图形的变换贵州中考数学题及答案
2020年中考数学图形的变换专题(附答案)
2020年中考数学图形的变换专题(附答案)一、单选题(共12题;共24分)1.若△ABC与△DEF的相似比是3:2,△DEF的最长边是6cm,那么△ABC的最长边是()A. 4cmB. 9cmC. 4cm或9cmD. 以上答案都不对2.如果五边形ABCDE∽五边形POGMN且对应高之比为3:2,那么五边形ABCDE和五边形POGMN的面积之比是()A. 2:3B. 3:2C. 6:4D. 9:43.如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在A1处,已知OA=,AB=1,则点A1的坐标是( )A. (,)B. (,3)C. (,)D. (,)4.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A. 5.1米B. 6.3米C. 7.1米D. 9.2米5.设a、b、c分别为△ABC中∠A,∠B和∠C的对边,则△ABC的面积为()A. B. C. D.6.如图,在ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:① :②S△BCE=36:③S△ABE=12:④△AEF∽△ACD;其中一定正确的是()A. ①②③④B. ①④C. ②③④D. ①②③7.如图,E是平行四边形ABCD的边AB延长线上一点,DE交BC于F,连接AF,CE.则图中与△ABF面积一定相等的三角形是()A. △BEFB. △DCFC. △ECFD. △EBC8.如图,一把梯子靠在垂直水平地面的墙上,梯子AB的长是3米。
若梯子与地面的夹角为α,则梯子顶端到地面的距离BC为()A. 3sina米B. 3cosa米。
2024贵州中考数学一轮知识点复习 第33讲 图形的平移、旋转与位似(课件)
贵州其他地市真题 7. (2023黔南州21题10分)如图,在边长为1个单位长度的小正方形组成
的网格中,给出了格点三角形ABC(顶点是网格线的交点).
(1)先将△ABC竖直向上平移5个单位, 再水平向右平移4个单位得到△A1B1C1, 请画出△A1B1C1; 解:(1)画△A1B1C1如解图;
A1
B1
4. (2021铜仁17题4分)如图,将边长为1的正方形ABCD绕点A顺时针旋转 30°到AB1C1D1的位置,则阴影部分的面积是__2___2_3_3_.
第4题图
命题点 2 位似图形(黔西南州2021.14,黔东南州2021.15)
5. (2021黔西南州14题3分)如图,△A′B′C′与△ABC是位似图形,点O为 位似中心,若OA′=A′A,则△A′B′C′与△ABC的面积比为____1_∶__4__.
北师:八下第三章P64-P80, 九上第四章P113-P118.
要素:平移方向和平移距离
图形
经过平移,对应点所连的线段平行(或共线)且__相__等______
的平 性质 经过平移,对应线段_平__行__(_或__共__线__)__且相等,对应角___相__等_____
移
平移不改变图形的___形__状__和__大__小___
A. 3 -1 B. 2 3-2
C.
2 3
3
D.
4 3
3
第2题图
贵州其他地市真题 3. (2023黔南州18题4分)如图,在△ABC中,AB=3,AC=6,将 △ABC绕点C按逆时针方向旋转得到△A1B1C,使CB1∥AD,分别延长 AB、CA1相交于点D,则线段BD的长为____9____.
第3题图
BC= 3,则AF的长度为( A )
【备战2023中考】中考数学一轮复习基础练——图形的变换(含答案)
【备战2023中考】中考数学一轮复习基础练——图形的变换时间:45分钟满分:80分一、选择题(每题4分,共32分)1.下列图形中,既是中心对称图形又是轴对称图形的是()2.如图,将△ABC沿BC方向平移1 cm得到对应的△A′B′C′.若B′C=2 cm,则BC′的长是()A.2 cm B.3 cm C.4 cm D.5 cm(第2题)(第3题)3.如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1-∠2的度数是()A.32°B.45°C.60°D.64°4.几何体的三视图如图所示,这个几何体是()(第4题)(第5题)5.如图,△ABC与△DEF位似,点O为位似中心,已知OA∶OD=1∶2,则△ABC与△DEF的周长比为()A.1∶2 B.1∶3 C.1∶4 D.1∶56.如图,在等腰直角三角形ABC中,∠ACB=90°,点D为△ABC内一点,将线段CD绕点C 逆时针旋转90°后得到CE ,连接BE ,若∠DAB =15°,则∠ABE =( ) A .75° B .78° C .80°D .92°(第6题) (第7题)7.如图,在矩形ABCD 中,AB =5,AD =3,点E 为BC 边上一点,把△CDE 沿DE 翻折,点C 恰好落在AB 边上的点F 处,则CE 的长是( ) A .1 B.43 C.32D.538.如图,在平面直角坐标系中,点A ,B 的坐标分别为(0,2),(-1,0),将△ABO 绕点O 顺时针旋转得到△A 1B 1O ,若AB ⊥OB 1,则点A 1的坐标为( )(第8题)A.⎝ ⎛⎭⎪⎫255,455B.⎝ ⎛⎭⎪⎫455,255 C.⎝ ⎛⎭⎪⎫23,43 D.⎝ ⎛⎭⎪⎫45,85 二、填空题(每题4分,共16分)9.若点A 与点B (2,-3)关于y 轴对称,则点A 的坐标为________.10.如图,这个图案绕着它的中心旋转α(0°<α<360°)后能够与它本身重合,则α可以为________.(写出一个即可)(第10题)11.利用尺规作图,如图,作△ABC 边BC 上的高正确的是________.(第11题)12.在平面直角坐标系中,有A(3,-3),B(5,3)两点,现另取一点C(1,n),当AC+BC的值最小时,n的值为________.三、解答题(共32分)13.(14分)如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位长度的正方形,点A,B,C的坐标分别为A(1,2),B(3,1),C(2,3),先以原点O为位似中心在第三象限内画一个△A1B1C1,使它与△ABC位似,且相似比为21,然后再把△ABC绕原点O逆时针旋转90°得到△A2B2C2.(1)画出△A1B1C1,并直接写出点A1的坐标;(2)画出△A2B2C2,并求出在旋转过程中,点A到点A2所经过的路径长.(第13题)14.(18分)如图,在△ABC中,∠ABC=135°,AC=3,现将△ABC绕点A顺时针旋转90°得到△ADE,再将线段ED绕点E顺时针旋转90°得到线段EF,连接BD,BF,DF.(第14题)(1)求证:B,D,E三点共线;(2)求BF的长.答案一、1.A 2.C 3.D 4.C 5.A 6.A 7.D 8.A 二、9.(-2,-3) 10.60°(答案不唯一) 11.② 12.-1三、13.解:(1)如图所示,△A 1B 1C 1即为所求,点A 1的坐标为(-2,-4).(第13题)(2)如图所示,△A 2B 2C 2即为所求.∵点A 的坐标为(1,2),故由勾股定理得OA =12+22=5, ∴点A 到点A 2所经过的路径长为90×π×5180=5π2.14.(1)证明:由旋转性质可知△ABC ≌△ADE ,AB =AD ,BC =DE =FE ,∠BAD =∠DEF=90°, ∴∠ADB =45°.∵∠ADE =∠ABC =135°,∴∠ADB +∠ADE =45°+135°=180°, 即B ,D ,E 三点共线.(2)解:由(1)易得△ABD 和△EDF 都是等腰直角三角形, ∴BD AB =DFDE = 2.∵DE =BC ,∴BD AB =DFBC= 2.由(1)可知B ,D ,E 三点共线,∠EDF =45°, ∴∠BDF =180°-∠EDF =180°-45°=135°, ∴∠BDF =∠ABC , ∴△ABC ∽△BDF , ∴BF AC =BDAB = 2. ∵AC =3,∴BF =3 2.。
图形的变换贵州中考数学题汇总及答案
图形的变换贵州中考数学题汇总及答案为了帮助各位贵州考生熟悉图形的变化在中的考察形式,帮大家带来了一份贵州中考数学题之图形的变换的汇总,附有答案,希望能对大家有帮助,更多内容欢送关注!1. (xx贵州贵阳3分)以下四个几何体中,主视图、左视图与俯视图是全等图形的几何体是【】A.圆锥B.圆柱C.三棱柱D.球【答案】D。
【考点】简单几何体的三视图。
190187【分析】根据几何体的三种视图,进展选择即可:A、圆锥的主视图、左视图都是等腰三角形,俯视图是圆形,不符合题意,故此选项错误;B、圆柱的主视图、左视图可以都是矩形,俯视图是圆形,不符合题意,故此选项错误;C、三棱柱的主视图、左视图都是矩形,俯视图是三角形,不符合题意,故此选项错误;D、球的三视图都是相等的圆形,故此选项正确。
应选D。
2. (xx贵州毕节3分)王老师有一个装文具用的盒子,它的三视图如下图,这个盒子类似于【】A.圆锥B.圆柱C.长方体D.三棱柱【答案】D。
【考点】由三视图判断几何体。
【分析】根据三视图的知识可使用排除法来解答:如图,俯视图为三角形,故可排除B 、C.主视图以及侧视图都是矩形,可排除A,应选D。
3. (xx贵州六盘水3分)如图是教师每天在黑板上书写用的粉笔,它的主视图是【】A. B. C. D.【答案】C。
【考点】简单几何体的三视图。
【分析】该几何体是圆台,主视图即从正面看到的图形是等腰梯形。
应选C。
4. (xx贵州黔东南4分)如图,矩形ABCD边AD沿拆痕AE折叠,使点D落在BC上的F处,AB=6,△ABF的面积是24,那么FC 等于【】A.1B.2C.3D.4【答案】B。
【考点】翻折变换(折叠问题),折叠的性质,矩形的性质,勾股定理。
【分析】由四边形ABCD是矩形与AB=6,△ABF的面积是24,易求得BF的长,然后由勾股定理,求得AF的长,根据折叠的性质,即可求得AD,BC的长,从而求得答案:∵四边形ABCD是矩形,∴∠B=90°,AD=BC。
2020年中考数学图形的变换专题卷(附答案)
2020年中考数学图形的变换专题卷(附答案)一、单选题(共12题;共24分)1.如图,与相交于点,.若,则为()A. B. C. D.2.如果两个相似多边形的面积之比为1:4,那么它们的周长之比是( )A. 1:2B. 1:4C. 1:8D. 1:163.如图,AD是△ABC的中线,点E在AD上,AD=4DE,连接BE并延长交AC于点F,则AF:FC的值是()A. 3:2B. 4:3C. 2:1D. 2:34.如图所示,河堤横断面迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),堤高BC=5m,则坡面AB的长度是()A. 10mB. 10 mC. 15mD. 5 m5.如图,在△ABC中,BC=6,∠A=60°.若O是△ABC的外接圆,则O的半径长为()A. B. C. D.6.如图,且则=()A. 2︰1B. 1︰3C. 1︰8D. 1︰97.如图,在▱ABCD中,E为边AD上的一点,将△DEC沿CE折叠至△D′EC处,若∠B=48°,∠ECD=25°,则∠D′EA的度数为()A. 33°B. 34°C. 35°D. 36°8.如图,是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆的顶端处有一探射灯,射出的边缘光线和与水平路面所成的夹角和分别是37°和60°(图中的点均在同一平面内,).则的长度约为()(结果精确到0.1米,)参考数据:( =1.73.sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A. 9.4米B. 10.6米C. 11.4米D. 12.6米9.如图,△ABE和△CDE是以点E为位似中心的位似图形,已知点A(2,2)、B(3,1)、D(5,2),则点A的对应点C的坐标是()A. (2,3)B. (2,4)C. (3,3)D. (3,4)10.如图,Rt△ABC中,∠CAB=90°,在斜边CB上取点M,N(不包含C、B两点),且tanB=tanC=tan∠MAN=1,设MN=x,BM=n,CN=m,则以下结论能成立的是()A. m=nB. x=m+nC. x>m+nD. x2=m2+n211.如图,点E、F分别为正方形ABCD的边BC、CD上一点,AC、BD交于点O,且∠EAF=45°,AE,AF分别交对角线BD于点M,N,则有以下结论:①△AOM∽△ADF;②EF=BE+DF;③∠AEB=∠AEF=∠ANM;④S△AEF=2S△AMN,以上结论中,正确的个数有()个.A. 1B. 2C. 3D. 412.如图,在△ABC中,AC=BC=2,D是BC的中点,过A,C,D三点的⊙O与AB边相切于点A,则⊙O的半径为( )A. B. C. 1 D.二、填空题(共8题;共16分)13.若,则的值是________.14.若a:b=3:2,且3a-2b=4,则a+b=________。
