新人教版八年级上册数学教案

合集下载

最新人教版八年级数学上册教案(全册 共168页)

最新人教版八年级数学上册教案(全册 共168页)

最新人教版八年级数学上册教案(全册共168页)第十一章三角形一、课标要求(1)理解三角形及三角形有关的线段(边、高、中线、角平分线)的概念,证明三角形两边的和大于第三边,了解三角形的重心的概念,了解三角形的稳定性。

(2)理解三角形的内角、外角的概念,探索并证明三角形内角和定理,探索并掌握直角三角形的两个锐角互余,掌握有两个角互余的三角形是直角三角形,掌握三角形的一个外角等于与它不相邻的两个内角的和。

(3)了解多边形的有关概念(边、内角、外角、对角线、正多边形),探索并掌握多边形的内角和与外角和公式。

二、教材分析第1节研究与三角形有关的线段。

首先结合引言中的实际例子给出三角形的概念,进而研究三角形的分类。

对于三角形的边,证明了三角形两边的和大于第三边。

然后给出三角形的高、中线与角平分线的概念。

结合三角形的中线介绍三角形的重心的概念。

最后结合实际例子介绍三角形的稳定性。

第2节研究与三角形有关的角,对于三角形的内角,证明了三角形内角和定理。

然后由这个定理推出直角三角形的性质:直角三角形的两个锐角互余。

最后给出三角形的外角的概念,并由三角形内角和定理推出:三角形的外角等于与它不相邻的两个内角的和。

第3节介绍多边形的有关概念与多边形的内角和、外角和公式。

三角形是多边形的一种,因而可以借助三角形给出多边形的有关概念,如多边形的边、内角、外角、内角和都可由三角形的有关概念推广而来。

三角形是最简单的多边形,因而常常将多边形分为若干个三角形,利用三角形的性质研究多边形。

多边形的内角和公式就是利用上述方法得到的。

将多边形的有关内容与三角形的有关内容紧接安排,可以加强它们之间的联系,便于学生学习。

三、教学建议1.把握好教学要求与三角形有关的一些概念在本章中只要求达到理解的程度就可以了,进一步的要求可通过后续学习达到。

如对于三角形的角平分线,在本章中只要知道它的定义,能够从定义得出角相等就可以了,学生在画角平分线时发现三条角平分线交于一点,可直接肯定这个结论,在下一章“全等三角形”中再证明这个结论,同样,三角形的三条中线交于一点的结论也可直接点明。

新人教版八年级上册数学教案

新人教版八年级上册数学教案

20XX年新人教版八年级上册数学教案数学老师上课前须写好数学教案,因为教案是教师进行教学活动的依据。

下面小编为大家精心整理的新人教版八年级上册数学教案,仅供参考。

新人教版八年级上册数学教案(一)12.2 三角形全等的判定(二)学习目标1.掌握三角形全等的“角边角”条件.2.能运用全等三角形的条件,解决简单的推理证明问题.学习重点已知两角一边的三角形全等探究.学习难点灵活运用三角形全等条件证明.学习方法:自主学习与小组合作探究学习过程:一.温故知新1.(1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判别两三角形全等的1/ 8什么?二种:①定义方法有几种?各是__________________________________________________;②“SAS”公理__________________________________________________2.在三角形中,已知三个元素的四种情况中,我们研究了二种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?3.三角形中已知两角一边有几种可能?①.两角和它们的夹边.②.两角和其中一角的对边.二、阅读教材P95-96判定全等三角形的第二种方法“角边角”定理两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”).书写格式: 在△ABC和△A1B1C1中∴ △ABC≌△ A1B1C1(ASA) A三、小组合作学习15 DB2/ 8四、阅读例题:P96 例3 例4五.评价反思概括总结至此,我们有三种判定三角形全等的方法:1.全等三角形的定义2.判定定理:边角边(SAS) 角边角(ASA)推证两三角形全等时,要善于观察,寻求对应相等的条件,从而获得解题途径.六、作业:新人教版八年级上册数学教案(二)12.2 三角形全等的判定(三)角形全等的“边边边”的条件.2.了解三角形的稳定性.3.经历探索三角形全等条件的过程,体会利用操作、-归纳获得数学结论的过程. 学习重点三角形全等的条件.学习难点寻求三角形全等的条件.学习方法:自主学习与小组合作探究学习过程:A'3/ 8一.回顾思考:1.(1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判别两三角形全等的方法几种?各是什么? BCB'C'三种:①定义__________________________________________________;②“SAS”公理__________________________________________________③“ASA”定理__________________________________________________二、新课1. 回忆前面研究过的全等三角形.已知△ABC≌△A′B′C′,找出其中相等的边与角.图中相等的边是:AB=A′B、BC=B′C′、AC=A′C.相等的角是:∠A=∠A′、∠B=∠B′、∠C=∠C′.2.已知三角形△ABC你能画一个三角形与它全等吗?怎样画?阅读教材P97-98归纳:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”.4/ 8书写格式: 在△ABC和△A1B1C1中∴ △ABC≌△A1B1C1(SSS)3. 小组合作学习(1)如图,△ABC是一个钢架,AB=AC,AD 是连结点A与BC中点D的支架.求证:△ABD≌△ACD. 证明:∵D是BC的中点∴__________________________在△ABD和△ACD中AB ACBD CDAD AD(公共边)∴△ ≌△ ( ). AC(2)如图,已知AC=FE、BC=DE,点A、D、B、F在一条直线上,AD=FB.要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,还应该有一个条件:______________________,怎样才能得到这个条件? B新人教版八年级上册数学教案(三)12.2 三角形全等的判定(四)5/ 8学习目标1.掌握三角形全等的“角角边”条件.2.能运用全等三角形的条件,解决简单的推理证明问题.学习重点已知两角一边的三角形全等探究.学习难点灵活运用三角形全等条件证明.学习方法:自主学习与小组合作探究学习过程:一.温故知新:1.我们已经学习过可以作为判别两三角形全等的方法有几种?各是什么?A12.三角形中已知两角一边有几种可能? A1.两角和它们的夹边.2.两角和其中一角的对边. 1C1C二、新课1.读一读,想一想,画一画,议一议阅读教材P100两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”). 书写格式: 在△ABC和△A1B1C1中∴ △ABC≌△A1B1C1(AAS)6/ 82.定理证明已知:如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,求证:△ABC与△DEF证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°∠A=∠D,∠B=∠E∴∠A+∠B=∠D+∠E∴∠C=∠F在△ABC和△DEF中B E BC EFC F∴△ABC≌△DEF(ASA).两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).三、例题:阅读教材例题:A四.小组合作学习1.如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.求证:AD=AE.2下图中,若AE=BC则这两个三角形全等吗?请说明理由.7/ 8BECDAC(2)B3.课本P101练习1、2.3五.评价反思概括总结1. 本节课我们探索得到了三角形全等的条件,又-发现了证明三角形全等的一个规律AAS.并利用它可以证明简单的三角形全等问题.2.可以作为判别两三角形全等的常用方法有几种?各是什么?①“SAS”公理__________________________________________________②“ASA”定理_________________________________________________③ “SSS”定理_________________________________________________④“AAS”定理_________________________________________________六.作业8/ 8。

