第四、五节——变形推理详解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章
直言命题及其推理
第四节
对当关系推理
教学内容:直言命题同其主、谓项外延间的真假 关系; 直言命题间的各种对当关系; 基于对当关系的推理及推理有效式 教学重点:直言命题的对当关系 直言命题的对当关系推理有效式 教学目标:掌握同等素材的直言命题间的对当关 系 正确运用对当关系进行推理 教学方法:讲解与讨论相结合
(一)直言命题的对当关系推理
(注:“T”表示真,“F”表示假。) S与P外延间的 关系 命题类型
S P
T F T F
S P
T F T F
PS
F F T T
S P
F F T T
S P
F T F T
A E I O
对当关系:主、谓项相同的A、E、I、O四种直言命题之间存在的真假制约关系。
6
对当方阵
7
二、基于对当关系的推理
一、对当关系概述 对当关系推理:
是根据直言命题间的对当关系进行的推理。它是以 一个直言命题为前提推出另一个直言命题为结论的演绎 推理,因此又叫做直接推理。
直言命题间的对当关系:
是指具有相同主项和谓项的A、E、I、O四种命题 之间存在的一种真假制约关系。
如: [例1] [例2] [例3] [例4]
如: “并非甲班有的同学不是外省人” ├ “并非甲班所有同学 都不是外省人”
21
③SAP → SIP;
如: “所有作案者都有作案时间,所以,有的 作案者有作案时间。”
① SIP → SOP; 如: “并非橱窗内有商品是假冒伪劣产品,所以,橱窗 内至少有一种商品不是假冒伪劣产品。” ② SOP → SIP 如: “并非有的大学生不是留学生,所以,有的大学生 是留学生。”
12
(三)、矛盾关系及矛盾关系推理( A — O; E — I)
矛盾关系是指A与O之间、E与I之间的真假关系。
下反对关Leabharlann Baidu是指I与O之间的真假关系。
I与O,不能同假,可以同真。 当SIP真时,SOP可真可假;当SOP真时,SIP可真可 假。
当I假时,SOP一定真;当SOP假时,SIP一定真。
简单记:一假另一必真,一真另一真假不定。 例如: I:甲班有的同学是共青团员。 O:甲班有的同学不是共青团员。
11
下反对关系的对当推理的有效式为:
例如:
A:甲班的同学都是共青团员。 I:甲班有的同学是共青团员。
19
差等关系的对当推理的有效为: ①SAP → SIP; ③SEP → SOP; ②SIP → SAP; ④SOP → SEP。
20
①SEP → SOP; 如: “凡不能正确表达意志的人不能作证,所以,有 些不能正确表达意志的人不能作证。” ②SOP → SEP;
又如: [例1] [例2] [例3] [例4]
所有当事人都上诉. 所有当事人都不上诉. 有的当事人上诉. 有的当事人不上诉.
甲班所有同学是本地人。 甲班所有同学不是本地人。 甲班有同学是本地人。 甲班有同学不是本地人。
上述四个命题分别是A、E、I、O命题,它们的主项相同,谓项 也相同。因此又叫同素材的直言命题。它们之间存在着一种真假相 互制约的关系。这种关系亦称“对当关系”。
A与O;E与I,既不能同真,也不能同假。
当SAP真时,SOP一定假;当SOP真时,SAP一定假。
当SAP假时,SOP一定真;当SOP假时,SAP一定真。 当SEP真时,SIP一定假;当SIP真时,SEP一定假。
当SEP假时,SIP一定真;当SIP假时,SEP一定真。
简单记:一真另一必假,一假另一必真。 例如:
15
③ SEP → SIP ; 如: “凡放火罪都不是过失犯罪,所以,并非有放火 罪是过失犯罪。”
④ SIP → SEP; 如: “并非有正当防卫是负刑事责任的,所以,所有 正当防卫都不是负刑事责任的。”
16
⑤ SOP → SAP ; 如: “有民事诉讼参加人不是当事人,所以,并非所 有民事诉讼参加人都是当事人。” ⑥ SAP → SOP; 如: “并非所有合同主体都是合格的,所以,有合同 主体不是合格的。”
17
⑦ SIP → SEP ; 如: “有兼职律师是教师,所以,并非所有兼职律师 都不是教师。”
⑧ SEP → SIP; 如: “并非杀人罪不是过失犯罪,所以,有的杀人罪 是过失犯罪。”
18
(四)、差等关系及差等关系推理(蕴涵关系) ( A — I; E — O)
差等关系:是指A与I之间、E与O之间的真假关系。 A与I;E与O,前者真后者必然真,后者假则前者必然假。 当SAP真时,SIP一定真;当SIP真时,SAP可真可假。 当SAP假时,SIP可真可假;当SIP假时,SAP一定假。 当SEP真时,SOP一定真;当SOP真时,SEP可真可假。 当SEP假时,SOP可真可假;当SOP假时,SEP一定假。 简单记:上真下真,下假上假;反之则真假不定。
9
反对关系的对当推理的有效式:
①SAP → SEP; 如: “橱窗里陈列的所有商品都是国产的,所以,并 非橱窗里陈列的所有商品都不是国产的。” ②SEP → SAP; 如: “所有宗教徒都不是唯物主义者,所以,并非所 有宗教徒都是唯物主义者。”
10
(二)、下反对关系及下反对关系推理( I — O)
什么是对当关系: 对当关系具体是指反对关第、下反对关系、矛盾关 系和差等关系。
8
直言命题的对当关系
(一)、反对关系及反对关系推理( A — E)
所谓反对关系是指A与E之间的真假关系。
A与E,不能同真,可以同假。 当SAP真时,SEP一定假;当SEP真时,SAP一定假。 当SAP假时,SEP可真可假;当SEP假时,SAP可真可 假。 简单记:一真另一必假,一假另一真假不定。 例如:A:“甲班所有同学都是共青团员。” E:“甲班所有同学都不是共青团员。”
A:甲班的同学都是共青团员。 O:甲班有的同学不是共青团员。
13
矛盾关系的对当推理的有效式为:
SAP ←→ SOP; SOP ←→ SAP;
SEP ←→ SIP;
SIP ←→ SEP。
14
① SAP → SOP; 如: “所有发达国家都是资本主义国家,所以,并非 有的发达国家不是资本主义国家。” ② SOP → SAP; 如: “并非有醉酒的人犯罪不负刑事责任,所以,所 有醉酒的人犯罪都要负刑事责任。”
相关文档
最新文档