2022年九年级数学复习专题---图形的变换(平移、翻折、旋转)综合问题题
2022年中考数学复习专题---图形的变换(平移、翻折、旋转)综合题班级:___________姓名:___________学号:___________1.综合与实践 问题情境:综合与实践课上,同学们以“三角形纸片的折叠与旋转“为主题展开数学活动,探究有关的数学问题. 动手操作:已知:三角形纸片ABC 中,6120AB AC BC BAC ==∠=︒,,.将三角形纸片ABC 按如下步骤进行操作: 第一步:如图1,折叠三角形纸片ABC ,使点C 与点A 重合,然后展开铺平,折痕分别交BC AC ,于点D E ,,连接AD ,易知AD CD =.第二步:在图1的基础上,将三角形纸片ABC 沿AD 剪开,得到ABD ∆和ACD ∆.保持ABD ∆的位置不变,将ACD ∆绕点D 逆时针旋转得到FDG ∆(点F G ,分别是A C ,的对应点),旋转角为()0360αα︒<<︒问题解决:(1)如图2,小彬画出了旋转角0120α︒<<︒时的图形,设线段FG AC ,交于点P ,连接AG DP ,.小彬发现DP 所在直线始终垂直平分线段AG .请证明这一结论;(2)如图3,小颖画出了旋转角90α=︒时的图形,设直线AF 与直线CG 相交于点O ,连接CF 判断此时COF ∆的形状,说明理由;(3)在ACD ∆绕点D 逆时针旋转过程中,当FG BC ⊥时,请直接写出B F ,两点间的距离.2.如图,△ABC 中,已知∠C=90°,∠B=60°,点D 在边BC 上,过D 作DE ⊥AB 于E . (1)连接AD ,取AD 的中点F ,连接CF ,EF ,判断△CEF 的形状,并说明理由(2)若.把△BED 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m=3.问题背景:如图1,在矩形ABCD 中,30AB ABD =∠=︒,点E 是边AB 的中点,过点E 作EF AB ⊥交BD 于点F . 实验探究:(1)在一次数学活动中,小明在图1中发现AEDF=_________. 将图1中的BEF 绕点B 按逆时针方向旋转90︒,连接,AE DF ,如图2所示,发现AEDF=_________. (2)小亮同学继续将BEF 绕点B 按逆时针方向旋转,连接,AE DF ,旋转至如图3所示位置,请问探究(1)中的结论是否仍然成立?并说明理由. 拓展延伸:(3)在以上探究中,当BEF 旋转至D 、E 、F 三点共线时,AE 的长为____________.4.如图,在Rt ABC 中,90ACB ∠=︒,CD 平分ACB ∠.P 为边BC 上一动点,将DPB 沿着直线DP 翻折到DPE ,点E 恰好落在CDP 的外接圆O 上. (1)求证:D 是AB 的中点.(2)当60BDE ∠=︒,BP =DC 的长.(3)设线段DB 与O 交于点Q ,连结QC ,当QC 垂直于DPE 的一边时,求满足条件的所有QCB ∠的度数.5.如图1,O 为正方形ABCD 的中心,分别延长OA 、OD 到点,F E ,使OF=2OA ,OE 2OD =,连接EF ,将FOE ∆绕点O 按逆时针方向旋转角α得到F OE ''∆,连接,AE BF ''(如图2).(1)探究AE '与BF '的数量关系,并给予证明; (2)当30α=︒时,求证:AOE '为直角三角形.6.如图,在△ABC 中,AB =∠B =45°,∠C =60°. (1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将△AEF 折叠得到△PEF . ①如图2,当点P 落在BC 上时,求∠AEP 的度数. ②如图3,连结AP ,当PF ⊥AC 时,求AP 的长.7.如图1,点C 在线段AB 上,分别以AC 、BC 为边在线段AB 的同侧作正方形ACDE 和正方形BCMN , 连结AM 、BD .(1)AM与BD的关系是:________.(2)如果将正方形BCMN绕点C顺时针旋转锐角α(如图2).(1) 中所得的结论是否仍然成立?请说明理由.(3)在(2)的条件下,连接AB、DM,若AC=4,BC=2,求AB2+DM2的值.8.已知正方形ABCD,一等腰直角三角板的一个锐角顶点与A重合,将此三角板绕A点旋转时,两边分别交直线BC、CD于M、N.(1)当M、N分别在边BC、CD上时(如图1),求证:BM+DN=MN;(2)当M、N分别在边BC、CD所在的直线上时(如图2),线段BM、DN、MN之间又有怎样的数量关系,请直接写出结论;(不用证明)(3)当M、N分别在边BC、CD所在的直线上时(如图3),线段BM、DN、MN之间又有怎样的数量关系,请写出结论并写出证明过程.9.如图,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连接QE并延长交射线BC于点F.(1)如图,当BP=BA时,∠EBF=______°,猜想∠QFC =______°;(2)如图,当点P为射线BC上任意一点时,猜想∠QFC的度数,并加以证明.(3)已知线段AB=BP=x,点Q到射线BC的距离为y,求y关于x的函数关系式.10.我们知道,直角坐标系是研究“数形结合”的重要工具.请探索研究下列问题:(1)如图1,点A 的坐标为(-5,1),将点A 绕坐标原点(0,0)按顺时针方向旋转90°,得对应点A ',若反比例函数(0)k y x x=>的图像经过点A ',求k 的值.(2)将(1)中的(0)ky x x =>的图像绕坐标原点(0,0)按顺时针方向旋转45°,如图2,旋转后的图像与x 轴相交于点B ,若直线x =C 与点D ,求△BCD 的面积. (3)在(2)的情况下,半径为6的M 的圆心M 在x 轴上,如图3,若要使△BCD 完全在M 的内部,求M 的圆心M 横坐标xm 的范围(直接写出结果,不必写详细的解答过程).11.对于平面直角坐标系xOy 中的点A 和点P ,若将点P 绕点A 逆时针旋转90︒后得到点Q ,则称点Q 为点P 关于点A 的“垂链点”,图1为点P 关于点A 的“垂链点”Q 的示意图.(1)已知点A 的坐标为(0,0),点P 关于点A 的“垂链点”为点Q ;①若点P 的坐标为(2,0),则点Q 的坐标为________; ②若点Q 的坐标为(2,1)-,则点P 的坐标为________; (2)如图2,已知点C 的坐标为(1,0),点D 在直线113y x =+上,若点D 关于点C 的“垂链点”在坐标轴上,试求出点D 的坐标;(3)如图3,已知图形G 是端点为(1,0)和(0,2)-的线段,图形H 是以点O 为中心,各边分别与坐标轴平行的边长为6的正方形,点M 为图形G 上的动点,点N 为图形H 上的动点,若存在点(0,)T t ,使得点M 关于点T 的“垂链点”恰为点N ,请直接写出t 的取值范围.12.如图,正比例函数y =12x 与反比例函数()0k y x x =>的图象交于点A ,将正比例函数y =12x 向上平移6个单位,交y 轴于点C ,交反比例函数图象于点B ,已知AO =2BC . (1)求反比例函数解析式;(2)作直线AB ,将直线AB 向下平移p 个单位,恰与反比例函数图象有唯一交点,求p 的值.13.综合与实践:问题情境:(1)如图,点E 是正方形ABCD 边CD 上的一点,连接BD 、BE ,将DBE ∠绕点B 顺针旋转90︒,旋转后角的两边分别与射线DA 交于点F 和点G .①线段BE 和BF 的数量关系是______.②写出线段DE 、DF 和BD 之间的数量关系.并说明理由;操作探究:(2)在菱形ABCD 中,60ADC ∠=︒,点E 是菱形ABCD 边CD 所在直线上的-点,连接BD 、BE ,将DBE ∠绕点B 顺时针旋转120︒,旋转后角的两边分别与射线DA 交于点F 和点G .①如图,点E 在线段DC 上时,请探究线段DE 、DF 和BD 之间的数量关系,写出结论并给出证明;②如图,点E在线段CD的延长线上时,BE交射线DA于点M,若2==,直接写出线段FM和AGDE DC a的长度.14.两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=4.固定△ABC不动,将△DEF 进行如下操作:(1)操作发现如图①,△DEF沿线段AB向右平移(即D点在线段AB内移动),连接DC,CF,FB,四边形CDBF的形状在不断的变化,那么它的面积大小是否变化呢?如果不变化,请求出其面积.(2)猜想论证如图②,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.(3)拓展探究如图③,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连接AE,求sinα翻折问题姓名:___________班级:___________学号:___________1.如图将矩形纸片ABCD 沿AE 翻折,使点B 落在线段DC 上,对应的点为F . (1)求证:EFC DAF ∠=∠;(2)若3tan 4AE EFC =∠=,求AB 的长.2.如图,在Rt△ABC 中,∠C=90°,AC=BC=2,AD 是BC 边上的中线,将A 点翻折与点D 重合,得到折痕EF ,求:CE AE 的值.3.如图,点A ,M ,N 在O 上,将MN 沿MN 折叠后,与AM 交于点B .(1)若70MAN ∠=︒,则ANB ∠=________°; (2)如图1,点B 恰好是翻折所得MN 的中点, ①若MA MN =,求AMN ∠的度数;②若tan MAN ∠=tan AMN ∠的值; (3)如图2,若222AB BN MN +=,求MBAB的值.4.已知矩形ABCD 中,AB =2,BC =m ,点E 是边BC 上一点,BE =1,连接AE ,沿AE 翻折△ABE 使点B 落在点F 处.(1)连接CF ,若CF ∥AE ,求m 的值;(2)连接DF ,若65≤DF ,求m 的取值范围.5.如图1,一张矩形纸ABCD ,ABa AD=,点,E F 分别在边,CD AB 上,且AE EF =,把ADE 沿AE 翻折得到AGE .(1)如图1,若1AD =.(Ⅰ)当AD DE =时,AFE ∠=_____度; (Ⅱ)当//AG EF 时,求AF 的长度.(2)若直线EG 与边AB 交于点H ,当2AH FH =时,求a 的最小值.6.如图,在折纸游戏中,正方形ABCD 沿着BE ,BF 将BC ,AB 翻折,使A ,C 两点恰好落在点P . (1)求证:45EBF ∠=︒.(2)如图,过点P 作//MN BC ,交BF 于点Q . ①若5BM =,且10MP PN ⋅=,求正方形折纸的面积. ②若12QP BC =,求AM BM的值.7.如图,在ABC 中,12,120AC BC ACB ==∠=︒,点D 是AB 边上一点,连接CD ,以CD 为边作等边CDE △.(1)如图1,若45CDB ∠=︒,求等边CDE △的边长;(2)如图2,点D 在AB 边上移动过程中,连接BE ,取BE 的中点F ,连接,CF DF ,过点D 作DG AC ⊥于点G . ①求证:CFDF .②如图3,将CFD 沿CF 翻折得CFD ',连接BD ',求出BD '的最小值.8.在矩形ABCD 中,1AB =,BC a =,点E 是边BC 上一动点,连接AE ,将ABE △沿AE 翻折,点B 的对应点为点B '.