分数与小数的互化.
分数与小数的互化说课稿5篇
分数与小数的互化说课稿5篇分数与小数的互化说课稿1一、本课教材分析:《分数与小数的互化》,是一节纯技能课,看似简单,实际上包含的知识点是比较多的。
如旧知识点:一、分数化小数的基本技能;二、四舍五入法取近似数的方法;三、小数除法的技能。
新课知识点:一、分数与小数互化的一般方法;二、一些特殊的方法。
如分数化小数有时可以化成分母是10、100、1000的分数。
三、分数化有限小数的规律。
而且例题也有3个,一节课容量比较多。
象这样的课,新旧知识点比较多,课的密度高。
应该如何提高课堂效率呢?反复思考,觉得要处理好传统教学方法与自主发现、引导探索、合作交流、实践论证的关系。
二、本课教学目标:1、认识到分数、小数进行互化的必要性2、经历分数、小数互化的推理过程.3、发现分数、小数互化的规律,掌握互化的方法.4、培养学生的`抽象概括能力.三、教学重点,难点:猜想、发现、论证,一个分数能否化成有限小数的过程.四、本课内容在教材中的地位:本课分数与小数的互化,是在学生学了“分数的运算”还很陌生的情况下进行的,紧接着本课后的内容是“分数、小数的四则混合运算”,因此,本课内容看似简单,但不能掉以轻心,它在这其中起着承上启下的作用。
所以,掌握好分数与小数互化的技能,对提高后面的四则混合运算的正确率起着举足轻重的作用。
五、本课设计思路:1、学生在小学里学习了小数化分数中把分母化成10、100、1000的分数,但没有要求约分。
对分母为10、100、1000等的分数与小数互化这一部分的知识也掌握得比较好,因为它是建立在已有的小数知识上的。
但实际应用中,很多分数不是用10、100、1000等的数做分母的,或者说是不能转化成分母为10、100、1000等的分数。
那么这些分数转化成小数就必须依靠分子除以分母这组关系式得出。
究竟什么样的分数能化成有限小数,什么样的分数不能化成有限小数,这是“分数化小数”教学中的重难点。
2、若按照以往的教学规则把书本上的规律硬灌给学生,对老师的教学引导而言是方便了许多,但学生理解概念会很生硬,而且也不利于其知识的融会应用。
分数和小数的互化方法
13 65 13 0.65= 100 = 20 20
3
75
3
1.075=1 1000 = 1 40
40
A
11
三、分数化小数
7 10
=
331 100
=
4231 1000
=
分母是10、100、1000…的分数化小数, 可以直接去掉分母,看分母中 1 后面有 几个零,就在分子中从最后一位起向左 数出几位,点上小数点。
31 25
=
31÷25=1.24
A
4
既有分数又有小数时的比较大小
统一方法(也是最简单、方便的方法):
只将分数化成小数进行比较。
比如:比较下列各数的大小: 0.35 2 8 0.4 0.35
5 25
2 5
= 0.4
8 25
=
0.32
8 25
<
0.35
<
0.35 < A
0.4
=
2 5
5
A
6
0.72×50
2
3
1
20 0.12 9 0.375 5 3.025 3 8
A
20
变式训练
• 1.把0.9999……化成分数。 • 2.把7.383838……化成分数。 • 方法:纯循环小数化成分数,分子是一个循
环的小数所组成的数,分母的各位数字都是 9,9的各数同循环节的位数相同。
• 字母表示: 0.abab……= ab 99
=
0.28
分母不是10、100、1000… …的分数 化小数,要用 分子 去除以 分母;
11 = 11÷45≈0.24 (保留两位小数) 45
除不尽的,可以根据需要按四舍五入 法保留几位小数。
分数和小数的互化方法
5、比较下面每组数的大小
5 2 8 和 2.769 1 和 0.365 3
6、把下面各数按从小到大的顺序排列起来
3 20
0.15 3
2 9
0.222
3.025
3 5
0.6
1 38
3.125
0.12
0.375
20
‹ 0.12 ‹
2
9
‹
0.375
‹
3
5
‹ 3.025 ‹ 3 8
1
变式训练
• 1.把0.9999……化成分数。 • 2.把7.383838……化成分数。 • 方法:纯循环小数化成分数,分子是一个循 环的小数所组成的数,分母的各位数字都是 9,9的各数同循环节的位数相同。 • 字母表示: 0.abab……= ab
139 7 21 =0.139 =0.7 =0.21 1000 10 100 13 3 13 =1.3 =0.03 =0.013 10 100 1000 331 4231 =3.31 =4.231 100 1000 765431 3249 =76.5431 =32.49 10000 100
7 = 7÷25 = 0.28 25
常用分数与小数的互化(要牢牢记住):
1 =0.5 2 1 =0.25 4 3 =0.75 4 1 =0.2 5
2 =0.4 5 3 =0.6 5 4 =0.8 5 1 =0.125 8
1 =0.05 20
1 =0.04 25
小数化分数
★ 常用的小数化分数,直接写结果
2
比如:0.4
=
2 5
不要再写作 0.4 = 4
56÷0.04
0.9×0.21
45×0.7
21×0.4
常用小数与分数的互化表
常用小数与分数的互化表小数和分数是数学中常见的数形式,它们在日常生活和学习中都有广泛的应用。
为了方便我们进行计算和比较,我们需要掌握小数和分数之间的互化方法。
下面是一个常用小数与分数的互化表,希望能对大家有所帮助。
小数转分数:小数转分数的方法很简单,只需要根据小数的位数和小数点的位置,将小数转化为分数形式即可。
1. 十分位小数:小数点后面有一位数字,如0.1、0.2等。
将小数的数字部分写在分子上,分母为10,即可得到分数形式。
例如,0.1可以转化为1/10,0.2可以转化为2/10,简化后为1/5。
2. 百分位小数:小数点后面有两位数字,如0.01、0.02等。
将小数的数字部分写在分子上,分母为100,即可得到分数形式。
例如,0.01可以转化为1/100,0.02可以转化为2/100,简化后为1/50。
3. 千分位小数:小数点后面有三位数字,如0.001、0.002等。
将小数的数字部分写在分子上,分母为1000,即可得到分数形式。
例如,0.001可以转化为1/1000,0.002可以转化为2/1000,简化后为1/500。
分数转小数:分数转小数的方法也很简单,只需要将分子除以分母即可得到小数形式。
1. 分母为10的分数:分母为10的分数可以直接转化为小数,只需要将分子的数字写在小数点后面即可。
例如,1/10可以转化为0.1,2/10可以转化为0.2。
2. 分母为100的分数:分母为100的分数可以通过将分子除以100得到小数形式。
例如,1/100可以转化为0.01,2/100可以转化为0.02。
3. 分母为1000的分数:分母为1000的分数可以通过将分子除以1000得到小数形式。
例如,1/1000可以转化为0.001,2/1000可以转化为0.002。
通过这个互化表,我们可以方便地在小数和分数之间进行转换。
在实际应用中,我们经常需要将小数转化为分数,以便进行运算和比较。
例如,在计算中,我们可能需要将0.5转化为1/2,以便进行加减乘除运算。
《分数与小数的互化》
8.
我从学校回家要 花 25 分钟。
我回家要花 1 小时。 4
小林
小凡
如果他们两人的行走速度相同,谁家离学校远些?
5 25÷60 = 12
1 3 = 4 12
答: 离学校远的是小林家。
1. 分别用小数和分数表示下面每个图中的涂色部分。
( 3 ) ( 0.3 )= ( 10 )
( 25 ) ( 0.25 )= ( 100)
李阿姨和王叔叔谁打字快些? 5 ≈ 0.83 0.83<0.9 6 答: 李阿姨打字快。
3. 把小数和相等的分数用线连起来。 0.6 0.03 0.45 3.25 0.18
13 4
3 100
3 5
9 20
9 50
5. 在
里填上适当的小数或分数。
0.125 0.25 0.3
0.5 0.625 0.75 0.8 1 2 5 8 3 4 4 5
自己试一试:
0.07 =
7 ( 100 )
把小数化成分数, 需要注意什么?
