概率论与数理统计第四章_几种重要的分布剖析
《概率论与数理统计》第四章考点手册
![《概率论与数理统计》第四章考点手册](https://img.taocdn.com/s3/m/493347db7375a417866f8ff9.png)
《概率论与数理统计》第四章 随机变量的数字特征考点33 离散型随机变量的数学期望(★★二级考点,选择、填空、计算、综合)1.设X 是离散型随机变量,概率分布为P {X =x i }=p i ,i =1,2,…。
则∑∞==1)(i i ip x X E 为X 的数学期望(或均值)。
2.常用离散型随机变量的数学期望(1)两点分布:X ∼B(1,p),0<p<1,则E(X)=p 。
(2)二项分布:X ∼B(n,p),其中0<p<1,则E(X)=np 。
(3)泊松分布:X ∼P(λ),其中λ>0,则E(X)=λ。
考点34 连续型随机变量的数学期望(★★二级考点,选择、填空、计算、综合)1.设X 是连续型随机变量,则称⎰∞∞-=dx x f x X E )()(为X 的数学期望。
2. 常用连续型随机变量的数学期望(1)均匀分布若X~U[a,b],即X 服从[a,b]上的均匀分布,则; 21)()(b a dx a b x dx x xf X E b a +=-==⎰⎰+∞∞- (2)指数分布若X 服从参数为λ的指数分布,则 ; /1)(0λλλ⎰+∞-==dx e x X E x 正态分布若X 服从),(2s µN ,则.)(μ=X E考点35 二维随机变量的数学期望(★★二级考点,选择、填空、计算、综合)1.二维离散型随机变量的数学期望:设二维离散型随机向量(X,Y)的概率分布为p ij ,i=1,2,⋯,j=1,2,⋯.则:.),()],([11åå¥=¥==i j ij j i p y x g Y X g E2. 二维连续型随机变量的数学期望:设二维连续型随机向量(X,Y)的密度函数为f(x,y),则:. ),(),()],([dxdy y x f y x g Y X g E òò¥¥-¥¥-=考点36 数学期望的性质(★★★一级考点,选择、填空)(1).设C 是常数,则E(C)=C;E(C)=C ×1=C(2).若k 是常数,则E(kX)=kE(X);(3).E(X+Y)=E(X)+E(Y);(4).设X,Y 相互独立,则E(XY)=E(X)E(Y);考点37 方差的概念(★★二级考点,选择、填空)1.方差的概念:设X 是一随机变量,若E [X -E (X )]2 存在,则称其为X 的方差,记成Var(X ),即Var(X )=E {[X -E (X )]2} 并称)(X Var 为X 的标准差。
概率论与数理统计正态分布4-3二维正态分布课件
![概率论与数理统计正态分布4-3二维正态分布课件](https://img.taocdn.com/s3/m/2a55293900f69e3143323968011ca300a6c3f6ca.png)
二维正态分布的应用场景
金融领域
在金融领域中,二维正态分布常 用于描述股票价格或其他金融变 量的联合分布,帮助投资者进行 风险评估和投资组合优化。
自然学科
在物理、化学、生物等自然学科 中,二维正态分布可用于描述实 验数据的误差分布、气象数据的 联合概率分布等。
概率论与数理统计正态分 布4-3二维正态分布课件源自目录CONTENTS
• 二维正态分布概述 • 4-3二维正态分布特性 • 4-3二维正态分布的性质 • 4-3二维正态分布的统计推断 • 4-3二维正态分布的实际应用
01 二维正态分布概述
二维正态分布的定义
二维正态分布是概率论与数理统计中 一种重要的概率分布,描述了两个随 机变量之间相互独立且具有相同的正 态分布关系。
03
4-3二维正态分布描述了两个随机变量之间线性关系 的情况。
4-3二维正态分布的数学表达式
1
4-3二维正态分布的数学表达式为f(x1, x2) = (1 / (2πσ1σ2)) * exp(-((x1-μ1)^2/2σ1^2 + (x2μ2)^2/2σ2^2))。
2
该表达式描述了两个随机变量x1和x2的概率密度 函数,其中μ1, μ2, σ1^2 和σ2^2是常数。
方差齐性检验
通过检验各组数据的方差是否相等,判断数据是 否满足方差分析的前提条件。
方差分析表
列出各组数据的均值、方差、自由度和贡献度等 信息,用于比较不同组之间的差异。
05 4-3二维正态分布的实际 应用
在金融领域的应用
资产定价
二维正态分布可以用于资产定价模型,例如Black-Scholes模型, 以评估衍生品的价值。
海南大学《概率论与数理统计》课件 第四章 随机变量及其分布
![海南大学《概率论与数理统计》课件 第四章 随机变量及其分布](https://img.taocdn.com/s3/m/08e51d8af424ccbff121dd36a32d7375a517c678.png)
X 3 取出的n个产品中至多有3个次品;
X 3 取出的n个产品中有超过3个的次品.
