高分子材料物理化学实验复习资料整理
高分子材料物理化学实验复习
一、热塑性高聚物熔融指数的测定熔融指数 (Melt Index 缩写为MI) 是在规定的温度、压力下,10min 内高聚物熔体通过规定尺寸毛细管的重量值,其单位为g 。
min)10/(600g tW MI ⨯=影响高聚物熔体流动性的因素有内因和外因两个方面。
内因主要指分子链的结构、分子量及其分布等;外因则主要指温度、压力、毛细管的内径与长度为了使MI 值能相对地反映高聚物的分子量及分子结构等物理性质,必须将外界条件相对固定。
在本实验中,按照标准试验条件,对于不同的高聚物须选取不同的测试温度与压力。
因为各种高聚物的粘度对温度与剪切力的依赖关系不同,MI 值只能在同种高聚物间相对比较。
一般说来,熔融指数小,即在12、 34测定取向度的方法有X 射线衍射法、双折射法、二色性法和声速法等。
其中,声速法是通过对声波在纤维中传播速度的测定,来计算纤维的取向度。
其原理是基于在纤维材料中因大分子链的取向而导致声波传播的各向异性。
几个重要公式:①传播速度C=)/(10)(1063s km t T L L ⨯∆-⨯- 单位:C-km/s ;L-m ;T L -?s ;△t-?s ②模量关系式 2C E ρ= ③声速取向因子 221CC f u a -= ④?t(ms)=2t 20-t 40(解释原因)Cu 值(km/s ):PET= 1.35,PP=1.45,PAN=2.1,CEL=2.0 (可能出选择题)测定纤维的C u 值一般有两种方法:一种是将聚合物制成基本无取向的薄膜,然后测定其声速值;另一种是反推法,即先通过拉伸试验,绘出某种纤维在不同拉伸倍率下的声速曲线,然后将曲线反推到拉伸倍率为零处,该点的声速值即可看做该纤维的无规取向声速值C u (见图1)。
思考题:1、影响实验数据精确性的关键问题是什么?答:对纤维的拉伸会改变纤维的取向。
所以为保证测试的精确性,每种纤维试样至少取3根以上迸行测定。
2、比较声速法与双折射法,两者各有什么特点?三、光学解偏振法测聚合物的结晶速度(无计算题,最好知道公式。
高分子物理复习提纲(分子运动及其介电性能)
第三章 高聚物的分子运动3.1 高聚物的分子热运动1. 高分子热运动的特点1. 运动单元的多重性。
除了整个分子的运动(即布朗运动)外还有链段、链节、侧基、支链等的运动(称微布朗运动).2. 运动时间的依赖性。
高分子热运动是一个松驰过程。
在外场作用下物体从一种平衡状态通过分子运动过渡到另一种平衡状态是需要时间的,这个时间称为松弛时间,记作τ./0t x x e τ-= 当t=τ时, 10x x e -= 式中0x 是外力未除去时塑料丝增加的长度,x (t)是外力除去后,在t 时间内测出塑料丝增加的长度,τ为常数。
因而松驰时间定义为: x 变到等于0x 的1e -时所需要的时间.它反映某运动单元松弛过程的快慢.由于高分子运动单元有大有小, τ不是单一值而是一个分布,称为”松弛时间谱”.3. 分子运动的温度依赖性. 温度对高分子的热运动有两方面的作用:①使运动单元活化。
②温度升高使高聚物发生体积膨胀。
升高温度加快分子运动,缩短松驰时间,即有/0E RT e ττ= 式中E 为活化能, 0τ为常数.如果高聚物体系的温度较低,运动单元的松驰时间τ就较长,因而在较短时间内将观察不到松驰现象;但是如果温度升高,缩短了运动单元的松驰时间τ,就能在较短的时间内观察到松驰现象。
2. 高聚物的力学状态和热转变在一定的力学负荷(砝码)下,高分子材料的形变量与温度的关系式称为高聚物的温度-形变曲线(或称热机械曲线)①线型非晶态高聚物的温度-形变曲线.线形非晶态聚合物的形变-温度曲线玻璃态:链段运动被冻结,此时只有较小的运动单元如链节、侧基等的运动,以及键长键角的变化,因而此时的力学性质与小分子玻璃差不多,受力后变形很小(0.01%~0.1%),且遵循胡克定律,外力除后立即恢复。
这种形变称为普弹形变.玻璃态转变:在3~5℃范围内几乎所有的物理性质都发生突变,链段此时开始运动,这个转变温度t称为玻璃态转变温度(T g).高弹态:链段运动但整个分子链不产生移动.此时受较小的力就可发生很大的形变(100%~1000%),外力除去后可完全恢复,称为高弹形变。
高分子材料物理化学实验复习资料整理
Huggins式: sp K H C C
2
ln 2 Kramer式: K K C C
外推至 C→0, 两直线相交于一点此截距即为[]。 两条直线的斜率
4 / 11
{
图2
lg C
sp
ln 对 C和 对C 的关系图 C C
3 / 11
图 1 DSC 法测定结晶速率 (a)等温结晶 DSC 曲线 (b)结晶分数与时间关系
高材物化实验复习资料
4
放热峰。当曲线回到基线时,表明结晶过程已完成。记放热峰总面积为 A0,从结晶起始时刻(t0)到任一时 刻 t 的放热峰面积 At 与 A0 之比记为结晶分数 X(t): Avrami 指数 n=空间维数+时间维数(空间维数:球晶:1;片晶:2;针状:3;时间维数:均相成核:1, 异相成核:0; ) DSC: (纵坐标:放热峰朝下,吸热峰朝上) 图:Tg,冷结晶峰,熔融峰。 如何去除冷结晶峰? 升温一次,去除热历史。
二、声速法测定纤维的取向度和模量
测定取向度的方法有 X 射线衍射法、双折射法、二色性法和声速法等。其中,声速法是通过对声波在纤 维中传播速度的测定,来计算纤维的取向度。其原理是基于在纤维材料中因大分子链的取向而导致声波传播 的各向异性。 几个重要公式: ①传播速度 C=
L 10 3 (km / s) (TL t ) 10 6
N2。
注意:定要掌握三张图的含义。
五、粘度法测定高聚物分子量
1、测定高聚物分子量的方法有多种,如端基测定法、渗透法、光散射法、超速离心法和粘度法等。 2、马克(Mark)公式: KM 。该式实用性很广,式中 K、值主要依赖于大分子在溶液中的形态。
高分子化学与物理总复习