0.24 =
6 24 = ( 100 ) 25
6
25
( 123 ) 0.123 = ( 1000)
把下列小数化成分数。
4 2 0.4 = = 10 5 37 0.37 = 100 13 0.013 = 1000
5 1 0.05 = = 100 20 45 9 = 0.45 = 100 20
把 0.7、 9 、0.25、 43 、 7 、11 这 6 个数 2 10 100 25 45 按从小到大的顺序排列起来。
9 = 0.9 10
43 = 0.43 100
7 = 0.28 25
11 ≈0.24 45
五年级必会的常用分数小数互化方法
100 4
100 4
2、百分数化成小数:去掉百分号,小数点向左移动两位;或者先化成分母
是 100、1000 的分数再化成小数。
例如:125%=1.25
26% 26 0.26 100
62.5% 62.5 625 0.625 100 1000
2
31 31 5 155 1.55 20 20 5 100
实际上,很多特殊分母的分数可以通过记忆一劳永逸。如下表:
分母 2 3 4 5 6 7
分数化成小数
1 0.5 2
1
0.3
3
2
0.6
3
1 0.25 2 1 0.5 3 0.75
4
42
4
1 0.2 5
2 0.4 5
3 0.6 4 0.8
分母是 2、4、5、8、10、20、25、50 等分数称作特殊分数,因为运用分数 的基本性质,这些分数的分子和分母同时乘 5、25、2、125、4 等后可以化成分
母是 10、100、1000 的分数,再化成一位、两位、三位小数就容易了。
例如: 4 4 4 16 0.16
25 25 4 100
5
5
1
0.16
2
1
0.3
3 1 0.5
4
2
0.6
5
0.8 3
6
63
62
63
6
1
0.14285
7
2
0. 2 8571
4
…你发现循环节数字排列规律了吗?
7
7
8
1 0.125 2 1 0.25 3 0.375 4 1 0.5 5 0.625
8
84
8
82
《分数与小数的互化》优秀教学反思(通用8篇)
《分数与小数的互化》优秀教学反思(通用8篇)《分数与小数的互化》优秀教学反思(通用8篇)身为一位优秀的老师,我们要有一流的课堂教学能力,通过教学反思能很快的发现自己的讲课缺点,如何把教学反思做到重点突出呢?下面是小编帮大家整理的《分数与小数的互化》优秀教学反思(通用8篇),希望能够帮助到大家。
《分数与小数的互化》优秀教学反思1教学反思:本课教学分数与小数的互化的方法,主要是运用了分数和小数的意义、分数与除法关系、分数的基本性质等基础上进行学习的。
首先复习给学生新知识的学习作了铺垫,探索分数化成有限小数的规律,对学生认知起点的把握非常重要。
建立好这个起点,学生很快感悟到分数化有限小数跟分母有关。
在教学中,尊重每位学生的个性差异,抛出的问题,给他们提供交流各自想法的机会,沟通、交流让学生自主选择适合自己的方法,充分体现了学生是学习的主人。
本节课的成功之处:首先,复习的设计,使师生互动唤起学生对小数的意义,为学习新知打下良好的基础。
其次,是小组活动使学生处在自由、宽松、和谐的课堂氛围中,同学们在互相学习,互相帮助中获得知识。
及时给予鼓励性的语言,促进了学生主动的发展。
本节课的不足之处:小数化分数时,还是存在不约分的现象,没有把分数化成最简分数;在分数化小数时,除不尽的根据四舍五入法保留小数位数,由于我的疏忽,对学生的能力估计太高,难易程度不能针对全班学生,数据过大,导致部分学生越着急越做不出来(出现错误),甚至影响到语言的表述,忘记写约等号的现象。
《分数与小数的互化》优秀教学反思2例9中比谁用的彩带长,实际上就是比较0.5和3/4的大小。
课堂上利用小组合作学习的方式让大家比较0.5和3/4的大小。
学生反映比较热情,归纳学生的发言,学生想出了五种方法,比我预料的多。
归纳这些方法,主要体现了两个方面,一是联系分数的意义来比较,二是把分数化成小数再比大小。
从学生的反馈情况看说明学生对分数的意义理解的还是比较到位的,有了之前分数同除法的关系这一知识点,把分数化成小数,学生也已理解并掌握。
(完整版)分数与小数的互化
分数与小数的互化、混合运算、应用题【知识点1】1.把一个分数化成小数的方法:分子除以分母2.一个最简分数,如果分母中只含有素因数2和5,再无其他素因数,那么这个分数可以化成有限小数;否则就不能化成有限小数。
口答:判断下列分数能否化成有限小数?7 8415122551217403253243.小数化成分数的方法:小数化分数时,小数位数上有几位数字,分母上就有几个0 4.(1)循环小数:一个小数从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这个小数叫做循环小数。
口答:判断下列各数是不是循环小数,为什么?0.5555,0.123123..., 2.235464309...,12.121212..., 5.317317...,(2)循环节:一个循环小数的小数部分中依次不断地重复出现的第一个最少的数字组,叫做这个循环小数的循环节。
如:0.1363636...的循环节为“36”,写作0.136&&。
5.一个分数总可以化为有限小数或循环小数;有限小数和循环小数也总可以化为分数。
【例题讲解】例1.把下列最简分数化成有限小数,如果不能化成有限小数,将其结果保留三位小数。
(1)215(2)314(3)56(4)1625(5)427(6)17100例2.把下列小数分别化成分数:(1)0.9(2)0.25(3)3.32(4)1.125【基础练习】(1)把下列各数化成小数:38= ;625= 。
(2)把下列各数化成分数:3.56= ;0.225= 。
(3)比较大小:53 1.66;2373.286。
(4)把下列各数化为循环小数:59= ;2533= 。
(5)下列分数中:23、74、88、516、3825,真分数有 个。
(6)已知n 是自然数,且分数8n 是假分数,11n 是真分数,则满足条件的n 的值是 。
(7)38、21142、315、39中,能化为有限小数的是 。
2.小明3分钟打字169个,小红5分钟打字271个,问:小红、小明谁的的打字速度快?小拓展:观察下列小数化成分数的结果:20.2222 (9)=; 370.373737 (99)=; 5030.1503503 (999)=; ……总结:纯循环小数化分数时,若为无限小数,则小数的循环节有几位数字,化成的分数的分母就有几个9,循环节作为分数的分子。
《分数与小数的互化》说课稿(精选6篇)
《分数与小数的互化》说课稿《分数与小数的互化》说课稿(精选6篇)作为一位杰出的老师,往往需要进行说课稿编写工作,通过说课稿可以很好地改正讲课缺点。
那么你有了解过说课稿吗?以下是小编精心整理的《分数与小数的互化》说课稿,仅供参考,欢迎大家阅读。
《分数与小数的互化》说课稿篇1一、依据课标,说教材《百分数和分数、小数的互化》是九年义务教育六年制小学数学第11册的内容。
它是在学生学习了百分数的意义、明确了百分数同分数小数的联系的基础上教学的。
学习这部分的内容是为后面学习百分数的计算和应用打下基础。
例1、例2是教学小数与百分数的互化。
教材联系了分数、小数互化的知识,突出“先把小数化成分母为100的分数再写成百分数或先把百分数写成分数形式再化成小数”这一转化规律和转化过程,引导学生归纳概括出小数、百分数互化的简便方法。
例3、教学分数化成百分数,教材按照已掌握的小数化成百分数的方法,提出问题引导学生想先把分数化成小数再化成百分数;例4是教学百分数化成分数,只要把百分数写成分数形式,再约分。
教学例3、例4之后引导学生总结百分数和分数互化的方法。
基于以上的认识,我认为本课的教学目标应确定为:1、知识目标:使学生理解并掌握百分数和小数、百分数和分数互化的方法,能正确地进行百分数与小数、百分数与分数之间的互化。
2、能力目标:培养学生的观察、归纳和概括能力。
3、情感目标:渗透“事物之间互相联系、互相转化”的辩证唯物主义思想。
教学重点:掌握百分数与小数、百分数与分数互化的简便方法及运用方法解决实际问题。
教学难点:掌握百分数与分数、百分数与小数互化的简便方法。
