初中数学全等三角形教学设计
初中数学教学课例《全等三角形》课程思政核心素养教学设计及总结反思
1、已知⊿ABC≌⊿DEF,且∠A=52o,∠B=31o, ED=10cm,∠F=∠C,求∠F 的度数与 AB 的长;
2、已知⊿ABC≌⊿DEF,⊿DEF 的周长 32cm,DE=9cm, EF=12cm,且∠E=∠B,求 AC 的长;
3、尽量画出两个全等的三角形所拼接的图形,并 尝试寻求这两个全等三角形的对应顶点、对应边、对应 角。
初中数学教学课例《全等三角形》教学设计及总结反思
学科
初中数学
教学课例名
《全等三角形》
称
本节课的内容是人教版义务教育课程标准实验教
科书《数学》八年级(上)全等三角形第一课时,主要
内容是全等三角形概念及利用全等三角形的性质,探索
发现全等三角形的性质.新课标对本节课的要求是:
“了解全等三角形的有关概念,探索并掌全等三角形的
【教师活动】 课件展示作业题 【学生活动】按照要求自主完成作业,及时弥补 【设计意图】 为使学生的主体作用得以有效发挥,尊重学生的个 体差异,为不同学生的发展创造条件,作业层推荐、分 类要求。 【媒体运用】PPT 课件呈现选做题。
本教学设计通过学生在做模型、画图、动手操作等 活动中亲身体验,完成对三角形实验,加深对“三角形 全等”、“对应”含义的理解,即培养学生的画图、识 课例研究综 图能力,又提高了逻辑思维能力。在整个教学过程中, 述 学生在自主探索和合作交流中,经历了观察、实验、归 纳、类比、直觉、数据处理等思想过程,而这样的过程 能够促进学生对数学的正真理解和把握,从而不仅获得
了数学知识、技能,而且经历了数学活动的过程,体验 了数学活动的方法。同时,情感、态度价值观都能得到 很好的发展。
旁通。 2、进一步强化了学生对性质的认识,又可以训练
学生的发散思维,培养灵活运用知识的能力,增强学生 的创新意识和创新能力。
初中数学人教八年级上册(2023年更新)第十二章 全等三角形“边边边”判定三角形全等教案
全等三角形的判定(SSS)教学设计三维目标:1.掌握“边边边”条件的内容,能初步应用“边边边”条件判定两个三角形全等。
2.经历探索三角形全等的条件的过程,体验用操作、归纳得出数学结论的过程。
3.通过探究三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想、乐于探究的良好品质以及发现问题的能力。
教学重点:探究三角形全等的条件教学难点:“边边边”判定方法和应用教学过程一、复习巩固引新知1、什么是全等三角形?2、全等三角形有什么性质?__________________________________________________________________________3.已知△ABC ≌△DEF,找出其中相等的边与角。
二、研讨探究得新知如果只满足这些条件中的一部分,那么能保证△ABC≌△DEF吗?1、探究1:给一个条件:给两个条件:归纳1:在两个三角形中,如果只有一个或两个元素对应相等,这两个三角形_____.给三个条件:2、探究2:先任意画出一个△ABC ,再画出一个△A ′B ′C ′ ,使A ′B ′= AB ,B ′C ′ =BC, A ′ C ′ =AC.把画好的△A ′B ′C ′剪下,放到△ABC 上,他们全等吗?作法:(1)画B ′C ′=BC ;(2)分别以B',C'为圆心,线段AB,AC 长为半径画圆,两弧相交于点A';(3)连接线段A'B',A 'C '。
发现: 。
归纳2:在两个三角形中,如果 ,那么 .(可简写成“边边边”或 “SSS”)几何语言:三、典例精析 例1 如图,有一个三角形钢架,AB =AC ,AD 是连接点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .四、针对训练如图, C 是BF 的中点,AB =DC,AC=DF 。
求证:△ABC ≌ △DCF 。
F五、用尺规作一个角等于已知角 作法:(1)以点O 为圆心,任意长为半径画弧,分别交OA , OB 于点C 、D ;(2)画一条射线O ′A ′,以点O ′为圆心,OC 长为半径画弧,交O ′A ′于点C ′;(3)以点C ′为圆心,CD 长为半径画弧,与第2 步中所画的弧交于点D ′;(4)过点D ′画射线O ′B ′,则∠A ′O ′B ′=∠AOB 。
全等三角形数学教案
全等三角形数学教案标题:全等三角形数学教案一、教学目标:1. 知识与技能:学生能理解并掌握全等三角形的定义和性质,能够识别和判断两个三角形是否全等。
2. 过程与方法:通过观察、分析、讨论和实践,培养学生的逻辑思维能力和空间观念。
3. 情感态度价值观:培养学生严谨的科学态度和积极的学习热情。
二、教学重点难点:1. 教学重点:理解和掌握全等三角形的定义和性质。
2. 教学难点:准确判断两个三角形是否全等。
三、教学过程:(一)导入新课教师可以先展示一些生活中的实例,如门框、窗户等,引导学生思考这些形状为什么都是三角形。
然后提出问题:“如果有两个三角形,它们看起来完全一样,那它们就一定是一样的吗?”从而引入全等三角形的概念。
(二)讲解新课1. 全等三角形的定义:大小和形状都相同的两个三角形叫做全等三角形。
2. 全等三角形的性质:全等三角形的对应角相等,对应边相等。
(三)实践操作让学生用纸片或几何工具制作出一些三角形,然后尝试将它们拼接在一起,看哪些可以完全重合,哪些不能。
以此来帮助他们理解和掌握全等三角形的定义和性质。
(四)巩固练习设计一些习题,让学生判断给出的两个三角形是否全等,或者找出需要满足什么条件才能使两个三角形全等。
(五)总结提升让学生自己总结本节课所学的内容,并鼓励他们在日常生活中寻找全等三角形的例子,以提高他们的观察能力和应用能力。
四、教学反思:在教学过程中,教师应注重引导学生主动参与学习,激发他们的学习兴趣。
同时,也要注意对学生的反馈进行及时的调整和改进,确保每一个学生都能理解和掌握全等三角形的相关知识。
初中数学_三角形全等的判定(2)教学设计学情分析教材分析课后反思
12.2.2三角形全等的判定(SAS)教学设计一、学习目标在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想. 从而激发学生学习数学的兴趣.为此,我确立如下:1.知识与能力:(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程(2)掌握三角形全等的“边角边”的判定方法,能用三角形的全等解决一些实际问题。