新人教版八年级数学上册名师教案(6篇)_1

新人教版八年级数学上册名师教案(6篇)_1

新人教版八年级数学上册名师教案(6篇)新人教版八班级数学上册名师教案(篇1)教学目标:1、经受数据离散程度的探究过程2、了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。

教学重点:会计算某些数据的极差、标准差和方差。

教学难点:理解数据离散程度与三个差之间的关系。

教学预备:计算器,投影片等教学过程:一、创设情境1、投影课本P138引例。

(通过对问题串的解决,使同学直观地估量从甲、乙两厂抽取的20只鸡腿的平均质量,同时让同学初步体会平均水平相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度极差)2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。

二、活动与探究假如丙厂也参与了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本159页图)问题:1、丙厂这20只鸡腿质量的平均数和极差是多少?2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。

3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?(在上面的情境中,同学很简单比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。

这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致同学思想熟悉上的冲突,为引出另两个刻画数据离散程度的量度标准差和方差作铺垫。

三、讲解概念:方差:各个数据与平均数之差的平方的平均数,记作s2 设有一组数据:x1, x2, x3,,xn,其平均数为则s2= ,而s= 称为该数据的标准差(既方差的算术平方根)从上面计算公式可以看出:一组数据的极差,方差或标准差越小,这组数据就越稳定。

四、做一做你能用计算器计算上述甲、丙两厂分别抽取的20只鸡腿质量的方差和标准差吗?你认为选哪个厂的鸡腿规格更好一些?说说你是怎样算的?(通过对此问题的解决,使同学回顾了用计算器求平均数的步骤,并自由探究求方差的具体步骤)五、巩固练习:课本第172页随堂练习六、课堂小结:1、怎样刻画一组数据的离散程度?2、怎样求方差和标准差?七、布置作业:习题5.5第1、2题。

人教版八年级上册数学教案(5篇)

人教版八年级上册数学教案(5篇)

人教版八年级上册数学教案(5篇)人教版八年级上册数学教案(5篇)人教版八年级上册数学教案1 一、内容和内容解析1.内容三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.2.内容解析本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的才能;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探究的思想感情。

理解三角形高、角平分线及中线概念到用几何语言准确表述,这是学生在几何学习上的一个深化.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着非常重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.本节的重点是理解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.二、目的和目的解析1.教学目的(1)理解三角形的高、中线与角平分线等概念;(2)会用工具画三角形的高、中线与角平分线;2.教学目的解析(1)经历画图理论过程,理解三角形的高、中线与角平分线等概念.(2)可以纯熟用几何语言表达三角形的高、中线与角平分线的性质.(3)掌握三角形的高、中线与角平分线的画法.(4)理解三角形的三条高、三条中线与三条角平分线分别相交于一点.三、教学问题诊断分析^p三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联络又有本质的区别.人教版八年级上册数学教案2 一、教学目的1、认识中位数和众数,并会求出一组数据中的众数和中位数。

人教版八年级数学上册教案册5篇

人教版八年级数学上册教案册5篇

人教版八年级数学上册教案全册5篇一、教材分析1、特点与地位:重点中的重点。

本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有肯定的有用意义。

2、重点与难点:结合学生现有抽象思维力量水平,已把握根本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下: (1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。

(2)难点:求解最短路径算法的程序实现。

3、教学安排:最短路径问题包含两种状况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。

依据教学大纲安排,重点讲解第一种状况问题的解决。

安排一个课时讲授。

教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。

二、教学目标分析1、学问目标:把握最短路径概念、能够求解最短路径。

2、力量目标:(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培育学生的数据抽象力量。

(2)通过旅游景点线路选择问题的解决,培育学生的独立思索、分析问题、解决问题的力量。

3、素养目标:培育学生讲究工作方法、与他人合作,提高效率。

三、教法分析课前充分预备,研读教材,查阅相关资料,制作多媒体课件。

教学过程中除了使用传统的“讲授法”以外,主要采纳“案例教学法”,同时辅以多媒体课件,以启发的方式绽开教学。

由于本节课的内容属于图这一章的难点,考虑学生的承受力量,留意与学生沟通,依据学生的反响掌握好教学进度是本节课胜利的关键。

四、学法指导1、课前上次课结课时给学生布置任务,使其有针对性的预习。

2、课中指导学生争论任务解决方法,引导学生分析本节课学问点。

3、课后给学生布置同类型任务,加强练习。

五、教学过程分析(一)课前复习(3~5分钟)回忆“路径”的概念,为引出“最短路径”做铺垫。

教学方法及留意事项:(1)采纳提问方式,留意准时小结,提问的目的是帮忙学生回忆概念。

新人教版八年级数学上册教学工作计划3篇

新人教版八年级数学上册教学工作计划3篇

新人教版八年级数学上册教学工作计划3篇一、指导思想在教学中努力推进九年义务教育,落实新课改,体现新理念,培养创新精神。

通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。

二、教材内容及特点本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:第十一章三角形本章主要学习与三角形有关的线段、角及多边形的内角和等内容。