二、以人为本,说策略。
《数学课程标准》指出:“数学教学要紧密联系学生的生活实际,从学生的生活经验和已有的知识出发……”因此,结合本课教材特点、学生实际情况,我采取小组合作学习,引导学生应用学过的分数、小数互化的知识进行迁移、类推,学习新知识。
同时,让学生在尝试探究的积极活动中获取新知,发展能力。
分数与小数的互化
分数与小数的互化是六年级数学上学期第二章第2节中的内容.通过本讲的学习,我们需要学会分数与有限小数及无限循环小数的互化,并利用分数与小数互相转化的方法比较分数与小数的大小,从而熟练分数与小数的互化,为后面学习分数与小数的四则混合运算做好准备.1、分数化小数利用分数与除法的关系,进行分数向小数的转化,例如:3350.65=÷=.2、可化为有限小数的分数的规律一个最简分数,如果分母中只含有素因数2和5,再无其他素因数,那么这个分数可以化成有限小数;否则就不能化成有限小数.3、有限小数化为分数原来有几位小数,就在1后面添几个零作为分母,原来的小数去掉小数点作分子,若有整数部分作为带分数的整数部分.注意:结果一定要化为最简分数.分数与小数的互化内容分析知识结构模块一:分数与有限小数的互化知识精讲【例1】 把下列分数化成有限小数,如果不能化成有限小数,则将其保留3位小数.35、56、18、920、7112、124【难度】★【答案】0.6;0.833;0.125;0.45;1.583;2.25. 【解析】考察分数与小数的互化.【例2】 把下列小数化成分数.0.12,0.076,1.35,2.02.【难度】★【答案】3197112252502050,,,.【解析】2531001212.0==,25019100076076.0==,207110035135.1==,50121002202.2==.【总结】考察分数与小数的互化.【例3】 比较下列两组数的大小:1320______0.66,1.35______37180. 【难度】★【答案】< ;<. 【解析】66.065.02013<=,35.14625.180371>=.【总结】考查分数与小数的大小比较,可以将分数化为小数,也可将小数化成分数,然后再比较大小.【例4】 将12,35,58,710,1320,1725按从小到大的顺序排列.【难度】★★【答案】12<35<58<1320<1725<710. 【解析】1=0.52,3=0.65,5=0.6258,7=0.710,13=0.6520,17=0.6825.【总结】主要考查分数的大小比较,可以将分数化为小数,然后再比较大小.例题解析【例5】 下列说法错误的是( )A .任何分数都能化为小数B .任何小数都能化为最简分数C .任何分数都能化为有限小数D .任何有限小数都能化为分数【难度】★★ 【答案】C【解析】分数可以化为有限小数和无限不循环小数. 【总结】考查分数化为小数的方法.【例6】 在分数313,714,1150,1215,2332,76中能化为有限小数的分数有______个.【难度】★★【答案】4【解析】714,1150,1215,2332均可化为有限小数.【总结】考察分数转化为有限小数的条件.【例7】 10.26分米 = ______分米 = ______米;0.26天 =______小时.(填分数) 【难度】★★ 【答案】501310;500131;25156.【解析】501310100261026.10==,251562450132426.0=⨯=⨯. 【总结】考察利用小数分数之间的转化表示单位之间的换算.【例8】 0.24的倒数是______,1.35的倒数是______. 【难度】★★【答案】625,2720.【解析】2561002424.0==,2027207110035135.1===. 【总结】先将小数化为分数,然后再求倒数.【例9】 (1)120.252-;(2)120.253-.【难度】★★【答案】(1)2.25;(2)1212. 【解析】(1)120.25 2.50.25 2.252-=-=;(2)111120.252233412-=-=.【总结】分数与小数混合运算时,有不能化为有限小数的分数时,将所有的数字转化为分数来进行运算.如果可以转换为有限小数时,则可以化做小数再加减运算.【例10】 甲水果店的苹果以9元4千克的价格出售,乙水果店的苹果以16元7千克的价格出售,哪家水果店苹果的价格比较便宜?【难度】★★ 【答案】乙. 【解析】因为1696416916494⨯=⨯⨯=,9166391697167⨯=⨯⨯=,所以16794>, 故乙水果店便宜.【总结】考查利用分数的大小比较解决实际问题.【例11】 某学校组织“分数计算竞赛”,甲、乙、丙三位同学分别耗时0.6小时、3760小时和42分钟,三人中用时最少的是谁?【难度】★★★ 【答案】甲. 【解析】42分钟=6042小时;0.6小时=53小时=6036小时.所以分钟小时小时4260376.0<<,故甲用时最少.【总结】考查利用分数的大小比较解决实际问题.【例12】 已知,a 是一个不大于30的正整数,且9a能化成有限小数,则a 可能取的值有______个.【难度】★★★ 【答案】13【解析】满足条件的有2,4,6,8,10,12,15,16,18,20,24,25,30,共有13个.【总结】本题主要考查分数化为有限小数的条件,主要化成最简分数之后,分母的因数 只有2和5就可以.1、 循环小数一个小数从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这个小数叫做循环小数.一个循环小数的小数部分中依次不断地重复出现的第一个最少的数字组,叫做这个循环小数的循环节.为了书写方便,小数的循环部分只写出第一个循环节,在这个循环节的首位和末位的数字上面各记一个圆点.例如:0.3333…的循环节为“3”,写作0.3g;0.1363636…的循环节为“36”,写作0.136g g. 像“0.3g”这样的循环小数称为纯循环小数,其循环节从小数点后第一位开始; 像“0.136g g ”这样的循环小数称为混循环小数,其循环节不从小数点后第一位开始. 2、 纯循环小数化为分数纯循环小数化分数:这个分数的分子等于一个循环节所组成的数,分母全部由9构成,9的个数等于一个循环节中的位数,最后再化为最简分数.例如:123410.123999333==g g . 3、 混循环小数化为分数混循环小数化分数:这个分数的分子是第二个循环节之前的小数部分组成的数与小数部分中不循环部分组成的数的差,分母的前几位数是9,末几位数是0,9的个数等于一个循环节中的位数,0的个数等于小数点后不循环部分的位数.例如:1231122610.123990990495-===g g . 模块二:分数与循环小数的互化知识精讲【例13】0.102102…的循环节是_______,写作_________,保留2位小数写作_______.【难度】★【答案】102;••201;0.10.【解析】考察循环小数的读法和写法.【例14】已知:0.12222,0.353555…,3.23232323,0.1010010001…,0.1353535…,0.231544307…,其中循环小数有_____个.【难度】★【答案】2个【解析】循环小数有0.353555…,0.1353535….【总结】考察循环小数的定义.【例15】将下列分数化为有限小数,若不能化为有限小数,则化为循环小数,并说出其循环节.(1)75;(2)1215;(3)79;(4)4199.【难度】★【答案】(1)1.4;(2)0.8;(3)•7.0,循环节为7;(4)••14.0,循环节为41.【解析】考察分数与小数的互化.【例16】将下列两组数按从小到大的顺序排列.(1)29、16、0.2、516;(2)315、1.62g、138、1.60g g.【难度】★★【答案】(1)16<0.229<516<;(2)3151.60<g g1.62<g138<.【解析】(1)因为20.29•=、10.166•=、0.2、50.312516=,所以16<0.229<516<;(2)因为31 1.65=、131.6258=,所以3151.60<g g1.62<g138<.