8
关于随机变量的补充说明
• 引入随机变量之后, 可以更方便地表示事件。 • 随机变量的确定不仅与样本空间有关, 也与试验
的研究目的有关。 • 随机变量满足函数的单值对应关系。 • 随机变量不仅有取值的不同, 取到这些值的概率
②正则性: p( xi ) 1 . i 1
这两条性质也是随机变量分布列的充要条件。
由概率的意义和随机变量的完备性容易证明。
25
二、离散型随机变量的分布函数
由分布列可以写出其分布函数 F ( x) P( xi ) xi x
它的图形是有限(或无穷)级数的阶梯函数〔右连续 〕
F(x)
1
0
x
26
27
X的分布列为
X1 2 3 P 0.6 0.3 0.1
X的分布函数为
0, x 1; 0.6, 1 x 2; F ( x) 0.9, 2 x 3; 1 , x 3.
注意:由分布列求分布函数是概率累加的过程.
并且,总有: 当x xmin时,F ( x) 0; 当x xmax时,F ( x) 1.
解 (1) 根据分布函数的性质可知
F() 1, F() 0
依题意可得
18
F() A π B 1 2
F() A π B 0 2
联立上面两个方程可以解得 A 1,B 1 2π
(2) 随机变量 X 落在(-1,1)内的概率可以表示为
P{1 X 1} F (1 0) F (1)
P{a X b} F(b 0) F(a 0);
P{a X b} F(b 0) F(a).
概率论与数理统计中的三种重要分布
![概率论与数理统计中的三种重要分布](https://img.taocdn.com/s3/m/871185cb8bd63186bcebbce6.png)
概率论与数理统计中的三种重要分布摘要:在概率论与数理统计课程中,我们研究了随机变量的分布,具体地研究了离散型随机变量的分布和连续型随机变量的分布,并简单的介绍了常见的离散型分布和连续型分布,其中二项分布、Poisson 分布、正态分布是概率论中三大重要的分布。
因此,在这篇文章中重点介绍二项分布、Poisson 分布和正态分布以及它们的性质、数学期望与方差,以此来进行一次比较完整的概率论分布的学习。
关键词:二项分布;Poisson 分布;正态分布;定义;性质一、二项分布二项分布是重要的离散型分布之一,它在理论上和应用上都占有很重要的地位,产生这种分布的重要现实源泉是所谓的伯努利试验。
(一)泊努利分布[Bernoulli distribution ] (两点分布、0-1分布)1.泊努利试验在许多实际问题中,我们感兴趣的是某事件A 是否发生。
例如在产品抽样检验中,关心的是抽到正品还是废品;掷硬币时,关心的是出现正面还是反面,等。
在这一类随机试验中,只有两个基本事件A 与A ,这种只有两种可能结果的随机试验称为伯努利试验。
为方便起见,在一次试验中,把出现A 称为“成功”,出现A 称为“失败” 通常记(),p A P = ()q p A P =-=1。
2.泊努利分布定义:在一次试验中,设p A P =)(,p q A P -==1)(,若以ξ记事件A 发生的次数,则⎪⎪⎭⎫⎝⎛ξp q 10~,称ξ服从参数为)10(<<p p 的Bernoulli 分布或两点分布,记为:),1(~p B ξ。
(二)二项分布[Binomial distribution]把一重Bernoulli 试验E 独立地重复地进行n 次得到n 重Bernoulli 试验。
定义:在n 重Bernoulli 试验中,设(),()1P A p P A q p ===-若以ξ记事件A 发生的次数,则ξ为一随机变量,且其可能取值为n ,,2,1,0 ,其对应的概率由二项分布给出:{}k n kk n p p C k P --==)1(ξ,n k ,,3,2,1,0 =,则称ξ服从参数为)10(,<<p p n 的二项分布,记为),(~p n B ξ。
概率论与数理统计期末复习重要知识点
![概率论与数理统计期末复习重要知识点](https://img.taocdn.com/s3/m/466f7c19cf84b9d528ea7acf.png)
概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x pp ====-<<,则称X 服从12,x x 处参数为p 的两点分布。