(1)如图,设BE x =,BC =E 从B 点运动到C 点的过程中. ①AB CB ''+最小值是______,此时x =______; ②点B '的运动路径长为.(2)如图,设35BE a =,当点B 的对应点B '落在矩形ABCD 的边上时,求a 的值.9.如图1,平行四边形ABCD 的对角线AC ,BD 相交于点O ,CD 边的垂直平分线EH 交BD 于点E ,连接AE ,CE .(1)过点A 作//AF EC 交BD 于点F ,求证:AF BF =;(2)如图2,将ABE △沿AB 翻折得到'ABE △.①求证:'//BE CE ;②若'//AE BC ,1OE =,求CE 的长度.10.如图,矩形ABCD 中,已知6AB =.8BC =,点E 是射线BC 上的一个动点,连接AE 并延长,交射线DC 于点F .将ABE △沿直线AE 翻折,点B 的对应点为点B ',延长AB '交直线CD 于点M .(1)如图1,若点B '恰好落在对角线AC 上,求BE CE的值. (2)如图2.当点E 为BC 的中点时,求DM 之长.(3)若32BE CE =,求sin DAB '∠.11.【基础巩固】(1)如图①,ABC ACD CED α∠=∠=∠=,求证:ABC CED ∽△△.【尝试应用】(2)如图②,在菱形ABCD 中,60A ∠=︒,点E ,F 分别为边,AD AB 上两点,将菱形ABCD 沿EF 翻折,点A 恰好落在对角线DB 上的点P 处,若2PD PB =,求AE AF的值. 【拓展提高】(3)如图③,在矩形ABCD 中,点P 是AD 边上一点,连接,PB PC ,若2,4,120PA PD BPC ==∠=︒,求AB 的长.12.如图,在ABC 中,60B ∠=︒,AD BC ⊥于点D ,CE AB ⊥于点E ,AB CE =.(1)如图1,将ABD △沿AD 翻折到AFD ,AF 交CE 于点G ,探索线段AB 、AG 、CG 之间有何等量关系,并加以证明;(2)如图2,H 为直线BC 上任意一点,连接AH ,将AH 绕点A 逆时针旋转60°到AH ',连接CH ',若BD =,求CH '的最小值.13.如图,在矩形ABCD 中,12BC AB =,F 、G 分别为AB 、DC 边上的动点,连接GF ,沿GF 将四边形AFGD 翻折至四边形EFGP ,点E 落在BC 上,EP 交CD 于点H ,连接AE 交GF 于点O(1)GF 与AE 之间的位置关系是:______,GF AE 的值是:______,请证明你的结论;(2)连接CP ,若3tan 4CGP ∠=,GF =CP 的长14.如图,在矩形ABCD 中,8AB =,10BC =,点P 在矩形的边CD 上由点D 向点C 运动.沿直线AP 翻折ADP ∆,形成如下四种情形,设DP x =,ADP ∆和矩形重叠部分(阴影)的面积为y .(1)如图4,当点P 运动到与点C 重合时,求重叠部分的面积y ;(2)如图2,当点P 运动到何处时,翻折ADP ∆后,点D 恰好落在BC 边上?这时重叠部分的面积y 等于多少?15.如图1,ABC 中,AB AC =,点D 在BA 的延长线上,点E 在BC 上,连接DE 、DC ,DE 交AC 于点G ,且DE DC =.(1)找出一个与BDE ∠相等的角;(2)若AB =mAD ,求DG GE的值(用含m 的式子表示); (3)如图2,将ABC 沿BC 翻折,若点A 的对应点A '恰好落在DE 的延长线上,求BE EC的值.16.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,D是斜边BC的中点,连接AD.(1)如图1,E是AC的中点,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′,当时,求AE的值.(2)如图2,在AC上取一点E,使得CE=13AC,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′交BC于点F,求证:DF=CF.。
中考数学图形的变换专题复习题及答案
热点11 图形的变换(时间:100分钟总分:100分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.在图形的平移中,下列说法中错误的是()A.图形上任意点移动的方向相同; B.图形上任意点移动的距离相同C.图形上可能存在不动点; D.图形上任意对应点的连线长相等2.如图所示图形中,是由一个矩形沿顺时针方向旋转90•°后所形成的图形的是()A.(1)(4) B.(2)(3) C.(1)(2) D.(2)(4)3.在旋转过程中,确定一个三角形旋转的位置所需的条件是()①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角.A.①②④ B.①②③ C.②③④ D.①③④4.如图,O是正六边形ABCDEF的中心,下列图形中可由△OBC平移得到的是(• )A.△COD B.△OAB C.△OAF D.△OEF5.下列说法正确的是()A.分别在△ABC的边AB、AC的反向延长线上取点D、E,使DE∥BC,•则△ADE•是△ABC 放大后的图形;B.两个位似图形的面积比等于位似比;新课标第一网C.位似多边形中对应对角线之比等于位似比;D.位似图形的周长之比等于位似比的平方6.下面选项中既是中心对称图形又是轴对称图形的是()A.等边三角形 B.等腰梯形 C.五角星 D.菱形7.下列图形中对称轴的条数多于两条的是()A.等腰三角形 B.矩形 C.菱形 D.等边三角形8.在如图所示的四个图案中既包含图形的旋转,•又有图形的轴对称设计的是()9.钟表上2时15分,时针与分针的夹角是()A.30° B.45° C.22.5° D.15°10.如图1,已知正方形ABCD的边长是2,如果将线段BD绕点B旋转后,点D•落在CB的延长线上的D′处,那么tan∠BAD′等于()A.1 B.2 C.22D.22(1) (2) (3)二、填空题(本大题共8小题,每小题3分,共24分)11.一个正三角形至少绕其中心旋转________度,就能与本身重合,•一个正六边形至少绕其中心旋转________度,就能与其自身重合.12.如图2中图案,可以看作是由一个三角形通过_______次旋转得到的,每次分别旋转了__________.13.如图3,在梯形ABCD中,将AB平移至DE处,则四边形ABED是_______四边形.14.已知等边△ABC,以点A为旋转中心,将△ABC旋转60°,•这时得到的图形应是一个_______,且它的最大内角是______度.15.•如果两个位似图形的对应线段长分别为3cm•和5cm,•且较小图形的周长为30cm,则较大图形周长为________.16.将如左图所示,放置的一个Rt△ABC(∠C=90°)绕斜边AB旋转一周,所得到的几何体的主视图是右图所示四个图形中的_______(只填序号).17.如图4,一张矩形纸片,要折叠出一个最大的正方形纸,小明把矩形的一个角沿折痕翻折上去,使AB边和AD边上的AF重合,则四边形ABEF就是一个最大的正方形,他的判定方法是________.(4) (5)18.如图5,有一腰长为5cm,底边长为4cm的等腰三角形纸片,•沿着底边上的中线将纸片剪开,得到两个全等的直角三角形纸片,用这两个直角三角形纸片拼成的平面图形中有_______个不同的四边形.三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分.解答题应写出文字说明、证明过程或演算步骤)19.如图,平移图中的平行四边形ABCD使点A移动至E点,作出平移后的图形.20.如图,作出Rt△ABC绕点C顺时针旋转90°、180°、270°后的图案,•看看得到的图案是什么?21.如图,P是正方形内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若BP=3,求PP′.22.如图所示,四边形ABCD是正方形,E点在边DE上,F点在线段CB•的延长线上,且∠EAF=90°.(1)试证明:△ADE≌△ABF.(2)△ADE可以通过平移、翻转、旋转中的哪种方法到△ABF的位置.(3)指出线段AE与AF之间的关系.23.如图,魔术师把4张扑克牌放在桌子上,如图(1),然后蒙住眼睛,请一位观众上台把某一张牌旋转180°,魔术师解开蒙具后,看到四张牌如图(2)所示,•他很快确定了哪一张牌被旋转过,你能说明其中的奥妙吗?24.如图,在直角梯形ABCD中,AD∥BC,CD⊥BC,E为BC边上的点,将直角梯形ABCD沿对角线BD折叠,使△ABD与△EBD重合(如图中的阴影部分).若∠A=120°,•AB=4cm,求梯形ABCD的高CD.25.如图,正方形ABCD 内一点P ,使得PA :PB :PC=1:2:3,请利用旋转知识,•证明∠APB=135°.(提示:将△ABP 绕点B 顺时针旋转90°至△BCP ′,连结PP ′)答案:一、选择题1.C 2.B 3.A 4.C 5.C 6.D 7.D 8.D 9.C 10.B二、填空题11.120 50 12.4,72°,144°,216°,288° 13.平行 14.菱形,12015.•50cm 16.(2) 17.对角线平分内角的矩形是正方形 18.4三、解答题19.解:略 20.解:略.21.解:由放置的性质可知PBP ′=∠ABC=90°,BP ′=BP=3,在Rt △PBP ′中,PP ′=22'BP BP +=32.22.解:(1)90909090EAF BAF BAE BAD DAE BAE ∠=︒⇒∠+∠=︒⎫⇒⎬∠=︒⇒∠+∠=︒⎭∠EAF=∠EAD , 而AD=AB ,∠D=∠ABF=90°,故△ADE ≌△ABF .(2)可以通过旋转,将△ADE 绕点A 顺时针旋转90°就可以到△ABF 的位置.(3)由△ADE ≌△ABF 可知AE=AF .23.解:图(1)与图(2)中扑克牌完全一样,说明被旋转过的牌是中心对称图形,而图中只有方块4是中心对称图形,故方块4被旋转过.24.解:由题意可知△ABD ≌△EBD ,∴∠ADB=∠EDB,由于AD∥BC,∴∠ADB=∠DBE.∴∠EDB=∠DBE,∴ED=EB,∴DE=AB=4cm.∵∠CDE=30°,∴CD=DE·cos30°=4×32=23.25.证明:旋转后图形如图,设AP=x,PB=2x,PC=3x,则由旋转的性质可知CP′=x,BP′=2x,∠PBP′=90°,∴PP′=22x,所以∠BP′P=45°.在△PP′C中,P′P2+P′C2=8x2+x2=9x2,又∵PC2=9x2,∴P′P2+P′C2=PC2.∴∠PP′C=90°,∴∠BP′C=90°+45°=135°.∴∠APB=135°.。
(遵义专版)2019中考数学高分二轮复习-第二部分 热点专题解读 专题三 图形的变换 题型2 图形变
独家教育资源为你2提供ຫໍສະໝຸດ thank you2独家教育资源为你2提供,thank you
例2 (2018·宜宾)如图,将△ABC 沿 BC 边上的中线 AD 平移到△A′B′C′的
位置,已知△ABC 的面积为 9,阴影部分三角形的面积为 4.若 AA′=1,则 A′D 等
于
(A )
A.2
B.3
C.23
D.32
3
独家教育资源为你2提供,thank you
【解答】 ∵四边形 ABCD 是正方形,∴∠ABC=90°. ∵把边 BC 绕点 B 逆时针旋转 30°得到线段 BP, ∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°, ∴△ABP 是等边三角形,∴∠BAP=60°,AP=AB=2 3.
答图
∵AD=2 3,∴AE=4,DE=2,∴CE=2 3-2,PE=4-2 3. 如答图,过点 P 作 PF⊥CD 于点 F,则 PF= 23PE=2 3-3, ∴S△PCE=12CE·PF=12×(2 3-2)×(2 3-3)=9-5 3.
的面积比等于相似比的平方即可求解.
5
独家教育资源为你2提供,thank you
类型2 旋转变换及其相关计算
• 图形的旋转在设题时常结合特殊四边形,相似三角形,勾股定理等一 起命题,有一定的综合性.解决此类问题首先要掌握旋转的性质,在 旋转一定角度后一般会得到相关的特殊图形或特殊的图形关系(如相似), 再通过相似、全等或解直角三角形等性质和有关计算解决问题.