第一章聚合物、聚合度和链节的定义区别结构单元、单体单元、重复单元数均分子量、重均分子量和多分散系数D的计算(计算题)高分子的分类(3种)表1-2常见高分子的英文缩写,结构式书写高分子合成反应的分类图1-2 三相两转变第二章缩聚反应的定义官能团和官能度的定义官能团等活性理论缩聚反应的两大特征:逐步性和可逆性反应程度P的定义,与平均聚合度的关系计算题:式2-18和式2-20(计算题)体型缩聚的概念凝胶点的计算,式2-42(计算题)简述缩聚反应的四种实施方法(简答题)第三章自由基的定义聚合单体的反应类型判断自由基聚合的基元反应终止反应的类型链转移反应的定义引发剂的定义和种类引发剂效率小于1的原因在自由基聚合反应过程中所做的三点假设(简答题)自动加速效应的定义动力学链长的定义链转移常数的定义常见的阻聚剂自由基聚合四种实施方法的体系组成第四章阳离子聚合的单体和引发剂阳离子聚合机理特点阴离子聚合的单体和引发剂阴离子聚合机理特点活性聚合的定义配位聚合催化剂的组成第五章二元共聚物的四种类型共聚曲线的四种类型(简答题)判断单体和自由基的活性大小第六章高分子化学反应的分类影响高分子反应活性的化学因素高分子官能团反应的定义降解的定义和分类第七章结构单元的键接方式有高分子链的构造有高分子链的构型包括典型的构象状态包括链段的定义影响高分子链柔性的因素(简答题)高分子链柔性的表征聚集态结构的定义和意义高分子间作用力包括常用内聚能密度大小评价高分子分子间作用力高分子的结晶形态主要有球晶是高分子结晶中最重要的结晶形态,在正交偏光显微镜下出现特有的黑十字消光图案。
结晶度的定义和测定结晶度的方法链结构与结晶能力的关系(简答题)结晶过程包括晶核的生长和晶体生长,晶核生产包括和淬火和退火结晶度和晶体尺寸的影响取向的应用改善共混组分间相容性的有效途径是第八章高分子运动的特点(简答题)玻璃化转变温度的测定方法影响玻璃化转变温度的因素(简答题)P193 加入增塑剂的目的P195 熔点和熔限的定义P197 结晶温度对熔点的影响P201 高分子流动的机理P201 塑料的成型加工温度链的柔顺性、极性和分子量对粘流温度的影响P202 图8-22 识别牛顿流体、假塑性流体、胀塑性流体和宾汉流体大多数高分子熔体属于流体,黏度随剪切速率增大而P204 高分子流动行为的表征(填空)P212 熔体流动中的弹性效应第九章力学性能P218 泊松比和杨氏模量的定义P219 脆性断裂和韧性断裂、强迫高弹形变的定义P221 图9-6 屈服点和断裂点表9-1 高分子五种类型的应力-应变曲线P224 银纹和裂纹的区别(简答题)P230 橡胶高弹性的本质P233 粘弹性、蠕变和应力松弛的定义P241 时温等效原理第十章P243 高分子溶解过程需经两个阶段:先溶胀后溶解交联高分子只能溶胀,不能溶解,最后达到溶胀平衡P244 溶度参数的定义P247 溶解度参数相近原则Huggins参数X1判断溶剂的优劣P257 重均分子量的测定方法数均分子量的测定方法黏均分子量的测定方法,测定特性粘度常使用毛细管粘度计中的P267 凝胶渗透色谱法的分离过程完全有体积排除效应所致,分子量大的先被淋洗出来;分子量小的后被淋洗出来第11章P274 介电常数的定义考试题型一、选择题10小题,每题1分二、填空题20小题,每题2分三、简答题5小题,每题6分四、计算题2小题,每题10分。
高分子材料基础复习总结
高分子材料(聚合物材料)以高分子化合物(树脂)为基体,再配有其它添加剂(助剂)。
高分子化合物(高分子)往往由许多相同的、简单的结构单元通过共价键(有些是离子键)有规律的重复连接而成。
蠕变现象受到一个恒定应力σ0时,形变随时间无限发展。
应力松弛在恒定形态下,物理的应力随时间而逐渐衰减。
滞后现象高聚物在交变应力(周期性应力)作用下,形变落后于应力的现象。
力学内耗出现滞后现象时,则由于形变功与恢复功并不相等而产生功的损耗。
屈服是指在较大外力作用下材料发生塑性变形的行为。
塑料以合成或天然高聚物为基本成分,并配以一定的高分子助剂如填料、增塑剂、稳定剂、着色剂等经加工可塑成型,并在常温下保持其形状不变的材料。
热塑性弹性体是指在高温下能塑化成型而在常温下能显示橡胶弹性的一类材料,因此其既显示橡胶的物理性能,又具有热塑性塑料加工特性的材料。
回弹率将纤维拉伸后除去负荷,可回复的弹性伸长与总伸长之比。
弹性模量每单位截面积的纤维延伸原来1%所需的负荷(单位:N/tex互穿网络弹性体由两种线型弹性体胶乳混合在一起,再进行凝聚并同时进行交联现代分析测试方法一、高分子材料的化学分析1,简单定性分析受热行为,包括燃烧试验(火焰试验)、干馏试验。
根据燃烧性、分解出气体的气味、火焰、外形变化等分析。
2,高分子材料的溶解性3,高分子材料的分离和纯化溶解-沉淀萃取二、高分子材料的波谱分析1,红外光谱(IR)1)分析与鉴别高聚物2)高聚物反应的研究3)共聚物的研究4)结晶度的研究5)高聚物的表面研究6)高聚物的取向研究2核磁共掁(NMR)1)高分子的鉴别2)共聚物组成的测定3)立构规整性的测定4)共聚物序列结构的研究5)高聚物分子运动的研究6)支化度和键接方式的研究三、高分子材料的色谱分析1,气相色谱1)利用纯物质对照的定性分析,如:利用保留值包括t R、V R定性。
2)利用文献保留数据的定性分析3)与其它方法结合的定性法,如IR、化学反应4)利用峰面积或峰高定量分析2,裂解气相色谱1)热固性树脂的鉴定2)共聚物与共混物的区别3)高分子官能团的鉴定4)高分子同系物的测定四、x-射线衍射在高分子材料研究中的应用1)高聚物的物相分析(包括各种添加剂的物相分析)2)结晶度的测定3)取向度的测定4)微晶大小的测定5)高聚物晶体结构分析五、电子显微镜1,SEM1)研究纤维和织物的结构及其缺陷特征2)研究均相聚合物及其多相复合体系的结构2,TEM1)研究聚合物的结晶结构2)研究由表面起伏现象表现的微观结构问题,如PAN变成C纤维过程中微纤结构的变化。
高分子物理复习资料
高分子物理复习资料第一章高分子链的结构高分子结构的层次:●高分子链的结构:高分子的链结构又称一级结构,指的是单个分子的结构和形态,它研究的是单个分子链中原子或基团的几何排列情况。
包含一次结构和二次结构。
●高分子的一次结构:研究的范围为高分子的组成和构型,指的是单个高分子内一个或几个结构单元的化学结构和立体化学结构,故又称化学结构或近程结构。
●高分子的二次结构:研究的是整个分子的大小和在空间的形态(构象)。
例如:是伸直链、无规线团还是折叠链、螺旋链等。
这些形态随着条件和环境的变化而变化,故又称远程结构。
●高分子的聚集态结构:高分子的聚集态结构又称二级结构,是指具有一定构象的高分子链通过范德华力或氢键的作用,聚集成一定规则排列的高分子聚集体结构。
§1.1组成和构造1、结构单元的化学组成:按化学组成不同聚合物可分成下列几类:①碳链高分子(C)分子链全部由碳原子以共价键相连接而组成,多由加聚反应制得。