两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。
记为X~b(n,p)(或B(n,p)). 两点分布的概率分布:{}(1),0,1,...,.k kn k n P x k C p p k n -==-=二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。
5.常用的连续型分布:(1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=⎰标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。
概率论与数理统计(茆诗松)第四章讲义
![概率论与数理统计(茆诗松)第四章讲义](https://img.taocdn.com/s3/m/6c4e4fe4102de2bd96058886.png)
⎡ T eit ( X − x1 ) − eit ( X − x2 ) ⎤ e − itx1 − e − itx2 ( ) ϕ t dt E dt ⎥ = ⎢ ∫−T ∫−T it it ⎦ ⎣
T
⎡ T cos t ( X − x1 ) + i sin t ( X − x1 ) − cos t ( X − x2 ) − i sin t ( X − x2 ) ⎤ dt ⎥ = E ⎢∫ it ⎦ ⎣ −T cos t ( X − x1 ) − cos t ( X − x2 ) ⎤ ⎡ T sin t ( X − x1 ) − sin t ( X − x2 ) dt ⎥ = E ⎢∫ −i −T t t ⎦ ⎣ ⎡ T sin t ( X − x1 ) − sin t ( X − x2 ) ⎤ dt ⎥ , = E ⎢2∫ t ⎦ ⎣ 0
itx 0
+∞
−λ x
dx = ∫ λ e
0
+∞
−( λ −it ) x
e −( λ −it ) x λ ; dx = λ ⋅ = − (λ − it ) 0 λ − it
x2
+∞
1 −2 (6)标准正态分布 N (0, 1):密度函数 p ( x) = e , − ∞ < x < +∞ ,特征函数为 2π
1 1 e itx dx = ⋅ ϕ (t ) = ∫ e ⋅ a b−a b − a it
b itx b
=
a
e ibt − e iat ; it (b − a )
⎧λ e − λx , (5)指数分布 Exp(λ):密度函数 p ( x) = ⎨ ⎩0,
x > 0; x ≤ 0.
概率论与数理统计第四章
![概率论与数理统计第四章](https://img.taocdn.com/s3/m/22cc9c72f08583d049649b6648d7c1c709a10b0f.png)
)
(
)
(
)
,
(
Y
D
X
Dபைடு நூலகம்
Y
X
Cov
xy
=
r
=4[E(WV)]2-4E(W2)×E(V2)≤0
01
得到[E(WV)]2≤E(W2)×E(V2). →(8)式得到证明.
02
设W=X-E(X),V=Y-E(Y),那么
03
其判别式
由(9)式知, |ρ xy|=1 等价于 [E(WV)]2=E(W2)E(V2). 即 g(t)= E[tW-V)2] =t2E(W2)-2tE(WV)+E(V2) =0 (10) 由于 E[X-E(X)]=E(x)-E(X) =0, E[Y-E(Y)]=E(Y)-E(Y) =0.故 E(tW-V)=tE(W)-E(V)=tE[X-E(X)]-E[Y-E(Y)]=0 所以 D(tW-V)=E{[tW-V-E(tW-V)]2}=E[(tW-V)2]=0 (11) 由于数学期望为0,方差也为0,即(11)式成立的充分必要条件是 P{tW-V=0}=1
随机变量X的数学期望是随机变量的平均数.它是将随机变量 x及它所取的数和相应频率的乘积和.
=
(1)
)
2
3
(
)
(
-
=
ò
µ
µ
-
dx
x
x
E
j
x
可见均匀分布的数学期望为区间的中值.
例2 计算在区间[a,b]上服从均匀分布的随机变量 的数学期望
泊松分布的数学期望和方差都等于参数λ.