2.过程与方法:经历探索三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验,3.情感与态度:通过“边角边公理”的获得和使用,培养学生严密的逻辑思维品质以及勇于探索、团结协作的精神。
二、学习重点根据本节课的内容和地位,重点确定为:“边角边公理”的内容及应用学习难点发现、验证并归纳边角边公理内容,运用此结论解决实际问题。
三、教法分析鉴于教材特点及初二学生思维依赖于具体直观形象的特点,采用实验发现法,将有利于学生更好地理解与应用数学,获得成功的体验,增强学好数学的信心。
本节课主要采用实验发现法,同时以直观演示教学法、观察法、探究法为辅。
在教法上,尽可能地组织学生自主地通过观察、实验等数学活动,探究三角形全等的特征,通过对数学问题情境、数学活动情境等设计,调动学生学习数学的积极性。
运用多媒体直观演示,化静为动,使学生始终处于主动探索问题的积极状态中,使数学学习变得有趣、有效、自信、成功。
学法指导本节课主要是“边边边”这一基本事实的发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。
四、教学过程设计(一)创设情境,引入新知1.由生活中遇到的全等问题情境自然引入。
2.画一画如果两个三角形的两边和一角分别对应相等,那么会有几种情况。
《全等三角形》教学设计-2021-2022学年人教版初中数学八年级上册
《全等三角形》教学设计一、内容和内容解析1、内容全等三角形概念及性质2、内容解析本节课的内容是人教版数学八年级(上)§12.1全等三角形第一课时,主要内容是全等三角形概念及探索发现全等三角形的性质。
新课标对本节课的要求是“了解全等三角形的有关概念,探索并掌握全等三角形的性质.”本节课是在学生学习三角形的概念及相关知识的基础上,进一步探究全等三角形的有关知识。
三角形的全等是初中几何部分一个十分重要的内容,是研究图形的重要工具,它既和前面所学知识联系紧密,又为学习三角形全等的判定做准备,同时也为今后研究学习其他图形奠定坚实的基础。
二、目标1、了解全等形及全等三角形的概念,能理解全等三角形的性质,并能熟练找出两个全等三角形的对应角、对应边。
2、能用符号正确地表示两个三角形全等;能够运用全等三角形的性质解决简单的问题。
三、教学问题诊断分析:教学重点:探究全等三角形的性质.教学难点:掌握两个全等三角形的对应角、对应边的寻找规律,迅速正确的指出两个全等三角形的对应元素。
四、教学过程设计:1、整体感知,确立对象同学们,通过上一章的学习,我们对一个几何图形的研究路径及内容有了更进一步的了解。
一般从概念、性质、应用三方面来研究。
概念又要从它的组成元素、表示、读法去认识。
性质就是探究组成几何图形的基本元素和相关元素之间的稳定不变的规律,最后综合应用所学知识解决问题。
本章开始研究两个图形间的关系。
我们生活在丰富多彩的世界中,请欣赏几幅图片(幻灯片展示)同学们仔细观察一下,其中有形状不同的;有形状相同、但大小不同的;还有形状相同、大小也相同的;这些形状相同、大小也相同的图形,能够完全重合。
像这样,能够完全重合的两个图形叫做全等形。
2、动手操作,探究新知(1)小明将一块三角板按在纸板上,画下图形,照图形裁下来的纸板和三角尺的形状、大小完全一样吗?把三角尺和裁得的纸板放在一起能够完全重合吗?下面请同学们按照小明的方法动手操作并回答问题。
华师大版数学八年级上册《全等三角形》教学设计
华师大版数学八年级上册《全等三角形》教学设计一. 教材分析华师大版数学八年级上册《全等三角形》是初中的重要知识点,主要让学生了解全等三角形的概念、性质及判定。
本节内容是在学生已经掌握了三角形的基本知识的基础上进行学习的,为后续学习相似三角形、解三角形等知识打下基础。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于图形的认识有一定的基础。
但是,对于全等三角形的概念和判定方法,学生可能初次接触,需要通过实例理解和掌握。
同时,学生可能对实际问题中的全等三角形判断感到困惑,需要通过大量的练习来提高。
三. 教学目标1.知识与技能:使学生了解全等三角形的概念、性质和判定方法,能够运用全等三角形的知识解决一些实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力、逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探索、积极思考的科学精神。
四. 教学重难点1.教学重点:全等三角形的概念、性质和判定方法。
2.教学难点:全等三角形的判定方法在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生通过观察、操作、思考、交流等活动,掌握全等三角形的知识。
六. 教学准备1.教具:多媒体课件、黑板、粉笔、三角板、剪刀、胶水等。
2.学具:学生用书、练习册、草稿纸、剪刀、胶水等。
七. 教学过程1. 导入(5分钟)教师通过多媒体展示两个形状、大小完全相同的三角形,引导学生观察并提问:“这两个三角形是什么关系?”学生可能回答“相等”、“一样”等,教师引导学生用“全等”这个词来描述。
教师总结:全等三角形是指形状、大小完全相同的三角形。
2. 呈现(10分钟)教师通过PPT展示全等三角形的性质和判定方法,引导学生观察、思考并总结。
性质:全等三角形的对应边相等,对应角相等。
判定方法:SSS(三边判定)、SAS(两边及夹角判定)、ASA(两角及夹边判定)、AAS(两角及非夹边判定)。
最新版初中数学教案《全等三角形》精品教案(2022年创作)
第十二章全等三角形全等三角形【知识与技能】1.了解全等形及全等三角形的概念.2.理解全等三角形的性质.【过程与方法】在图形变换以及操作的过程中开展学生的空间观念,培养学生的几何直觉.【情感态度】使学生在观察、发现生活中的全等形和实际操作中获得全等三角形的体验,在探索和运用全等三角形性质的过程中感受到数学的乐趣.【教学重点】探究全等三角形的性质.【教学难点】掌握两个全等形的对应边\,对应角.一、情境导入,初步认识问题1 观察以下列图形,指出其中形状与大小相同的图形.问题2 从上面的图形中你有什么感受?在实际生活中,你能找到形状、大小相同的图形的应用的例子么?二、思考探究,获取新知让学生交流问题1,问题2的答案,并带着问题“这些图形有什么共同特征?〞自学课本内容.【教学说明】变化的图形易引起学生的注意,使它们很快地投入到学习的情境中,并通过观察发现其中的共同特点,形成猜想.再结合自学课本,从而认识全等形、全等三角形的定义及记法.教师讲课前,先让学生完成“自主预习〞.