本章重点:三角形有关线段、角及多边形的内角和的性质与应用。

本章难点:正确理解三角形的高、中线及角平分线的性质并能作图,及三角形内角和的证明与多边形内角和的探究。

第十二章全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。

更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。

第十三章轴对称立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。

第十四章整式的乘法与因式分解在形式上力求突出:整式及整式运算产生的实际背景——使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程——为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握——设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。

第十五章分式分式的重点是分式的四则运算,难点是分式四则混算、解分式方程以及列分式方程解应用题。

三、学生基本情况八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。

班级学生非常活跃,有少数学生不上进,思维不紧跟老师。

学生单纯,有部分同学基础较差,问题较严重。

八年级上册数学教案人教版【优秀8篇】

八年级上册数学教案人教版【优秀8篇】

八年级上册数学教案人教版【优秀8篇】篇一:人教版八年级上册数学教案篇一一、教学目标:1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值二、重点、难点和难点的突破方法:1、重点:根据频数分布表求加权平均数2、难点:根据频数分布表求加权平均数3、难点的突破方法:首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。

因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。

应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。

而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。

所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。

为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。

三、例习题的意图分析1、教材P140探究栏目的意图。

(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。

(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。

这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。

2、教材P140的思考的意图。

(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)第一章:勾股定理1.1 勾股定理的发现导入:通过直角三角形的实际测量,让学生感受勾股定理的背景。

探究:引导学生通过实际操作,发现勾股定理,并能够用字母表示。

练习:让学生通过解决实际问题,巩固勾股定理的应用。

1.2 勾股定理的证明导入:通过回顾三角形知识,引导学生思考勾股定理的证明方法。

探究:让学生通过割补、折叠等方法,尝试证明勾股定理。

练习:让学生通过解决实际问题,加深对勾股定理证明的理解。

第二章:实数与方程2.1 实数的分类导入:通过生活中的实例,引导学生理解实数的概念。

探究:让学生通过分类讨论,理解实数的分类,包括有理数和无理数。

练习:让学生通过解决实际问题,加深对实数分类的理解。

2.2 一元一次方程导入:通过实例引入方程的概念,引导学生理解一元一次方程的特点。

探究:让学生通过解方程的方法,掌握一元一次方程的解法。

练习:让学生通过解决实际问题,巩固一元一次方程的应用。

第三章:不等式与不等式组3.1 不等式的概念导入:通过比较大小引入不等式的概念,引导学生理解不等式的表示方法。

探究:让学生通过实际操作,理解不等式的性质。

练习:让学生通过解决实际问题,加深对不等式概念的理解。

3.2 不等式的解法导入:通过实例引入不等式的解法,引导学生掌握解不等式的方法。

探究:让学生通过实际操作,掌握不等式的解法。

练习:让学生通过解决实际问题,巩固不等式的解法。

第四章:函数及其图象4.1 函数的概念导入:通过实例引入函数的概念,引导学生理解函数的表示方法。

探究:让学生通过实际操作,理解函数的性质。

练习:让学生通过解决实际问题,加深对函数概念的理解。

4.2 一次函数的图象导入:通过实例引入一次函数的图象,引导学生理解一次函数图象的特点。

探究:让学生通过实际操作,绘制一次函数的图象。

练习:让学生通过解决实际问题,巩固一次函数图象的应用。

第五章:平面图形的认识5.1 线段的性质导入:通过实例引入线段的概念,引导学生理解线段的性质。

八年级上册数学教案(优秀9篇)

八年级上册数学教案(优秀9篇)

八年级上册数学教案(优秀9篇)人教版八年级数学上册教案篇一【教学目标】知识与技能会推导平方差公式,并且懂得运用平方差公式进行简单计算。

过程与方法经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式。

情感、态度与价值观通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性。

【教学重难点】重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解。

难点:平方差公式的应用。

关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键。

【教学过程】一、创设情境,故事引入【情境设置】教师请一位学生讲一讲《狗熊掰棒子》的故事【学生活动】1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充。

【教师归纳】听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?【学生回答】多项式乘以多项式。

【教师激发】大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识。

【问题牵引】计算:(1)(x+2)(x—2);(2)(1+3a)(1—3a);(3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。

做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现。

【学生活动】分四人小组,合作学习,获得以下结果:(1)(x+2)(x—2)=x2—4;(2)(1+3a)(1—3a)=1—9a2;(3)(x+5y)(x—5y)=x2—25y2;(4)(y+3z)(y—3z)=y2—9z2。

【教师活动】请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律。

【学生活动】讨论【教师引导】刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表示刚才同学们所归纳出来的特殊多项式相乘的规律呢?【学生回答】可以用(a+b)(a—b)表示左边,那么右边就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。

人教版八年级上册数学教案(通用10篇)

人教版八年级上册数学教案(通用10篇)

人教版八年级上册数学教案(通用10篇)八年级上册数学教案 1教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力。

2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤。

3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力。

重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用。

2.难点:灵活地应用公式法进行因式分解。

3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的`。

教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容。

教学过程一、回顾交流,导入新知【问题牵引】1.分解因式:(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;(3)x2-0.01y2.【知识迁移】2.计算下列各式:(1)(m-4n)2;(2)(m+4n)2;(3)(a+b)2;(4)(a-b)2。