如:聚苯乙烯(PS)、聚氯乙烯(PVC)、聚丙烯(PP)、聚丙烯腈(PAN)、聚甲基丙烯酸甲酯PMMA。
②杂链高分子(C、O、N、S)分子主链上除碳原子以外,还含有氧、氮、硫等二种或二种以上的原子并以共价键相连接而成。
由缩聚反应和开环聚合反应制得。
如:聚酯、聚醚、聚酰胺、聚砜。
POM、PA66(工程塑料)PPS、PEEK。
③元素高分子(Si、P、Al等)主链不含碳原子,而由硅、磷、锗、铝、钛、砷、锑等元素以共价键结合而成的高分子。
侧基含有有机基团,称作有机元素高分子,如: 有机硅橡胶有机钛聚合物侧基不含有机基团的则称作无机高分子,例如:梯形和双螺旋型高分子,分子的主链不是一条单链而是像“梯子”和“双股螺线”那样的高分子链。
※表1-1,一些通用高分子的化学结构,俗称2、高分子的构型:构型(configurafiom):指分子中由化学键所固定的原子在空间的几何排列。
这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。
高分子物理复习提纲(分子运动及其介电性能)
高分子物理复习提纲(分子运动及其介电性能)第三章高聚物的分子运动3.1 高聚物的分子热运动1. 高分子热运动的特点1. 运动单元的多重性。
除了整个分子的运动(即布朗运动)外还有链段、链节、侧基、支链等的运动(称微布朗运动).2. 运动时间的依赖性。
高分子热运动是一个松驰过程。
在外场作用下物体从一种平衡状态通过分子运动过渡到另一种平衡状态是需要时间的,这个时间称为松弛时间,记作τ./0t x x e τ-= 当t=τ时, 10x x e -= 式中0x 是外力未除去时塑料丝增加的长度,x (t)是外力除去后,在t 时间内测出塑料丝增加的长度,τ为常数。
因而松驰时间定义为: x 变到等于0x 的1e -时所需要的时间.它反映某运动单元松弛过程的快慢.由于高分子运动单元有大有小,τ不是单一值而是一个分布,称为”松弛时间谱”.3. 分子运动的温度依赖性. 温度对高分子的热运动有两方面的作用:①使运动单元活化。
②温度升高使高聚物发生体积膨胀。
升高温度加快分子运动,缩短松驰时间,即有/0E RT e ττ= 式中E 为活化能,0τ为常数.如果高聚物体系的温度较低,运动单元的松驰时间τ就较长,因而在较短时间内将观察不到松驰现象;但是如果温度升高,缩短了运动单元的松驰时间τ,就能在较短的时间内观察到松驰现象。
2. 高聚物的力学状态和热转变在一定的力学负荷(砝码)下,高分子材料的形变量与温度的关系式称为高聚物的温度-形变曲线(或称热机械曲线)①线型非晶态高聚物的温度-形变曲线.线形非晶态聚合物的形变-温度曲线玻璃态:链段运动被冻结,此时只有较小的运动单元如链节、侧基等的运动,以及键长键角的变化,因而此时的力学性质与小分子玻璃差不多,受力后变形很小(0.01%~0.1%),且遵循胡克定律,外力除后立即恢复。
这种形变称为普弹形变.玻璃态转变:在3~5℃范围内几乎所有的物理性质都发生突变,链段此时开始运动,这个转变温度t称为玻璃态转变温度(T g).高弹态:链段运动但整个分子链不产生移动.此时受较小的力就可发生很大的形变(100%~1000%),外力除去后可完全恢复,称为高弹形变。
高分子物理实验必备复习材料
高分子物理实验必备复习材料一、浊点滴定法测定聚合物的溶解度参数1、测定聚合物溶解度参数的实验方法有:黏度法、交联后的溶胀平衡法、反相色谱法和浊点滴定法等,实验用浊点滴定法2、溶解度参数是表示物体混合能与相互溶解的关系:2/1)(VE ?=δ,单位3/cm J ,根据溶解度参数的定义,溶解度参数δ应为“内聚能密度”的平方根原理:浊点滴定法是在两元互溶体系中,如果聚合物的溶解度参数p δ在两个互溶的溶剂s δ值的范围内,就可调节这两个互溶混合溶剂的溶解度参数sm δ,使sm δ与p δ很接近。
只要把两个互溶的溶剂按照一定的百分比配成混合溶剂,该混合溶剂的溶解度参数sm δ可以近似地表示成:2211δ?δ?δ+=sm3、混合溶剂的溶解度参数sm δ:2211δ?δ?δ+=sm,1?,2?分别是混合溶剂中组分1和组分2的体积分数。
1δ、2δ为混合溶剂中组分1和组分2的溶解度参数。
4、聚合物的溶解度参数p δ:2mlmh p δδδ+=,式中,mh δ为高溶解度参数的沉淀剂滴定聚合物溶液在混浊点时混合溶剂的溶解度参数;ml δ为低溶解度参数的沉淀剂滴定聚合物的混浊点时混合溶剂的溶解度参数。
5、试剂:三氯甲烷,正戊烷(ml δ),甲醇(mh δ),聚苯乙烯(PMMA ,溶于三氯甲烷)6、注意事项:(1)溶解PMMA 时,PMMA 与CHCl3要充分混匀,防止滴定时容易出现浑浊;(2)所用试剂为有机溶剂,故滴定管塞口不能涂凡士林,以免污染试剂;(3)读数时视线要与凹液面相平;(4)判定终点时,要将试剂对着阳光,以便判定终点;(5)CHCl3有挥发性,故在配制试样和移取过程中要准确迅速,防止其挥发,造成浓度变化,且其有剧毒,用完应回收,不可随意倾倒。
7、浊点滴定法测定聚合物溶解度参数时候,根据什么原则选择溶剂和沉淀剂?溶剂与聚合物的溶解度参数相近,能否保证二者相溶?为什么?答:对非极性溶剂,根据相似相溶原理,对极性溶剂,根据溶剂比原则来选择溶剂和沉淀剂。
(完整版)高分子物理详细重点总结
名词解释:1. 时间依赖性:在一定的温度和外力作用下,高聚物分子从一种平衡态过渡到另一种平衡态需要一定的时间2. 松弛时间τ :橡皮由ΔX(t)恢复到ΔX(0)的 1/e 时所需的时间3. 松弛时间谱:松弛过程与高聚物的相对分子质量有关,而高聚物存在一定的分子量分布,因此其松弛时间不是一个定值,而呈现一定的分布。
4. 时温等效原理:升高温度或者延长观察时间(外力作用时间)对于聚合物的分子运动是等效的,对于观察同一个松弛过程也是等效的。
5. 模量:材料受力时,应力与应变的比值6. 玻璃化温度:为模量下降最大处的温度。
7. 自由体积:任何分子的转变都需要有一个自由活动的空间 ,高分子链活动的空间8. 自由体积分数(f):自由体积与总体积之比。
9. 自由体积理论:当自由体积分数为 2.5%时,它不能够再容纳链段的运动,链段运动的冻结导致玻璃化转变发生。