思考1 把三角形平移、翻折、旋转后,什么发生了变化,什么没有变?思考2 全等三角形的对应边、对应角有什么关系?为什么?、旋转、翻折的不变性,让学生通过具体操作直观感知全等三角形的概念,然后让学生通过操作和观察,猜想并验证全等三角形的性质.利用根本三角形变换出各种图形,然后观察对应边、角的变化,利于提高学生的识图能力.思考1 得到的根本图案如图:【归纳结论】1.能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形.“全等〞用“≌〞表示,读作“全等于〞.把两个全等的三角形重合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫对应角.2.全等三角形的对应边相等,对应角相等.三、运用新知,深化理解【教学说明】出示以下问题,让学生通过交流\,思考寻找问题的答案,并共同讨论:全等三角形的对应顶点\,对应边之间有什么关联.1.以下每对三角形分别全等,看看它们是怎样变化而成的,并指出对应边、对应角.2.两个全等的三角形按如下位置摆放,指出它们的对应顶点,对应角,对应边.3.如图,将△ABC沿直线BC平移,得到△DEF.(1)线段AB,DE是对应线段,有什么关系?线段AC和DF呢?(2)线段BE和CF有什么关系?为什么?(3)假设∠A=70°,∠B=40°,你知道其他各角的度数吗?为什么?4.如图,将△ABC沿直线BC平移,得到△DEF,说出你得到的结论,并说明理由.5.如图,△ABE≌△ACD,AB与AC,AD与AE是对应边,∠A=40°,∠B=30°,求∠ADC的大小.【教学说明】题3题4中要通过观察发现,EC是线段BC与EF的公共局部,从而有BC-EC=EF-EC即BE=CF的结论;可以挖掘更深层次的结论,提升分析问题的能力,如AB∥DE,AC∥DF,BE=CF,S四边形ABEG=S四边形FDGC等.完成上述题目后,引导学生做本课时创优作业“课堂自主演练〞中的题.【答案】1.图〔1〕是△EDC由△ABC绕过C点且垂直于BD的直线翻折而成,AB的对应边ED,AC的对应边EC,BC的对应边DC,∠A的对应角∠E,∠B的对应角∠D,∠ACB的对应角为∠ECD.图〔2〕是△ABC延BC边平移BE长的距离得到△DEB,AC的对应边DB,AB 的对应边为DE,CB的对应边为BE,∠A的对应角为∠D,∠C的对应角为∠DBE,∠ABC的对应角为∠E.图〔3〕是△ABD绕BD的中点旋转180°得△CDB,AB的对应边为CD,BD对应边为DB、AD的对应边为CB,∠A的对应角∠C,∠ABD的对应角为∠CDB,∠ADB的对应角为∠CBD.4.AB=DE AC=DF BC=E F∠A=∠D ∠B=∠DEF ∠ACB=∠F理由:全等三角形对应边相等,对应角相等.5.∠ADC=110°四、师生互动,课堂小结1.引导学生回忆全等三角形定义\,记法与性质.2.归纳寻找对应边\,对应角的规律:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;对应边所对的角是对应角,两条对应边的夹角是对应角.(2)公共边一般是对应边;有对顶角的,对顶角一般是对应角;公共角一般是对应角等.1.布置作业:从教材“习题”中选取.2.完成练习册中本课时的练习.本课时通过学生在做模型、画图、动手操作等活动中的体验,完成对三角形全等的认识,重点在对“三角形全等〞“对应〞等含义的理解.对“全等三角形〞的认识,可让学生采用复写纸、手撕、剪纸、扎针眼等方式获取,并鼓励学生间互相交流动手过程中的体验.教学过程中,强调学生自主探索和合作交流,经历观察、实验、归纳、类比、直觉、数据处理等思维过程,从中获得数学知识与技能,体验教学活动的方法,同时升华学生的情感、态度和价值观.【知识与技能】了解正多边形和圆的关系,了解正多边形半径和边长,边心距,中心,中心角等概念.会应用正多边形的有关知识解决圆中的计算问题.会用圆规、量角器和直尺来作圆内接正多边形.【过程与方法】结合生活中的正多边形形状的图案,发现正多边形和圆的关系,然后学会用圆的有关知识,解决正多边形的问题.【情感态度】学生经历观察、发现、探究等数学活动,感受到数学来源于生活、又效劳于生活,表达事物之间是相互联系,相互作用的.【教学重点】正多边形与圆的相关概念及其之间的运算.【教学难点】探索正多边形和圆的关系,正多边形半径,中心角、弦心距,边长之间的关系.一、情境导入,初步认识观察这些美丽的图案,都是在日常生活中,我们经常能看到的利用正多边形得到的物体.〔1〕你能从图案中找出多边形吗?〔2〕你知道正多边形和圆有什么关系吗?怎样就能作出一个正多边形来?【教学说明】学生通过观察美丽的图案,欣赏生活中正多边形形状的物体.让学生感受到数学来源于生活,并从中感受到数学美.问题〔2〕的提出是为了创设一个问题情境,激起学生主动将所学圆的知识与正多边形联系起来,激发学生积极探索、研究的热情,并有意将注意力集中在正多边形和圆的关系上.二、思考探究,获取新知问题1将一个圆分成5等份,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是,请你证明这个结论.教师引导学生根据题意画图,并写出和求证.:如图,在⊙O中,A、B、C、D、E是⊙O的五等分点.依次连接ABCDE 形成五边形.问:五边形ABCDE是正五边形吗?如果是,请证明你的结论.答案:五边形ABCDE是正五边形.证明:在⊙O中,∵AB BC CD DE EA====,∴AB=BC=CD=DE=EA,3==,∴∠A=∠B;同理∠B=∠C=∠D=∠E,∴五边形ABCDE BCE CDA AB是正五边形.【教学说明】教师引导学生从正多边形的定义入手证明,即证明多边形各边都相等,各角都相等;引导学生观察、分析,教师带着学生完成证明过程.问题2如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?答案:这个n边形一定是正n边形.【教学说明】在这个问题中,教师重点关注学生是否会仿照证明圆内接正五边形的方法证明圆内接正n边形.从问题1到问题2是将结论由特殊推广到一般,这符合学生的认知规律,并教导学生一种研究问题的方法,由特殊到一般.问题3各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形是正多边形吗?如果是,说明理由;如果不是,举出反例.答案:各边相等的圆内接多边形是正多边形.因为:各边相等的圆内接多边形的各角也相等.各角相等的圆内接多边形不是正多边形.如:矩形.