【总结】考察分数与小数的大小比较,可以将小数化为分数,也可将分数化为小数.例题解析【例17】 将下列循环小数化为分数.(1)0.3g;(2)0.21g g;(3)0.36g;(4)0.321g g.【难度】★★【答案】(1)31;(2)337;(3)3011;(4)53165.【解析】(1)310.393==g; (2)2170.219933==g g ;(3)36333110.36909030-===g ; (4)3213318530.321990990165-===g g . 【总结】考察循环小数化为分数的方法,参考知识精要.【例18】 分数511化为循环小数后,小数点右边第200位上的数字是______. 【难度】★★【答案】5.【解析】••=54.0115,则小数点右边第200位上的数字为5.【总结】考察分数化为小数的方法以及数字的规律.【例19】 移动循环小数2.3020304gg的前一个循环点,使产生的循环小数尽可能小,这个新循环小数是__________.【难度】★★ 【答案】2.3020304gg.【解析】考察循环小数的比较大小.【例20】 将67化为循环小数后,小数点后的前100个数字之和为多少? 【难度】★★【答案】453.【解析】••=257148.076循环数字有6位,因为100÷6=16余4,所以小数点后的前100个数字之和为:()()453175824175816=+++++++++⨯.【总结】考察分数化成小数的方法,以及对循环节的理解和运用.【例21】 将31 1.25⨯g 的结果化为带分数:______.【难度】★★【答案】45431.【解析】因为9212.1=•,所以381188431 1.215594545⨯=⨯==g .【总结】现将循环小数化为分数,然后根据分数的乘法法则进行计算.【例22】 计算:(1)2.45 3.13+g gg;(2)2.609 1.32-gg g;(3)4.3 2.4⨯gg;(4)1.240.3÷g gg. 【难度】★★ 【答案】(1)165975;(2)283919900;(3)27286;(4)1141 【解析】(1)45131527522972.453.13232323599901115165165165-+=+=+=+=g gg; (2)609603261322.609 1.3221219009910099--=-=-g g g 283919900=; (3)3439222864.3 2.442999927⨯=⨯=⨯=g g ;(4)243123411.240.3139999911÷=÷=⨯=g g g .【总结】本题主要考查无限循环小数化成分数的方法以及分数的运算.【例23】 10.610.610.60.6+++gggg.【难度】★★【答案】132205.【解析】212121212121212126443333321231333331339233263=+=+=+=+=+++++++原式239205344132=+=. 【总结】考察繁分数的运算,本题要先将小数化成分数再进行计算.【例24】 计算:0.140.250.360.470.58++++ggggg. 【难度】★★★【答案】1831.【解析】0.140.250.360.470.58++++ggggg.141252363474585=909090909013233343539090909090165319018-----++++=++++== 【总结】本题一方面考查无限循环小数化成分数的方法,另一方面考查分数的加法运算.【例25】 将纯循环小数0.ab g g化为最简分数时,分子与分母之和为19,求a 和b . 【难度】★★★ 【答案】72a b ==,. 【解析】100.99a b ab +=g g,当分母为9时,则分子为10,则分数为910,不合题意;当分母为11时,分子为8,则分数为••=27.0118,所以72a b ==,. 【总结】考察循环小数化为分数的方法以及对纯循环小数的理解及运用.【例26】 某学生计算1.23g乘以一个数a 时,把1.23g误看成1.23,使乘积比正确结果减少0.3,则正确的结果该是多少?【难度】★★★ 【答案】111. 【解析】因为30719021190223132.1==-=•,所以3.023.13071=-a a ,所以3.03001=a ,所以90=a ;则正确的结果为111903037903071=⨯=⨯.【总结】本题一方面考查学生对题意的理解,另一方面考查无限循环小数与分数的互化以及分数的运算.【例27】 循环小数0.12345gg与0.2345gg在小数点后面第几位第一次同时出现数字5? 【难度】★★★【答案】小数点后面第20位第一次 同时出现数字5.【解析】0.12345gg循环节有5位,0.2345gg循环节有4位,则小数点后面第20位第一次同时出现数字5.【总结】考察循环小数循环节的规律以及对最小公倍数的运用.【例28】 真分数7x化为小数后,如果从小数点后第一位数字开始连续若干个数字之和是91,那么x 等于多少?【难度】★★★【答案】2【解析】••=742851.071,••=485712.072,••=128574.073,••=871425.074,••=514287.075,••=257148.076,观察发现循环节的数字都是1,4,2,8,5,7,一个循环节的和为27758241=+++++,32791=÷余10,只有72中1082=+,所以x 等于2.【总结】考察分数与小数的互化以及对数字规律的观察与总结.【例29】 求证:20.63=g. 【难度】★★★【答案】设a =•6.0,则a 106.6=•,所以66.06.610=-=-••a a ,所以69=a ,所以32=a . 【解析】考察分数化为循环小数的方法.【例30】 求证:110.3630=g . 【难度】★★★【答案】设a =•63.0,则a 106.3=•,a 1006.36=•,所以336.36.3610100=-=-••a a ,所以3390=a ,所以3011=a . 【解析】考察分数化为循环小数的方法.【习题1】 把下列分数化成有限小数,如果不能化成有限小数,则将其保留3位小数.74、415、1324、8335. 【难度】★【答案】7 1.754=、41 1.85=、130.54224=、83 3.22935=. 【解析】考察分数化小数的方法.【习题2】将1722化为循环小数:______. 【难度】★【答案】••7277.0.【解析】考察分数化小数的方法.【习题3】 将0.1503g g 化为分数:______. 【难度】★★【答案】4995751. 【解析】1503115027510.1503999099904995-===g g . 【总结】考察循环小数化成分数的方法.【习题4】 将1.44、1.4g、41100、1.41从大到小排列:____________________. 【难度】★★【答案】41100<1.41<1.44<1.4g . 【解析】因为04.110041=,所以41100<1.41<1.44<1.4g . 【总结】考察分数与小数的大小比较,注意合理方法的选用.随堂检测【习题5】 计算:30.4524⨯=g g ______. 【难度】★★ 【答案】45. 【解析】因为115994554.0==••,所以351150.45241144⨯=⨯=g g . 【总结】先将循环小数化为分数,然后再做乘法.【习题6】 甲、乙两个工人加工零件,甲平均每分钟加工0.9个,乙平均每分钟加工1011个,谁的工作效率高些? 【难度】★★【答案】乙 【解析】因为100.900.911••=>,所以乙的工作效率高.【总结】考查分数与小数的大小比较在实际问题中的应用.【习题7】 0.540.36+=g g g______. 【难度】★★ 【答案】990899. 【解析】545364945393608990.540.3690999011990990990-+=+=+=+=g g g . 【总结】先将循环小数化为分数,然后再做分数加减法.【习题8】 将613化为循环小数后,小数点后的前100个数字之和为多少?. 【难度】★★【答案】448. 