10. 物理老化:聚合物的某些性质随时间而变化的现象11. 化学老化:聚合物由于光、热等作用下发生的老化12. 外增塑:添加某些低分子组分使聚合物 T g 下降的现象13. 次级转变或多重转变: Tg 以下,链段运动被冻结,存在需要能量小的小尺寸运动单元的运动14. 结晶速率:物品结晶过程进行到一半所需要时间的倒数15. 结晶成核剂:能促进结晶的杂质在结晶过程中起到晶核的作用16. 熔融:物质从结晶态转变为液态的过程17. 熔限:结晶聚合物的熔融过程,呈现一个较宽的熔融温度范围18. 熔融熵S m :熔融前后分子混乱程度的变化19. 橡胶: 施加外力时发生大的形变,外力除去后可以恢复的弹性材料20. 应变: 材料受到外力作用而所处的条件使其不能产生惯性移动时 ,它的几何形状和尺寸将发生变化21. 附加应力:可以抵抗外力的力22. 泊松比:拉伸实验中材料横向应变与纵向应变比值的负数23. 热塑性弹性体:兼有橡胶和塑料两者的特性,在常温下显示高弹,高温下又能塑化成型24. 力学松弛:聚合物的各种性能表现出对时间的依赖性25. 蠕变:在一定的温度下和较小恒应力的持续作用下,材料应变随时间的增加而增大的现象26. 应力松驰:在恒定温度和形变保持不变条件下,聚合物内部应力随时间的增加而逐渐衰减的现象27. 滞后:聚合物在交变应力作用下形变落后于应力变化的现象28. 力学损耗或者内耗:单位体积橡胶经过一个拉伸 ~ 回缩循环后所消耗的功29. 储存模量 E’:同相位的应力与应变的比值30. 损耗模量 E”:相差 90 度相位的应力振幅与应变振幅的比值31. Boltzmann 叠加原理:聚合物的力学松弛行为是其整个历史上各松弛过程的线性加和32. 应变软化:随应变增大,应力不再增加反而有所下降33. 银纹屈服:聚合物受到张应力作用后,由于应力集中产生分子链局部取向和塑性变形,在材料表面或内部垂直于应力方向上形成的长 100 、宽 10 、厚为 1 微米左右的微细凹槽或裂纹的现象34. 裂纹:由于分子链断裂而在材料内部形成的空隙,不具有强度,也不能恢复。
高分子材料复习整理DOC
高分子材料复习整理1. 什么叫热塑性塑料?什么叫热固性塑料?试各举三例说明。
(P124)热塑性塑料:塑料加热后软化,冷却后变硬,这种软化、变硬可重复循环,因此可重复成型。
(聚乙烯、聚丙烯、聚氯乙烯)热固性塑料:有单体直接形成网状聚合物或通过交联线型预聚体而形成,一旦形成交联聚合物,受热后不能再回复到可塑状态。
(制品不溶不熔)(酚醛树脂、环氧树脂、氨基树脂、不饱和聚酯)2. 高分子构型与构象的区别(P79)高分子的几何异构和旋光异构称为构型,构型不同,分子形状也不同,但要改变构型非破坏化学键不可一般而言,大分子链是由众多的C-C单键(或C-N,C-O,Si-O等类单键)构成的。
这些单键是由σ电子组成的σ键,其电子云分布对键轴是对称的,所以以σ键连接的两个原子可以相对旋转,这称为分子的内旋转。
在分子内旋转的作用下,大分子链具有很大的柔曲性,可采取各种可能的形态,每种形态所对应原子及键的空间排列称为构象。
构象是由分子内部热运动而产生的,是一种物理结构。
3.ABS树脂的结构,每个组分的作用ABS树脂是由苯乙烯、丁二烯和丙烯腈三种成分构成的共混物。
最初以机械共混法制备,现在多采用接枝共聚-共混法。
苯乙烯:贡献是刚性、表面光洁性和易加工性丁二烯:贡献是柔顺性、高抗冲性和耐低温性丙烯腈:贡献是耐化学药品性、热稳定性和老化稳定性ABS塑料的具体性能决定于三种单体的比例和形态结构ABS塑料存在有两相,连续相成称为基体(由苯乙烯或其烷基衍生物和丙烯腈的共聚树脂所组成),以丁二烯为基础形成的弹性体为分散相4. 产量大、应用广的工程塑料主要有哪些?(P136~137)产量大、应用广的工程塑料有聚酰胺(PA):开发最早的工程塑料,产量首位;聚碳酸酯(PC),应用广泛;聚甲醛(POM):产量位居第三位。
5.高聚物高弹性的特点(P95)高弹性即橡胶弹性,同一般的固体物质所表现出的普弹性相比,有如下特点:(1)弹性模量小,形变大。
高分子物理和化学复习要点
第一章绪论1、高分子:也叫聚合物分子或大分子,具有高的相对分子量(104~106) ,其结构必须是由多个重复单元所组成,并且这些重复单元实际上或概念上是由相应的小分子衍生而来。
2、高分子的分类:根据高分子受热后的形态变化:热塑性高分子热塑性高分子在受热后会从固体状态逐步转变为流动状态。
这种转变理论上可重复无穷多次。
或者说,热塑性高分子是可以再生的。
聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯和涤纶树脂等均为热塑性高分子。
热固性高分子热固性高分子在受热后先转变为流动状态,进一步加热则转变为固体状态。
这种转变是不可逆的。
换言之,热固性高分子是不可再生的。
通过加入固化剂使流体状转变为固体状的高分子,也称为热固性高分子。
典型的热固性高分子如:酚醛树脂、环氧树脂、氨基树脂、不饱和聚酯、聚氨酯、硫化橡胶等。
第二章逐步聚合1、逐步聚合反应的种类2、官能度:分子中能参加反应的官能团数3、缩聚反应的特点4、官能团等活性概念逐步聚合中的官能团的活性不随分子量的增加而降低。
实验表明,二元官能度单体在分子量很小(n=1-3)时,活性随分子量增加而降低,但达到一定分子量后活性趋于恒定。
因此官能团等活性概念成立。
5、逐步聚合实施方法(1)熔融缩聚聚合体系中只加单体和少量的催化剂,不加入任何溶剂,聚合过程在生成聚合物熔点以上温度进行,聚合物处于熔融状态。
特点:➢产物纯净,分离简单;➢通常以釜式聚合,生产设备简单;➢反应温度高,一般比生成的聚合物的熔点高10~20 ℃;一般不适合生产高熔点的聚合物;➢反应时间长,一般都在几个小时以上;➢为避免高温时缩聚产物的氧化降解,常需在惰性气体中进行。
用途:主要用于平衡缩聚反应,如聚酯、聚酰胺等的生产。
(3)界面缩聚界面缩聚是将两种单体分别溶于两种不互溶的溶剂中,再将这两种溶液倒在一起,在两液相的界面上进行缩聚反应,聚合产物不溶于溶剂,在界面析出。
第三章自由基聚合逐步聚合反应:➢无活性中心,单体官能团间相互反应而逐步增长➢大部分缩聚属逐步机理,大多数烯类加聚属连锁机理3、烯类单体的聚合反应性能电子效应的影响:(1) X为供电子基团带供电子基团的烯类单体易进行阳离子聚合。
高分子物理复习资料
高分子物理复习资料高分子物理复习资料高分子物理是研究高分子材料的物理性质和行为的学科,它在材料科学和工程领域中具有重要的地位。