其他
02
f(x)=
01
(4-6)
03
(4)指数分布
概率论与数理统计之正态分布
![概率论与数理统计之正态分布](https://img.taocdn.com/s3/m/81018d073169a4517723a38e.png)
转化为标准正态分布
P(8100 Yn 10000)
标准化
P 2.5
Yn np np(1 p)
50
(50) (2.5) 1 0.9938 0.0062
37
例:某电站供应10000户居民用电,设在高峰时每户用电的概率为0.8 各用户用电多少是相互独立的,求:
(1)同一时刻有8100户以上用电的概率; (2)若每户用电功率为100W,则电站至少需要多少电功率才能保证以
1
z2
e 10 , z R
10
§4.4 二维正态分布
定义: 二维随机变量 (X ,Y )服从二维正态分布,记作
(
X
,Y
)
~
N(x
,
y
,
2 x
,
2 y
,
r)
其中 x, y ,x 0, y 0, r( r 1) 是参数.
26
§4.4 二维正态分布
定理1:设二维连续随机变量
(X
,Y
)
~
N(x
,
Q /100 8000 1.96
Q 807840
38
40
39
15-16,五. 设每个零件上的瑕疵点个数服从泊松分布P(1),现 随机抽取100个零件,根据中心极限定理,求100个 零件上总瑕疵点个数不多于120个的概率.
正态分布的前世今生
一、邂逅,正态曲线的首次发现 棣莫弗—拉普拉斯中心极限定理,4.5节
二、寻找随机误差分布的规律(正态分布的确立) 三、正态分布的各种推导 四、正态分布开疆扩土 五、正态魅影
正态分布性质,4.3节
§4.1 正态分布的概率密度与分布函数
定义:设随机变量 X 的概率密度为
概率论与数理统计第四版课后学习资料第四章
![概率论与数理统计第四版课后学习资料第四章](https://img.taocdn.com/s3/m/10f5a43a31126edb6e1a1000.png)
(4.1)
i,j 1, 2, 3,
则有E(Z) E g(X, Y) g(x i ,y j )p ij , (4.2) (假设级数绝对收敛)
例. 设随机变量(X, Y)的概率密度为 3 , 1 y x.x 1 x 3 2 f(x,y) 2x y 0, 其它, 1 试求 : E(Y),E( ) XY
e
1 x
dx
1 t x
2
0
t 2 e t dt 22 ,
D(X) E(X2 ) -[ E(X)]2 2 .
30 正态分布: 设X~N(, 2 ), 则
解 : E(X)
2
t2 2
1
xe
t2 2
-
(x )2 22
例. 二项分布的均值的计算: 设X~b(n,p),引入r.v.Xi(i=1, 2, …, n), 它们是相互独 立的且都服从0--1分布: P{Xi=1}=p, P{Xi=0}=q, X表 示n次独立重复试验中A发生的次数,Xi表示第i次试 验的结果:Xi=1表示A发生, Xi=0表示A不发生, 所以
解: 计算X1的均值, 由定义有 E(X1) =00+1 0.2+2 0.8=1.8 E(X2)=00.6+1 0.3+2 0.1=0.5
显然,乙的成绩比甲的差.
例2. 有2个相互独立工作的电子装置, 它们的寿命Xk (k 1, 2 )服从同一指数分布, 其概率密度为:
x 1 e , x 0, f(x) θ 0, 0, x 0,
i
n
故 E(X) np D(X) npq.
概率论与数理统计第四章_几种重要的分布
![概率论与数理统计第四章_几种重要的分布](https://img.taocdn.com/s3/m/e7144bc2783e0912a2162ae1.png)
ξ
0
1
2
3
4
p 0.0016 0.0256 0.1536 0.4096 0.4096
4.2超几何分布(了解)
主要内容: (一)了解超几何分布的概念 (二)了解超几何分布的期望和方差
4.2超几何分布
例1 某班有学生20名,其中有5名女同学,今从 班上任选4名学生去参观展览,被选到的女同学数ξ
k1 (k 1)!(n k)!
n
(k 11)n! pk (1 p)nk
k1 (k 1)!(n k)!
n
(k 1)n!
n
pk (1 p)nk
n!
pk (1 p)nk
k1 (k 1)!(n k)!
k1 (k 1)!(n k)!
n
n!
n
pk (1 p)nk
n!
pk (1 p)nk
k2 (k 2)!(n k)!