【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律。

3.分解因式:(1)m2-8mn+16n2(2)m2+8mn+16n2;(3)a2+2ab+b2;(4)a2-2ab+b2。

【学生活动】从逆向思维的角度入手,很快得到下面答案:解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2。

【归纳公式】完全平方公式a2±2ab+b2=(a±b)2。

二、范例学习,应用所学【例1】把下列各式分解因式:(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;(3)(x+y)2-14(x+y)+49;(4)+n4。

【例2】如果x2+axy+16y2是完全平方,求a的值。

【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.三、随堂练习,巩固深化课本P170练习第1、2题。

数学八年级上册教案

数学八年级上册教案

数学八年级上册教案【篇一:新人教版数学八年级上册教案(全册整理版)】第11章三角形教材内容本章主要内容有三角形的有关线段、角,多边形及内角和,镶嵌等。

三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。

教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于180的基础上,进行推理论证,从而得出三角形外角的性质。

接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。

这些知识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是研究其它图形的基础。

最后结合实例研究了镶嵌的有关问题,体现了多边形内角和公式在实际生活中的应用.教学目标等于180,了解三角形外角的性质。

4、了解多边形的有关概念,会运用多边形的内角和与外角和公式解决问题。

5、理解平面镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用它们进行简单的平面镶嵌设计。

〔过程与方法〕1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。

〔情感、态度与价值观〕1、体会数学与现实生活的联系,增强克服困难的勇气和信心;2、会应用数学知识解决一些简单的实际问题,增强应用意识;3、使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点。

重点难点三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌是重点;三角形内角和等于180的证明,根据三条线段的长度判断它们能否构成三角形及简单的平面镶嵌设计是难点。

课时分配11.1与三角形有关的线段 ??????????????? 2课时 11.2 与三角形有关的角 ???????????????? 2课时 11.3多边形及其内角和 ???????????????? 2课时本章小结 ?????????????????????? 2课时11.1.1三角形的边[教学目标]〔知识与技能〕1了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形;2理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题. 〔过程与方法〕在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;〔情感、态度与价值观〕体会数学与现实生活的联系,增强克服困难的勇气和信心[重点难点] 三角形的有关概念和符号表示,三角形三边间的不等关系是重点;用三角形三边不等关系判定三条线段可否组成三角形是难点。

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)教案内容:一、第一章:勾股定理1. 教学目标:理解勾股定理的定义和证明;能够运用勾股定理解决实际问题。

2. 教学重点:勾股定理的表述和证明;勾股定理的应用。

3. 教学难点:勾股定理的证明;解决实际问题时的计算和应用。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍勾股定理的背景和意义;讲解:讲解勾股定理的表述和证明;练习:学生练习解决实际问题;总结:回顾本节课的重点和难点。

二、第二章:平行四边形1. 教学目标:理解平行四边形的定义和性质;能够识别和判断平行四边形。

2. 教学重点:平行四边形的定义和性质;平行四边形的判定。

3. 教学难点:平行四边形的性质证明;平行四边形的判定方法。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍平行四边形的背景和意义;讲解:讲解平行四边形的定义和性质;练习:学生练习识别和判断平行四边形;总结:回顾本节课的重点和难点。

三、第三章:三角形1. 教学目标:理解三角形的定义和性质;能够识别和判断三角形。

2. 教学重点:三角形的定义和性质;三角形的判定。

3. 教学难点:三角形的性质证明;三角形的判定方法。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍三角形的背景和意义;讲解:讲解三角形的定义和性质;练习:学生练习识别和判断三角形;总结:回顾本节课的重点和难点。

四、第四章:数的开方与乘方1. 教学目标:理解数的开方和乘方的概念;能够熟练进行数的开方和乘方运算。

2. 教学重点:数的开方和乘方的概念;数的开方和乘方的运算规则。

3. 教学难点:数的乘方运算;数的开方和乘方的逆运算。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍数的开方和乘方的意义;讲解:讲解数的开方和乘方的概念和运算规则;练习:学生练习进行数的开方和乘方运算;总结:回顾本节课的重点和难点。

五、第五章:实数1. 教学目标:理解实数的定义和性质;能够运用实数解决实际问题。

人教版八年级上册数学教案及反思

人教版八年级上册数学教案及反思

人教版八年级上册数学教案及反思一、教学目标1.理解平方根的概念,掌握平方根的性质。

2.学会求解一个数的平方根,能够运用平方根解决实际问题。

3.培养学生的观察能力、逻辑思维能力和解决问题的能力。

二、教学重点与难点重点:平方根的概念和性质,求解平方根的方法。

难点:平方根的性质的理解和应用。

三、教学过程(一)导入新课1.教师通过多媒体展示一张图片,图片中有一系列的正方形,边长分别为1、2、3、4、5……2.提问:同学们,你们能找出这些正方形中哪些是正方形面积的平方根?(二)探究新知1.教师引导学生回顾平方的概念,让学生举例说明平方的意义。

