部分将介绍矩阵位移法的局限性。

矩阵位移法虽然具有很多优点,但也有一些限制。

首先,矩阵位移法对结构的刚度矩阵的求取较为复杂,需要通过精确和谐振数法等途径进行求解。

其次,矩阵位移法不能用于解决非线性和动力问题。

总结起来,矩阵位移法是一种重要的结构力学分析方法,通过将结构的受力分析转化为矩阵运算,可以有效地求解复杂结构的位移和应力分布。

它具有计算简单、准确性高、适用范围广等优点,但也有一些局限性。

因此,在实际应用中需要根据具体情况选择合适的方法。

同时,矩阵位移法的进一步研究和发展也是一个非常重要的方向。

结构力学教学课件-09矩阵位移法

结构力学教学课件-09矩阵位移法
实践应用
学习者可以通过实际的结构分析案例,将矩阵位移法应用于实际问题中,加深理解和掌 握。
THANKS
感谢观看
矢量与张量
在结构力学中,矢量与张量是描述结 构内力和位移的重要工具,矩阵位移 法中需要用到这些概念。
矩阵位移法的计算步骤
建立结构离散化模型
将结构划分为若干个离散的单元,每个单元 具有一定的自由度。
建立单元刚度方程
根据结构力学中的刚度原理,建立每个单元 的刚度方程。
集成整体刚度方程
将所有单元的刚度方程集成在一起,形成整 体刚度方程。
课程目标
掌握矩阵位移法的基本原理和步骤,理解如何应 用矩阵位移法解决实际工程问题。
学会使用相关软件进行结构分析,提高解决实际 问题的能力。
培养学生对结构力学学科的兴趣和热爱,为今后 从事土木工程领域的工作打下基础。
02
矩阵位移法基础
矩阵位移法概述
矩阵位移法是一种基于矩阵运算的数值分析方法,用 于解决结构力学中的位移问题。
结构力学教学课件-09矩阵位移法
目 录
• 引言 • 矩阵位移法基础 • 矩阵位移法的基本原理 • 矩阵位移法的应用实例 • 结论
01
引言
课程背景
01
结构力学是土木工程学科中的重 要基础课程,矩阵位移法是结构 力学中的一种重要分析方法,用 于解决结构的位移和内力问题。
02
随着计算机技术的发展,矩阵位 移法在结构分析中得到了广泛应 用,因此掌握矩阵位移法对于土 木工程师来说具有重要意义。
矩阵位移法的应用范围
矩阵位移法广泛应用于各种工程结构的分析,如桥梁、建筑、机械等 。
下一步学习建议
深入学习矩阵位移法的数学基础
为了更好地理解和应用矩阵位移法,建议学习者深入学习线性代数和数值分析等相关数 学基础。

结构力学之矩阵位移法

结构力学之矩阵位移法

第十二章 矩阵位移法【例12-1】 图 a 所示 连 续 梁 ,EI=常数,只 考 虑 杆 件 的 弯 曲 变 形 。

分别用位移法和矩阵位移法计算。

图12-1解:(1)位移法解•基本未知量和基本结构的确定用位移法解的基本结构如图c 所示。

这里我们将结点1处的转角也作为基本未知数,这样本题仅一种基本单元,即两端固定梁。

•位移法基本方程的建立⎪⎭⎪⎬⎫=+θ+θ+θ=+θ+θ+θ=+θ+θ+θ000333323213123232221211313212111P P P R K K K R K K K R K K K 将上式写成矩阵形式⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧θθθ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000321321333231232221131211P P P R R R K K K K K K K K K•系数项和自由项 计算(须绘出单位弯矩图和荷载弯矩图)由图d ,结点力矩平衡条件∑=0M ,得 EI K 411=,l EI K 221=,031=K由图e ,结点力矩平衡条件∑=0M ,得l EI K 212=,l EI l EI l EI K 84422=+=,l EI K 232=由图f ,结点力矩平衡条件∑=0M ,得 013=K ,l EI K 223=,l EI EI EI K 84433=+=由图g ,结点力矩平衡条件∑=0M ,得81Pl R p -=,2Pl R P -=,03=P R将系数项和自由项代入位移法基本方程,得⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧θθθ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0000118820282024321Pl l EI •解方程,得⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧θθθ14114162321EI Pl •由叠加法绘弯矩图,如图h 所示。