【教学说明】问题3的提出是为了稳固所学知识,使学生明确判定圆内接多边形是正多边形,必须满足各边都相等,各内角也都相等,这两个条件缺一不可.同时教会学生学会举反例.培养学生思维的批判性.综合图形,给出正多边形的中心,半径,中心角,边心距等概念.正n边形:中心角为:360°n;内角的度数为:180°〔n-2〕n例1〔课本106页例题〕有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积〔结果保存小数点后一位〕.分析:根据题意作图,将实际问题转化为数学问题.解:如图.∵六边形ABCDEF是正六边形,∴∠BOC=360°/6=60°.∴△BOC是等边三角形.∴R=BC=4m,∴这个亭子地基的周长为:4×6=24〔m〕.过O点作OP⊥△OCP中,OC=R=4,CP=1/2BC=2..例2填空.【教学说明】例1是让学生了解有关正多边形的概念后,掌握正多边形的计算.同时,通过例1引导学生将实际问题转化为数学问题,将多边形化归为三角形来解决.例2通过网格来呈现问题,在解决例2时,教师指导学生用数形结合的方法来解决问题,加深对有关概念的理解.画正多边形,通常是通过等分圆周的方法来画的.等分圆周有两种方式:〔1〕用量角器等分圆周.方法一:由于在同圆或等圆中相等的圆心角所对弧相等,因此作相等的圆心角可以等分圆.方法二:先用量角器画一个等于360°/n的圆心角,这个圆心角所对的弧就是圆的1/n,然后在圆上依次截取这条弧的等弧,就得到圆的几等分点.【教学说明】这两种方法可以任意等分圆,但不可防止地存在误差.〔2〕用尺规等分圆正方形的作法:如图〔1)在⊙O中,尺规作两条垂直的直径,把⊙O四等分,从而作出正方形ABCD.再逐次平分各边所对弧,那么可作正八边形、正十六边形等边数逐次倍增的正多边形.正六边形的作法:方法一:如图〔2〕任意作一条直径AB,再分别以A、B 为圆心,以⊙O的半径为半径作弧,与⊙O交于C、D和E、F,那么A、C、E、B、F、D为⊙O的六等分点,顺次连接各等分点,得到正六边形ACEBFD.方法二:如图〔3〕由于正六边形的半径等于边长.所以在圆上依次截取等于半径的弦,就将圆六等分,顺次连接各等分点即可得到正六边形.【教学说明】尺规作图法是一种比较准确的等分圆的方法,但有较大的局限性,它不能将圆任意等分.三、运用新知,深化理解1.如图,圆内接正五边形ABCDE,对角线AC与BD相交于点P,那么∠APB的度数为_______./π的正方形的内切圆与外接圆所组成的圆环的面积为_____.3.如果一个正六边形的面积与一个正三角形的面积相等,求正六边形与正三角形的内切圆的半径之比.4.如图,点M、N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,……正n边形的边AB、BC上的点,且BM=CN,连接OM、ON.〔1〕求图1中的∠MON的度数;〔2〕在图2中,∠MON的度数为_____,在图3中,∠MON的度数为_____;〔3〕试探索∠MON的度数与正n边形边数n之间的关系.〔直接写出答案〕【教学说明】题1、2可由学生自主探索完成,题3、4可先让学生思考,然后教师加以提示,最后共同解答.完成教材第106页、108页的练习.°4.解:〔1〕连接OB、OC.∵正三角形ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△BOM≌△CON,∠BOM=∠CON,∴∠MON=∠BOC=120°.(2)90°72°(解法与〔1〕相同)(3)∠MON=360°/n.四、师生互动,课堂小结通过这节课的学习,你知道正多边形和圆有怎样的关系吗?你知道正多边形的半径、边心距、内角、中心角等概念吗?你能画出正多边形吗?【教学说明】教师先提出问题,然后让学生自主思考并回忆,教师再予以补充和点评.1.布置作业:从教材“〞中选取.练习册中本课时练习的“课后作业〞局部.1.本节课首先从复习正多边形的定义入手,通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些根本概念,引导学生将实际问题转化为数学问题,表达了化归的思想.其次,在这一根底上,又教给学生用等分圆周的方法作正多边形,这可以开展学生的作图能力.2.等分圆周法是一种作正多边形的常见方法,通过作简单的正三角形、正方形、正六边形,一直推广到作正八边形的情况,可以向学生灌输极限的思想,极限是微积分中最主要、最根本的概念,它从数量上描述变量在变化过程中的变化趋势,在高中数学中,极限思想渗透到函数、数列等章节,又衔接高等数学,起着承上启下的作用.。
初中数学_10.1t全等三角形(一)教学设计学情分析教材分析课后反思
10.1全等三角形(一)教案教学目标:1、了解作为证明基础的几条基本事实的内容,掌握证明的基本步骤和书写格式.2、能灵活地运用“边角边”基本事实、“角边角”基本事实、“边边边”基本事实和定理“角角边”定理判定两个三角形全等.3、对推理证明的要求,应在学生已有的基础上,进一步熟练和提高.学情分析:这部分知识在七年级上册已经学习过,了解了与全等相关的部分知识,解决问题的方法等,且现阶段的学生的逻辑思维能力已经初步形成,有了系统分析问题的能力,所以学习本章内容相对的来说比较容易.重点难点:1.重点是了解全等三角形的三条基本事实及“角角边”定理,掌握证明两三角形全等的基本步骤和书写格式.2.难点是灵活运用课本知识解决全等的相关问题.教学过程第一学时教学活动一、复习回顾自学课本《三角形的有关证明》第1节《全等三角形》的第1课时内容,完成《学案》中的预习作业:1.能够完全重合的两个图形叫做全等图形;能够_________________叫做全等三角形.2.全等三角形的对应边__________、对应角__________.3.关于三角形全等的基本事实分别是:(1) _________________________________________的两个三角形全等(SSS)(2) _________________________________________的两个三角形全等(SAS)(3) _________________________________________的两个三角形全等(ASA)4. (1)三个角对应相等的两个三角形全等吗?(2)两边和其中一边的对角对应相等的两个三角形全等吗?(3)两角分别相等且其中一组等角的对边相等的两个三角形全等吗?5.在证明三角形全等的书写格式上应注意什么?二、合作探究探究1关于“两角分别相等且其中一组等角的对边相等的两个三角形全等”这个结论,你能用有关的基本事实和已经证明过的定理证明它吗?已知:如图,在△ABC和△A'B'C'中,∠B=∠B',∠C=∠C',AB=A'B ' .求证:△ABC≌△A'B'C' .归纳总结:推论(AAS)合作探究2.已知:如图,线段AB和CD相交于点O,线段OA=OD,OC=OB.求证:AC=BD,∠A=∠D【思路导析】本题中利用了对等角这一隐含的条件3归纳证明的书写步骤。