2.提问:那么平方根是什么意思呢?请大家举例说明。

4.教师展示平方根的性质,让学生通过小组讨论,探究平方根的性质。

(1)正数的平方根有两个,且互为相反数。

(2)0的平方根是0。

(3)负数没有平方根。

(三)巩固练习1.教师给出一些数的平方根,让学生求解。

2.学生求解后,教师提问:你们是如何求解这些数的平方根的?(四)实际应用1.教师给出一个实际问题:一个正方形的面积是16平方厘米,求这个正方形的边长。

(五)课堂小结1.教师提问:本节课我们学习了什么内容?四、作业布置1.请同学们课后完成教材上的练习题。

2.家长签字确认,确保同学们完成作业。

五、教学反思1.本节课通过图片导入,激发学生的兴趣,引导学生积极参与课堂讨论。

2.在探究平方根性质时,采用小组讨论的方式,培养学生的合作能力和探究精神。

3.通过巩固练习和实际应用,让学生学会运用平方根解决实际问题。

4.课堂小结环节,帮助学生梳理本节课的知识点,巩固所学内容。

不足之处:1.在讲解平方根性质时,可能有些同学对“负数没有平方根”的理解不够深刻,需要进一步讲解和举例。

2.课堂时间安排不够合理,导致作业布置较少,可能影响学生对知识点的巩固。

改进措施:1.在讲解平方根性质时,增加实例,让学生更好地理解。

2.调整课堂时间安排,确保作业布置充足,提高学生对知识点的掌握程度。

新人教版八年级数学上册全册名师教案大全5篇

新人教版八年级数学上册全册名师教案大全5篇

新人教版八年级数学上册全册名师教案大全5篇哪里有数,哪里就有美。

思维自疑问和惊奇开始。

一个数学家越超脱越好。

数学是锻炼思想的体操。

这里给大家分享一些关于新人教版八年级数学上册全册名师教案,供大家参考学习。

新人教版八年级数学上册全册名师教案【篇1】一、学习目标:1、会推导两数差的平方公式,会用式子表示及用文字语言叙述;2、会运用两数差的平方公式进行计算。

二、学习过程:请同学们快速阅读课本第27—28页的内容,并完成下面的练习题:(一)探索1、计算: (a - b) =方法一:方法二:方法三:2、两数差的平方用式子表示为_________________________;用文字语言叙述为___________________________ 。

3、两数差的平方公式结构特征是什么?(二)现学现用利用两数差的平方公式计算:1、(3 - a)2、 (2a -1)3、(3y-x)4、(2x – 4y)5、( 3a - )(三)合作攻关灵活运用两数差的平方公式计算:1、(999)2、( a – b – c )3、(a + 1) -(a-1)(四)达标训练1、、选择:下列各式中,与(a - 2b)一定相等的是()A、a -2ab + 4bB、a -4bC、a +4bD、 a - 4ab +4b2、填空:(1)9x + + 16y = (4y - 3x )(2) ( ) = m - 8m + 162、计算:( a - b) ( x -2y )3、有一边长为a米的正方形空地,现准备将这块空地四周均留出b米宽修筑围坝,中间修建喷泉水池,你能计算出喷泉水池的面积吗?(四)提升1、本节课你学到了什么?2、已知a – b = 1,a + b = 25,求ab 的值新人教版八年级数学上册全册名师教案【篇2】一、教学目标(一)、知识与技能:(1)使学生了解因式分解的意义,理解因式分解的概念。

(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。

最新人教版八年级数学上册《第1课时分式方程及其解法》优质教案

最新人教版八年级数学上册《第1课时分式方程及其解法》优质教案

15.3分式方程第1课时分式方程及其解法一、新课导入1.导入课题:前面我们探讨了分式的有关性质及其运算,在分式的研究中,还有一个重要的内容就是分式方程,今天我们一起走进分式方程.2.学习目标:(1)知道分式方程的概念,(2)会解分式方程.3.学习重、难点:重点:分式方程及其解法.难点:分式方程产生增根的原因.二、分层学习1.自学指导:(1)自学内容:教材第149页到第150页的内容.(2)自学时间:5分钟.(3)自学方法:对照自学提纲,认真阅读课本.重点词句或不理解的地方做上记号.(4)自学参考提纲:①什么样的方程叫分式方程?分母中含有未知数的方程叫分式方程.②解分式方程的基本思路是什么?将分式方程化为整式方程.③将分式方程化成整式方程的关键步骤是什么?去分母,即方程两边乘最简公分母.2.自学:请同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否认识分式方程的特点和分式方程的解法.②差异指导:指导个别学生正确找出最简公分母.(2)生助生:学生之间相互交流帮助.4.强化:(1)判断分式方程的方法是:看分母是否含有未知数.(2)分式方程的关键步骤是去分母,难点是找最简公分母.(3)下列方程哪些是分式方程?④⑤.(4)指出下列方程中各分母的最简分母,并写出去分母后得到的整式方程.解:①最简公分母2x(x+3),去分母得x+3=4x;②最简公分母x2-1,去分母,得2(x+1)=4;③最简公分母3x+3,去分母,得3x=2x+3x+3.1.自学指导:(1)自学内容:教材第150页“思考”到第151页的内容.(2)自学时间:8分钟.(3)自学方法:认真阅读课本,思考去分母后化成的整式方程的解,为什么有的是原分式方程的解,有的不是?对照课本中的例子想想理由.归纳解分式方程的基本步骤.(4)自学参考提纲:①说说为什么解分式方程一定要检验?因为得到的解可能会导致最简公分母为0,即分母为0.②说说解分式方程的检验方法.将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解③解分式方程的一般有哪些步骤? 去分母,解整式方程,检验.④某生在解例2时去分母得x(x+2)-1=3,你认为他错在哪里? 漏乘了最简公分母. ⑤试解方程23511x x =--; 解:去分母,得3(x+1)=5x=53-1=23检验:当x=23时,(x+1)(x-1)≠0, 所以,原分式方程的解为x=23. 32122x x x =--- 解:去分母,得2x=3-2(2x-2) 去括号得2x=3-4x+4 移项6x=7 系数化为1,x=76检验:当x=76时,2(x-1)≠0. 所以原分式方程的解为x=762.自学:同学们结合自学指导进行自学.3.助学: (1)师助生:①明了学情:观察学生在解分式方程过程中易产生错误的环节或步骤. ②差异指导:对学生出现的错误进行分类指导. (2)生助生:交流提纲④,对⑤互相批改、纠错. 4.强化:(1)解分式方程的一般步骤. (2)分式方程的验根方法.(3)分式方程无解的条件.检验:当x=12时,4x2-1=0,因此x=12不是原分式方程的解.所以,原分式方程无解.三、评价1.学生的自我评价(围绕三维目标):学生代表交流自己的学习收获和学后体验.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、情感、方法、成果及不足进行归纳点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):在本课的教学过程中,应从这样的几个方面入手:(1)分式方程和整式方程的区别:分清楚分式方程必须满足的两个条件:①方程式里必须有分式,②分母中含有未知数.这两个条件是判断一个方程是否为分式方程的必要条件.同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就是原方程的增根.正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验.(2)分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分渗透这种化归思想.(3)解分式方程时,如果分母是多项式,应先写出将分母进行因式分解的步骤,从而让学生准确无误地找出最简公分母.另外,对分式方程可能产生增根的原因,要启发学生认真思考和讨论.一、基础巩固(每题10分,共60分)1.下列式子是分式方程的是(C)2.把分式方程两边同乘(x-1),约去分母后,得(D)3.分式方程的解是(D)A.x=1B.x =-1C.x=-14D.无解解:(1)去分母,3x-6+4(x+2)=16去括号,合并同类项7x=14系数化为1,x=2检验:当x=2时,(x+2)(x-2)=0,因此x=2不是原分式方程的解.所以,原分式方程无解.(2)去分母得,(x+1)(x+2)=x(x+4)去括号,合并同类项,得3x+2=4x移项,x=2检验:当x=2时,x(2+x)≠0,所以,原分式方程的解为x=2.二、综合应用(20分)7.已知关于x的方程有增根,求该方程的增根和k的值.解:去分母,得3x+3-(x-1)=x2+kx,整理,得x2+(k-2)x-4=0.因为有增根,所以增根为x=0或x=1.当x=0时,代入方程得-4=0,所以x=0不是方程的增根;当x=1时,代入方程,得k=5,所以k=5时方程有增根x=1.三、拓展延伸(20分)8.解方程:学习小提示同学们,通过这节课的学习,你们学到了哪些知识?明白什么道理?时间就像日历一样,撕掉一张就不会再回来。