解 可以取0,1,2,3这4个值。
P(
=k)=
C3k
C4k 17
C420
(k=0,1,2,3,)
列成概率分布如下
ξ
0
1
2
3
p 0.4912 0.4211 0.0842 0.0035
定义42 设N个元素分为两类,有N1个属于第一类, N2个属于第二类(N1+N2=N)。从中按不重复抽 样取n个,令ξ表示这n个中第一(或二)类元素的个数,
k1 (k 1)!(n k)!
n2
n1
n(n 1)Cnl 2 pl2 (1 p)n2l nCnj1 p j1(1 p)n1 j
l0
j0
n2
n(n 1)Cnl 2 pl2 (1 p)n2l l0
概率论与数理统计:常用统计分布
![概率论与数理统计:常用统计分布](https://img.taocdn.com/s3/m/13562edef78a6529657d5387.png)
0,
x 0, 其它.
F-分布的性质 由F分布定义可得:
F
~
F(n1, n2 )
1 F
~
F(n2, n1)
五、F-分布与t分布的关系
定理3 若X~t(n),则Y=X2~F(1,n)。
证明:X~t(n),X的分布密度p(x)= n 1 2 nπ n 2
1
x2 n
n 1 2
Y=X2的分布函数F(y) =P{Y<y}=P{X<y}。当y≤0时,FY(y)=0,
② X 与 S2相互独立。
二、χ2-分布(卡方分布)
定义 设X1,X2,…,Xn是来自标准正态总体 N(0,1)的样本,称统计量
2
X
2 1
X
2 2
X
2 n
服从自由度为n的 χ2-分布 ,记为 2 ~ 2( n ).
2 (n)-分布的概率密度为
f
(
y
)
2n /
1
2 (
n
/
2
)
y
n 1
2e
服从正态分布,且
i 1
i 1
一、正态分布
定理2 若( X1, X 2 ,, X n )是来自总体X ~ N(,2) 的一个
样本,X 为样本均值,则 (1) X ~ N (, 2 ) ,(由上述结论可知:X 的期望与 X 的期望相同,而 X
n
的方差却比 X 的方差小的多,即 X 的取值将更向 集中.)
p(y)=0;当y>0时,FY(y) =P{-
,
y
y
n
n 2 1 n
Y=X的分布密度p(y)= 2,•
1 n
2 2
<X<
概率论数理统计第四章同济
![概率论数理统计第四章同济](https://img.taocdn.com/s3/m/7cc2a17e58eef8c75fbfc77da26925c52dc59155.png)
3.泊松分布 若随机变量 X 的概率函数为
P X k k e , k 0,1, 2, , ; 0 ,
k!
那么称 X 服从参数为 的泊松分布。
记作 X 。
(1)由无穷级数知识知 k e 1
k0 k ! (2)实例:放射性物质在某个时间段内放射
的粒子数服从泊松分布;公用电话亭在 某段时间内打电话的人数服从泊松分布。 (3)泊松分布的概率函数值可以查表得到, 见课本第 148 至 150 页。
PX
a
a
f
x dx
,
P
X
b
b
f
x dx
单击添加大标 题
例1.
证明:函数
x
x c
e
x2 2c
0
x0 x0
是一个概率密度函数( c 为大于零的常数)。
例2. 某城市每天的耗电率 X 服从下列密度
函数所定的分布:
f
x
12x 1
x2
0
0 x 1 其余
那么称 X 服从参数为 n 、 p 的二项分布。
记作 X Bn, p ,其中 0 p 1。
(1)在 n 次重复独立试验中,事件 A 发生的 次数就服从二项分布。
(2)利用二项展开定理不难验证:
n
Cnk pk 1 p nk 1。
k 0
(3)0-1 分布是二项分布在 n 取 1 时的特例。 (4)在某些教科书中,会列有二项分布的概
集合a1, a2, , an 上的(离散型)均匀分布:
X a1 a2
an
Pr 1 1
1
nn
n
古典概型即可用服从均匀分布的随机变量来描 述。
例 4.设 X ,Y 是随机变量,且 P X 0,Y 0 3 ,
概率论与数理统计 第四章
![概率论与数理统计 第四章](https://img.taocdn.com/s3/m/1b0d03f10242a8956bece42c.png)
50 1 1 1 ( ) 49 2 100 2
数理统计
28
②
骣n 1 2 2 E (S ) = E 琪 X i - nX 琪 å 琪 n - 1 桫= 1 i
= 1 n- 1 n n 1