(2)矩阵位移法解•对单元和结点编号(图a ) 本题只考虑弯曲变形的影响,故连续梁每个结点只有一个角位移未知数。

结构力学(I)-结构静力分析篇6 矩阵位移法

结构力学(I)-结构静力分析篇6   矩阵位移法

用数字描述体系的位置,单元的属性。

10 / 105
第六章
例如
单元 FP
矩阵位移法
3(5,6)FP
2
1
2
2
结点
1
1(1,2) 单元方向 1
1
2(3,4)
2
1,2,3 ----结构结点编码(总码) (1,2,3) ----结点位移编码
1 2 ----杆端结点编码(局码)
1 2 ----单元编码

11 / 105

9 / 105
第六章
矩阵位移法
六、结构的离散化工作
将一个在荷载作用下的连续结构剖分成若干 个各自独立的单元,单元之间是由结点连接,用 此计算模型模拟原结构的受力和变形特性。 模型和原结构是有差别的,这个差别可以通 过单元的适当选取给予降低。 主要工作:单元的划分;体系的数字化。
直杆体系按自然选取杆件的汇交点、截面的 变化点、支撑点或荷载作用点作为结点,将结构 划分成一系列只在结点相连的单元集合。
EA l e
矩阵位移法
0
6 EI l2 4 EI l
0
12 EI l3 6 EI l2

EA l
0 12l EI 3 6lEI 2 0
12 EI l3 6 EI l2
0 0
EA l
0 12l EI 3
6 EI l2
0 6lEI 2
2 EI l
0 0
0 1 6 EI l2 2 2 EI 3 l 0 4 6lEI 5 2 4 EI 6 l
单元刚度方程
F k
e e
e

结构力学第8章 矩阵位移法

结构力学第8章 矩阵位移法

单元两端的杆端位移分别在单元坐标系和整体坐标系 下分解,其位移分量就构成上面的杆端位移向量。
与坐标轴的正方向一致者为正;
返回目录
作业1:已知单元的内力图,列出单元坐标下 及整体坐标下的杆端力向量。
3.04
1.24
y 0.43
4.38N)
x
作业2:已知单元的杆端力如图,写出单元坐 标及整体坐标表示的单元杆端力向量,并 作出单元的内力图。
2EI
l
x
2EI EI
l 6EIl x x
l2
EuIj 1
6EIl
x
l 2 uj 1
EA
l
x
EI
EuIj 1
l
平l面梁单元ul j 的1 x单元刚度矩阵
l
y
ui=1
6EI
l2
N ElA i y
6EI
l
12 2EI l3
12EI
Qi
0l 3
y
2EI
0 Ml iy
2EI 6EI
l
l2
vi =1 θi=1
等截面直杆的刚度方程
适用于两端都是刚结点的杆, 基本未知量为杆两端的转角和侧移;
刚度方程:
M AB
4i A
2i B
6i
l
M BA
2i A
4i B
6i
l
QAB
QBA
1 l
(
M
AB
M BA)
QAB
QBA
6i l
A
6i l
B
1 2i l2
4i
❖ 写成矩阵的形式:
❖ 杆端弯矩、剪力、杆端 侧移均以绕杆端顺时针 为正。关键掌握每个系

结构力学-矩阵位移法

结构力学-矩阵位移法
Fxe1, Fye1, u1e , v2e , Fxe2 , Fye2 , u2e , v2e
以上杆端力和杆端线位移与相应的坐标轴正 方向一致为正,相反为负。
M1e,M 2e,1e,2e,M1e,M 2e,1e ,2e
以上杆端力矩和杆端转角均以顺时针方向为 正,逆时针方向为负。
10
3. 单元坐标转换矩阵