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)第一章:一元一次方程1.1 方程与方程的解理解方程的概念,掌握方程的解的定义。

学会解一元一次方程,掌握解方程的基本步骤。

1.2 方程的解法学习使用加减法、乘除法解一元一次方程。

学会使用移项、合并同类项解方程。

1.3 方程的应用学会将实际问题转化为方程,解决实际问题。

练习使用一元一次方程解决实际问题。

第二章:不等式与不等式组2.1 不等式理解不等式的概念,掌握不等式的性质。

学会解一元一次不等式,掌握解不等式的基本步骤。

2.2 不等式组理解不等式组的概念,掌握不等式组的解法。

学会解不等式组,掌握解不等式组的基本步骤。

2.3 不等式的应用学会将实际问题转化为不等式,解决实际问题。

练习使用不等式解决实际问题。

第三章:函数的初步认识3.1 函数的概念理解函数的概念,掌握函数的定义。

学会判断两个变量之间的关系是否为函数。

3.2 函数的性质学习函数的单调性、奇偶性、周期性等基本性质。

学会判断函数的单调性、奇偶性、周期性。

3.3 函数的应用学会将实际问题转化为函数问题,解决实际问题。

练习使用函数解决实际问题。

第四章:整式的加减4.1 整式的概念理解整式的概念,掌握整式的定义。

学会判断两个整式是否相等。

4.2 整式的加减法学习整式的加减法运算,掌握加减法的基本步骤。

学会使用合并同类项进行整式的加减法运算。

4.3 整式的应用学会将实际问题转化为整式问题,解决实际问题。

练习使用整式解决实际问题。

第五章:数据的收集、整理与描述5.1 数据的收集学会使用调查、实验等方法收集数据。

掌握数据的整理方法,如列表、画图等。

5.2 数据的整理学习数据的整理方法,掌握数据的分类、排序等基本操作。

学会使用图表展示数据,如条形图、折线图等。

5.3 数据的描述学习数据的描述方法,掌握数据的平均数、中位数、众数等基本统计量。

学会使用统计量对数据进行描述和分析。

八年级数学(上)全册教案(新人教版)第六章:三角形6.1 三角形的概念理解三角形的基本概念,掌握三角形的定义。

2024年版人教版八年级上册数学教案5篇

2024年版人教版八年级上册数学教案5篇

2024年版人教版八年级上册数学教案5篇2023版人教版八年级上册数学教案篇1教学目标:教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题。

能力训练要求:1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念。

2.在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。

情感与价值观要求:1.通过有趣的问题提高学习数学的兴趣。

2.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学。

教学重点难点:重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题。

难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。

教学过程1、创设问题情境,引入新课:前几节课我们学习了勾股定理,你还记得它有什么作用吗?例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?根据题意,(如图)ac是建筑物,则ac=12米,bc=5米,ab 是梯子的长度,所以在rt△abc中,ab2=ac2+bc2=122+52=132;ab=13米。

所以至少需13米长的梯子。

2、讲授新课:①、蚂蚁怎么走最近。

出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米。

在圆行柱的底面a点有一只蚂蚁,它想吃到上底面上与a 点相对的b点处的食物,需要爬行的的最短路程是多少?(π的值取3)。

(1)同学们可自己做一个圆柱,尝试从a点到b点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(小组讨论)(2)如图,将圆柱侧面剪开展开成一个长方形,从a点到b 点的最短路线是什么?你画对了吗?(3)蚂蚁从a点出发,想吃到b点上的食物,它沿圆柱侧面爬行的最短路程是多少?(学生分组讨论,公布结果)我们知道,圆柱的侧面展开图是一长方形。

好了,现在咱们就用剪刀沿母线aa′将圆柱的侧面展开(如下图)。

我们不难发现,刚才几位同学的走法:(1)a→a′→b;(2)a→b′→b;(3)a→d→b;(4)a—→b。

人教版八年级上册数学教案教师用书六篇

人教版八年级上册数学教案教师用书六篇

人教版八年级上册数学教案教师用书六篇【篇1】人教版八年级上册数学教案教师用书一,教材分析教材从全面提高学生素质的要求出发,在知识选材上,适当加强联系实际,适当降低难度,既考虑现代生产发展与社会生活的需要,又考虑当前大多数初中学生的学习水平的实际可能。