2
1 n 2 2 EX i nEX n 1 i 1
2
(n E X
若总体X是连续型随机变量,其概率密度为
f ( x ),
则样本的联合概率密度为
f ( x1 , x 2 , , x n ) f ( x1 ) f ( x 2 ) f ( x n )
对于离散型总体,有相似的结论。
数理统计 17
例 设 ( X 1 , X 2 , , X n ) 是取自正态总体 N ( , 2 ) 的 样本,求样本的概率分布。 解 总体X的密度函数为
数理统计
30
X EX 1 P DX
X 1 P 1 10
0 .0 2 E X DX
E(X ) 0 D(X ) 1 100
显然
X ( 1 ) m in X i ,
1 i n
X (n) m ax X i ,
1 i n
两者也分别称为最小次序统计量和最大次序统计量. 称
R X ( n ) X ( 1 ) 为样本极差
X n1 ( 2 ) Md 1 (X n X n ( ) (1 ) 2 2 2 n 为奇数 (4 - 15) n 为偶数
总体 样本
随机变量 X 随机向量
( X 1 , X 2 , , X n )
数理统计
15
在一次试验中,样本的具体观测值 称为样本值。记为 ( x 1 , x 2 , , x n ) . 有时候样本与样本值使用同一符号, 但含义不同。 简单随机样本 若 X 1 , X 2 , X n 是相互独立的并与总体
概率论与数理统计 第四章
![概率论与数理统计 第四章](https://img.taocdn.com/s3/m/a3b6866a2b160b4e777fcf15.png)
矩,它们都是随机变量函数的数学期望。
河南理工大学精品课程
概率论与数理统计
【例3】[P.115:eg6]
〖解〗设X为随机取一球的标号,则r.v.X等可 能地取值1,2,3,4,5,6;
又Y=g(X),且
g(1)= g(2)= g(3)=1; g(4)= g(5)=2, g(6)=5. 故随机摸一球得分的期望为
河南理工大学精品课程 概率论与数理统计
显然, 方差D(X)就是随机变量X的函数 g ( X ) [ X E( X )]2 的数学期望.因此,当X的分布律 p 或概率密度 k 已知时,有
2 [ x E ( X )] pk , 离散型 k k 1 D ( X ) [ x E ( X )]2 f ( x)dx, 连续型
1500 (分) □
河南理工大学精品课程 概率论与数理统计
二、随机变量函数的数学期望 利用随机变量函数的分布可以证明下列两定理: 定理1 设Y=g(X)是随机变量X的连续函数,则 Y 也是随机变量,且其数学期望为
离散型 g ( xk ) pk , k 1 E (Y ) E[ g ( X )] g ( x) f ( x)dx, 连续型
X2 Pk 3X2+5 Pk 0 0.3 5 0.3 4 0.7 17 0.7
于是,
E(X)=(-2)×0.4+0×0.3+2×0.3=-0.2;
河南理工大学精品课程 概率论与数理统计
例6-续
E(X2)=0×0.3+4×0.7=2.8; E(3X2+5)=5×0.3+17×0.7=13.4.
方法2(定义+性质法) 因为 E(X)=(-2)×0.4+0×0.3+2×0.3=-0.2; E(X2)=(-2)2×0.4+02×0.3+22×0.3=2.8; 所以, E(3X2+5)=3E(X2)+5=3×2.8+5=13.4. □
概率论与数理统计总结之第四章
![概率论与数理统计总结之第四章](https://img.taocdn.com/s3/m/9b3e8ce4f424ccbff121dd36a32d7375a417c638.png)
概率论与数理统计总结之第四章第四章概率论与数理统计总结第四章是概率论与数理统计中的重要章节,主要介绍了概率分布以及随机变量的性质和应用。
本章内容相对较为复杂,需要掌握一定的数学基础知识,但是只要我们认真学习并进行实践,就能够掌握其中的核心概念和方法。
本章的重点内容包括:离散型随机变量及其概率分布、连续型随机变量及其概率密度函数、随机变量的函数分布、两个随机变量的联合分布、随机变量的独立性等。
首先,我们需要了解离散型随机变量及其概率分布。
离散型随机变量是一种取有限或可数个数值的随机变量,其概率分布可以通过概率分布列或概率质量函数进行描述。
常见的离散型随机变量有二项分布、泊松分布等。