4

7


1
36
曲杆可用多段直杆近似代替(以直代曲)。
进行结点编号时,要尽量使单元两端结点编号 的差值最小。
4
三、单元杆端力和杆端位移的坐标变换
1.坐标系
结构整体分析 —整体坐标系xy
x
2

4
y
①③

单元分析—局部坐标系 x y 1
3
单元始端指向末端的方向就
是 x 轴的正方向
1
x
坐标轴遵循右手法则,即
Fx1e
M
e 1
1
M
e 1
e
y
x
2
y
x
单元杆端力
x
2

4
y
①③

1
3
y v1e 1
1
u1e
u1e
v1e
1e
1e
e
y
x
2
x
2
单元杆端位移
7
Fxe1 Fye1
uv11ee
F
e
MFxe12e
e
u12ee
Fye2
v2e
M
e 2
e 2
Fxe1 Fye1
uv11ee
点,单元与单元、单元与支座均通

结构力学课件 第十章 矩阵位移法

结构力学课件 第十章 矩阵位移法

• 分别绘在结上,如图b 所示。
图17-12 返回 下一张 上一张 小结
• 第六节 矩阵位移法解题步骤
• 具体步骤如下:
• 1)将结构划分为若干个单元,并将各单元和结点进行编号。 • 2)选择结构坐标系及局部坐标系。 • 3)计算等效结点荷载,建立结点荷载列向量和结点位移列向
• 2)计算结构坐标系中各单元的单元刚度矩阵。
• 3)将各单元刚度矩阵的各子块,按“对号入座”送入结构总刚 度矩阵中。
• 17.3.2 结构总刚度方程

方程 K 式F中:
• {F} — 结构的结点力列向量;
• — 结构的结点位移列向量;
• [K] —结构的总刚度矩阵或叫结构整体刚度矩阵。
返回 下一张 上一张 小结
e
j
• 结点的杆端力列向量为:
e
F
i
e
Xi
Y
e i
e
M i
e
X j
F
e
j
e Y j
e
M j
• 注:这些杆端位移和杆端力的正向均规定与坐标轴的正方向一致 为正;其中转角和弯矩以顺时针为正。
返回 下一张 上一张 小结
• 17.2.3 单元杆端力与杆端位移之间的关系式
• 2)在 B、C 两点没有附加约束的情况
• 下,施加与上述固端剪力和固端弯矩
• 大小相等方向相反的力和力矩,如图
• 7-10(c)所示。
• 3) (a)=(b)+(c)
• 4)等效结点荷载为汇交在每一结点的
• 固端剪力的代数和以及固端弯矩代数
• 和,但方向相反。

图7-10
返回 下一张 上一张 小结
x

结构力学矩阵位移法

结构力学矩阵位移法

e 4EI
M
1
M 2
l 2EI
l
2EI e
e
l 4EI
1
2
l
4EI
k
e
l 2EI
l
2EI e
l 4EI
l
§9-2节 单元刚度矩阵(局部坐标系)
⑵桁架结构中杆件单元
Fx1Βιβλιοθήκη eFx2 EA
l EA
l
F x1 e
FFyx12
EA
l 0 EA
0 0 0
Fy2
§9-1节 位移法概述
⑴ 力法和位移法均为传统的结构力学的计算 方法,其相应的计算手段手算,因而只能解 决计算简图较粗略基本未知量数目不太多的 结构分析问题。
⑵计算机的出现和广泛应用,使结构力学的计 算发生了巨大变化,电算能够解决手算难以 解决的大型复杂问题。由此产生了适合电算 的分析方法——结构矩阵分析。
§9-2节 单元刚度矩阵(局部坐标系)
一.一般单元的刚度方程和刚度矩阵
1.单元两端采用局部编码1、2
1
e
2.六个杆端位移组成杆端位移列向量。
v1
1
u1
EAI L
3.六个杆端力组成杆端力列向量。
y
2
2 vu22 x
e
1
2
e
u1 v1
e
3
1
F1
e
F2
e
F x1 Fy1
第九章 矩阵位移法
仅限于求解杆系结构在静荷载作用下的位 移和内力。以位移法(附加约束法)为基础,从 有限单元法的角度讲解结构的静力分析。既适 用于静定结构,也适用于超静定结构,易于编 写通用的计算机程序,尤其对于大型复杂结构, 该法具有很大的优越性,可大大减少手算的工 作量,是面向计算机的计算方法。