6
独家教育资源为你2提供,thank you
例3 (2018·枣庄)如图,在正方形 ABCD 中,AD=2 3,把边 BC 绕点 B 逆时 针旋转 30°得到线段 BP,连接 AP 并延长交 CD 于点 E,连接 PC,则三角形 PCE 的 面积为___9_-__5__3____.
专题04图形的变换(第04期)-2021年中考数学试题分项版解析汇编(解析版)
一、选择题1.(2017贵州遵义第3题)把一张长方形纸片按如图①,图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是()A.B.C.D.【答案】C.考点:剪纸问题.2.(2017贵州遵义第12题)如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF∥AD交AC于F.若AB=11,AC=15,则FC的长为()A.11 B.12 C.13 D.14【答案】C.【解析】试题分析:∵AD是∠BAC的平分线,AB=11,AC=15,∴1115BD ABCD AC==,学科*网∵E是BC中点,∴111513 21515CECA+==,∵EF∥AD,∴1315CF CECA CD==,∴CF=1315CA=13.故选C.考点:平行线的性质;角平分线的性质.3. (2017内蒙古呼和浩特第3题)如图中序号(1)(2)(3)(4)对应的四个三角形,都是ABC∆这个图形进行了一次变换之后得到的,其中是通过轴对称得到的是()A.(1)B.(2)C.(3)D.(4)【答案】A【解析】试题分析:∵轴对称是沿着某条直线翻转得到新图形,∴通过轴对称得到的是(1).故选A.学科*网考点:轴对称图形.4. (2017内蒙古通辽第4题)下列图形中,是轴对称图形,不是中心对称图形的是()A.B.C.D.【答案】DB是中心对称图形,故本选项不符合题意;C是中心对称图形,故本选项不符合题意;D不是中心对称图形,故本选项符合题意;故选:D.学科*网考点:1、中心对称图形;2、轴对称图形5. (2017郴州第2题)下列图形既是对称图形又是中心对称图形的是()【答案】B.考点:轴对称图形和中心对称图形.6.(2017郴州第7题)如图(1)所示的圆锥的主视图是()【答案】A.【解析】试题分析:主视图是从正面看所得到的图形,圆锥的主视图是等腰三角形,如图所示:,故选A.考点:三视图.7. (2017湖北咸宁第8题)在平面直接坐标系xOy 中,将一块含义45角的直角三角板如图放置,直角顶点C 的坐标为)0,1(,顶点A 的坐标为)2,0(,顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此点C 的对应点C 的坐标为()A .)0,23( B .)0,2( C. )0,25( D .)0,3( 【答案】C.∴x=32,当顶点A恰好落在该双曲线上时,此时点A移动了32个单位长度,∴C也移动了32个单位长度,此时点C的对应点C′的坐标为(52,0)故选C.考点:反比例函数图象上点的坐标特征;坐标与图形变化﹣平移.学科*网8. (2017哈尔滨第3题)下列图形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.【答案】D考点:1.中心对称图形;2.轴对称图形.9. (2017黑龙江齐齐哈尔第2题)下列四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A .B .C .D .【答案】D 【解析】试题分析:A 、不是轴对称图形,故A 选项错误;B 、不是轴对称图形,故B 选项错误; C 、不是轴对称图形,故C 选项错误;D 、是轴对称图形,故D 选项正确. 故选D .学科*网 考点:轴对称图形.10. (2017黑龙江绥化第4题)正方形的正投影不可能...是( ) A .线段 B .矩形 C .正方形 D .梯形 【答案】D考点:平行投影.11. (2017黑龙江绥化第6题)如图, A B C '''∆是ABC ∆在点O 为位似中心经过位似变换得到的,若A B C '''∆的面积与ABC ∆的面积比是4:9,则:OB OB '为( )A .2:3B .3:2C . 4:5D .4:9 【答案】A 【解析】试题分析:由位似变换的性质可知,A′B′∥AB ,A′C′∥AC , ∴△A′B′C′∽△ABC .∵△A'B'C'与△ABC 的面积的比4:9, ∴△A'B'C'与△ABC 的相似比为2:3, ∴OB OB'=故选A .考点:位似变换.学科*网12. (2017湖北孝感第8题) 如图,在平面直角坐标系中,点A 的坐标为()1,3- ,以原点O 为中心,将点A 顺时针旋转150得到点'A ,则点'A 坐标为( )A .()0,2-B .()1,3- C.()2,0 D .()3,1-【答案】D考点:坐标与图形的变化﹣旋转.①AB DE ;②EFAD BC ;③AF CD =;④四边形ACDF 是平行四边形;⑤六边形ABCDEF 即是中心对称图形,又是轴对称图形( )A.2 B.3 C.4 D.5【答案】D考点:1.平行四边形的判定和性质;2.平行线的判定和性质;3.轴对称图形;4.中心对称图形.14. (2017青海西宁第3题)下列图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形 B.干行四边形 C.正六边形 D.圆【答案】A【解析】试题分析: A、是轴对称图形,不是中心对称图形,符合题意;学科*网B 、不是轴对称图形,是中心对称图形,不合题意;C 、是轴对称图形,也是中心对称图形,不合题意;D 、是轴对称图形,也是中心对称图形,不合题意;. 故选A .考点:1.中心对称图形;2.轴对称图形.15. (2017青海西宁第6题)在平面直角坐标系中,将点()1,2A --向右平移3个单位长度得到点B ,则点B 关于x 轴的对称点B ' 的坐标为( )A .()3,2--B . ()2,2 C. ()2,2- D .()2,2- 【答案】B考点:1.关于x 轴、y 轴对称的点的坐标;2.坐标与图形变化﹣平移.16. (2017上海第5题)下列图形中,既是轴对称又是中心对称图形的是( ) A .菱形 B .等边三角形 C .平行四边形 D .等腰梯形 【答案】A 【解析】试题分析:A 、菱形既是轴对称又是中心对称图形,故本选项正确; B 、等边三角形是轴对称,不是中心对称图形,故本选项错误; C 、平行四边形不是轴对称,是中心对称图形,故本选项错误; D 、等腰梯形是轴对称,不是中心对称图形,故本选项错误. 故选A .学科*网考点:中心对称图形与轴对称图形.17. (2017辽宁大连第7题)在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为)1,1(--A ,)2,1(B .平移线段AB ,得到线段''B A .已知点'A 的坐标为)1,3(-,则点'B 的坐标为( ) A .)2,4( B .)2,5( C. )2,6( D .)3,5(【答案】B.考点:坐标与图形变化﹣平移.18. (2017海南第6题)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(-3,2)B.(2,-3)C.(1,-2)D.(-1,2)【答案】B.【解析】试题分析:首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.学科*网如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.考点:平移的性质,轴对称的性质. 学科*网19. (2017贵州六盘水第2题)国产越野车“BJ40”中,哪个数字或字母既是中心对称图形又是轴对称图形( )A.BB.JC. 4D. 0【答案】D .考点:中心对称图形;轴对称图形.20. (2017新疆乌鲁木齐第9题)如图,在矩形ABCD 中,点F 在AD 上,点E 在BC 上,把这个矩形沿EF 折叠后,使点D 恰好落在BC 边上的G 点处,若矩形面积为43且60,2AFG GE BG ∠==,则折痕EF 的长为( )A .1B 32 D .23【答案】C.【解析】试题解析:由折叠的性质可知,DF=GF ,HE=CE ,GH=DC ,∠DFE=∠GFE .∵∠GFE+∠DFE=180°﹣∠AFG=120°,∴∠GFE=60°.∵AF ∥GE ,∠AFG=60°,考点:翻折变换(折叠问题);矩形的性质.21. (2017新疆乌鲁木齐第10题)如图,点()(),3,,1A a B b 都在双曲线3y x=上,点,C D ,分别是x 轴,y 轴上的动点,则四边形ABCD 周长的最小值为( )A .52.6221022.82【答案】B .【解析】试题解析:分别把点A (a ,3)、B (b ,1)代入双曲线y=3x 得:a=1,b=3,则点A 的坐标为(1,3)、B 点坐标为(3,1),学科*网作A 点关于y 轴的对称点P ,B 点关于x 轴的对称点Q ,考点:反比例函数图象上点的坐标特征;轴对称﹣最短路线问题.二、填空题1.(2017湖南株洲第16题)如图示直线y=3x+3与x轴、y轴分别交于点A、B,当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度为.【答案】23 .【解析】试题分析:y=033,解得x=﹣1,则A(﹣1,0),当x=0时,333B(03,学科*网在Rt△OAB中,∵tan∠BAO=31=3,∴∠BAO=60°,∴AB=221(3)2+=,∴当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度=60221803ππ⋅=.故答案为23π.学科*网考点:一次函数图象与几何变换;轨迹.2. (2017内蒙古通辽第16题)如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线l将图形分成面积相等的两部分,则将直线l向右平移3个单位后所得到直线'l的函数关系式为 .【答案】9271010y x=-设直线方程为y=kx ,则3=103k , k=910, ∴直线l 解析式为y=910x , ∴将直线l 向右平移3个单位后所得直线l′的函数关系式为9271010y x =-; 故答案为:9271010y x =-.考点:一次函数图象与几何变换3. (2017湖北咸宁第14题)如图,点O 的矩形纸片ABCD 的对称中心,E 是BC 上一点,将纸片沿AE 折叠后,点B 恰好与点O 重合,若3=BE ,则折痕AE 的长为 .【答案】6.则AE=6考点:矩形的性质;翻折变换(折叠问题).学科*网4. (2017湖北咸宁第15题) 如图,边长为4的正六边形ABCDEF 的中心与坐标原点O 重合,x AF //轴,将正六边形ABCDEF 绕原点O 顺时针旋转n 次,每次旋转60,当2017=n 时,顶点A 的坐标为 .【答案】(2,23)考点:坐标与图形变化﹣旋转;规律型:点的坐标.5. (2017湖南常德第16题)如图,有一条折线A 1B 1A 2B 2A 3B 3A 4B 4…,它是由过A 1(0,0),B 1(2,2),A 2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y =kx +2与此折线恰有2n (n ≥1,且为整数)个交点,则k 的值为 .【答案】12n-.考点:一次函数图象上点的坐标特征;坐标与图形变化﹣平移;规律型;综合题.6. (2017广西百色第16题)如图,在正方形OABC 中,O 为坐标原点,点C 在y 轴正半轴上,点A 的坐标为(2,0),将正方形OABC 沿着OB 方向平移12OB 个单位,则点C 的对应点坐标是 .【解析】试题分析:∵在正方形OABC 中,O 为坐标原点,点C 在y 轴正半轴上,点A 的坐标为(2,0), ∴OC=OA=2,C (0,2),∵将正方形OABC 沿着OB 方向平移12OB 个单位,即将正方形OABC 沿先向右平移1个单位,再向上平移1个单位,∴点C 的对应点坐标是(1,3).考点:坐标与图形变化﹣平移.7. (2017黑龙江齐齐哈尔第16题)如图,在等腰三角形纸片ABC 中,10AB AC ==,12BC =,沿底边BC 上的高AD 剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是 .【答案】10cm 或273cm 或413cm .考点:图形的剪拼.8. (2017青海西宁第20题)如图,将ABCD沿EF对折,使点A落在点C处,若60,4,6A AD AB∠===,则AE的长为___.【答案】28 5【解析】试题分析:过点C作CG⊥AB的延长线于点G,在▱ABCD中,∠D=∠EBC,AD=BC,∠A=∠DCB,由于▱ABCD沿EF对折,∴∠D′=∠D=∠EBC,∠D′CE=∠A=∠DCB,D′C=AD=BC,∴∠D′CF+∠FCE=∠FCE+∠ECB,∴∠D′CF=∠ECB,在△D′CF与△ECB中,D EBCD C BCD CF ECB'∠=∠⎧⎪'=⎨⎪'∠=∠⎩,∴△D′CF≌△ECB(ASA),∴D′F=EB,CF=CE,∵DF=D′F,∴DF=EB,AE=CF设AE=x,则EB=8﹣x,CF=x,∵BC=4,∠CBG=60°,∴BG=12BC=2,由勾股定理可知:CG=23,∴EG=EB+BG=8﹣x+2=10﹣x在△CEG中,由勾股定理可知:(10﹣x)2+(23)2=x2,解得:x=AE=28 5考点: 1.