【解析】••=861534.0136,循环节共有6位,则4166100Λ=÷, 所以()448516483516416=+++++++++⨯. 【总结】考察分数化成小数的方法,以及对循环节的总结及运用.【习题9】 计算:0.010.120.230.340.780.89+++++g g g g g g .【难度】★★★ 【答案】512. 【解析】0.010.120.230.340.780.89+++++g g g g g g11212323437878989090909090901112131718190909090909021612905-----=+++++=+++++== 【总结】考察循环小数化为分数的方法以及分数的加法运算,注意结果要化到最简.【习题10】 设a 、b 、c 是0 ~ 9的数字(允许相同),将循环小数0.abc g g 化成最简分数后,分子有多少种不同的情况?【难度】★★★【答案】660. 【解析】0.999abc abc =g g ,因为a 、b 、c 是0 ~ 9的数字,所以abc 可以为001到999.因为373331119999⨯⨯⨯=⨯=,所以001到999中以3为公因数有333个数可以约分,还剩666个.以37为公因数的有27个可以约分,还剩639个.算重复的有 9个,所以剩 下639+9=648.而其中81的倍数有12个,所以共有648+12=660个.【总结】本题综合性较强,考查的知识点比较多,也比较综合,主要是认真分析题意,根据所学知识求出结论.【作业1】 填空: 12=______; 14=______; 34=______; 15=______; 18=______; 38=______; 58=______; 78=______; 120=______; 125=______; 140=______; 150=______. 【难度】★ 【答案】0.5;0.25;0.75;0.2;0.125;0.375;0.625;0.875;0.05;0.04;0.025;0.02.【解析】考察分数化成小数的方法.【总结】常见分数与小数需要背诵.【作业2】 将无限循环小数3.102g g表示成分数形式:______. 【难度】★【答案】333343. 【解析】102343.10233999333==g g . 【总结】考察循环小数化分数.【作业3】 将下列小数化成最简分数.0.35,0.02,1.135【难度】★【答案】712712050200,,. 【解析】0.3520710035==,0.022110050==,1.13520027110001351==. 【总结】考察小数化成分数的方法,注意分数一定要化成最简分数.课后作业【作业4】 将435化成循环小数是______,小数点右边第2016位上的数字是______. 【难度】★★ 【答案】0.1142857&&,5. 【解析】40.114285735=&&循环节共有6个数字,()2016163355-÷=L ,所以小数点右 边第2016位上的数字是5.【总结】考察分数化小数的方法以及对循环节的理解及运用.【作业5】 119、522、0.227g g 、0.227g g 、1.2g 这些数中,是否有相等的两个数?若有,请将它们一一写出来.【难度】★★ 【答案】119=1.2g 、522=0.227g g . 【解析】227222550.22799099022-===g g ;2270.2271000=g g ;2111.2199==g . 【总结】考察循环小数化分数的方法以及分数的大小比较.【作业6】 化肥厂第一天生产化肥12.5吨,第二天比第一天多生产113吨,两天共生产化肥多少吨?【难度】★★ 【答案】3126. 【解析】31263115.125.12=⎪⎭⎫ ⎝⎛++(吨). 【总结】考察分数加减法的实际应用.【作业7】 191.21.2427⨯+g g g . 【难度】★★ 【答案】920. 【解析】192241911123194119201.21.241127999279992727279⨯+=⨯+=⨯+=+=g g g .【总结】先将循环小数化为分数再做乘法运算.【作业8】 有8个数,0.51g g ,23,59,0.51g ,2447,1325是其中6个,如果按从小到大的顺序排列时,第4个数是0.51g ,那么按从大到小排列时,第6个数是哪一个数?【难度】★★★【答案】0.51g. 【解析】因为20.63•=,50.59•=,240.510647=L ,130.5225=, 所以2447<0.51g 0.51<g g 1325<59<23<,由于这6个数从小到大的顺序排列0.51&在第二位,而0.51&在八个数按从小到大的顺序排列时位于第4个,所以另外两个数都小于0.51&,所以这八个数从大到小排列时,第四个是0.51&. 【作业9】 纯循环小数0.abc g g写成最简分数时,分子和分母的和是58,那么三位数abc = ______.【难度】★★★【答案】567. 【解析】0.999abc abc =g g ,而37391119999⨯⨯=⨯=,又因为0.abc g g 小于1,且分子和分母 的和是58,所以当分母为37时,则分子为21,即分数为••=765.03721;所以567abc =. 【总结】考察循环小数化为分数的方法.【作业10】 真分数13a 化成小数后,如果小数点后连续2017个数字之和是9075,那么a 等于多少?【难度】★★★【答案】4或5. 【解析】将分数131213111310139138137136135134133132131,,,,,,,,,,,化为小数后发现所有的循环节都是又0、7、6、9、2、3或4、6、1、5、3、8构成.则一个循环节的和为27329670=+++++, 或46153827+++++=,而3336279075Λ=÷,而 只有134,135小数点后第一位为3, 所以45a =或. 【总结】本题主要考查对循环节的规律的归纳及运用.。
分数和小数的互化方法
分数和小数的互化方法
分数和小数是数学中常见的两种数值表示方法。
在实际应用中,有时需要将分数转换为小数,或者将小数转换为分数。
下面介绍分数和小数的互化方法。
一、分数转小数
将分数转换为小数,可以采用以下两种方法:
1. 除法法
将分数的分子除以分母,得到的结果即为小数。
例如,将2/5转换为小数,可以进行如下计算:
2 ÷ 5 = 0.4
因此,2/5可以表示为0.4。
2. 小数点法
将分数的分子和分母都乘以10的n次方(n为正整数),使分母变为
10的整数次幂,然后将分子除以分母,得到的结果即为小数。
例如,将3/8转换为小数,可以进行如下计算:
3 × 100 ÷ 8 = 37.5
因此,3/8可以表示为0.375。
二、小数转分数
将小数转换为分数,可以采用以下两种方法:
1. 分数化小数法
将小数化为分数的形式,分子为小数点后的数字,分母为10的小数位数次幂。
例如,将0.6转换为分数,可以进行如下计算:
0.6 = 6/10 = 3/5
因此,0.6可以表示为3/5。
2. 通分法
将小数化为分数的形式,分子为小数点后的数字,分母为10的小数位
数次幂,然后将分数通分,得到的结果即为所求的分数。
例如,将0.25转换为分数,可以进行如下计算:
0.25 = 25/100
将25/100通分为1/4,因此,0.25可以表示为1/4。
总结:
分数和小数的互化方法有多种,根据具体情况选择合适的方法进行转换。
在实际应用中,需要注意小数的精度问题,避免出现误差。
小数与分数的相互转化
小数与分数的相互转化小数与分数是数学中常见的表示形式,它们可以相互转化。
本文将介绍如何将小数转化为分数,以及如何将分数转化为小数。
通过掌握这些转化方法,我们可以更方便地应用于实际问题中。
一、小数转化为分数当我们遇到一个小数时,有时候需要将它转化为分数的形式。
以下是小数转化为分数的常见方法。
1.1 十进制小数转化为分数对于十进制小数,我们可以根据小数点后的数字位数,决定分母的大小。
如下所示:1. 将小数点后的数字写成分子;2. 分母根据小数点后数字位数的位数决定。
若小数点后有一位数字,分母为10;若小数点后有两位数字,分母为100;以此类推。