结构力学 第三十七讲矩阵位移法

结构力学  第三十七讲矩阵位移法
第十一章 矩阵位移法
第十一章 矩阵位移法
教学内容
教学内容:矩阵位移法基本思想,结构离散化,平面刚架单元 的刚度矩阵(局部坐标系、整体坐标系),坐标转换矩阵,单 元定位向量,单元集结构整体刚度矩阵,等效结点荷载,结构 整体荷载列阵,先处理法。 教学要求: 1、了解矩阵位移法的基本概念, 2、理解一般杆单元局部坐标系下的单元刚度方程;单元刚度 矩阵的性质;连续梁单元的单元刚度矩阵(局部坐标系);平 面刚架单元的单元刚度矩阵(局部坐标系);直接结点荷载; 单元杆端力两种坐标系下的转换关系;坐标转换矩阵及性质; 平面刚架单元整体坐标系下的单元刚度方程;整体刚度矩阵的 性质;结构整体刚度方程;矩阵位移法的计算步骤。 3、掌握用矩阵位移法计算连续梁;用矩阵位移法计算刚架。 重点:连续梁和刚架的矩阵位移法求解。 难点:刚架的矩阵位移法方程的建立。
X ,Y, M满足右手法则。
5
6
6
2 3
3
5
4
1
1
4
2
X
Y
第十一章 矩阵位移法
(5)单元杆端位移:
5
每杆端有:两个线位移(轴线、垂
直轴线)、一个角位移(转角)分量。 2
线位移的正方向与坐标正向正负相同, 3
角位移顺时针为正。
1
1
66
3
5
4
4
2
u1
v1 X1
Y
M1
1
Y1
u2
X
M2
v2
2
Y2 X 2
第十一章 矩阵位移法
(2)单元杆端力向量
1 1
u1
v1
2 2
u2
v2
(1) (e)
(
2)

结构力学 第三十八讲 矩阵位移法

结构力学 第三十八讲 矩阵位移法

第十一章 矩阵位移法
以上结构各杆都考虑轴向变形的影响。若刚架的杆 件不考虑轴向变形,则结点位移未知量编号及单元定 位向量如下:
2(1,0,2) ①
② 1(0,0,0)
3(1,0,3) 4(1,0,4)
③ 5(0,0,0)
{}(1) [1,0,2,1,0,3]T {}(2) [1,0,2,0,0,0]T {}(3) [1,0,4,0,0,0]T
3
1、结点位移未知量编号(整体码)1 为了确定各单元的定位向量,
要按照结点编号从小到大的顺序对
A①

0 4
C0
x
结构每个结点的未知量u、v、θ 0 B
y
统一进行编号。
0 0
若某个结点位移未知量等于零,则整体码编号为零。
则图示刚架的位移向量和相应结点力向量为:
(1) uA
((32))
vAA
(4) C
F
F1 F2
F1 F2
4i1 2i2
4i2
4i2
2i2 3i3
4i4
12
或写为: F K K 为整体刚度矩阵
第十一章 矩阵位移法
二、直接刚度法
F1
直接刚度法以传统位移法的 基本体系为力学模型。
1
F2
② 2③
i2
i3
分别建立单元局部坐标和整 i1 ① 体坐标如图。
i4 ④
1、结点位移分量的统一编码―整体码(总码) 图11-9所示刚架整体结构的结点位移向
量 :
(1 2 3 4)T
(uA vA A c )T
相应结点力向量为: {F}=(F1 F2 F3 F4)T
2、单元定位向量?
图11-9
第十一章 矩阵位移法 2、单元定位向量