初中数学《全等三角形》教案优秀6篇
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、
全等三角形(省优质课的教案)
全等三角形(省优质课的教案)篇一:2010年初中数学全国优质课教学设计精品017第七届全国初中青年数学教师优秀课观摩评选参赛教案(三角形全等的断定定理)贵州省石阡县文博中学:梁超二O一O年十月十一日第三章全等三角形3.4三角形全等的断定定理(一)教学内容:湘教版八年级上册第3章第4节《三角形全等的断定定理》(SAS)第一课时课型:新授课课时:2课时教学目的:1、知识与技能目的:通过动手操作,合作交流、分析、归纳,让学生经历探究三角形全等的条件——“边角边”定理的过程,并掌握这种识别方法,并会用此定理进展简单的推理。
2、过程与方法目的通过作图、交流和演示,使学生讨论探究出“边角边”定理,从而培养学生自主探求知识的认识以及团结协作处理征询题的才能。
3、情感态度与价值观目的:通过学生的动手实际操作、猜想和论证的过程,深化对知识的理解和方法的掌握,体验觉察的欢乐,体会成功探究的喜悦,激发学生学习数学的兴趣,培养学生热爱生活的思想感情,使学生从实际操作中获得数学知识,明白得数学知识来源于生活,又效劳于生活的道理。
重点:探究“边角边定理”并用此定理进展简单的推理。
难点:探究“边角边定理”,定理中“边角边”条件的理解。
教学器具:卡纸、剪刀、三角板、直尺、多媒体辅助教学。
教学方法:本节课主要采纳引探式教学方法,在活动中教师着眼于“引”,尽力激发学生求知的欲望,引导他们处理征询题,并掌握处理征询题的方法,学生着眼于“探”,通过探究活动觉察规律,开展学生的探究才能和制造才能。
篇二:全等三角形断定公开课教案13.2.2三角形全等的断定—边角边(S.A.S)公开课教案授课教师:乐山市市中区关庙中学雷万建一、背景介绍与教学材料本教材强调直观和操作,在观察中学会分析,在操作中体验变换。
教材的编排淡化概念的识记,强调图形性质的探究。
全等三角形的断定是今后证明线段相等和角相等的重要工具,是学习后续课程的必要根底。
在教学呈现方式上,改变了“结论——例题——练习”的陈述方式,而采纳“征询题——探究——觉察”等多种研究方式。
初中数学《全等三角形》主题单元教学设计以及思维导图教学提纲
全等三角形适用年级八年级所需时间课内8课时,课外2课时。
主题单元学习概述从知识的特点上来讲,关于全等三角形的相关知识注重学生通过动手实践发现规律,注重培养学生的思维能力,注重数学与现实的联系;从心理学上讲,八年级学生的认知正从具体运算阶段向形式运算阶段转化,适当的动手操作活动以及问题丰富的现实背景可以帮助他们能更好地掌握相关知识。
《全等三角形》的内容,主要包括全等三角形的概念、全等三角形的性质、全等三角形的判定、角平分线的性质。
全等三角形是研究图形的重要工具,只有灵活运用它们,才能学好相关知识。
本章开始,使学生理解证明的过程,学会用综合法证明的格式。
这是本章的重点,也是难点。
对角平线的性质与判定中也不提出互逆定理。
这样不致于一下给同学们过多的概念,而加大学生负担。
本章中注重让学生经历三角形全等条件的探索过程,更注重对学生能力的培养与联系实际的能力。
我将采用以下的教法与学法:1、引导学生通过动手操作,探究规律;2、注重推理能力的培养,提高理性思维水平;3、联系生产生活实际,增加学习动力;发展学生的思维能力,沟通知识与现实的联系。
主题单元规划思维导图主题单元学习目标(知识与技能:1.掌握全等三角形的概念和性质,能够准确的辨认全等三角形中的对应元素。
2. 探索三角形全等的判定方法,并能灵活、综合运用。
3. 会作角的平分线,掌握角的平分线的性质并会利用它进行证明。
过程与方法:1.经历三角形全等的探索过程,将两个三角形的六个要素随意组合针对每种情况做出分析与验证,得出三个定理,然后将其迁移到直角三角形的判定中来。
2.经历应用全等三角形及解角平分线的有关知识去解决简单的实际问题的全过程。
3.通过开放的设计题来发展思维,培养学生的创造力。
情感态度与价值观:1.培养学习数学的兴趣,初步建立数学化归和建模的思想,积极参与探索,体验成功的喜悦。
2.通过体验抽象的数学来源于生活,同时又服务于生活。
增强了学习数学的兴趣及对生活的热爱对应课标1.通过实例认识图形的各种变换;理解全等形的概念,并能理解掌握全等三角形的性质与判定,并能应用到实际中。
全等三角形教学设计教案
全等三角形教学设计教案这是全等三角形教学设计教案,是优秀的数学教案文章,供老师家长们参考学习。
全等三角形教学设计教案第1篇一、教学目标【知识与技能】了解全等形和全等三角形的概念,掌握全等三角形的性质,能用符号正确表示两个三角形全等,能找出全等三角形的对应元素。
【过程与方法】在图形变换以及实际操作的过程中发展学生的空间观念,提高几何直觉和识图能力。
【情感态度与价值观】通过自主学习的发展体验获取数学知识的感受,提高勇于创新,多方位审视问题的创造技巧。
二、教学重难点【重点】全等三角形的概念、性质及对应元素的确定。
【难点】全等三角形对应元素的识别。
三、教学过程(一)导入新课欣赏一组图片,提出问题提问1:你能从图中找出形状和大小都相同的图形吗?其中一个图形是另一个图形如何变化而来?他们能完全重合吗?你能列举出一些类似的例子吗?(二)生成新知由上图形成全等的概念:形状相同、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等三角形。
多媒体演示三中全等变换(全等、翻折、旋转)并提出问题:平移、翻折、旋转前后得到的三角形全等吗?接下来学生小组活动:多媒体投影要求:请你用事前准备好的三角形纸板通过平移、翻折、旋转等操作得到你认为美丽的图形;在练习本上画出这些图形,标上字母,并在小组内交流;指出这些图形中的对应顶点、对应边、对应角。
多媒体展示学生可能得到的图形,寻找对应元素有什么方法和规律吗?学生思考交流后师生共同总结归纳、板书。
提问:全等三角形的对应边、对应角有什么数量关系?(三)应用新知(1)写出其他对应边及对应角;(2)求线段NM及线段HG 的长度。