我们需要掌握这些分布的定义、性质以及应用,能够计算其均值、方差以及分布函数等。
接着,我们学习了连续型随机变量及其概率密度函数。
连续型随机变量是一种取连续数值的随机变量,其概率分布可以通过概率密度函数进行描述。
常见的连续型随机变量有均匀分布、正态分布等。
我们需要了解这些分布的定义、性质以及应用,能够计算其期望、方差以及分位数等。
随后,我们学习了随机变量的函数分布。
通过对随机变量进行函数变换,可以得到新的随机变量,其概率分布可以通过原始随机变量的概率分布进行推导。
我们需要了解函数分布的计算方法,能够根据随机变量的分布函数和概率密度函数计算新的随机变量的分布函数和概率密度函数。
然后,我们学习了两个随机变量的联合分布。
对于两个随机变量,我们可以通过联合分布来描述它们的联合概率分布。
对于离散型随机变量,我们可以通过联合分布列来描述;对于连续型随机变量,我们可以通过联合概率密度函数来描述。
我们需要掌握联合概率分布的计算方法,能够计算两个随机变量的联合概率、边缘概率以及条件概率等。
最后,我们学习了随机变量的独立性。
当两个随机变量的联合概率分布可以通过各自的边缘概率分布表示时,我们称它们是独立的。
我们需要了解独立性的定义和性质,能够判断两个随机变量是否独立,并能够计算独立随机变量的联合概率分布。
四大分布简述-心理统计
![四大分布简述-心理统计](https://img.taocdn.com/s3/m/5dc85d10fc4ffe473368abb6.png)
四大分布简述一、正态分布1. 概述正态分布又名常态分布。
高斯在研究误差理论时曾用它来刻画误差,故很多文献中亦称之为高斯分布。
正态分布是概率论中最重要的分布,并有极其广泛的实际背景,很多随机变量的概率分布都可以近似地用正态分布来描述。
统计学中的三大分布(2χ分布、t分布和F分布)均是由它导出的。
2. 定义如果随机变量X的概率密度为()222(),xμσφx x--=-∞<<+∞则称X服从正态分布,记作2~(,)X Nμσ,其中,μ为随机变量X的数学期望,σ为随机变量X的标准差。
特别地,当0μ=,1σ=时,有22(),xφx x-=-∞<<+∞相应的正态分布(0,1)N称为标准正态分布。
标准正态分布的重要性在于,任何一个普通的正态分布都可以通过线性变换转化为标准正态分布。
标准化过程为若2~(,)X Nμσ,则(0,1)XμZ~Nσ-=。
3. 性质和特点1)正态分布的概率密度函数的图像为钟形,关于xμ=对称。
2)标准差σ决定正态曲线的陡峭或扁平程度。
σ越小,曲线越高狭;σ越大,曲线越低阔。
3)普遍性:一个变量如果收到大量的独立因素的影响(无主导因素),则它一般服从正态分布。
4. 应用1) 估计频数分布。
2) 制定参考值范围。
3) 质量控制:3σ准则。
4) 二项分布、t 分布等的正态近似计算。
5) 正态分布是许多统计方法的理论基础。
检验、方差分析、相关和回归分析等多种统计方法均要求分析的指标服从正态分布。
二、2χ分布1. 概述2χ分布是由海尔默特(Hermert )和皮尔逊(Pearson )分别于1875年和1900年推导出来的。
2. 定义设随机变量12,,,n X X X 相互独立,且()1,2,,=i X i n 服从标准正态分布(0,1)N ,则它们的平方和21=∑n i i X 服从自由度为n 的2χ分布,记作2()χn 。
3. 性质和特点1) 2χ分布的密度函数在第一象限内呈正偏态(右偏态)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
n k
k 0.1,...n
n! k nk E ( ) k p (1 p) k !(n k )! k 0
n! p k (1 p)n k k 1 (k 1)!( n k )! n (n 1)! np p k 1 (1 p)(n1)( k 1) k 1 (k 1)!( n k )!
k
k
nk
, ( k 0,1,..., n)
(1.16)
(P79)定义4.1
如果随机变量ξ有概率函数,
k k nk
Pk =P{ k} C n p q
其中0<P<1,q=1-p,
, ( k 0,1,..., n)
(4.1)
则称ξ服从参数为n,p的二项分布。记作ξ~B(n,p)
P{ξ=k}的值恰好是二项式(q+px)n展开式中第 k+1项xk的系数。 ξ的分布函数为:
kn ! p k (1 p)n k k 1 ( k 1)!( n k )!