结构力学 矩阵位移法

结构力学 矩阵位移法

§9-2节 单元刚度矩阵(局部坐标系)
一.一般单元的刚度方程和刚度矩阵
1.单元两端采用局部编码1、2
1
e
2.六个杆端位移组成杆端位移列向量。
v1
1
u1
EAI L
3.六个杆端力组成杆端力列向量。
y
2
2 vu22 x
e
1
2
e
u1 v1
e
3
1
F1
e
F2
e
F x1 Fy1
单元刚度矩阵中的每个元素都代表单元
杆端单位位移引起的杆端力称之为单元
刚度系数。其中
k
表示第j个杆端单位位移
ij
引起的第i个杆端力。
⑵单元刚度矩阵为对称矩阵。 kij k ji
⑶一般单元刚度矩阵为奇异矩阵 k e 0
三、特殊单元刚度方程和刚度矩阵
⑴连续梁中的受弯杆件单元 ⑵桁架结构中杆件单元
⑴连续梁中的受弯杆件单元
忽略轴变时单元的刚度矩阵
12EI
l3 6EI
k
e
l2
12E
l3 6EI
I
l2
6EI
l2 4EI
l 6EI
l2 2EI
l
12EI l3
6EI l2
12EI
l3 6EI l2
6EI
e
l2 2EI
l
6EI l2
4EI
l
§9-3节 单元刚度矩阵(整体坐标系)
一、单元坐标转换矩阵
⑶根据所选基本未知量的不同,结构矩阵分析 包括:
§9-1节 位移法概述
矩阵力法
结构矩阵分析
一般刚度法
矩阵位移法
直接刚度法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

c、正负号规定(采用右手法则)
杆端内力规定当与坐标轴正方向一致时为正;
杆端位移和结点位移规定当与坐标轴正方向一致时为正。
结点外力规定当与坐标轴正方向一致时为正;
8

第一节
矩阵位移法概述
1、矩阵位移法的基本思路
先把结构拆开,分解成若干个单元(在杆件结构中,一 般把每个杆件取作一个单元),这个过程称作离散化。然 后按单元力学性质对每个单元分析建立单元刚度方程,在 满足变形条件和平衡条件的前提下,将这些单元集合成整 体求解。在一分一合,先拆后搭的过程中,把复杂结构的 计算问题转化为简单单元分析和集合问题。 矩阵位移法的要点 :
11

第二节
单元分析(局部坐标系下的单元分析 )
单元分析的目的是以结点位移为基本未知量,分析每个单元 的结点力和结点位移及荷载之间的关系,即建立单元刚度方 程,并用矩阵形式表示。 1、坐标系的选择: 在矩阵位移法中采用两种坐标系: 局部坐标系和整体坐标系。
y
x
x
FP
整体坐标 局部坐标
y y
x
12

化整为零
(离散化、单元分析)
集零为整
(结点力平衡、位移协调)
9

第一节
2、单元划分
矩阵位移法概述
将一个在荷载作用下的连续结构剖分成若干个各自独立 的单元,原结构可以看成是由各单元在连接点(称结点) 连接而成的体系——化整为零
在杆件结构矩阵分析中,一般 是把杆件的转折点、汇交点、 边界点、突变点或集中荷载作 用点等列为结点,结点之间的 杆件部分作为单元。
10

第一节
2、单元划分
矩阵位移法概述
将一个在荷载作用下的连续结构剖分成若干个各自独立 的单元,原结构可以看成是由各单元在连接点(称结点) 连接而成的体系——化整为零
为了减少基本未知量的数目,跨 间集中荷载作用点可不作为结点, 但要计算跨间荷载的等效结点荷 载;跨间结点也可不作为结点, 但要推导相应的单元刚度矩阵, 编程序麻烦。
第一节
矩阵位移法概述
结构力学传统方法与结构矩阵分析方法,二者同源而有别:
前者在“手算”的年代形成,后者则着眼于“电算”,计算手 段的不同,引起计算方法的差异。
在原理上同源,在作法上有别
与传统的力法、位移法相对应,在结构矩阵分析中也有矩阵力 法和矩阵位移法,或称柔度法与刚度法。矩阵位移法由于具有 易于实现计算过程程序化的优点而广为流传。
2、局部坐标系中的单元刚度矩阵 u1 EA
l EA u2 l
1 1
EA EA
e
e
2 2