(四)小结作业小结:通过这节课的学习,你有什么收获?你对今天的学习还有什么疑问吗?作业:想一想,生活中还有哪些事物是全等的?四、板书设计《全等三角形》教案五、教学反思全等三角形教学设计教案第2篇教学任务分析教学目标1、知道什么是全等形,全等三角形以及全等三角形对应的元素;2、能用符号正确地表示两个三角形全等;3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;4、知道全等三角形的性质,并能用其解决简单的问题要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;5、通过感受全等三角形的对应美,激发热爱科学勇于探索的精神。
初中数学_1.1全等三角形教学设计学情分析教材分析课后反思
《全等三角形》教学设计教学环节教师行为学生行为设计意图信息技术情境引入提出问题观察下列各组图案(电脑显示不同的图案及教科书的图案),学生指出这些图案的形状和大小是否相同?你能再举出生活中的一些实际例子?思考后回答问题它反映了现实生活中存在的大量的全等图形。
引出全等形定义及判定条件。
用课件展示教材中的图案结论:能够完全重合的两个平面图形叫作全等形。
判定全等的条件:形状相同,大小相等。
观察给出图形的形状、大小是否满足全等形,引出全等三角形定义。
以生活实际问题创设情境,引起学生的认知兴趣,从而激发学生的学习积极性和求知欲望用课件展示教材中的图案探求新知合作自学微课后小组交流完成:1.用卡纸任意剪一个三角形,记为∆ABC,用它做模版,沿着它的边缘在纸上画出一个三角形,记为∆A’B’C’,∆ABC与∆A’B’C’是全等三角形吗?先自学平板上的微课,再小组合作完成裁剪三角形,交流完成相应问题。
通过经历操作、观察、思考、抽象等活动,理解全等形及全等三角形概念,并能熟练地找出两个全等三角形的对应顶点、对应边、对应角。
目的是体现先学后教,培养学生分析学生平板播放微课文字语言1.全等三角形对应边相等2.全等三角形对应角相等几何语言∵∵ABC∵ ∵DFE∵ AB=DF, BC=FE, AC=DE ∵A=∵D,∵B=∵F,∵C=∵E追踪训练巩固双基1.已知△ACB≌△DEF,下列说法正确的是()A.AB=DFB. CB=DEC. ∠A=∠DD. ∠CBA=∠F变式1.先写出全等式,再指出它们的对应边和对应角师用平板推送题目,独立完成。
独立思考后抢答进一步培养学生对图形的识别能力,加深学生对全等三角形性质的理解与掌握。
运用教育学平台中的随堂测评功能,用树状图可直观的看出全班学生的掌握情况。
用平板抢答功能。
变式2.先写出全等式,再指出它们的对应边和对应角变式3.先写出全等式,再指出它们的对应边和对应角独立思考后完成用平板抽查功能。
人教版八年级上数学教学设计《第12章全等三角形》
人教版八年级上数学教学设计《第12章全等三角形》一. 教材分析人教版八年级上数学第12章《全等三角形》是初中数学中的重要内容,主要介绍了全等三角形的概念、性质和判定方法。
通过本章的学习,使学生理解和掌握全等三角形的判定和性质,能运用全等三角形的知识解决一些实际问题。
教材中安排了丰富的例题和练习题,有利于学生巩固所学知识。
二. 学情分析学生在学习本章内容前,已经掌握了相似三角形的知识,并具备一定的逻辑思维能力和空间想象能力。
但全等三角形与相似三角形既有联系又有区别,学生需要通过对比、分析、归纳等方法,理解和掌握全等三角形的概念和性质。
同时,学生需要通过大量的练习,提高运用全等三角形知识解决实际问题的能力。
三. 教学目标1.知识与技能目标:使学生理解和掌握全等三角形的概念、性质和判定方法,能运用全等三角形的知识解决一些实际问题。
2.过程与方法目标:通过观察、操作、对比、分析等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和克服困难的勇气。
四. 教学重难点1.教学重点:全等三角形的概念、性质和判定方法。
2.教学难点:全等三角形的判定方法以及在实际问题中的运用。
五. 教学方法1.情境教学法:通过生活实例引入全等三角形的概念,激发学生的学习兴趣。
2.对比教学法:对比全等三角形与相似三角形的异同,帮助学生深入理解全等三角形的性质。
3.实践操作法:让学生动手操作,通过实际操作得出全等三角形的判定方法。
4.小组合作学习法:培养学生团队合作精神,共同解决实际问题。
六. 教学准备1.教学课件:制作全等三角形的相关课件,包括图片、动画、例题等。
2.教学素材:准备一些全等三角形的实际问题,用于巩固和拓展学生的知识。
3.练习题:挑选一些具有代表性的练习题,用于检验学生对全等三角形知识的掌握程度。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实际问题,引导学生思考:如何判断两个三角形是否全等?从而引出全等三角形的概念。
人教版初中八年级数学上册《第十二章 全等三角形》大单元整体教学设计
人教版八年级数学上册《第十二章全等三角形》——大单元整体教学设计一、内容分析与整合(一)教学内容分析《全等三角形》作为人教版初中八年级数学上册第十二章的核心内容,不仅是几何学知识体系中的一个重要里程碑,也是学生深化几何思维、培养逻辑推理能力的关键章节。
本章内容设计逻辑严密,层次分明,旨在通过系统的学习,使学生全面掌握全等三角形的基本概念、判定方法及其在实际问题中的应用,为后续深入探索相似三角形、三角函数等更高级的数学概念打下坚实的基础。
本章首先从全等三角形的定义切入,明确了两个三角形在完全重合时被称为全等三角形,这一基本概念为后续的学习奠定了理论基础。
教材详细展开了三角形全等的几种主要判定方法,即SSS(三边相等)、SAS(两边及夹角相等)、ASA(两角及夹边相等)和AAS(两角及非夹边相等),每一种判定方法都配以清晰的图形说明和严密的逻辑推理,帮助学生理解并掌握如何根据给定的条件判断两个三角形是否全等。
为了增强学生的实践能力和探索精神,本章还特别融入了“信息技术应用:探究三角形全等的条件”这一环节,鼓励学生利用计算机软件或数学工具进行动态演示和实验操作,通过直观的视觉体验加深对三角形全等判定方法的理解。
这种信息技术与数学教学的深度融合,不仅丰富了教学手段,也极大地提升了学生的学习兴趣和参与度。
本章末尾引入了“角的平分线的性质”这一内容,进一步拓展了全等三角形的应用范畴。
通过学习角的平分线如何影响三角形的形状和大小,学生能够从更广阔的视角理解全等三角形的本质,同时也为后续学习其他几何概念提供了有力的支撑。
《全等三角形》这一章节不仅是对几何学基础知识的深入探索,更是培养学生逻辑思维、空间想象能力和实践操作能力的重要载体。
通过本章的学习,学生不仅能够建立起全等三角形的完整知识体系,还能够在解决实际问题的过程中,体验到数学的严谨之美,为后续的数学学习和个人发展奠定坚实的基础。