(k 1 1)n ! k p (1 p)n k k 1 ( k 1)!( n k )!
n
n
(k 1 1)n ! k p (1 p)n k k 1 ( k 1)!( n k )!
第四章几种重要的分布
4.1 4.2 4.3 4.4 4.5 4.6 二项分布 超几何分布(了解) 普哇松分布 指数分布 Γ-分布(不讲) 正态分布
4.1二项分布
主要内容: (一)随机变量ξ的分布律 (二)二项分布的期望和方差 (三)二项分布的最可能值
(一)随机变量ξ的分布律
贝努里(Bernoulli)概型与二项分布 1. (0-1)分布(p26) 若以X表示进行一次试验事件A发生的次数,则称
k n-k F(x)= Ck P q n kx
(4.2)
事件A至多出现m次的概率是
P{0 m}= C P q
k n k k=0
m
n-k
事件A出现次数不小于l不大于m的概率是
P{l m}= C P q
k n k k=l
m
n-k
例.从某大学到火车站途中有6个交通岗,假设在各个交 通岗是否遇到红灯相互独立,并且遇到红灯的概率都是 1/3. (1)设ξ为汽车行驶途中遇到的红灯数,求ξ的分布律. (2)求汽车行驶途中至少遇到5次红灯的概率. 注意:在解决这类问题时,(1)要验证是否满足贝努里 试验,如独立性;(2)由ξ的定义,分清n和p 解:(1)由题意,ξ~B(6,1/3),于是,ξ的分布律为:
,6
6
0
P 0.0002
1
2
3
0.0044 0.0330 0.1318 0.2966 0.3560 0.1780
例2 10部机器各自独立工作,因修理调整等原因, 每部机器停车的概率为0.2,求同时停车数目ξ的分布 解:ξ服从二项分布,ξ~B(10 0.2) 可用贝努里公式计算pk。 现将计算结果列成分布表如下:
X服从(0-1)分布(两点分布)
X~P{X=k}=pk(1-p)1-k, (0<p<1) k=0,1 或
X
1
p
0
pk
1 p
2.(p24)定义 设将试验独立重复进行n次,每次试
验中,事件A发生的概率均为p,则称这n次试验
为n重贝努里试验.事件A恰好发生k次的概率为
P{ k} C n p (1 p)
1 2 P{ k} C 3 3
k 6 k 6 k
k 0,1,...,6
(2) P{ 5} P{ 5} P{ 6}
13 1 2 1 C 3 3 3 729
l l n 1l 令l k 1 np Cn p (1 p ) 1 l 0 n 1
n
np
二项分布B(n, p):
k n k
E ( ) np
n k
P{ k} C p (1 p)
2 n 2
k 0.1,...n
n! E ( ) k p k (1 p)nk k !(n k )! k 0
n
n (k 1)n ! n! k nk p (1 p) p k (1 p)nk k 1 (k 1)!( n k )! k 1 ( k 1)!( n k )! n
n n! n! k nk p (1 p) p k (1 p)nk k 2 (k 2)!(n k )! k 1 (k 1)!(n k )! n
k P{ =k}=C10 (0.2)k (1 0.2)10k
k=0,1,
7 8 9
,10
10
0
1
2
Байду номын сангаас
3
4
5
6
p
0.11 0.27 0.30 0.20 0.09 0.03 0.01 0.00 0.00 0.00 0.00
例3 一批产品的废品率p=0.03,进行20次重复抽样 (有放回抽取),求出现废品的频率为0.1的概率。
l l 2 n 2 l j j 1 n 1 j n(n 1)Cn p (1 p ) nC p (1 p ) n1 2 l 0 j 0
n2
n 1
n(n 1)C
l 0
n2
l n2
p
l 2
(1 p)
5 6 5 6
例1
某工厂每天用水量保持正常的概率为3/4, 求最近6天内用水量正常的天数的分布。
解 设最近六天内用水量保持正常的天数为ξ。它服从 二项分布,ξ~B(6 0.75) 用公式(4.1)计算其概率值,得到:
k P{ =k}=C6 (0.75)k (1 0.75)6k
k=0,1,
4 5
解 令ξ表示20次重复抽取中废品出现的次数, 它服从二项分布。ξ~B(20 0.03)
2 2 18 P =0.1 =P( =2)=C20 0.03 0.97 0.0988 20
(二)二项分布的期望和方差
二项分布B(n, p)
P{ k} C p (1 p)