在处理方法上,适当加强观察实验,力求生动活泼,既有利于掌握知识,又有利于培养能力,情感和态度,使学生在学习物理的同时,获得素质上的提高。

教材把促进学生全面发展作为自己的目标。

在内容选配上,注意从物理知识内部发掘政治思想教育和品德教育的潜能,积极推动智力因素和非智力因素的相互作用。

在学习方法上,积极创造条件让学生主动学习参与实践,通过学生自己动手,动脑的实际活动,实现学生的全面发展。

教科书采用了符合学生认知规律的由易到难,由简到繁,以学习发展水平为线索,兼顾到物理知识结构的体系。

这样编排既符合学生认知规律,又保持了知识的结构性。

教科书承认学生是学习的主体,把学生当作第一读者,按照学习心理的规律来组织材料。

全书共14章以及新增添的物理实践活动和物理科普讲座,每章开头都有几个问题,提示这一章的主要内容并附有章节照片,照片的选取力求具有典型性,启发性和趣味性,使学生学习时心中有数。

章下面分节,每节内都有些小标题,帮助学生抓住中心。

在引入课题,讲述知识,归纳总结等环节,以及实验,插图,练习中,编排了许多启发性问题,点明思路,引导思考,活跃思维。

许多节还编排了想想议议,提出了一些值得思考讨论的问题,促使学生多动脑,多开口。

二,学生分析我所承担的是二年级的物理教学。

共有69人,学生的基础差异比较大,其中共3人基础知识掌握较好,有50%的学生基础薄弱,有些学生讨厌理科学习,经过了解测试后个别学生小学物理知识都未掌握。

学生学习兴趣不浓,作业马虎了事,抄袭作业严重且作业格式不正确,写字不认真。

部分学生学习虽然刻苦,但十分吃力,效果不好,这主要是学生学习方式方法问题。

培养学生物理学习兴趣,形成正确的学习习惯,抓好基础知识,是物理教学工作的重点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11章三角形教材内容本章主要内容有三角形的有关线段、角,多边形及内角和,镶嵌等。

三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。

教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于1800的基础上,进行推理论证,从而得出三角形外角的性质。

接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。

这些知识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是研究其它图形的基础。

最后结合实例研究了镶嵌的有关问题,体现了多边形内角和公式在实际生活中的应用.教学目标1、理解三角形及有关概念,会画任意三角形的高、中线、角平分线;2、了解三角形的稳定性,理解三角形两边的和大于第三边,会根据三条线段的长度判断它们能否构成三角形;3、会证明三角形内角和等于1800,了解三角形外角的性质。

4、了解多边形的有关概念,会运用多边形的内角和与外角和公式解决问题。

5、理解平面镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用它们进行简单的平面镶嵌设计。

重点难点三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌是重点;三角形内角和等于1800的证明,根据三条线段的长度判断它们能否构成三角形及简单的平面镶嵌设计是难点。

11.1.1三角形的边[教学目标]1了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形;2理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题.3在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;4体会数学与现实生活的联系,增强克服困难的勇气和信心[重点难点]三角形的有关概念和符号表示,三角形三边间的不等关系是重点;用三角形三边不等关系判定三条线段可否组成三角形是难点。

[教学过程]一、情景导入三角形是一种最常见的几何图形, [投影1-6]如古埃及金字塔,香港中银大厦,交通标志,等等,处处都有三角形的形象。

那么什么叫做三角形呢?二、三角形及有关概念不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。

注意:三条线段必须①不在一条直线上,②首尾顺次相接。

abc(1)CBA组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。

三角形ABC 用符号表示为△ABC 。

三角形ABC 的顶点C 所对的边AB 可用c 表示,顶点B 所对的边AC 可用b 表示,顶点A 所对的边BC 可用a 表示.三、三角形三边的不等关系探究:[投影7]任意画一个△ABC,假设有一只小虫要从B 点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么?有两条路线:(1)从B →C ,(2)从B →A →C ;不一样, AB+AC >BC ①;因为两点之间线段最短。

同样地有 AC+BC >AB ② AB+BC >AC ③ 由式子①②③我们可以知道什么? 三角形的任意两边之和大于第三边. 四、三角形的分类我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形统称为斜三角形。

按角分类:三角形 直角三角形斜三角形 锐角三角形 钝角三角形 那么三角形按边如何进行分类呢?请你按“有几条边相等”将三角形分类。

三边都相等的三角形叫做等边三角形; 有两条边相等的三角形叫做等腰三角形; 三边都不相等的三角形叫做不等边三角形。

显然,等边三角形是特殊的等腰三角形。

按边分类:三角形 不等边三角形等腰三角形 底和腰不等的等腰三角形 等边三角形五、例题例 用一条长为18㎝的细绳围成一个等腰三角形。

(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边长为4㎝的等腰三角形吗?为什么?分析:(1)等腰三角形三边的长是多少?若设底边长为x ㎝,则腰长是多少?(2)“边长为4㎝”是什么意思?解:(1)设底边长为x ㎝,则腰长2 x ㎝。

x+2x+2x=18 解得x=3.6所以,三边长分别为3.6㎝,7.2㎝,7.2㎝. (2)如果长为4㎝的边为底边,设腰长为x ㎝,则4+2x=18 解得x=7如果长为4㎝的边为腰,设底边长为x ㎝,则2×4+x=18 解得x=10⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩底边底角底角因为4+4<10,出现两边的和小于第三边的情况,所以不能围成腰长是4㎝的等腰三角形。