例如,将小数0.25转化为分数,我们可以写成:\[ 0.25 = \frac{25}{100} \]1.2 无限循环小数转化为分数在一些情况下,我们会遇到无限循环小数,例如0.3333...。
这时,我们需要使用一种特殊的方法将它们转化为分数。
以下是转化无限循环小数为分数的步骤:1. 将无限循环的部分用变量表示,如a;2. 将无限循环的部分除以一个与循环部分等长的9,得到b;3. 用a-b表示,即可得到分数形式。
举个例子,将0.3333...转化为分数的步骤如下:\[ a = 0.3333... \]\[ b = \frac{a}{9} = \frac{0.3333...}{9} = \frac{1}{3}\]\[ a - b = 0.3333... - \frac{1}{3} = 0 \]因此,0.3333...转化为分数为\[ \frac{1}{3} \]。
二、分数转化为小数当我们遇到一个分数时,有时候需要将它转化为小数的形式。
以下是分数转化为小数的常见方法。
2.1 分子除以分母将分数的分子除以分母,即可得到小数形式。
例如,将分数\[ \frac{2}{5} \]转化为小数时,可以进行如下计算:\[ 2 \div 5 = 0.4 \]因此,\[ \frac{2}{5} \]可以转化为小数0.4。
《分数与小数的互化》教案
《分数与小数的互化》教案一、教学目标1.让学生理解分数与小数的关系,掌握分数与小数互化的方法。
2.培养学生的观察、分析、归纳能力,提高学生的数学素养。
3.培养学生合作学习、主动探究的精神,激发学生学习数学的兴趣。
二、教学重难点1.教学重点:掌握分数与小数互化的方法。
2.教学难点:理解分数与小数互化的原理。
三、教学过程1.导入新课(1)引导学生回顾已学的分数和小数的概念。
(2)通过实例让学生感受分数与小数的联系。
2.学习分数与小数互化的方法(1)讲解分数与小数互化的原理以分数为例,将分数的分子除以分母,得到的结果就是小数。
例如:1/2=0.5,3/4=0.75。
以小数为例,将小数点后的数字按照分母的位数进行分组,每组数字作为分子,分母为相应的10的幂次。
例如:0.5=5/10=1/2,0.75=75/100=3/4。
(2)举例讲解例1:将分数3/4转化为小数。
解:3÷4=0.75,所以3/4=0.75。
例2:将小数0.6转化为分数。
解:0.6=6/10=3/5。
①分数转化为小数:分子÷分母=小数。
②小数转化为分数:将小数点后的数字按照分母的位数进行分组,每组数字作为分子,分母为相应的10的幂次。
3.练习巩固(1)课堂练习①将分数7/8转化为小数。
②将小数0.8转化为分数。
(2)小组讨论①如何判断一个小数能否化为分数?②分数与小数互化时,哪些情况下需要注意?4.拓展延伸(1)讲解分数与小数的应用分数与小数在现实生活中有广泛的应用,例如:计算百分比、折扣等。
(2)让学生举例说明分数与小数在生活中的应用本节课我们学习了分数与小数的互化方法,通过讲解和练习,同学们已经掌握了这一知识点。
希望大家在今后的学习中,能够灵活运用分数与小数的互化,解决实际问题。
四、课后作业1.完成课后练习题。
2.收集生活中分数与小数的应用实例,下节课分享。
五、教学反思本节课通过讲解、举例、练习等形式,让学生掌握了分数与小数互化的方法。
分数与小数的互化过程
分数与小数的互化过程分数和小数呀,就像两个性格不太一样但又能互相串门的小伙伴。
咱先来说说分数化成小数。
就拿咱常见的分数来说,比如说二分之一。
这二分之一怎么变成小数呢?其实就像分苹果,一个苹果分成两份,那每一份不就是0.5个苹果嘛。
具体的做法呢,就是用分子除以分母。
二分之一就是1除以2,这一除呀,就得到0.5啦。
再比如四分之一,那就是1除以4,算出来就是0.25。
这就好像是把一块蛋糕切成4份,其中的一份就是0.25块蛋糕。
有些分数呢,分子除以分母的时候可能除不尽。
像三分之一,1除以3,得到的是0.3333……这后面的3就像停不下来的小尾巴,一直循环下去。
这就像一个调皮的小孩子,在那不停地蹦跶。
还有像七分之三这样的,3除以7得到0.428571428571……这一串数字就一直在循环,可有意思了。
那小数怎么化成分数呢?如果是有限小数就简单得很。
像0.75这个小数,咱就看它小数点后面有两位,那就可以写成75除以100,然后约分一下,就变成了四分之三。
这就好比是把0.75块糖还原成原来糖的几分之几的模样。
再比如说0.2,这就是2除以10,约分后就是五分之一。
这就像是把0.2个小饼干变回原来饼干的分数形式。
要是循环小数化分数呢,就稍微复杂点。
比如说0.3333……这个循环小数,咱可以设这个数为x,那10x就是3.3333……然后用10x - x,也就是3.3333……减去0.3333……就得到3,而9x = 3,那x就等于三分之一啦。
这就像是玩一个数字猜谜的游戏,通过巧妙的计算把循环小数这个神秘的家伙变成分数这个熟悉的面孔。
再看0.142857142857……这个循环节比较长的循环小数。
同样设它为x,1000000x就是142857.142857……然后1000000x - x,就得到999999x等于142857,那x就是142857分之999999,约分后就是七分之一。
这就像在一个数字迷宫里绕来绕去,最后找到了出口,把循环小数变成了分数。
数学《分数与小数的互化》教学设计【优秀5篇】
数学《分数与小数的互化》教学设计【优秀5篇】数学《分数与小数的互化》教学设计篇一教学目标:1、掌握分数与小数互化的方法并能进行分数与小数之间的大小比较·2、培养学生的观察、比较和分析、推理等思维能力·教学重点:分数与小数互化的方法教学难点:会利用分数与小数互化的方法解决实际问题·教学准备;多媒体教学教学过程:一、新授出示主题图·师:从图中知道了那些信息?要我们做什么?师:有什么问题吗?师:分数和小数之间能直接比较吗?怎么办?学生试做反馈:指名回答·引导出把分数与小数互化的方法·分组进行分数与小数互化:学生分为两组,一组研究小数化成分数的方法,一组研究分数化成小数的方法·集体交流总结方法练习:把9/25、5/6化成小数(除不尽的保留三位小数)把0·3、0·13、0·213化成小数·二、巩固练习1、小麦地的面积是7/8公顷,棉花地的面积是0·8公顷,什么地的面积大一些?学生独立完成·同桌之间交流·集体交流·2、小军做了1·1小时,小明做了6/5小时,谁做得快一些?学生独立完成·同桌之间交流·集体交流·三、思考题A和B都是大于0的整数,当A()时,B/A是真分数;当A()时,B/A是假分数;B/A能化成整数·四、课堂总结:小数与分数互化的方法是什么?数学《分数与小数的互化》教学设计篇二一、设置悬念、导入新课:师:在我们的日常生活中,经常会遇到这样的问题:“小红和小明进行游泳比赛,小红行完全程用了0.8小时,小明行完全程用了3/4小时,哪位同学的速度更快?”要解决这个问题,你有什么好办法?生1:把小数化成分数,再比较。
生2:把分数化成小数,再比较。
师:大家的想法都很好,要想比较两个人的速度,需要把这两个数统一成一类数,要么都是小数,要么都是分数,这样才能便于比较,今天这节课我们就来学习分数、小数互化的一般方法。
小学五年级数学教案 分数和小数的互化9篇
小学五年级数学教案分数和小数的互化9篇分数和小数的互化 1【教学目标】知识目标:掌握百、分、小的互化方法。
技能目标:1、在小组合作中,一起探究互化的方法,并在实践应用中选择更合理的方法。
2、在过程中让学生去大胆尝试,注重知识的迁移;学会总结,并把发现的好方法及时用到研究中去。
情感目标:尝试成功,感受失败,在学习和游戏中培养团结合作的精神,激发学生学习数学的兴趣,对课堂中的练习和作业既有兴趣又有信心地完成。
【教学重、难点】重点:探索过程中技能的培养,让学生感到学习的乐趣和信心,体验成功喜悦,体会课堂练习和作业给自己带来的快乐,化难为易。
难点:知识上,不能化成有限小数的处理。
能力上,和学生一起尝试并试着总结。
【教学方法设计】1、给学生准备的两份礼物,在调动学生兴趣的同时,在动画片中感受大自然中事物的转换,在游戏中为后面的学习作铺垫。
2、从小数如何转化成百分数入手,小组合作大胆尝试,3、集体汇报,总结方法,为接下来的学习做准备。