对于学习高分子物理的学生来说,复习资料是提高复习效率和理解知识的重要工具。
本文将介绍一些高分子物理复习资料的内容和使用方法。
第一部分:高分子物理基础知识在复习高分子物理时,首先需要掌握一些基础知识。
这包括高分子的结构与性质、高分子的物理性质和高分子的力学性质等。
对于这些知识,可以通过查阅教材和课堂笔记来进行复习。
同时,还可以通过阅读相关的学术论文和综述来深入了解这些知识。
第二部分:高分子物理实验技术高分子物理实验技术是研究高分子物理的重要手段。
在复习时,可以通过学习实验技术来加深对高分子物理的理解。
这包括高分子的合成方法、高分子的表征方法和高分子的测试方法等。
可以通过查阅相关的实验教材和实验手册来学习这些实验技术。
第三部分:高分子物理理论模型高分子物理理论模型是解释高分子物理现象的重要工具。
在复习时,可以通过学习理论模型来深入理解高分子物理的本质。
这包括高分子的统计力学模型、高分子的自洽场理论和高分子的动力学模型等。
可以通过阅读相关的学术论文和专著来学习这些理论模型。
第四部分:高分子物理应用研究高分子物理的应用研究是将高分子物理理论应用于实际问题的重要领域。
在复习时,可以通过学习应用研究来了解高分子物理在材料科学和工程领域中的应用。
这包括高分子材料的功能性和高分子材料的性能调控等。
可以通过阅读相关的学术论文和专著来学习这些应用研究。
第五部分:高分子物理的前沿研究高分子物理的前沿研究是推动高分子物理学科发展的重要动力。
在复习时,可以通过学习前沿研究来了解高分子物理的最新进展。
这包括高分子自组装和高分子纳米材料等。
可以通过阅读相关的学术论文和综述来学习这些前沿研究。
总结:高分子物理复习资料的内容和使用方法多种多样,可以根据自己的学习需求选择合适的资料进行复习。
通过系统地学习高分子物理的基础知识、实验技术、理论模型、应用研究和前沿研究,可以提高对高分子物理的理解和应用能力。
高分子物理复习材料
1、高聚物结构包括 高分子的链结构 和高分子的聚集态结构,高分子的聚集态结构又包括 晶态结构 、 非晶态结构 、 取向态结构 和 液晶态结构以及织态结构 。
2、高分子链结构单元的化学组成有 碳链高分子 、 杂链高分子 、元素高分子和 梯形和双螺旋型高分子,元素高分子有 有机元素高分子 和 无机元素高分子 。
3、高分子的结晶形态有 折叠链片晶 、 串晶 、 伸直链片晶 和 纤维状晶 。
4、高聚物的晶态结构模型主要有 缨状胶束模型(或两相模型)、 折叠链结构模型 、 隧道-折叠链模型 、 插线板模型 ;高聚物的非晶态结构模型主要有 无规线团模型 和 折叠链缨状胶束粒子模型(或两相球粒模型) 。
5、测定分子量的方法有 端基分析法 、 气相渗透法 、 膜渗透法 、 光散射法 、 粘度法 和 凝胶色谱法 。
6、提高高分子材料耐热性的途径主要有 增加链刚性 、增加分子间作用力 、 结晶。
7、线性高聚物在溶液中通常为 无规线团 构象,在晶区通常为 伸直链 或 折叠链 现象。
8、高聚物稀溶液冷却结晶易生成 单晶 ,熔体冷却结晶通常生成 球晶 。
熔体在应力作用下冷却结晶常常形成 串晶 。
9、测定高聚物M n 、M w 、M η的方法分别有 膜渗透法 、 光散射法 、和 粘度法 。
测定高聚物相对分子质量分布的方法有 沉淀分级法 和 GPC ;其基本原理分别为 溶解度 和 体积排除 。
10、高聚物的熔体一般属于 假塑性 流体,其特性是 粘度随剪切速率增加而减小 。
高聚物悬浮体系、高填充体系、PVC 糊属于 胀塑性 流体,其特征是 粘度随剪切速率增加而增加 。
11、对于聚乙烯自由旋转链,均方末端距与链长的关系是 222nl h 。
12、当温度T= θ 时,第二维里系数A 2= 0 ,此时高分子溶液符合理想溶液性质。
13、测定PS 重均相对分子质量采用的方法可以是 光散射法 。
14、均相成核生长成为三维球晶时,Avranmi 指数n 为 4 。
高分子化学与物理复习
1.高分子的结构1高分子链的近程结构(一级结构)一、高分子的化学组成二、结构单元的键接顺序三.支化与交联四、共聚物的结构五.高分子链的构型2高分子链的远程结构(二级结构)一、聚合物的分子量二、高分子的分子量分布三、高分子链的构象四.高分子链的柔顺性五、高分子链的构象统计3高分子的化学组成1. 碳链高分子2. 杂链高分子3. 元素高分子4. 无机高分子1-3出题方式:如:4支化与交联1. 支化支化高分子的性质与线形分子相似,可溶解,加热可融化;但结晶度大大降低。
2. 交联交联的高分子不能溶解。
交联高分子加热不能融化但在溶剂中可以溶涨,交联的程度越高,溶胀度越小。
5共聚物的结构交替、无规、嵌段、接枝6高分子链的构型是指分子中由化学键所固定的原子在空间的几何排列。
构型不能用物理方法改变,改变构型必须通过化学键的断裂和重组。
1.旋光异构体由手性碳原子(不对称碳原子)形成的。
(1)全同立构全部由一种旋光异构体单元键接而成,取代基R 处在平面的同一侧(2)间同立构由两种旋光异构体单元交替键接而成,取代基R 交替处在平面两侧。
(3)无规立构两种旋光异构单元完全无规键接,取代基R 无规分布在平面两侧。
7分子的立体构型不同,材料的性能也不同:全同立构的聚苯乙烯可结晶,熔点为240 ︒C ,而无规立构的聚苯乙烯不能结晶,软化温度为80 ︒C ;全同或间同的PP 易结晶,可纺丝成纤;而无规聚丙烯却是一种橡胶状的弹性体。
自由基聚合的高聚物大都是无规的,定向聚合可制得有规立构的高聚物。
8.几何异构体顺式:取代基在双键的同一侧反式:取代基在双键的两侧顺式1,4-聚丁二烯:分子与分子之间的距离较大,在室温下是一种弹性很好的橡胶。
反式1,4-聚丁二烯:分子链结构比较规整,容易结晶,在室温下是弹性很差的塑料。
9.单分散性:如果聚合物的分子量完全均一、大小相同,就称为单分散性。
阴离子聚合得到的产物接近单分散性。
(1)数均分子量(2)重均分子量(3)粘均分子量对单分散性样品,则:对单分散性试样,d=1对多分散性试样,d>1M Mn Wd =10.高分子链的构象1.内旋转单键是由σ电子组成,电子云分布是轴对称的,因此高分子在运动时C -C 单键可以绕轴旋转,称为内旋转。
高分子化学与物理总结
物分为(无规共聚)(交替共聚)(嵌段共聚)(接枝共 聚)。