由以上讨论可知,可以围成底边长是4㎝的等腰三角形。

五、课堂练习课本4頁练习1、2题。

六、课堂小结1、三角形及有关概念;2、三角形的分类;3、三角形三边的不等关系及应用。

作业:课本8頁1、2、6; 【总结反思】:11.1.2 三角形的高、中线与角平分线〔教学目标〕 〔〕1、经历画图的过程,认识三角形的高、中线与角平分线;2、会画三角形的高、中线与角平分线;3、了解三角形的三条高所在的直线,三条中线,三条角平分线分别交于一点.3在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯 4体会数学与现实生活的联系,增强克服困难的勇气和信心〔重点难点〕三角形的高、中线与角平分线是重点;三角形的角平分线与角的平分线的区别,画钝角三角形的高是难点.〔教学过程〕 一、导入新课我们已经知道什么是三角形,也学过三角形的高。

三角形的主要线段除高外,还有中线和角平分线值得我们研究。

二、三角形的高请你在图中画出△ABC 的一条高并说说你画法。

从△ABC 的顶点A 向它所对的边BC 所在的直线画垂线,垂足为D ,所得线段AD 叫做△ABC 的边BC 上的高,表示为AD ⊥BC 于点D 。

注意:高与垂线不同,高是线段,垂线是直线。

请你再画出这个三角形AB 、AC 边上的高,看看有什么发现? 三角形的三条高相交于一点。

如果△ABC 是直角三角形、钝角三角形,上面的结论还成立吗? 现在我们来画钝角三角形三边上的高,如图。

D CB AD CB A显然,上面的结论成立。

请你画一个直角三角形,再画出它三边上的高。

上面的结论还成立。

三、三角形的中线如图,我们把连结△ABC 的顶点A 和它的对边BC 的中点D ,所得线段AD 叫做△ABC 的边BC 上的中线,表示为BD=DC 或BD=DC =1/2BC 或2BD=2DC=BC.请你在图中画出△ABC 的另两条边上的中线,看看有什么发现?三角的三条中线相交于一点。

如果三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答。

上面的结论还成立。

四、三角形的角平分线如图,画∠A 的平分线AD ,交∠A 所对的边BC 于点D ,所得线段AD 叫做△ABC 的角平分线,表示为∠BAD=∠CAD 或∠BAD=∠CAD =1/2∠BAC 或2∠BAD=2∠CAD =∠BAC 。

思考:三角形的角平分线与角的平分线是一样的吗?三角形的角平分线是线段,而角的平分线是射线,是不一样的。

请你在图中再画出另两个角的平分线,看看有什么发现? 三角形三个角的平分线相交于一点。

如果三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答。

上面的结论还成立。

想一想:三角形的三条高、三条中线、三条角平分线的交点有什么不同?三角形的三条中线的交点、三条角平分线的交点在三角形的内部,而锐三角形的三条高的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交点在三角形的外部。

五、课堂练习课本5頁练习1、2题。

六、课堂小结1、三角形的高、中线、角平分线的概念和画法。

2、三角形的三条高、三条中线、三条角平分线及交点的位置规律。

七作业: 课本8頁3、4; 【总结反思】:A B CODEF21D CBA11.1.3三角形的稳定性[教学目标]〔〕1、知道三角形具有稳定性,四边形没有稳定性;2、了解三角形的稳定性在生产、生活中的应用。

3、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯[重点难点]三角形稳定性及应用。

[教学过程]一、情景导入盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢?二、三角形的稳定性〔实验〕1、把三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?(2)不会改变。

2、把四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?会改变。

3、在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?不会改变。

从上面的实验中,你能得出什么结论?三角形具有稳定性,而四边形不具有稳定性。

三、三角形稳定性和四边形不稳定的应用三角形具有稳定性固然好,四边形不具有稳定性也未必不好,它们在生产和生活中都有广泛的应用。

如:钢架桥、屋顶钢架和起重机都是利用三角形的稳定性,活动挂架则是利用四边形的不稳定性。

你还能举出一些例子吗?四、课堂练习1、下列图形中具有稳定性的是()A正方形 B长方形 C直角三角形 D平行四边形2、要使下列木架稳定各至少需要多少根木棍?3、课本7頁练习。

五作业:8頁5;9頁10题。

【总结反思】:11.2.1三角形的内角[教学目标] 〔〕1、掌握三角形内角和定理。

2、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯3、体会数学与现实生活的联系,增强克服困难的勇气和信心[重点难点] 三角形内角和定理是重点;三角形内角和定理的证明是难点。

[教学过程] 一、导入新课我们在小学就知道三角形内角和等于1800,这个结论是通过实验得到的,这个命题是不是真命题还需要证明,怎样证明呢?二、三角形内角和的证明回顾我们小学做过的实验,你是怎样操作的?把一个三角形的两个角剪下拼在第三个角的顶点处,用量角器量出 ∠BCD 的度数,可得到∠A+∠B+∠ACB=1800。

[投影1]图1 想一想,还可以怎样拼?①剪下∠A ,按图(2)拼在一起,可得到∠A+∠B+∠ACB=1800。

图2②把B ∠和C ∠剪下按图(3)拼在一起,可得到∠A+∠B+∠ACB=1800。

如果把上面移动的角在图上进行转移,由图1你能想到证明三角形内角和等于1800的方法吗?已知△ABC,求证:∠A+∠B+∠C=1800。

证明一过点C作CM∥AB,则∠A=∠ACM,∠B=∠DCM,又∠ACB+∠ACM+∠DCM=1800∴∠A+∠B+∠ACB=1800。

即:三角形的内角和等于1800。

由图2、图3你又能想到什么证明方法?请说说证明过程。

三、例题例如图,C岛在A岛的北偏东500方向,B岛在A岛的北偏东800方向,C岛在B岛的北偏西400方向,从C岛看A、B两岛的视角∠ACB是多少度?分析:怎样能求出∠ACB的度数?根据三角形内角和定理,只需求出∠CAB和∠CBA的度数即可。

相关文档
最新文档