翻折变换(折叠问题);2.平行四边形的性质.学科*网9. (2017上海第16题)一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是.【答案】45考点:1.旋转变换;2.平行线的性质学科*网10. (2017湖南张家界第14题)如图,在正方形ABCD中,AD=23,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为.【答案】953.考点:旋转的性质;正方形的性质;综合题.11. (2017海南第17题)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.【答案】35.考点:轴对称的性质,矩形的性质,余弦的概念.12. (2017河池第14题)点)1,2(A与点B关于原点对称,则点B的坐标是.【答案】(﹣2,﹣1).【解析】试题分析:根据两个点关于原点对称时,它们的坐标符号相反可得答案.∵点A(2,1)与点B关于原点对称,∴点B的坐标是(﹣2,﹣1),故答案为(﹣2,﹣1).考点:关于原点对称的点的坐标.三、解答题1.(2017湖南株洲第10题)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.2D.2【答案】D.考点:旋转的性质;平行线的判定与性质;等腰直角三角形.2. (2017湖南株洲第25题)如图示AB 为⊙O 的一条弦,点C 为劣弧AB 的中点,E 为优弧AB 上一点,点F 在AE 的延长线上,且BE=EF ,线段CE 交弦AB 于点D .①求证:CE ∥BF ;【答案】①证明见解析;②△BCD 的面积为:2.【解析】试题分析:①连接AC ,BE ,由等腰三角形的性质和三角形的外角性质得出∠F=12∠AEB ,由圆周角定理得出∠AEC=∠BEC ,证出∠AEC=∠F ,即可得出结论;②证明△ADE ∽△CBE ,得出5AD CB =,证明△CBE ∽△CDB ,得出BD BE CB CE =,求出CB=25,得出AD=6,AB=8,由垂径定理得出OC ⊥AB ,AG=BG=12AB=4,由勾股定理求出22CB BG -,即可得出△BCD②解:∵∠DAE=∠DCB ,∠AED=∠CEB ,∴△ADE ∽△CBE , ∴AD AE CB CE =,即5AD CB =∵∠CBD=∠CEB ,∠BCD=∠ECB ,∴△CBE ∽△CDB , ∴BD BECB CE =,即25CB =∴5∴AD=6,∴AB=8,∵点C 为劣弧AB 的中点,∴OC ⊥AB ,AG=BG=12AB=4,∴22CB BG -,∴△BCD 的面积=12BD•CG=12×2×2=2.考点:相似三角形的判定与性质;垂径定理;圆周角定理;三角形的外角性质;勾股定理.3. (2017郴州第26题)如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1/cm s 的速度运动,当D 不与点A 重合是,将ACD ∆绕点C 逆时针方向旋转060得到BCE ∆,连接DE .(1)求证:CDE ∆是等边三角形;(2)当610t <<时,的BDE ∆周长是否存在最小值?若存在,求出BDE ∆的最小周长;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以,,D E B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.【答案】(1)详见解析;(2)存在,23+4;(3)当t=2或14s 时,以D 、E 、B 为顶点的三角形是直角三角形.(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,3,∴△BDE的最小周长=CD+34;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∴∠ACD=∠ADC=30°,考点:旋转与三角形的综合题.4. (2017黑龙江齐齐哈尔第21题)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,ABC ∆的三个顶点的坐标分别为(3,4)A -,(5,2)B -,(2,1)C -.(1)画出ABC ∆关于y 轴的对称图形111A B C ∆;(2)画出将ABC ∆绕原点O 逆时针方向旋转90︒得到的222A B C ∆;(3)求(2)中线段OA 扫过的图形面积.【答案】(1)画图见解析;(2)画图见解析;(3)线段OA 扫过的图形面积为254π.考点:1.作图﹣旋转变换;2.扇形面积的计算;3.作图﹣轴对称变换.5. (2017辽宁大连第24题)如图,在ABC ∆中,090=∠C ,4,3==BC AC ,点E D ,分别在BCAC ,上(点D 与点C A ,不重合),且A DEC ∠=∠.将DCE ∆绕点D 逆时针旋转090得到''E DC ∆.当''E DC ∆的斜边、直角边与AB 分别相交于点Q P ,(点P 与点Q 不重合)时,设y PQ x CD ==,.(1)求证:DEC ADP ∠=∠;(2)求y 关于x 的函数解析式,并直接写出自变量x 的取值范围.【答案】(1)见解析;(2)5512(3), 627255612.12257x xyx x⎧-+<<⎪⎪=⎨⎛⎫⎪-<≤⎪⎪⎝⎭⎩考点:旋转的性质;函数关系式;矩形的判定与性质;解直角三角形.6. (2017辽宁大连第25题)如图1,四边形ABCD 的对角线BD AC ,相交于点O ,OD OB =,m AD AB OA OC =+=,,n BC =,ACB ADB ABD ∠=∠+∠.(1)填空:BAD ∠与ACB ∠的数量关系为 ;(2)求nm 的值; (3)将ACD ∆沿CD 翻折,得到CD A '∆(如图2),连接'BA ,与CD 相交于点P .若215+=CD ,求PC 的长.【答案】(1)∠BAD+∠ACB=180°;(2)51;(3)1.由(1)可知,DE=CE,∠DCA=∠DCA′,∴∠EDC=∠ECD=∠DCA′,∴DE∥CA′∥AB,∴∠ABC+∠A′CB=180°,∵△EAD∽△ACB,∴∠DAE=∠ABC=∠DA′C,∴∠DA′C+∠A′CB=180°,∴A′D∥BC,∴△PA′D∽△PBC,∴'51A D PDBC PC-==,∴51PD PCPC++=,即51PDPC-=∴PC=1.考点:相似三角形的判定和性质;解一元二次方程;三角形的内角和定理.7. (2017贵州六盘水第22题)如图,在边长为1的正方形网格中,ABC△的顶点均在格点上.(1)画出ABC△关于原点成中心对称的'''A B C△,并直接写出'''A B C△各顶点的坐标.(2)求点B旋转到点'B的路径(结果保留).【答案】(1) )31()33()04(,,,,,C B A ''' ;(2) 32π.考点:坐标与图形变化-旋转(中心对称);弧线长计算公式.8. (2017贵州六盘水第25题)如图,MN 是O ⊙的直径,4MN ,点A 在O ⊙上,30AMN ∠°,B 为AN的中点,P 是直径MN 上一动点.(1)利用尺规作图,确定当PA PB 最小时P 点的位置(不写作法,但要保留作图痕迹).(2)求PA PB 的最小值.【答案】(1)详见解析;(2)22.试题分析:(1)画出A 点关于MN 的称点A ',连接A 'B,就可以得到P 点; (2)利用30AMN ∠°得∠AON=∠ON A '=60°,又B 为弧AN 的中点,∴∠BON=30°,所以∠A 'ON=90°,再求最小值22.考点:圆,最短路线问题.。
贵州中考数学试题及答案解析大全
贵州中考数学试题及答案解析大全本文将为大家提供一份贵州中考数学试题及答案解析大全,希望对正在备考中考的同学们有所帮助。
以下是各个知识点的试题及详细解析。
1. 整数与有理数试题:已知 x 是一个整数,且 x^2 = 36,则 x 的值为多少?A) -6B) -3C) 3D) 6答案解析:根据已知条件可得 x^2 = 36,将方程两边开平方得到 x = ±6。
但题目中已经给出 x 是一个整数,因此 x 的值只能取整数,所以 x = 6 或 x = -6。
正确答案为 A) -6。
2. 几何形体试题:如图所示,在三角形 ABC 中,AD 与 BC 垂直相交于点 D,若 AC = 6 cm,AD = 4 cm,BD = 3 cm,则 BC 的长度为多少?(图略)答案解析:根据题目中的已知条件,可以利用勾股定理求解。
根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
设 BC = x,则根据勾股定理可得:4^2 + (x - 3)^2 = 6^216 + x^2 - 6x + 9 = 36x^2 - 6x - 29 = 0解这个二次方程可得x ≈ 10.65 或 x ≈ -4.65。
由于 BC 为边长,不可能为负数,所以可得BC ≈ 10.65。
正确答案为约 10.65 cm。
3. 概率与统计试题:某班级有 40 名学生,其中 20 人喜欢打篮球,30 人喜欢踢足球,15 人既喜欢打篮球又喜欢踢足球,求至少喜欢一项运动的学生人数。
答案解析:根据题目中的已知条件,可以利用集合的概念进行求解。
假设 A 表示喜欢打篮球的学生集合,B 表示喜欢踢足球的学生集合。
根据题目的条件可知,A 的元素个数为 20,B 的元素个数为 30,A ∩ B 的元素个数为 15。
根据集合的基本原理,至少喜欢一项运动的学生人数等于 A ∪ B 的元素个数,即 A 的元素个数加上 B 的元素个数减去A ∩ B 的元素个数。
2024年贵州省中考数学真题试卷及答案解析
贵州省2024年初中学业水平考试(中考)试题卷数学同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A.B.C.D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置填涂)1. 下列有理数中最小的数是()A. B. 0 C. 2 D. 42. “黔山秀水”写成下列字体,可以看作是轴对称图形的是()A. B. C. D.3. 计算的结果正确的是()A. B. C. D.4. 不等式的解集在数轴上的表示,正确的是( )A. B.C. D.5. 一元二次方程的解是()A. ,B. ,C. ,D. ,6. 为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为,,则“技”所在的象限为()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为()A. 100人B. 120人C. 150人D. 160人8. 如图,的对角线与相交于点O,则下列结论一定正确的是()A B. C. D.9. 小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是()A. 小星定点投篮1次,不一定能投中B. 小星定点投篮1次,一定可以投中C. 小星定点投篮10次,一定投中4次D. 小星定点投篮4次,一定投中1次10. 如图,在扇形纸扇中,若,,则的长为()A. B. C. D.11. 小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x,y,则下列关系式正确的是()A. B. C. D.12. 如图,二次函数的部分图象与x轴的一个交点的横坐标是,顶点坐标为,则下列说法正确的是()A. 二次函数图象的对称轴是直线B. 二次函数图象与x轴的另一个交点的横坐标是2C. 当时,y随x的增大而减小D. 二次函数图象与y轴的交点的纵坐标是3二、填空题(本大题共4题,每题4分,共16分)13. 计算的结果是________.14. 如图,在中,以点A为圆心,线段的长为半径画弧,交于点D,连接.若,则的长为______.15. 在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.16. 如图,在菱形中,点E,F分别是,的中点,连接,.若,,则的长为______.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17. (1)在①,②,③,④中任选3个代数式求和;(2)先化简,再求值:,其中.18. 已知点在反比例函数的图象上.(1)求反比例函数的表达式;(2)点,,都在反比例函数的图象上,比较a,b,c的大小,并说明理由.19. 根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒、8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩众数为______,女生成绩的中位数为______;(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的3名男生(设为甲,乙,丙)中,随机抽取2名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.20. 