(13) 高分子链构型包括(几何异构)和(旋光异构)。 (2)高分子运动的特点 运动单元多重性 、分子运动的时间依赖性、 分子运动的温度依赖性。 (3)分子运动的运动单元包括 分子链整体运动、链段运动、链节、侧 基和支链、晶区内的分子运动。 (6) 玻璃化转变温度的测定方法有 膨胀计方法、差热分析或示差扫描 量热方法、静态和动态力学分析方法、核磁共振方法。 (7) 调节玻璃化转变温度的方法 增塑、共聚、改变分子量、交联等。 (14)熔体流动中的弹性效应包括 法向应力效应、挤出膨胀效应、不 稳定流动和熔体破裂。 (15)当口模是圆形时,用膨胀比B表征挤出膨胀效应强弱,膨胀比B=
的。(2)断裂能:将冲击强度为2KJ/m2作为临界指标,试样 的冲击强度小于该数值为脆性断裂,否则为韧性断裂。(3) 断裂面形状:脆性断裂通常断裂面光滑,而韧性断裂则试样断 面粗糙并且有外延的形变。
2. 同其他固体材料相比,橡胶材料具有哪些特点? 答:(1)小应力下产生大形变并且弹性模量小:弹性形变可 高达1000%且在去除外力后又几乎能完全回复,而一般材料小 于1%;橡胶的高弹性模量约为105Pa,而通常固体材料的弹性 模量约为109~1011Pa。(2)具有热弹性效应:在橡胶弹性体 被拉伸是放出热量,温度升高;回缩的时候吸收热量,温度降 低。(3)弹性体的高弹形变是一个松弛过程(具有时间依赖 性):高弹形变和回复是通过链段运动实现的,需克服分子间 的作用力,因此其应力—应变行为与温度和时间都有密切的关 系。
高分子物理复习资料
⾼分⼦物理复习资料⾼物第⼀章习题1.测量数均分⼦量,不可以选择以下哪种⽅法:(B)。
A.⽓相渗透法B.光散射法C.渗透压法D.端基滴定法2.对于三⼤合成材料来说,要恰当选择分⼦量,在满⾜加⼯要求的前提下,尽量( B )分⼦量。
A.降低B.提⾼C.保持D.调节3.凝胶⾊谱法(GPC)分离不同分⼦量的样品时,最先流出的是分⼦量(⼤)的部分,是依据(体积排除)机理进⾏分离的。
4.测量重均分⼦量可以选择以下哪种⽅法:(D)A.粘度法B.端基滴定法C.渗透压法D.光散射法5. 下列相同分⼦量的聚合物,在相同条件下⽤稀溶液粘度法测得的特性粘数最⼤的为( D )(A)⾼⽀化度聚合物(B)中⽀化度聚合物(C)低⽀化度聚合物(D)线性聚合物6. 内聚能密度:定义克服分⼦间作⽤⼒,1mol的凝聚体汽化时所需的能量为内聚能密度,表征分⼦间作⽤⼒的强弱。
7. 同样都是⾼分⼦材料,在具体⽤途分类中为什么有的是纤维,有的是塑料,有的是橡胶?同样是纯的塑料薄膜,为什么有的是全透明的,有的是半透明的?答:(1)塑料橡胶的分类主要是取决于使⽤温度和弹性⼤⼩。
塑料的使⽤温度要控制在玻璃化温度以下且⽐Tg室温低很多。
⽽橡胶的使⽤温度控制在玻璃化温度以上且Tg⽐室温⾼很多,否则的话,塑料就软化了,或者橡胶硬化变脆了,都⽆法正常使⽤。
玻璃化温度你可以理解为⾼分⼦材料由软变硬的⼀个临界温度。
塑料拉伸率很⼩,⽽有的橡胶可以拉伸10倍以上。
纤维是指长径⽐⼤于100以上的⾼分⼦材料,纤维常⽤PA(聚酰胺)等材料,这类材料有分⼦间和分⼦内氢键,结晶度⼤,所以模量和拉伸强度都很⾼,不容易拉断。
(2)结晶的⾼聚物常不透明,⾮结晶⾼聚物通常透明。
不同的塑料其结晶性是不同的。
加⼯条件不同对⼤分空间构型有影响,对结晶有影响,这些都能导致透明性不同。
⼤多数聚合物是晶区和⾮晶区并存的,因⽽是半透明的。
8. 在⽤凝胶渗透⾊谱⽅法测定聚合物分⼦量时,假如没有该聚合物的标样,但是有其它聚合物的标样,如何对所测聚合物的分⼦量进⾏普适标定?需要知道哪些参数?参考答案:可以⽤其它聚合物标样来标定所测聚合物的分⼦量。
高分子物理复习提纲
高分子物理复习提纲第一章:概论(1)问答题:1。
**分子量及分布p72。
**常用的统计分子量及定义式p5数均分子量:重均分子量:z均分子量:粘均分子量:3。
**渗透压法,凝胶色谱法的原理?p11-18(2)名词解释:1。
分布宽度指数:所谓分布宽度指数是指试样中的各个分子量与平均分子量之间的差值的平方的平均值。
2。
多分散系数:分布宽度指数与两种平均分子量的比值有关,d称为多分散系数。
第二章:高分子的链结构(1)问答题:0。
高分子结构的内容?答:高分子结构的内容可分为链结构和聚集态结构两个组成部分。
链结构又分为近程结构和远程结构。
近程结构包括构造与构型。
近程结构属于化学结构,又称一级结构。
远程结构包括分子的大小与形态。
链的柔顺性及分子在各种环境中所采取的构象。
远程结构又称二级结构。
链结构指单个分子的结构和形态。
聚集结构是指高分子材料整体的内部结构,包括晶态结构,非晶态结构,取向态结构,液晶态结构以及织态结构。
前四者是描述高分子聚集体中的分子之间是如何堆砌的,又称三级结构。
织态结构和高分子在生物体中得结构则属于更高级的结构。
1。
线形,支化,交联高聚物的异同点?答:一般高分子都是线形的,分子长链可以蜷曲成团,也可以伸展成直线。
线形高分子的分子间没有化学键结合,在受热或者受力情况下分子间可互相移动,因此线形高聚物可以在适当溶剂中溶解,加热时可以熔融,易于加工成型。
支化高分子的化学性质与线形分子相似,但支化对物理机械性能的影响有时相当的显著。
支化程度越高,支链结构越复杂,则影响越大。
例如无规支化往往降低高聚物薄膜的拉伸度。
以无规支化高分子制成的橡胶,其抗张强度及伸长率均不及线形分子制成的橡胶。
交连与支化是有本质区别的,支化的高分子能够溶解,而交联的高分子是不溶不熔的,只有当交联度不太大时能在溶剂中溶胀。
高分子的交联度不同,性能也不同,交联度小的橡胶弹性较好,交联度大的橡胶弹性就差,交联度再增加,机械强度和硬度都将增加,最后将失去弹性而变脆。
高分子物理复习要点
影响玻璃化温度的因素
玻璃化温度是高分子链段从冻结到运动(或 反之)的一个转变温度,而链段运动是通过 主链的单键内旋转来实现的,因此,凡是能 影响高分子链柔性的因素,都对Tg有影响 。
PMMA:
CH3
C
CH2 n
O C OCH3
。 68
。
。
10
20
。 20
。
15
Tg
。
增
87
。
高
106
。 104
。 120
2.取代基团的空间位阻和侧链的柔性 (2) 刚性侧基的体积越大,分子链的柔顺性 越差,Tg越高
2.取代基团的空间位阻和侧链的柔性
(3) 柔性侧链越长,分子链柔顺性越好,Tg 越低
△HM>0,所以只有在 | △HM | <T |△SM | 时,才 能满足△FM <0 。
• 如何选择溶剂?