教师应充分利用教材资源,结合多样化的教学方法,激发学生的学习兴趣,引导他们主动探索,从而在掌握知识的同时,培养良好的数学素养和创新能力。
初中数学初二数学上册《全等三角形的判定》教案、教学设计
二、学情分析
初二是学生数学学习的关键时期,他们在之前的课程中已经掌握了三角形的基本概念和性质,具备了一定的几何图形识别和分析能力。在此基础上,学习全等三角形的判定,有助于巩固和提升学生的几何知识体系。然而,学生在学习过程中可能会遇到以下问题:对全等三角形的定义理解不够深入,容易混淆判定条件;在解决实际问题时,难以将问题转化为全等三角形的判定问题。因此,在教学过程中,教师应关注以下几点:
3.空间想象能力和创新意识的培养:通过丰富的教学活动,激发学生的空间想象能力,鼓励他们从不同角度思考问题,培养创新意识。
(二)教学难点
1.全等三角形判定条件的理解与应用:学生对全等三角形的判定条件容易混淆,需要通过典型例题和练习题,帮助他们理解和掌握。
2.实际问题的转化:将实际问题转化为全等三角形的判定问题,对学生来说具有一定的挑战性,需要教师引导学生运用所学知识进行分析和解决。
-设计具有挑战性的问题,让学生在小组内充分讨论,共同寻找解决问题的方法。
2.引导学生运用几何画板、实物模型等教学工具,提高学生的实践操作能力。
-利用几何画板展示全等三角形的动态变化,让学生直观地感受全等三角形的性质。
-提供实物模型,让学生通过折叠、拼接等操作,亲身体验全等三角形的判定过程。
3.培养学生运用数学思维解决问题的能力。
在导入新课环节,我将通过以下方式激发生的兴趣和好奇心:
1.利用多媒体展示生活中全等三角形的实例,如建筑物的平面图、拼图游戏等,让学生直观地感受全等三角形的应用。
2.提问:“同学们,你们在生活中见过全等三角形吗?它们有什么特点?”引导学生回顾已知的三角形知识,为新课的学习做好铺垫。
初中数学教学课例《三角形全等的判定(SSS)》教学设计及总结反思
2 所示的残片,•你对图中的残片作哪些测量,就可以
割取符合规格的三角形玻璃,与同伴交流.
【学生活动】观察,思考,回答教师的问题.方法
如下:可以将图 1•的玻璃碎片放在一块纸板上,然后
用直尺和铅笔或水笔画出一块完整的三角形.如图 2,
教学过程 •剪下模板就可去割玻璃了.
【理论认知】
如果△ABC≌△A′B′C′,那么它们的对应边相
三角形全等. 【评析】通过学生全过程的画图、观察、比较、交
流等,逐步探索出最后的结论──边边边,在这个过程 中,学生不仅得到了两个三角形全等的条件,同时增强 了数学体验.
二、范例点击,应用所学 【例 1】如课本图 11.2─3 所示,△ABC 是一个钢 架,AB=AC,AD 是连接点 A 与 BC 中点 D 的支架,求证 △ABD≌△ACD.(教师板书) 【教师活动】分析例 1,分析:要证明 △ABD≌△ACD,可看这两个三角形的三条边是否对应相 等. 证明:∵D 是 BC 的中点, ∴BD=CD 在△ABD 和△ACD 中 ∴△ABD≌△ACD(SSS). 【评析】符号“∵”表示“因为”,“∴”表示“所 以”;从例 1 可以看出,•证明是由题设(已知)出发, 经过一步步的推理,最后推出结论(求证)正确的过 程.书写中注意对应顶点要写在同一个位置上,哪个三 角形先写,哪个三角形的边就先写. 三、实践应用,合作学习
初中数学人教八年级上册第十二章 全等三角形数学八上1三角形全等的证明教学设计
《全等三角形》教学设计一、教材分析全等三角形是人教版数学八年级上册第十二章第一节的教学内容。
本节课是“全等三角形”的开篇,是全等三角形全等的条件以及全等三角形的判定的基础,也是进一步学习其它图形的基础之一。
本章是在学过了线段、角、相交线、平行线以及三角形的有关知识以及一些简单的说理内容之后来学习,为学习全等三角形奠定了基础。
通过本章的学习,可以丰富和加深学生对已学图形的认识,为学习其它图形知识打好基础。
同时,三角形全等是两个三角形间最简单、最常见的关系,为下节课《三角形全等的判定》做好知识的铺垫。
二、教学目标1.知识与技能:(1)了解全等三角形的概念,通过动手操作,体会平移、翻折、旋转是考察两三角形全等的主要方法。
(2)能准确确定全等三角形的对应元素。
(3)掌握全等三角形的性质2.过程与方法:初步学会从数学角度提出问题、理解问题,并能运用已学知识来认识全等三角形,通过动手实践,合作交流感受全等三角形。
3.情感、态度与价值观:通过感受全等三角形的对应美,激发热爱科学勇于探索的精神。
通过文字阅读与图形阅读,构建数学知识,体验获取数学知识的过程,培养学生勇于创新,多方位审视问题的创造技巧。
三、考情分析以选择题、填空题的形式出现,主要考察三角形全等的基本条件和性质,分值大概是2-3分。
四、重点、难点突破重点:(1)能准确地在图形中识别出对应边、对应角;(2)全等三角形的性质以及利用其基本性质进行一些简单的推理和计算。
难点:能在全等变换中准确找到对应边、对应角。
五、教学策略根据教学内容以“概念、性质、应用”为侧重点,结合学生所具备的逻辑思维能力,本节课采用以启发式、实验法为主,讨论法、阅读法为辅的教学方法。
有机融合各种教法于一体,做到步步有序,环环相扣,不断引导学生动手、动口、动脑。
在教学过程中,我采用的是“情境导入—探索新知—合作交流—拓展提高—达标测试”的教学模式,并采用“变式练习”方法提高学习效率。
初中数学初二数学上册《直角三角形全等的判定》教案、教学设计
-创设轻松愉快的学习氛围,鼓励学生积极参与,勇于提问,敢于表达。
-建立良好的班级纪律,保证课堂教学的有序进行。
-利用学校教学资源,如数学实验室、多媒体教室等,为学生提供丰富的学习资源。
四、教学内容与过程
(一)导入新课
在导入环节,我将采用生活实例引发学生对直角三角形全等判定方法的思考。首先,我会向学生展示一张由两个直角三角形组成的楼梯图片,并提出问题:“如何判断这两个直角三角形是否全等?”让学生在观察图片的基础上,尝试回答问题。接着,我会让学生拿出提前准备好的两个直角三角形纸片,进行实际操作,观察、思考如何判断它们是否全等。
(二)讲授新知
在讲授新知环节,我会按照以下步骤进行:
1.复习全等三角形的判定方法,引导学生回顾SSS、SAS、ASA、AAS等判定方法。
2.引导学生观察直角三角形的特殊性,即有一个角是直角,从而得出直角三角形的全等判定方法。
3.逐一讲解直角三角形全等的五种判定方法(SSS、SAS、ASA、AAS、HL),并结合实例进行说明。
4.教学步骤:
-导入:通过生活中的直角三角形实例,引发学生思考,激发学习兴趣。