u2
EA u1 l EA u2 l
局部坐标 系下的单 刚方程
e
EA EA e e e F u u 1 1 2 l l
EA EA e e e F u u 2 1 2 l l
u 1 F 1 EA 1 1 u l 1 1 F 2 2
第二节
单元分析(局部坐标系下的单元分析 )
2、局部坐标系中的单元刚度矩阵 采用局部坐标系(以杆的轴线作为x轴)时,杆端力及 杆端位移的正方向以坐标轴正方向为正。
y
F1 e
EA
杆件方向: 1 2
F 2e
2
e
1
l
u1
u2
x
杆端位移:
杆端内力:
u1 , u 2
F1 , F2
13

第二节
u1
单元分析(局部坐标系下的单元分析 )
3

学习目的和要求
要求:矩阵位移法包含两个基本环节:单元分析和整 体分析。 在单元分析中,熟练掌握单元刚度矩阵和单元等效荷载 的概念和形成。熟练掌握已知结点位移求单元杆端力的计 算方法。 在整体分析中,熟练掌握结构整体刚度矩阵元素的物理 意义和集成过程,熟练掌握结构综合结点荷载的集成过程。 掌握单元定位向量的建立,支撑条件的处理。 自由式单元的单元刚度矩阵不要求背记,但要领会其物 理意义,并会有它推出特殊单元的单元刚度矩阵。
目的:矩阵位移法是以计算机为计算工具的现代化结构 分析方法。基于该法的结构分析程序在结构设计中得到了 广泛的应用。因此,以计算机进行结构分析是本章的学习 目的。 矩阵位移法是以位移法为理论基础,以矩阵为表现形式, 以计算机为运算工具的综合分析方法。引入矩阵运算的目 的是使计算过程程序化,便于计算机自动化处理。尽管矩 阵位移法运算模式呆板,过程繁杂,但这些正是计算机所 需要的和十分容易解决的。矩阵位移法的特点是用“机算” 代替“手算”。因此,学习本章是既要了解它与位移法的 共同点,更要了解它的一些新手法和新思想。
e
F k
e e e

1 1 EA k l 1 1
e
14

第二节
单元分析(局部坐标系下的单元分析 )
1 k 1 EA 11 k 12 k l 1 1 k 21 k 22
结构力学
学习内容
有限单元法的基本概念,结构离散化。 平面杆系结构的单元分析:局部坐标系下的单元刚度矩 阵和整体坐标系下的单元刚度矩阵。 平面杆系结构的整体分析:结构整体刚度矩阵和结构整 体刚度方程。 边界条件的处理,单元内力计算。 利用对称性简化位移法计算。 矩阵位移法的计算步骤和应用举例。
2

学习目的和要求
矩阵位移法是有限元法的雏形,因此结构矩阵分析有时也称为 杆件结构的有限元法。在本章中将使用有限元法中的一些术语 和提法。
6

第一节
矩阵位移法概述
1、矩阵位移法的基本思取的基本未知量不同,因此计算次序不同

结构结点力 杆件杆端力

杆件端点位移 结构结点位移
位移法
4

第一节
矩阵位移法概述
矩阵位移法以传统的结构力学作为理论基础;
以矩阵作为数学表达形式; 以电子计算机作为计算手段 三位一体的解决各种杆系结构受力、变形等计算的方法。 采用矩阵进行运算,不仅公式紧凑,而且形式统一,便 于使计算过程规格化和程序化。这些正是适应了电子计 算机进行自动化计算的要求。
5

法 需要选择基本体系和多余约束。所以较多地依赖于结构的具 体情况,不宜实现计算机计算的自动化,但其优点是计算出 的结果就是力。 位移法 是先求结点位移,再换算成力,该法的计算自动化和通用性强, 目前广为采用。 7 力

第一节
矩阵位移法概述
1、矩阵位移法的基本思路 b、基本假设和基本原理
线弹性、小变形。满足叠加原理、功能原理
相关文档
最新文档