高分子溶液与理想溶液的偏差
• ①高分子间、溶剂分子间、高分子与溶剂分子 间的作用力不可能相等,因此溶解时,有热量 变化 。
• ②由于高分子由聚集态→溶剂中去,混乱度变 大,每个分子有许多构象,则高分子溶液的混 合熵比理想溶液要大得多。
ABS树脂是丙烯腈、丁二烯和苯乙烯的三元共聚物。共聚 方式是无规共聚与接枝共聚相结合,结构复杂:可以是以 丁苯橡胶为主链,将苯乙烯丙烯腈接在支链上;也可以是 以丁腈橡胶为主链,将苯乙烯接在支链上;当然还可以苯 乙烯—丙烯腈的共聚物为主链,将丁二烯和丙烯腈接在支 链上等等,这类接枝共聚物都称为ABS。 因为分子结构不同,材料的性能也有差别。总的来说, ABS三元接枝共聚物兼有三种组分的持性。其中丙烯腈有 CN基,能使聚合物耐化学腐蚀,提高制品的抗张强度和 硬度;丁二烯使聚合物呈现橡胶状韧性,这是制品抗冲强 度增高的主要因素;苯乙烯的高温流动性能好,便于加工 成型,且可改善制品的表面光洁度。因此ABS是一类性能 优良的热塑性塑料。
高分子化学与物理基础知识点
高分子化学与物理基础知识点
1. 高分子的定义和分类
高分子是由许多重复单元通过共价键连接而成的大分子。
根据来源,高分子可分为天然高分子和合成高分子;根据性能和用途,高分子可分为塑料、橡胶、纤维、涂料、胶粘剂等。
2. 高分子的结构
高分子的结构包括一级结构(近程结构)和二级结构(远程结构)。
一级结构指的是高分子链中原子的化学组成和排列方式,如头尾结构、顺反异构等;二级结构指的是高分子链的形态,如伸直链、螺旋链、折叠链等。
3. 高分子的合成
高分子的合成方法包括加聚反应、缩聚反应、开环聚合等。
其中,加聚反应是通过单体分子间的加成反应形成高分子的方法;缩聚反应是通过单体分子间的缩合反应形成高分子的方法。
4. 高分子的物理性能
高分子的物理性能包括力学性能、热性能、电性能、光学性能等。
其中,力学性能是高分子材料最重要的性能之一,包括拉伸强度、弯曲强度、冲击强度等。
5. 高分子的溶液性质
高分子在溶液中的性质包括溶解过程、溶剂选择、分子量测定等。
高分子的溶解过程一般分为溶胀和溶解两个阶段;溶剂选择要考虑高分子的极性、分子量、溶液的黏度等因素。
以上是高分子化学与物理的一些基础知识点,希望对你有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、根据实验图分析结晶温度对结晶速度的影响。
1.影响高聚物结晶速度常数的因素有哪些?试从实验结果分析温度对结晶速度的影响。 答:①分子链结构:凡分子结构对称、规整性好、柔性好、分子间作用力强的聚合物易结晶,结晶
速率也快。 ②温度:温度对结晶速度的影响极大,温度较高,结晶速率小;随着温度下降,结晶速率增加;温度 再进一步降低,结晶速率又下降;当 T<Tg 时,则不能结晶。 ③应力:应力能使分子链沿外力方向有序排列,可提高结晶速度。 ④分子量:在相同条件下,一般分子量低结晶速度快。 ⑤杂质:杂质影响较复杂,有的可阻碍结晶的进行,有的则能加速结晶(成核剂)。 ⑥溶剂:有的溶剂能明显地促进高聚物结晶,例如水能促进尼龙和聚酯的结晶。 总之,结晶能力越强,结晶速度也越大。
C
高材物化实验复习资料
5
分别代表常数 KH 和 KK。 (2)一点法 5、换算前提:极稀溶液。所以
t 0 t0
当选择的乌氏粘度计 t0<100s 时,需要动能校正。 6、该实验使用 PVA(聚乙烯醇),溶剂为去离子水。 思考题
1、讨论影晌分子量测定的主要因素。
答:毛细管粘度计的选择(选溶剂的流经时间>100s) ,溶液浓度,测试温度。 ①毛细管的直径:毛细管直径太大会使液体下降过快而致使时间测量不准确;毛细管直径太小也会使测 量时间不准确。 ②溶液浓度:计算公式中要求浓度要有一定的范围; ③温度:温度会通过影响聚合物的黏度来影响其分子量。
二、声速法测定纤维的取向度和模量
测定取向度的方法有 X 射线衍射法、双折射法、二色性法和声速法等。其中,声速法是通过对声波在纤 维中传播速度的测定,来计算纤维的取向度。其原理是基于在纤维材料中因大分子链的取向而导致声波传播 的各向异性。 几个重要公式: ①传播速度 C=
L 10 3 (km / s) (TL t ) 10 6
2、什么情况下需要做动能校正?为什么?
答:当时间 t<100s 时不满足公式的适用条件。若考虑其促使流动的力除克服其流动内摩擦外尚有部分消耗 于液体流动的动能,这部分能量的消耗需要予以校正。
六、加聚反应动力学——膨胀计法测反应速度
1、膨胀计是测定聚合速度的一种方法。它的依据是单体密度小,聚合物密度大,此时随着聚合反应的进 行,体积会发生收缩。当一定量单体聚合时,体积的变化与转化率成正比。如果将这种体积的变化放在一根 直径很窄的毛细管中观察,其灵敏度将大为提高,这种方法就是膨胀计法。 2、几种方法测反应速度:直接法和间接法。间接法有膨胀计法、测比重、测折射率、测比容等。 3、 v p
1.影响熔融指数的外部因素是什么?
答:影响因素有内因和外因两个方面:内因:①分子链的结构;②分子量;③分子量分布;外因:①温度; ②压力;③毛细管的内径与长度;④时间。总共七个影响因素。 熔融指数单位:g/10min
2、测定热塑性高聚物熔融指数有何意义?