如图,四边形的对角线与相交于点O,,,有下列条件:①,②.(1)请从以上①②中任选1个作为条件,求证:四边形是矩形;(2)在(1)的条件下,若,,求四边形的面积.21. 为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?22. 综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A处投射到底部B处,入射光线与水槽内壁的夹角为;第二步:向水槽注水,水面上升到的中点E处时,停止注水.(直线为法线,为入射光线,为折射光线.)【测量数据】如图,点A,B,C,D,E,F,O,N,在同一平面内,测得,,折射角.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求的长;(2)求B,D之间的距离(结果精确到0.1cm).(参考数据:,,)23. 如图,为半圆O的直径,点F在半圆上,点P在的延长线上,与半圆相切于点C,与的延长线相交于点D,与相交于点E,.(1)写出图中一个与相等的角:______;(2)求证:;(3)若,,求的长.24. 某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y(盒)与销售单价x(元)是一次函数关系,下表是y与x的几组对应值.销售单价x/元…1214161820…销售量y/盒…5652484440…(1)求y与x的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m的值.25. 综合与探究:如图,,点P在的平分线上,于点A.(1)【操作判断】如图①,过点P作于点C,根据题意在图①中画出,图中的度数为______度;(2)【问题探究】如图②,点M在线段上,连接,过点P作交射线于点N,求证:;(3)【拓展延伸】点M在射线上,连接,过点P作交射线于点N,射线与射线相交于点F,若,求的值.参考答案1. 【答案】A【解析】【分析】本题考查有理数的大小比较,解题的关键是掌握比较有理数大小的方法.根据有理数的大小比较选出最小的数.【详解】解:∵,∴最小的数是,故选:A.2. 【答案】B【解析】【分析】本题考查了轴对称图形概念,一个图形沿着某条直线折叠后直线两旁的部分能够完全重合,这个图形就叫轴对称图形.根据轴对称图形概念,结合所给图形即可得出答案.【详解】解:A.不是轴对称图形,不符合题意;B.是轴对称图形,符合题意;C.不是轴对称图形,不符合题意;D.不是轴对称图形,不符合题意;故选:B.3. 【答案】A【解析】【分析】本题主要考查合并同类项,根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变即可得.【详解】解:,故选:A.4. 【答案】C【解析】【分析】根据小于向左,无等号为空心圆圈,即可得出答案.本题考查在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解题的关键.【详解】不等式的解集在数轴上的表示如下:.故选:C.5. 【答案】B【分析】本题考查了解一元二次方程,利用因式分解法求解即可.【详解】解∶,∴,∴或,∴,,故选∶B.6. 【答案】A【解析】【分析】本题考查坐标与图形,先根据题意确定平面直角坐标系,然后确定点的位置.【详解】解:如图建立直角坐标系,则“技”在第一象限,故选A.7. 【答案】D【解析】【分析】本题考查用样本反映总体,利用样本百分比乘以总人数计算即可解题.【详解】解:(人),故选D.8. 【答案】B【解析】【分析】本题主要考查平行四边形的性质,掌握平行四边形的对边平行且相等,对角线互相平分是解题的关键.【详解】解:∵是平行四边形,∴,故选B.9. 【答案】A【分析】本题主要考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,据此求解即可.【详解】解:小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,则由概率的意义可知,小星定点投篮1次,不一定能投中,故选项A正确,选项B错误;小星定点投篮10次,不一定投中4次,故选项C错误;小星定点投篮4次,不一定投中1次,故选项D错误故选;A.10. 【答案】C【解析】【分析】本题考查了弧长,根据弧长公式∶求解即可.【详解】解∵,,∴的长为,故选∶C.11. 【答案】C【解析】【分析】本题考查等式的性质,设“▲”的质量为a,根据题意列出等式,,然后化简代入即可解题.【详解】解:设“▲”的质量为a,由甲图可得,即,由乙图可得,即,∴,故选C.12. 【答案】D【解析】【分析】本题考查了二次函数的性质,待定系数法求二次函数解析式,利用二次函数的性质,对称性,增减性判断选项A.B.C,利用待定系数法求出二次函数的解析式,再求出与y轴的交点坐标即可判定选项D.【详解】解∶∵二次函数的顶点坐标为,∴二次函数图象的对称轴是直线,故选项A错误;∵二次函数的图象与x轴的一个交点的横坐标是,对称轴是直线,∴二次函数图象与x轴的另一个交点的横坐标是1,故选项B错误;∵抛物线开口向下,对称轴是直线,∴当时,y随x的增大而增大,故选项C错误;设二次函数解析式为,把代入,得,解得,∴,当时,,∴二次函数图象与y轴的交点的纵坐标是3,故选项D正确,故选D.二、填空题(本大题共4题,每题4分,共16分)13. 【答案】【解析】【分析】利用二次根式的乘法运算法则进行计算.【详解】解:原式==,故答案为:.【点拨】本题考查二次根式的乘法运算,掌握二次根式乘法的运算法则(a≥0,b>0)是解题关键.14. 【答案】5【解析】【分析】本题考查了尺规作图,根据作一条线段等于已知线段的作法可得出,即可求解.【详解】解∶由作图可知∶,∵,∴,故答案为∶5.15. 【答案】20【解析】【分析】本题考查了一元一次方程的应用,设快马追上慢马需要x天,根据快马走的路程等于慢马走的总路程,列方程求解即可.【详解】解∶设快马追上慢马需要x天,根据题意,得,解得,故答案为:20.16. 【答案】##【解析】【分析】延长,交于点M,根据菱形的性质和中点性质证明,,过E点作交N点,根据三角函数求出,,,,在中利用勾股定理求出,根据菱形的性质即可得出答案.【详解】延长,交于点M,在菱形中,点E,F分别是,的中点,,,,,在和中,,,在和中,,,,,,过E点作于N点,,,,,,,在中,即,,,故答案为:.【点拨】本题考查了菱形的性质,全等三角形的判定和性质,运用三角函数解直角三角形,勾股定理等,正确添加辅助线构造直角三角形是解本题的关键.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17. 【答案】(1)见解析(2),1【解析】【分析】本题考查分式的化简求值和实数的混合运算,掌握运算法则是解题的关键.(1)利用实数的混合运算的法则和运算顺序解题即可;(2)先把分式的分子、分母分解因式,然后约分化为最简分式,最后代入数值解题即可.【详解】(1)解:选择①,②,③,;选择①,②,④,;选择①,③,④,;选择②,③,④,;(2)解:;当时,原式.18. 【答案】(1)(2),理由见解析【解析】【分析】本题主要考查了反比例函数的性质,以及函数图象上点的坐标特点,待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.(1)把点代入可得k的值,进而可得函数的解析式;(2)根据反比例函数表达式可得函数图象位于第一、三象限,再根据点A.点B和点C的横坐标即可比较大小.【小问1详解】解:把代入,得,∴,∴反比例函数的表达式为;【小问2详解】解:∵,∴函数图象位于第一、三象限,∵点,,都在反比例函数的图象上,,∴,∴.19. 【答案】(1)7.38,8.26(2)小星的说法正确,小红的说法错误(3)【解析】【分析】本题考查用树状图或列表法求概率,众数和中位数的定义,掌握列表法或树状图求概率是解题的关键.(1)利用中位数和众数的定义解题即可;(2)根据优秀等次的要求进行比较解题即可;(3)列表格得到所有可能的结果数,找出符合要求的数量,根据概率公式计算即可.【小问1详解】解:男生成绩7.38出现的次数最多,即众数为7.38,女生成绩排列为:8.16,8.23,8.26,8.27,8.32,居于中间的数为8.26,故中位数为8.26,故答案为:7.38,8.26;【小问2详解】解:∵用时越少,成绩越好,∴7.38是男生中成绩最好的,故小星的说法正确;∵女生8.3秒为优秀成绩,,∴有一人成绩达不到优秀,故小红的说法错误;【小问3详解】列表为:甲乙丙甲甲,乙甲,丙乙乙,甲乙,丙丙丙,甲丙,乙由表格可知共有6种等可能结果,其中抽中甲的有4种,故甲被抽中的概率为.20. 【答案】(1)见解析(2)【解析】【分析】本题考查矩形的判定,勾股定理,掌握矩形的判定定理是解题的关键.(1)先根据条件利用两组对边平行或一组对边平行且相等证明是平行四边形,然后根据矩形的定义得到结论即可;(2)利用勾股定理得到长,然后利用矩形的面积公式计算即可.【小问1详解】选择①,证明:∵,,∴是平行四边形,又∵,∴四边形是矩形;选择②,证明:∵,,∴是平行四边形,又∵,∴四边形是矩形;【小问2详解】解:∵,∴,∴矩形的面积为.21. 【答案】(1)种植1亩甲作物和1亩乙作物分别需要5.6名学生(2)至少种植甲作物5亩【解析】【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,(1)设种植1亩甲作物和1亩乙作物分别需要x、y名学生,根据“种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名”列方程组求解即可;(2)设种植甲作物a亩,则种植乙作物亩,根据“所需学生人数不超过55人”列不等式求解即可.【小问1详解】解:设种植1亩甲作物和1亩乙作物分别需要x、y名学生,根据题意,得,解得,答:种植1亩甲作物和1亩乙作物分别需要5.6名学生;【小问2详解】解:设种植甲作物a亩,则种植乙作物亩,根据题意,得:,解得,答:至少种植甲作物5亩.22. 【答案】(1)(2)【解析】【分析】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.(1)根据等腰三角形的性质计算出的值;(2)利用锐角三角函数求出长,然后根据计算即可.【小问1详解】解:在中,,∴,∴,【小问2详解】解:由题可知,∴,又∵,∴,∴.23. 【答案】(1)(答案不唯一)(2)(3)【解析】分析】(1)利用等边对等角可得出,即可求解;(2)连接,利用切线的性质可得出,利用等边对等角和对顶角的性质可得出,等量代换得出,然后利用三角形内角和定理求出,即可得证;(3)设,则可求,,,,在中,利用勾股定理得出,求出x的值,利用可求出,即可求解.【小问1详解】解:∵,∴,故答案为:(答案不唯一);【小问2详解】证明:连接,,∵是切线,∴,即,∵,∴,∵,,∴,∴,∴;【小问3详解】解:设,则,∴,,∴,在中,,∴,解得,(舍去)∴,,,∵,∴,解得,∴.【点拨】本题考查了等腰三角形的性质,切线的性质,勾股定理,解直角三角形的应用等知识,灵活运用以上知识是解题的关键.24. 【答案】(1)(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【解析】【分析】本题考查了二次函数的应用,解题的关键是:(1)利用待定系数法求解即可;(2)设日销售利润为w元,根据利润=单件利润×销售量求出w关于x的函数表达式,然后利用二次函数的性质求解即可;(3)设日销售利润为w元,根据利润=单件利润×销售量-m×销售量求出w关于x函数表达式,然后利用二次函数的性质求解即可.【小问1详解】解∶设y与x函数表达式为,把,;,代入,得,解得,∴y与x的函数表达式为;【小问2详解】解:设日销售利润为w元,根据题意,得,∴当时,有最大值为450,∴糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元;【小问3详解】解:设日销售利润为w元,根据题意,得,∴当时,有最大值为,∵糖果日销售获得的最大利润为392元,∴,化简得解得,当时,,则每盒的利润为:,舍去,∴m的值为2.25. 【答案】(1)画图见解析,90(2)见解析(3)或【解析】【分析】(1)依题意画出图形即可,证明四边形是矩形,即可求解;(2)过P作于C,证明矩形是正方形,得出,利用证明,得出,然后利用线段的和差关系以及等量代换即可得证;(3)分M在线段,线段的延长线讨论,利用相似三角形的判定与性质求解即可;【小问1详解】解:如图,即为所求,∵,,,∴四边形是矩形,∴,故答案为:90;【小问2详解】证明:过P作于C,由(1)知:四边形是矩形,∵点P在的平分线上,,,∴,∴矩形是正方形,∴,,∵,∴,又,,∴,∴,∴;【小问3详解】解:①当M在线段上时,如图,延长、相交于点G,由(2)知,设,则,,∴,∵,,∴,∴,∵,,∴,∴,∴,∴,∴;②当M在的延长线上时,如图,过P作于C,并延长交于G由(2)知:四边形是正方形,∴,,,∵,∴,又,,∴,∴,∴,∵∴,,∵,∴,∴,即,∴,∵,∴,∴,∴,∴;综上,的值为或.【点拨】本题考查了矩形的判定与性质,正方形的判定与性质,角平分线的性质,全等三角形的判断与性质,相似三角形的判断与性质等知识,明确题意,添加合适辅助线,构造全等三角形、相似三角形,合理分类讨论是解题的关键.。