-探究:引导学生复习全等三角形的判定方法,自主探究直角三角形全等的判定方法。
-讲解:结合实例,详细讲解五种判定方法的适用条件,帮助学生理解和记忆。
-应用:设计不同难度的练习题,让学生在实际操作中巩固所学知识。
-总结:通过师生共同总结,梳理本节课的知识点,形成知识网络。
此外,初二学生的抽象思维能力逐渐增强,他们对于直观、具体的实例更容易产生兴趣。因此,在本章节的教学中,教师应充分关注学生的认知特点,结合实际情境,激发学生的学习兴趣,帮助他们建立清晰的知识体系。
同时,初二学生正处于青春期,个体差异较大,学习态度、学习习惯等方面存在一定差异。教师需针对不同学生的特点,因材施教,使每个学生都能在原有基础上得到提高,从而提高整体教学效果。在此基础上,注重培养学生的团队合作精神,让学生在交流与合作中共同进步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学全等三角形教学设计
一、教学设计:
1、学习方式:
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。
它是两个三角形间最简单,最常见的关系。
它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。
因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。
为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。
2 、学习任务分析:
充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。
培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。
3、学生的认知起点分析:
学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。
4、教学目标:
(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。
(2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。
(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。
5 、教学的重点与难点:
重点:三角形全等条件的探索过程是本节课的重点。
从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。
难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。
根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。
6 、教学过程(略)
教学步骤教师活动学生活动教学媒体(资源)和教学方式
7、反思小结
提炼规律
电脑显示,带领学生复习全等三角定义及其性质。
电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边分别对应相等,三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等.但是,是否一定需要六个条件呢?条件能否尽可能少吗?
对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。
按照三角形“边、角” 元素进行分类,师生共同归纳得出:
1、一个条件:一角,一边
2 、两个条件:两角; 两边;一角一边
3 、三个条件:三角; 三边;两角一边;两边一角
按以上分类顺序动脑、动手操作,验证。
教师收集学生的作品,加以比较,得出结论:
只给出一个或两个条件时,都不能保证所画出的三角形一定全等。
下面将研究三个条件下三角形全等的判定。
(1)已知三角形的三个角分别为40°、60°、80°,画出这个三角形,并与同伴比较是否全等。
学生得出结论后,再举例体会一下。
举例说明:
如老师上课用的三角尺与同学用的三角板三个角分别对应相等,但一个大一个小,很显然不全等;
再如同是:等边三角形,边长不等,两个三角形也不全等。
等等。
(2)已知三角形三条边分别是4cm,5cm,7cm,画出这个三角形,并与同伴比较是否全等。
板演:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
由上面的结论可知:只要三角形三边的长度确定了,这个三角形
的形状和大小就确定了。
实物演示:
由三根木条钉成的一个三角形框架,它的大小和形状是固定不变的,三角形的这个性质叫三角形的稳定性。
举例说明该性质在生活中的应用
类比着三角形,让学生动手操作,研究四边形、五边性有无稳定性图形的稳定性与不稳定性在生活中都有其作用,让学生举例说明。
题组练习(略)
3 、(对有能力的学生要求把实际问题抽象成数学问题,根据自己的理解写出推理过程。
对一般学生要求口头表达理由,并能说明每一步的根据。
)
教师带领,回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律。
在教师引导下回忆前面知识,为探究新知识作好准备。
议一议:
学生分小组进行讨论交流。
受教师启发,从最少条件开始考虑,一个条件;两个条件;三个条件…经过学生逐步分析,各种情况渐渐明朗,进行交流予以汇总,归纳。
想一想:
对只给一个条件画三角形,画出的三角形一定全等吗?
画一画:
按照下面给出的两个条件做出三角形:
(1)三角形的两个角分别是:30°,50°
(2)三角形的两条边分别是:4cm,6cm
(3)三角形的一个角为 30,一条边为3cm
剪一剪:
把所画的三角形分别剪下来。
比一比:
同一条件下作出的三角形与其他同学作的比一比,是否全等。
学生重复上面的操作过程,画一画,剪一剪,比一比。
学生总结出:三个内角对应相等的两个三角形不一定全等
学生举例说明
学生模仿上面的研究方法,独立完成操作过程,通过交流,归纳得出结论。
鼓励学生自己举出实例,体验数学在生活中的应用.
学生那出准备好的硬纸条,进行实验,得出结论:四边形、五边形不具稳定性。
学生练习
学生在教师引导下回顾反思,归纳整理。
z+z平台演示
z+z平台演示,教师加以分析。
学生分组讨论,师生互动合作。
经过对各种情况得分析,归纳,总结,对学生渗透分类讨论的数学思想。
结论很显然只需学生想像即可,z+z平台辅助直观演示。
学生动手操作,通过实践、自主探索、交流,获得新知。