答:熔融指数是用来表征熔体在低剪切速率下流变性能的一种相对指标。热塑性高聚物制品大多在熔融状态 加工成形,其熔体流动性对加工过程及成品性能有较大影响,为此必须了解热塑性高聚物熔体的流变性能, 以确定最佳工艺条件。
lg lg K lg M
1; 为相对粘度, 溶液粘度( s) 。
0
溶剂粘度( s)
sp
C 或 lg C
当 C→0 时,
lim c0
sp
C
lim
c0
C
4、特性粘度[的求得: (1)、稀释法(外推法)
sp
C
Huggins式: sp K H C C
2
ln 2 Kramer式: K K C C
外推至 C→0, 两直线相交于一点此截距即为[]。 两条直线的斜率
4 / 11
{
图2
lg C
sp
ln 对 C和 对C 的关系图 C C
结晶度的计算:熔融峰面积/100%结晶时熔融峰的面积。
以结晶分数 X(t)对时间作图,可得到图 1(b)的 S 形曲线。这种形状代表了三个不同的结晶阶段。第一 阶段相当于曲线起始的低斜率段,代表成核阶段,又称为结晶的诱导期;第二阶段曲线斜率迅速增加,为晶 体放射性生长,形成球晶的阶段,称为一次结晶;曲线斜率再次减小即进入第三阶段,到此阶段大多数球晶 发生碰撞,结晶只能在球晶的缝隙间进行,生成附加晶片,称为二次结晶。 聚合物等温结晶过程可以用 Avrami 方程进行描述:
I
解偏振光强
I I0 2
I0
i
t0
t1
2
时间
图2 等温结晶的解偏振光强—时间曲线
1 t1
2
作为表征聚合物结晶速度的参数, t 1 为半结晶期。 结晶在 Tg 和 Tm 之间。靠近 Tg, 2 链段难运动;靠近 Tm,晶核难生 成。
2 / 11
高材物化实验复习资料
3
即为图 2 中
I It 1 时所对应的时间。 I I0 2
2
单位:C-km/s;L-m;TL-s;△t-s
②模量关系式 E C
③声速取向因子 f a 1
Cu2 C2
④t(ms)=2t20-t40(解释原因)
Cu 值(km/s) :PET= 1.35,PP=1.45,PAN=2.1,CEL=2.0 (可能出选择题) 测定纤维的 Cu 值一般有两种方法:一种是将聚合物制成基本无取向的薄膜,然后测定其声速值;另一种 是反推法,即先通过拉伸试验,绘出某种纤维在不同拉伸倍率下的声速曲线,然后将曲线反推到拉伸倍率为 零处,该点的声速值即可看做该纤维的无规取向声速值 Cu(见图 1)。 思考题:
N2。
注意:定要掌握三张图的含义。
五、粘度法测定高聚物分子量
1、测定高聚物分子量的方法有多种,如端基测定法、渗透法、光散射法、超速离心法和粘度法等。 2、马克(Mark)公式: KM 。该式实用性很广,式中 K、值主要依赖于大分子在溶液中的形态。
无规线团形状的大分子,为 0.5~0.8;在良溶剂中,大分子溶剂化,为 0.8~l;硬棒状分子,>1。 求某一高聚物溶剂系的 K、值的具体测量,可取对数得: 3、几个粘度的关系(问答题) : sp 为增比粘度, sp
3、 聚合物的熔融指数与其分子量有什么关系?为什么熔融指数值不能在结构不同
1 / 11
高材物化实验复习资料
2
的聚合物之间进行比较?
答:①聚合物的熔融指数小,即黏度大,物料流动性差,则样品的分子量大。 ②由于不同机构的聚合物的测试环境(温度、压力)不同,并且不同的聚合物的黏度对温度与剪切力的依 赖关系不同,所以熔融指数只能在同种高聚物间相对比较。
若将上式左边对 lgt 作图得一条直线,其斜率为 Awami 指数 n,截距就是 lgK。 本实验以等规聚丙烯粒料为试样,采用结晶速度仪测定其结晶速率。 思考题:
1、聚合物的结晶速度与哪些因素有关?
答:高聚物的分子结构、分子量、添加剂(如消光剂、成核剂、填料、增塑剂等) ,成型加工的温度和时 间等。
高材物化实验复习资料
1
一、热塑性高聚物熔融指数的测定
熔融指数 (Melt Index 缩写为 MI) 是在规定的温度、压力下,10min 内高聚物熔体通过规定尺寸毛细管 的重量值,其单位为 g。
MI
W 600 ( g / 10 min) t
影响高聚物熔体流动性的因素有内因和外因两个方面。内因主要指①分子链的结构、②分子量及其③分 子量分布等;外因则主要指①温度、②压力、③毛细管的内径与长度、④时间等因素。 (内因 3 个,外因 4 个,总共 7 个影响因素) 为了使 MI 值能相对地反映高聚物的分子量及分子结构等物理性质,必须将外界条件相对固定。在本实 验中,按照标准试验条件,对于不同的高聚物须选取不同的测试温度与压力。因为各种高聚物的粘度对温度 与剪切力的依赖关系不同,MI 值只能在同种高聚物间相对比较。一般说来,熔融指数小,即在 10min 内从 毛细管中压出的熔体克数少,样品的分子量大,如果平均分子量相同,粘度小,则表示物料流动性好,分子 量分布较宽。 1、 测烯烃类。2、聚酯(比如涤纶)不能测(原因:聚酯类的流动性太差,需要很大的压力,砝码无法 提供,只能用毛细管流变仪测量。)。3、只能区别同种物质。 聚丙烯的熔点为 165℃,聚酯的熔点为 265℃。熔融加工温度在熔点上 30~50℃。 选择题 考:简述实验步骤: ① 选择适当的温度、压强和合适的毛细管。 (聚丙烯 230℃) ② 装上毛细管,预热 2~3min。 ③ 加原料, “少加压实” (①避免被测物体堵塞管口;②避免产生气泡。 ) 。平衡 5min,使其充分熔融。 ④ 加砝码,剪掉一段料头。1min 后,剪下一段。 ⑤ 称量 ⑥ 重复 10 次,取平均值。 ⑦ 关闭,清洁仪器。 选择题: 测量过程的最大误差是什么? MI
1 X exp Kt n
式中,X 为结晶分数,K 为总结晶速率常数,n 为 Avrami 指数,与成核机理和晶粒生长的方式有关。对 Avrami 方程取两次对数:
lg ln 1 X lg K n lg t
以 lg[-ln(1-X)]对 lgt 作图得一直线,其斜率为 Avrami 指数,其截距为 lgK。 实验内容:样品的质量取 8~10mg,保护气为
3 / 11
图 1 DSC 法测定结晶速率 (a)等温结晶 DSC 曲线 (b)结晶分数与时间关系
高材物化实验复习资料
4
放热峰。当曲线回到基线时,表明结晶过程已完成。记放热峰总面积为 A0,从结晶起始时刻(t0)到任一时 刻 t 的放热峰面积 At 与 A0 之比记为结晶分数 X(t): Avrami 指数 n=空间维数+时间维数(空间维数:球晶:1;片晶:2;针状:3;时间维数:均相成核:1, 异相成核:0; ) DSC: (纵坐标:放热峰朝下,吸热峰朝上) 图:Tg,冷结晶峰,熔融峰。 如何去除冷结晶峰? 升温一次,去除热历史。