2020年部编人教版贵州省各市中考数学分类精析专题4图形的变换
专题4:图形的变换一、选择题1. (2020年贵州毕节3分)如图所示的几何体的主视图是【】2. (2020年贵州贵阳3分)一个几何体的三视图如图所示,则这个几何体的位置是【】3. (2020年贵州贵阳3分)在矩形ABCD中,AB=6,BC=4,有一个半径为1的硬币与边AB、AD相切,硬币从如图所示的位置开始,在矩形内沿着边AB、BC、CD、DA滚动到开始的位置为止,硬币自身滚动的圈数大约是【】A.1圈B.2圈C.3圈D.4圈4. (2020年贵州六盘水3分)下面四个几何体中,主视图是圆的几何体是【】5. (2020年贵州六盘水3分)下列图形中,单独选用一种图形不能进行平面镶嵌的是【】A.正三角形B.正六边形C.正方形D.正五边形6. (2020年贵州黔东南4分)如图是有几个相同的小正方体组成的一个几何体.它的左视图是【】7. (2020年贵州遵义3分)一个几何体的三视图如图所示,则这个几何体是【】8. (2020年贵州遵义3分)如图,将边长为1cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为【】A.3cm2πB.22cm3π⎛⎫+⎪⎝⎭C.4cm3πD.3cm【答案】C。
二、填空题1. (2020年贵州六盘水4分)把边长为1的正方形纸片OABC放在直线m上,OA边在直线m上,然后将正方形纸片绕着顶点A按顺时针方向旋转90°,此时,点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处,又将正方形纸片AO1C1B1绕B1点,按顺时针方向旋转90°…,按上述方法经过4次旋转后,顶点O经过的总路程为▲ ,经过61次旋转后,顶点O经过的总路程为▲ .2. (2020年贵州黔西南3分)如图,一扇形纸片,圆心角∠AOB为120°,弦AB的长为32cm,用它围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为▲.3. (2020年贵州铜仁4分)如图,已知∠AOB=45°,A1、A2、A3、…在射线OA上,B1、B2、B3、…在射线OB上,且A1B1⊥OA,A2B2⊥OA,…A n B n⊥OA;A2B1⊥OB,…,A n+1B n⊥OB (n=1,2,3,4,5,6…).若OA1=1,则A6B6的长是▲ .三、解答题1. (2020年贵州毕节12分)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心▲点,按顺时针方向旋转▲度得到;(3)若BC=8,DE=6,求△AEF的面积.2. (2020年贵州六盘水10分)(1)观察发现如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为▲ .(2)实践运用如图(3):已知⊙O的直径CD为2,»AC的度数为60°,点B是»AC的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为▲ .(3)拓展延伸如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN 的值最小,保留作图痕迹,不写作法.3. (2020年贵州遵义10分)如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.(1)求证:CM=CN;的值.(2)若△CMN的面积与△CDN的面积比为3:1,求MNDN4. (2020年贵州遵义12分)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.。
专题04 图形的变换-备战2017年中考2014-2016年贵州省中考数学试卷分类汇编(解析版)
1.(2014年贵州省安顺市,3分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A. 1个 B. 2个C. 3个D. 4个【答案】B.【解析】试题分析:①既是轴对称图形,也是中心对称图形,故正确;②是轴对称图形,不是中心对称图形,故错误;③既是轴对称图形,也是中心对称图形,故正确;④既不是轴对称图形,也不是中心对称图形,故错误.综上可得共有两个符合题意.故选B.【考点】中心对称图形;轴对称图形.2.(2014年贵州省毕节地区,3分)如图是某一几何体的三视图,则该几何体是【】A.三棱柱B.长方体C.圆柱D.圆锥考点:由三视图判断几何体.3.(2014年贵州省毕节地区,3分)如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为【】A.13 B.14 C.15 D.16【答案】B.【解析】4.(2014年贵州省贵阳市,3分)一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是【】A. 中B. 功C. 考D. 祝5.(2014年贵州省六盘水市,3分)如图是由几个小立方体快所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的小数,这个几何体的主视图是()【答案】B.【解析】试题分析:由俯视图知其主视图有2列组成,左边一列有4个小正方体,右边一列有2个小正方体.故选B.考点:简单组合体的三视图.6.(2014年贵州省六盘水市,3分)下面图形中,是中心对称图形的是()考点:中心对称图形.7.(2014年贵州省六盘水市,3分)六盘水市“琼都大剧院”即将完工,现需选用同一批地砖进行装修,以下不能镶嵌的地板是()A.正五边形地砖B.正三角形地砖C.正六边形地砖D.正四边形地砖【答案】A.【解析】考点:平面镶嵌.8.(2014年贵州省六盘水市,3分)“横看成岭侧成峰”从数学的角度解释为()A.从不同的方向观察同一建筑物时,看到的图形不一样B.从同一方向观察同一建筑物时,看到的图形不一样C.从同一的方向观察不同的建筑物时,看到的图形一样D.以上答案都不对【答案】A.【解析】试题分析:三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数学的角度解释为三视图,而符合这一意义的只有A.故选A.考点:三视图.9.(2014年,贵州省黔东南州,4分)如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若,∠B=60°,则CD的长为【】A.0.4 B.1.5 C D.1【答案】D.【解析】试题分析:解直角三角形求出AB,再求出CD,然后根据旋转的性质可得AB=AD,然后判断出△ABD是考点:1.旋转的性质;2.含30度直角三角形的性质;3. 等边三角形的判定和性质.10.(2014年,贵州省黔东南州,4分)如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为【】A.6 B.12 C.D.【答案】D.【解析】试题分析:设BE=x,则CE=BC﹣BE=16﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=16﹣x.在Rt△EFH中,EF===.故选D.考点:1.翻折变换(折叠问题);2.翻折对称的性质;3.矩形的判定和性质;4.勾股定理;5.方程思想的应用.11.(2014年,贵州省黔南州,4分)形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是()考点:简单组合体的三视图.12.(2014年,贵州省黔南州,4分)如图,把矩形纸片ABCD沿对角线BD折叠,设重叠部分为△EBD,则下列说法错误的是()A.AB=CD B.∠BAE=∠DCE C.EB=ED D.∠ABE一定等于30°故选D.考点:翻折变换(折叠问题).13.(2014年,贵州省黔西南市,4分)如图所示,是由5个相同的小正方体组合而成的几何体,它的左视图是【】14.(2014年,贵州省黔西南市,4分)下列图形中,既是中心对称,又是轴对称图形的是【】15.(2014年,贵州省铜仁市,3分)如图所示,所给的三视图表示的几何体是()A.三棱锥 B.圆锥 C.正三棱柱 D.直三棱柱【考点】由三视图判断几何体.16.(2014年,贵州省遵义市,3分)观察下列图形,是中心对称图形的是【】考点:中心对称图形.17、(2015年,贵州省安顺市,3分)下列立体图形中,俯视图是正方形的是()【答案】B 【解析】考点:三视图18、(2015年,贵州省安顺市,3分)如图,点O 是矩形ABCD 的中心,E 是AB 上的点,折叠后,点B 恰好与点O 重合,若BC =3.则折痕CE 的长为( ) A .32 B .323C .3D .6【答案】A考点:矩形的性质19.(2015年,贵州省贵阳市,3分)如图,一个空心圆柱体,其左视图正确的是( )A.B.C.D.【答案】B.考点:简单组合体的三视图.20.(2015年,贵州省毕节市,5分)如图,将四个“米”字格的正方形内涂上阴影,其中既是轴对称图形,又是中心对称图形的是()A. B. C. D.21.(2015年,贵州省毕节市,5分)如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿着DE 折叠,使A点落在BC上的F处.若∠B=65°,则∠BDF等于()A. 65° B. 50° C. 60° D. 57.5°22.(2015年,贵州省毕节市,5分)如图是由5个相同的正方形组成的几何体的左视图和俯视图,则该几何体的主视图不可能是()23.(2015年,贵州省黔东南州,4分)一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.24.(2015年,贵州省黔南州,4分)如图所示,该几何体的左视图是()A.B.C.D.25.(2015年,贵州市铜仁市,4分)请你观察下面四个图形,其中既是轴对称图形又是中心对称图形的是()【答案】C.考点:轴对称图形与中心对称图形的概念.26.(2015年,贵州省遵义市,3分)下列图形中,是轴对称图形的是( ).27.(2015年,贵州省遵义市,3分)下列几何体的主视图与其他三个不同的是( ).考点:几何体的三视图.28.(2015年,贵州省六盘水市,3分)如图2是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是()A.相对 B.相邻 C.相隔 D.重合29.(2015年,贵州省黔西南州,4分)下面几个几何体,主视图是圆的是( )A B C D【答案】B考点:三视图.30.(2016年,贵州省安顺市,3分)如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.的B.中C.国D.梦【答案】D.【解析】试题分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,“们”与“中”是相对面,“我”与“梦”是相对面,“的”与“国”是相对面.故选D.考点:正方体相对两个面上的文字.31.(2016年,贵州省毕节市,3分)图中是一个少数名族手鼓的轮廓图,其主视图是()【答案】B【解析】试题分析:主视图是由前面往后面看,手鼓看到的是B ,A 为俯视图. 考点:三视图32. (2016年,贵州省毕节市,3分)如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH,若BE:EC=2:1,则线段CH 的长是( )A.3B.4C.5D.6 【答案】B 【解析】试题分析:设CH =x , 因为BE :EC =2:1,BC =9,所以,EC =3, 由折叠知,EH =DH =9-x , 在Rt △ECH 中,由勾股定理,得:222(9)3x x -=+,解得:x =4,即CH=4 考点:(1)、图形的折叠;(2)、勾股定理33.(2016年,贵州省贵阳市,3分)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是( )A .B .C .D .【答案】C . 【解析】试题分析:从上边看时,圆柱是一个矩形,中间的木棒是虚线,故选C . 考点:简单组合体的三视图.34.(2016年,贵州省六盘水市)如图是由5个相同的小立方块组成的立体图形,则它的俯视图是( )A.B.C.D.【答案】C.考点:简单组合体的三视图.35.(2016年,贵州省黔东南州,4分)将一个棱长为1的正方体水平放于桌面(始终保持正方体的一个面落在桌面上),则该正方体正视图面积的最大值为()A.2B1C D.1【答案】C.【解析】考点:简单几何体的三视图.36.(2016年,贵州省黔南州)如图是一个三棱柱笔筒,则该物体的主视图是()A.B.C.D.【答案】C.【解析】试题分析:如图是一个三棱柱笔筒,则该物体的主视图是,故选C.考点:简单几何体的三视图.37.(2016年,贵州省黔西南州)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是()A.B.C.D.