4、在练习中自然过渡到百分数转化成小数的学习。
5、此处作一小节,总结好的方法和成功的经验,各组之间相互交流,取长补短,6、自己举例,小组研究分数和百分数的互化。
7、汇报成果,并处理研究过程中的难点,也就是本课的难点。
8、练习,质疑。
9、继续做课前的游戏,一边游戏一边总结好的方法,并马上尝试。
10、总结,说说自己的收获和感受。
【教具准备】多媒体【教学过程】一、引入:师:老师特地给大家准备了两份礼物。
先送给大家第一份。
播放小鹿斑比。
师:从这优美的画面中,我们一起感受到了春夏秋冬四季的转换,也看到了水雨雪冰的转换。
这种转化不仅在大自然中随处可见,在数学中也非常普遍。
下面是送给大家的第二份礼物,一个小游戏。
师:小熊的背面藏不同的数,只有你找到相等的两个,他们才会消失。
谁想试试?让学生试过之后师:大家玩的不是很熟练,要想玩的熟练得有一个基本的前提,谁知道是什么?不光玩这个游戏,在我们的计算中,比较数的大小中经常用到百分数、分数、小数的互化。
分数和小数的互化教学设计(精选5篇)
分数和小数的互化教学设计分数和小数的互化教学设计(精选5篇)作为一位兢兢业业的人民教师,就不得不需要编写教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。
教学设计应该怎么写呢?以下是小编收集整理的分数和小数的互化教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
分数和小数的互化教学设计篇1教学内容:分数和小数的互化第2课时教学目标:1、认识能化成有限小数的最简分数的特点,能判断一个最简分数能否化成有限小数。
2、培养学生观察、比较、分析、探究能力。
3、在小组合作中培养学生的团队合作精神,增强学生学习的信心,激发学生学习的兴趣。
教学重点、难点:判断最简分数能否化成有限小数教具、学具准备:卡片、投影片若干板书设计:1/4=1÷4=0.259/25=9÷25=0.3617/40=17÷40=0.4255/6=5÷6≈0.8333/14=3÷14≈0.21416/33=16÷33≈0.485教学过程:一、激趣导入(复习导入)1、把下面几个分数化成有限小数,看谁做得又对又快?3/10、39/100、1又51/10002、小结:分母是10、100、1000……的分数怎样化小数3、请同学们和老师比赛,判断分母不是10.100.1000……的最简分数能否化成有限小数4、揭示课题:为什么老师判断的这么快,这节课我们一起来研究这个规律二、合作探究(新授)1、尝试练习提出问题出示例3 把1/4 17/40 5/6 3/14 16/33化成有限小数?(除不尽的保留三位小数)根据计算结果,板书根据结果,可以把这些分数分成几类?根据分类,你想到了什么问题?本节课核心问题2、自愿分组共同探究请同学们根据各自的研究方向,自愿分组讨论教师参与学生讨论3、汇报交流形成成果各小组汇报根据学生汇报小结:能否化成有限小数和分子无关;能化成有限小数的最简分数的分母能化成分母是10、100、1000……的分数;能化成有限小数的分母,分解质因数,并由学生分类。
小数与分数的互化
任何分数都可以化为小数。
分数化小数时,只需将分子除以分母即可,结果只有两种可能,或者化为有限小数,或者化为无限循环小数,而循环小数又分为纯循环小数与混循环小数两类。
本讲讨论分数与循环小数的互化问题,并给出有关循环小数的计算。
最简分数化为小数的三种情况:(1)如果分母不含除2,5外的任何质因数,那么这个分数必可化为有限小数,并且小数部分的位数等于分母中质因数2与5中个数较多的那个数的个数;(2)如果分母中只含有2与5以外的质因数,那么这个分数必可化为纯循环小数;(3)如果分母中既含有质因数2或5,又含有2与5以外的质因数,那么这个分数一定能化成混循环小数,并且不循环部分的位数等于分母中质因数2与5中个数较多的那个数的个数。
小数化成分数的三种情况:(1)将有限小数化为分数时,原来有几位小数,就在1后面添几个0作为分母,把原来的小数部分作为分子,最后再约简为最简分数。
(2)纯循环小数化为分数时,分数的分子是由一个循环节的数字组成的数,而分母的各位数字均为9,9的个数等于循环节的位数。
(3)混循环小数化为分数时,分数的分子是由小数点后面第一个数字到第一个循环节的末位数字所组成的数,减去不循环部分数字所组成的数所得的差。
而分母的前几位数字都为9,后几位数字均为0,其中9的个数等于循环节的位数,0的个数等于不循环部分的位数。
[注] (2),(3)中最后都要约简为最简分数。
[例1] 下列分数哪些能化为有限小数、纯循环小数、混循环小数?若能化成有限小数,小数部分有几位?若能化成混循环小数,不循环部分有几位?6513 25033 325 223 27548 11116 97,,,,,,。
[解] 注意到除6513外,上述分数均为最简分数。
而516513=,且239=,111=3×371152752⨯=,22=2×11,3552250 232⨯==,, 因此,由上面的结论可知6513 25033 325,,能化为有限小数,小数部分的位数分别为5位,3位与1位;11116 97,能化为纯循环小数;223 27548,能化为混循环小数,并且不循环部分的位数分别为2位与1位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数与小数的互化2008-01-21分数与小数的互化1分数与小数的互化点击浏览该文件分数与小数的互化分数与小数的互化2百分数与小数、分数之间又有着密切联系,并且可以互相转化,这就导致了这节课的知识点杂而又杂。
而教案的设计也必须围绕三者之间的联系进行教学。
百分数和小数的互化,我并没有直接给出互化的方法,而是让学生自己探索,自己试做,在老师的引导下,让学生在大量的练习后,观察比较发现互化的规律,从而找出快捷的互化方法。
真正做到突出学生的主体地位,培养了学生思维的灵活性和抽象概括能力。
正是有了百分数化小数的学习过程作为铺垫,学生在学习小数化百分数的时候,才有了本节课精彩的自然生成:百分数化小数,只要把百分号去掉,再把小数点左移两位就可。
虽然有学生表达不是很清,但思路是好的。
此外,在课堂教学中没能兼顾到学习差的学生掌握新知的情况,这也是教学中缺少使用小组合作学习法,没能做到互动学习、互动思考的结果吧。
不论怎样,这节课有绝大多数学生开放了自己的思维,学得扎实,达成了教学目标,完成了教学任务。
分数与小数的互化3学习完百分数的意义之后,紧接着就是百分数与分数、小数互化的教学,为以后分数、百分数应用题的教学铺平道路。
教材中没有先给出互化的方法,而是直接提出“怎样互化”的问题。
因此我在教学中,先引导学生回忆小数转化成分数的方法:一位小数化成十分之几,两位小数化成百分之几,三位小数化成千分之几……然后提示学生再把这些分数化成分母是100的分数,再写成百分数的形式。
因为学生对于小数转化成分数的方法早已经掌握,而转化成百分数只是再多了一步,因此学生掌握较快。
而在接下来的百分数转化成小数的过程中,我原先的教学设计是先把百分数化成分母是100的分数,然后再化成小数。
但是实际教学过程中,学生直接提出只要把百分号去掉,再把小数点向左移动两位就可以了,既然学生已经找出规律,因此,我就直接改变了我的教学过程,就让发现规律的学生说一说是怎样找到规律的?再小组讨论一下小数转化成百分数有没有规律,这样一来,学生更加主动,而且规律的发现也是由学生来完成的,学生学习的兴趣也很高,因此在接下来的巩固练习中,学生完成得很投入。
分数与小数的互化4学生的学习起点是教学的重要立足点。
只有正确把握学生的学习起点,才能从学生的实际需要出发,合理确定每一节课的重点和难点,使教学活动有的放矢,从而提高课堂教学的效率。
为了更好地了解学生的学习起点,在上本节课前,我们精心设计了课前测题(展示题目),前测题由两大部份组成,1―3题是旧知“小数和分数的互化、小数点的移动引起小数大小的变化、分数和百分数的相互改写”的内容,意在了解学生掌握的程度;4、5题是新知“小数和百分数互化”的内容,意在调查学生对新知的了解程度。
通过检测,我们发现学生虽然以前学过分数与小数的互化,但是已有所遗忘;小数点的移动(向左或向右)容易混淆;对刚学习过的百分数和小数的相互改写基本掌握;学生对新知百分数和小数的互化有模糊的认识,但对过程和理由不会表达。
学生最需要教师点拨和引导的是百分数与小数互化的规律。
另外,学生在经过5年多的小学数学学习之后,有一定的自学能力、小组合作学习能力、探究能力等。
根据学生学习的起点,有针对性地对本课的教学进行了精心设计,做好了以下几点:一、引入新知。
通过复习题的引入,让学生体会到数的“互化”的必要性。
同时通过百格题的训练,进行数形结合,让学生直观地感受小数和百分数的互化,从而为新知的探究作好铺垫。
二、自主探究。
作为六年级的学生已经具备了一定的自学能力、合作学习能力、探究能力等。
因此,给学生提供自主探究的平台,让学生独立运用起点独立尝试把例1中的小数化成百分数,再在小组里进行交流,最后全班汇报。
学生经历了小数化成百分数的过程后,根据迁移原理,引导学生探究并理解百分数转化成小数的思考过程,通过“说想法、说变化、说发现、说规律”等环节,探究并在理解的基础上掌握小数与百分数互化的规律。
三、巩固练习。
练习的设计遵循由浅入深,由易到难,循序渐进的原则分层次进行设计,达到如下效果:1、让学生体会到用规律可以很快进行小数与百分数的互化。
2、通过互化可以比较小数与百分数的大小。
3、用互化规律解决实际生活中的问题。
值得一提的是,其中有两处进行了精心设计:一是改错题,让学生在“找错、设错”中提升认识;二是改动了课本中的题目,让部分“粗心”的学生掉入圈套而加深认识。
通过有效的练习,让学生今天所学习和掌握的知识,成为明日学习的起点。
综观整堂课的设计,我们从学生的学习起点出发,向他们提供从事数学活动和交流的时间和空间,使他们在实践活动中理解和掌握基本知识,形成数学技能,为高效课堂的建构提供一种实现的途径。
但实际教学中却留下了很多遗憾,如学生在说转化方法上绕了太久,花去了大量时间,在引导学生发现规律时也不能很顺利地得出规律,导致时间不够,不能很好地完成后面的练习。
在以后的教学中将继续提高自己的教学机智,让课堂教学更有实效。
分数与小数的互化5这堂课我遵循“教师为主导,学生为主体,训练为主线,思维为核心”的原则,仅仅围绕“教师是数学学习的组织者、引导者和合作者,而学生是学习的主人”这一关键,在教学中,学生始终以积极的态度投入每一个环节的学习中,通过师生互动教学,引导学生运用生活感悟、自助探究、合作学习等学习方式,让学生主动参与教学的全过程,从而对百分数的意义有了具体的认识,深刻的理解,真正成为学习的主人。
一、以生活的方式呈现《数学课程标准》在教学的注意问题中,明确指出,教学必须从学生熟悉的生活情境和感兴趣的事物中提供观察和操作的机会,使他们感受到数学就在身边,感受到数学的趣味和作用,从而对数学产生亲切感。
因而课堂上,我让学生自己去搜索生活中的百分数的例子,去发现生活中的百分数,利用已有的分数的知识基础与生活中对百分数的认识,以生活化的方式呈现内容,使学生体验到现代生活中教学应用的意义,重视培养学生应用数学的意识和能力,体现“让生活走进数学,让数学服务人生”的教学。
二、重视教给学生获取知识的方法教师的教学不单要把知识传授给学生,更重要的是要教给学生获取知识的方法,所以本节课坚持以认识――实践――再认识――再实践为主线,采用多种方法相结合来对学生进行学法指导。
教学百分数的意义时,学生通过看、思、说、试,使多重感官参与活动,发现特征后,能用语言表达出来,培养学生动口、动手、动脑的能力;能自学的尽量让学生自学,让学生自己创造百分数,使学生在学习的过程中充分展示自己的个性;教学百分数与小数的区别和联系时,主要采用了讨论法,使个人实践和小组合作学习,互相讨论相结合,学生取长补短,团结协作,有利于发展他们的创造性思维和数学语言的表达能力。
三、留出充分的时间和空间给学生苏霍姆林斯基指出,在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是个发现者、探索者。
而在儿童的精神世界中,这种需要特别强烈。
所以这节课主要通过创设“初步感知――合作探究――实践应用”的学习过程,留出充分的时间和空间让学生通过自主探索、合作交流、操作应用,将所学知识进行内化理解。
探究的主体是学生,让学生通过“自主探索、合作交流和动手实践”获得新知、学会学习是教师共同认同的。
但是教学设计和教学过程中如何找准教学的起点,如何给学生充分的探究空间,让学生在充分地进行研究、讨论和交流,从而获得真正的数学知识,同时使能力的培养、情感态度价值观都得到和谐的发展任然是需要我们进一步探讨和研究的问题。
分数与小数的互化6本节课的内容是分数与小数的互化。
教学目标是要求学生理解和掌握分数和小数的互化方法。
并能正确熟练的把分数化成小数以及把小数化成分数。
我认为分数化小数是本课的重点内容,教学时我把这部分内容分为三种情况:一是分母是10、100、1000这样的数,二是分母不是10、100、1000的数,但能化成分母是这样的分数,例如:3/25的分子和分母同时乘4,得到12/100。
三是分母不是也不能化成10、100、1000的数。
特别是分母不是也不能化成10、100、1000的数,需要作分子去除以分母,这时又出现两种情况,一是能除尽的,即能化成有限小数的,一种是不能除尽的即不能化成有限小数的,引导学生讨论,分析分母,探索能化成有限小数分母的特点。
即:分母只含有质因数2和5。
再通过判断题3/12能否化成有限小数,因为12里面有质因数3,可是通过试验,3/12也能化成有限小数,因此告诉学生需要补充一个前提条件:必须是一个最简分数。
这样不仅使学生掌握了针对具体分数的情况去用合适的方法转化,也掌握了一个最简分数化成有限小数的规律。
把教材100页的“你知道吗?”提到这里来讲解。
本节教学中,分数与小数的相互转化,沟通了分数与小数的联系,既使学生对已学的旧知识加深了理解,也让学生认识到事物是相互联系,相互转化的。
更重要的是让学生清楚在解决具体的问题时,是选择“分数化成小数”还是“小数化成分数”要根据具体情境和数的特征来确定。
分数与小数的互化7教学目标:1、利用教材提供的问题情境让学生产生把分数与小数进行互化的心理需求,并通过自己的探索找到分数与小数的互化方法。
2、培养学生培养独立探索,解决问题的能力。
教学重点:分数与小数的互化方法教学流程一、理解4分之3米:1、问:“4分之3米”有多长?你能用线段图来表示吗?画法一:把1米平均分成4份,这样的3份就是4分之3米画法二:把3个1米的线段对齐后,平均分成4份,其中的1份,有3个4分之1米也就是4分之3米。
理解:4分之3米可以是1米的4分之3,也可以是3米的4分之1。
2、联系生活理解:生活中的4分之3个苹果,可以是1个苹果的4分之3,也可以是3个苹果的4分之1......二、比较4分之3和0.5:1、出示情境图:看懂图意,讨论“怎么比两条彩带的长短?”方法一:估算的方法。
4分之3大于一半,所以比0.5大。
方法二:4分之3=3÷4=0.75,0.75大于0.52、揭示课题:分数和小数有时都可以表示一个具体的数量,有时就需要互化后进行有关的比大小或是计算等。
我们这节课就来学习分数和小数的互化。
3、学习分数化成小数的方法:方法一:可以用除法,分子除以分母方法二:可以利用分数的基本性质,把分母改写成10、100、1000后再转化成小数。
三、掌握并记忆常见的分数与小数的转化:1、要求学生拿出自备本,有条理的记一记,算一算。
分母是2的真分数:2分之1=0.5分母是4的真分数:4分之1=100分之25=0.254分之2=2分之1=0.5;4分之3=0.25×3=0.75分母是5的真分数:5分之1=0.2;5分之2=0.45分之3=0.6;5分之4=0.8(依次加0.2)分母是8的真分数:8分之1=0.125;8分之2=4分之1=0.258分之3=0.375;8分之4=4分之1=0.25;8分之5=0.6258分之6=4分之3=0.75;8分之7=0.875分母是9的真分数:(略)2、记一记:上面这些分数转化为小数,你觉得哪些特别好记?你是怎么记的?依次说一说,尝试背一背。