【答案】D.【解析】试题分析:左视图从左到右有三列,左边一列有2个正方体,中间一列三个,右边有一个正方体,故选D.考点:简单组合体的三视图.38.(2016年,贵州省黔西南州)如图,矩形ABCD绕点B逆时针旋转30°后得到矩形A1BC1D1,C1D1与AD交于点M,延长DA交A1D1于F,若AB=1,BC AF的长度为()A.2B C D1【答案】A.【解析】考点:旋转的性质;矩形的性质.39.(2016年,贵州省铜仁市)如图是我国几家银行的标志,其中即是轴对称图形又是中心对称图形的有()A.2个B.3个C.4个D.5个【答案】A.【解析】考点:中心对称图形;轴对称图形.40.(2016年,贵州省铜仁市)如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.将△ADE 沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC=3.6.其中正确结论的个数是()A .2B .3C .4D .5 【答案】D . 【解析】设BG =x ,则GF =x ,C =BC ﹣BG =6﹣x ,在Rt △CGE 中,GE =x +2,EC =4,CG =6﹣x ,∵222CG CE GE +=,∴222(6)4(2)x x -+=+,解得x =3,∴BG =3,CG =6﹣3=3,∴BG =CG ,所以②正确; ∵EF =ED ,GB =GF ,∴GE =GF +EF =BG +DE ,所以③正确;∵GF =GC ,∴∠GFC =∠GCF ,又∵Rt △ABG ≌Rt △AFG ,∴∠AGB =∠AGF ,而∠BGF =∠GFC +∠GCF ,∴∠AGB +∠AGF =∠GFC +∠GCF ,∴∠AGB =∠GCF ,∴CF ∥AG ,所以④正确;过F 作FH ⊥DC .∵BC ⊥DH ,∴FH ∥GC ,∴△EFH ∽△EGC ,∴EH EFGC EG=,EF =DE =2,GF =3,∴EG =5,∴△EFH ∽△EGC ,∴相似比为:EH EF GC EG ==25,∴S △FGC =S △GCE ﹣S △FEC =12×3×4﹣12×4×(25×3)=3.6,所以⑤正确.故正确的有①②③④⑤,故选D .考点:翻折变换(折叠问题);全等三角形的判定与性质;正方形的性质.41.(2016年,贵州省遵义市)如图是由5个完全相同是正方体组成的立体图形,它的主视图是( )A .B .C .D .【答案】C .42.(2016年,贵州省遵义市)如图,正方形ABCD 的边长为3,E 、F 分别是AB 、CD 上的点,且∠CFE =60°,将四边形BCFE 沿EF 翻折,得到B ′C ′FE ,C ′恰好落在AD 边上,B ′C ′交AB 于点G ,则GE 的长是( )A .4-B .5-C .4-D .5- 【答案】C . 【解析】试题分析:∵四边形ABCD 是正方形,∴∠A =∠B =∠C =∠D =90°,AB =AD =3,由折叠的性质得:FC ′=FC ,∠C ′FE =∠CFE =60°,∠FC ′B ′=∠C =90°,B ′E =BE ,∠B ′=∠B =90°,∴∠DFC ′=60°,∴∠DC ′F =30°,∴FC ′=FC =2DF ,∵DF +CF =CD =3,∴DF +2DF =3,解得:D F =1,∴DC =,则C ′A =3,AG =-,设EB =x ,∵∠B ′GE =∠AGC ′=∠DC ′F =30°,∴GE =2x ,则+3x =3,解得:x =2,∴GE =4-;故选C .考点:翻折变换(折叠问题);正方形的性质.1. (2014年贵州省安顺市,4分)如图,矩形ABCD 沿着直线BD 折叠,使点C 落在C′处,BC′交AD 于点E ,AD=8,AB=4,则DE 的长为 .【答案】5.【解析】【考点】翻折变换(折叠问题).2.(2014年贵州省毕节地区,5分)如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,则BE的长为▲ .考点:1. 折叠的性质;2.勾股定理;3.方程思想的应用.3.(2014年贵州省六盘水市,4分)如图是长为40cm,宽为16cm的矩形纸片,M点为一边上的中点,沿过M的直线翻折.若中点M所在边的一个顶点不能落在对边上,那么折痕长度为cm.【答案】.【解析】试题分析:分两种情况考虑:(i)如图1所示,过M作ME⊥AD于E,G在AB上,B′落在AE上,可得四边形ABME为矩形,∴EM=AB=16,AE=BM,又∵BC=40,M为BC的中点,(ii)如图2所示,过F作FE⊥AD于E,G在AE上,B′落在ED上,可得四边形ABME为矩形,即y2+162=(32﹣y)2,解得:y=12,∴AG=12,∴GE=AE﹣AG=20﹣12=8,在Rt△GEF中,根据勾股定理得:GM综上,折痕FG或故答案是.考点:翻折变换.4.(2014年,贵州省黔东南州,4分)在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的个数为n,则n的最小值为▲ .【答案】5.【解析】试题分析:观察主视图和左视图可知,此几何体有三行,三列,底层正方体最少的个数应是3个,第二层正方体最少的个数应该是2个,因此这个几何体最少有5个小正方体组成.考点:由三视图判断几何体.5.(2014年,贵州省黔西南市,3分)如图,将矩形纸片ABCD折叠,使边AB、CD均落在对角线BD上,得折痕BE、BF,则∠EBF= ▲ .6.(2014年,贵州省铜仁市,4分)在圆、平行四边形、矩形、菱形、正方形、等腰三角形等图案中,是中心对称图形但不是轴对称图形的是【考点】1.中心对称图形;2.轴对称图形.7.(2015年,贵州省六盘水市,4分)如图8,有一个英语单词,四个字母都关于直线l 对称,请在试卷上补全字母,在答题卡上写出这个单词所指的物品 .【答案】书.8.(2016年,贵州省黔东南州,4分)如图,在△ACB 中,∠BAC =50°,AC =2,AB =3,现将△ACB 绕点A 逆时针旋转50°得到△AC 1B 1,则阴影部分的面积为 .【答案】54π.【解析】试题分析:∵11ΔABC ΔAB C S S =,∴S 阴影=S 1扇形ABB =250360AB π⋅=54π.故答案为:54π. 考点:旋转的性质;扇形面积的计算.9.(2016年,贵州省铜仁市)将矩形ABCD 纸片按如图所示的方式折叠,EF ,EG 为折痕,试问∠AEF +∠BEG = .【答案】90°.【解析】试题分析:由折叠的性质,得∠AEF=∠A′EF,∠BEG=∠B′EG,∴∠AEF+∠BEG =180°÷2=90°.故答案为:90°.考点:翻折变换(折叠问题).1.(2014年,贵州省黔南州)两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.(1)当旋转到顶点D、H重合时,连接AE、CG,求证:△AED≌△GCD(如图②).(2)当α=45°时(如图③),求证:四边形MHND为正方形.∵∠D=∠H=90°,∴四边形MHND是矩形,∵CN=NE,∴DN=NH,∴矩形MHND是正方形.考点:1.旋转的性质2.全等三角形的判定与性质3.矩形的性质4.正方形的判定.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的变换贵州中考数学题及答案图形的变换贵州中考数学题汇总及答案
一、选择题
1.(2012贵州贵阳3分)下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是【】
A.圆锥
B.圆柱
C.三棱柱
D.球
【答案】D。
【考点】简单几何体的三视图。
190187
【分析】根据几何体的三种视图,进行选择即可:
A、圆锥的主视图、左视图都是等腰三角形,俯视图是圆形,不符合题意,故此选项错误;
B、圆柱的主视图、左视图可以都是矩形,俯视图是圆形,不符合题意,故此选项错误;
C、三棱柱的主视图、左视图都是矩形,俯视图是三角形,不符合题意,故此选项错误;
D、球的三视图都是相等的圆形,故此选项正确。
故选D。
2.(2012贵州毕节3分)王老师有一个装文具用的盒子,它的三视图如图所示,这个盒子类似于【】
A.圆锥
B.圆柱
C.长方体
D.三棱柱
【答案】D。
【考点】由三视图判断几何体。
【分析】根据三视图的知识可使用排除法来解答:如图,俯视图为三角形,故可排除B、C.主视图以及侧视图都是矩形,可排除A,
故选D。
3.(2012贵州六盘水3分)如图是教师每天在黑板上书写用的粉笔,它的主视图是【】
A.B.C.D.
【答案】C。
【考点】简单几何体的三视图。
【分析】该几何体是圆台,主视图即从正面看到的图形是等腰梯形。
故选C。
4.(2012贵州黔东南4分)如图,矩形ABCD边AD沿拆痕AE折叠,使点D落在BC上的F处,已知AB=6,△ABF的面积是24,则FC等
于【】
A.1
B.2
C.3
D.4
【答案】B。
【考点】翻折变换(折叠问题),折叠的性质,矩形的性质,勾股定理。
【分析】由四边形ABCD是矩形与AB=6,△ABF的面积是24,易
求得BF的长,然后由勾股定理,求得AF的长,根据折叠的性质,
即可求得AD,BC的长,从而求得答案:
∵四边形ABCD是矩形,∴∠B=90°,AD=BC。
∵AB=6,∴S△ABF=AB•BF=×6×BF=24。
∴BF=8。
∴。
由折叠的性质:AD=AF=10,∴BC=AD=10。
∴FC=BC﹣BF=10﹣8=2。
故选B。
5.(2012贵州黔南4分)如图,将正方体的平面展开图重新折成
正方体后,“祝”字对面的字是【】
A.中
B.考
C.成
D.功
【答案】C。
【考点】正方体及其表面展开图,正方体相对两个面上的文字。
【分析】根据正方体及其表面展开图的特点,可让“祝”字面不动,分别把各个面围绕该面折成正方体,共有六个面,其中面“祝”与面“成”相对,面“你”与面“考”相对,“中”与面“功”相对。
故选C。
6.(2012贵州遵义3分)把一张正方形纸片如图①、图②对折两
次后,再如图③挖去一个三角形小孔,则展开后图形是【】
A.B.C.D.
【答案】C。
【考点】剪纸问题,轴对称的性质。
【分析】当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正
方形中间无损,且三角形关于对角线对称,三角形的一个顶点对着
正方形的边。
故选C。
7.(2012贵州遵义3分)如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=1,
FD=2,则BC的长为【】
A.B.C.D.
【答案】B。
【考点】翻折变换(折叠问题),矩形的性质和判定,折叠对称的性质,全等三角形的判定和性质,勾股定理。
【分析】过点E作EM⊥BC于M,交BF于N。
∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,
∵∠EMB=90°,∴四边形ABME是矩形。
∴AE=BM,
由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM。
∵∠ENG=∠BNM,∴△ENG≌△BNM(AAS)。
∴NG=NM。
∵E是AD的中点,CM=DE,∴AE=ED=BM=CM。
∵EM∥CD,∴BN:NF=BM:CM。
∴BN=NF。
∴NM=CF=。
∴NG=。
∵BG=AB=CD=CF+DF=3,∴BN=BG﹣NG=3﹣。
∴BF=2BN=5
∴。
故选B。
二、填空题
1.(2012贵州贵阳4分)如图,在△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一
点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,
∠An的度数为▲.
【答案】。
【考点】分类归纳(图形的变化类),等腰三角形的性质,三角形的外角性质。
【分析】先根据等腰三角形的性质求出∠BA1A的度数,再根据
三角形外角的性质及等腰三角形的性质分别求出∠CA2A1,∠DA3A2
及∠EA4A3的度数,找出规律即可得出∠An的度数:
∵在△ABA1中,∠B=20°,AB=A1B,∴∠BA1A=。
∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1=。
同理可得,∠DA3A2=20°,∠EA4A3=10°,••••••
∴∠An=。
2.(2012贵州安顺4分)在镜中看到的一串数字是“”,则这串数字是▲.
【答案】309087。
【考点】镜面对称。
【分析】拿一面镜子放在题目所给数字的对面,很容易从镜子里看到答案是309087。
3.(2012贵州毕节5分)在下图中,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第10个图案中共有▲个小正方形。
【答案】100。
【考点】分类归纳(图形的变化类)。
【分析】寻找规律:
第1个图案中共有1=12个小正方形;第2个图案中共有4=22个小正方形;
第3个图案中共有9=32个小正方形;第4个图案中共有16=42个小正方形;
……
∴第10个图案中共有102=100个小正方形。