spss一元回归分析详细操作与结果分析

合集下载

SPSS回归分析

SPSS回归分析

SPSS回归分析SPSS(统计包统计软件,Statistical Package for the Social Sciences)是一种强大的统计分析软件,广泛应用于各个领域的数据分析。

在SPSS中,回归分析是最常用的方法之一,用于研究和预测变量之间的关系。

接下来,我将详细介绍SPSS回归分析的步骤和意义。

一、回归分析的定义和意义回归分析是一种对于因变量和自变量之间关系的统计方法,通过建立一个回归方程,可以对未来的数据进行预测和预估。

在实际应用中,回归分析广泛应用于经济学、社会科学、医学、市场营销等领域,帮助研究人员发现变量之间的关联、预测和解释未来的趋势。

二、SPSS回归分析的步骤1. 导入数据:首先,需要将需要进行回归分析的数据导入SPSS软件中。

数据可以以Excel、CSV等格式准备好,然后使用SPSS的数据导入功能将数据导入软件。

2. 变量选择:选择需要作为自变量和因变量的变量。

自变量是被用来预测或解释因变量的变量,而因变量是我们希望研究或预测的变量。

可以通过点击"Variable View"选项卡来定义变量的属性。

3. 回归分析:选择菜单栏中的"Analyze" -> "Regression" -> "Linear"。

然后将因变量和自变量添加到正确的框中。

4.回归模型选择:选择回归方法和模型。

SPSS提供了多种回归方法,通常使用最小二乘法进行回归分析。

然后,选择要放入回归模型的自变量。

可以进行逐步回归或者全模型回归。

6.残差分析:通过检查残差(因变量和回归方程预测值之间的差异)来评估回归模型的拟合程度。

可以使用SPSS的统计模块来生成残差,并进行残差分析。

7.结果解释:最后,对回归结果进行解释,并提出对于研究问题的结论。

要注意的是,回归分析只能描述变量之间的关系,不能说明因果关系。

因此,在解释回归结果时要慎重。

SPSS相关性和回归分析一元线性方程案例解析

SPSS相关性和回归分析一元线性方程案例解析
1:点击“分析”—相关—双变量,进入如下界面:
将“居民总储蓄”和“居民总消费”两个变量移入“变量”框内,在“相关系数”栏目中选择“Pearson",(Pearson是一种简单相关系数分析和计算的方法,如果需要进行进一步分析,需要借助“多远线性回归”分析)在“显著性检验”中选择“双侧检验”并且勾选“标记显著性相关”点击确定,得到如下结果:
2:从anvoa b的检验结果来看(其实这是一个“回归模型的方差分析表)F的统计量为:29.057,P值显示为0.000,拒绝模型整体不显著的假设,证明模型整体是显著的
3:从“系数a”这个表可以看出“回归系数,回归系数的标准差,回归系数的T显著性检验等,回归系数常量为:2878.518,但是SIG为:0.452,常数项不显著,回归系数为:0.954,相对的sig为:0.000,具备显著性,由于在“anvoa b”表中提到了模型整体是“显著”的
SPSS-相关性和回归分析(一元线性方物和人都不是以个体存在的,它们都被复杂的关系链所围绕着,具有一定的相关性,也会具备一定的因果关系,(比如:父母和子女,不仅具备相关性,而且还具备因果关系,因为有了父亲和母亲,才有了儿子或女儿),但不是所有相关联的事物都具备因果关系。
所以一元线性方程为:居民总消费=2878.518+0.954*居民总储蓄
其中在“样本数据统计”中,随即误差一般叫“残差”:
从结果分析来看,可以简单的认为:居民总储蓄每增加1亿,那居民总消费将会增加0.954亿
提示:对于回归参数的估计,一般采用的是“最小二乘估计法”原则即为:“残差平方和最小“
点击“分析”--回归----线性”结果如下所示:
将“因变量”和“自变量”分别拖入框内(如上图所示)从上图可以看出:“自变量”指“居民总储蓄”, "因变量”是指“居民总消费”

spss一元回归分析详细操作与结果分析

spss一元回归分析详细操作与结果分析

spss一元回归分析详细操作与结果分析Case1:降水&纬度Case1数据说明:⏹53个台站的年降水量、年蒸发量、纬度和海拔数据⏹在本例中,把降水量P作为因变量,纬度作为自变量Case1目的:⏹分析降水量和纬度之间的数量关系Case1操作要点:⏹做散点图,查看两因素之间是否线性相关⏹如果线性相关,接着做线性回归分析,揭示其数量关系⏹对回归方程做显著性检验打开spss的数据编辑器,编辑变量视图注意:因为我们的数据中“台站名”最多是5个汉字,所以字符串宽度最小为10才能全部显示。

编辑数据视图,将excel数据复制粘贴到spss中⏹从菜单上依次点选:图形—旧对话框—散点/点状⏹定义简单分布,设置Y为年降水量,X为纬度⏹由散点图发现,降水量与纬度之间线性相关给散点图添加趋势线的方法:•双击输出结果中的散点图•在“图表编辑器”的菜单中依次点击“元素”—“总计拟合线”,由此“属性”中加载了“拟合线”•拟合方法选择“线性”,置信区间可以选95%个体,应用step3:线性回归分析⏹从菜单上依次点选:分析—回归—线性⏹设置:因变量为“年降水量”,自变量为“纬度”⏹“方法”:选择默认的“进入”,即自变量一次全部进入的方法。

⏹“统计量”:•勾选“模型拟合度”,在结果中会输出“模型汇总”表•勾选“估计”,则会输出“系数”表⏹“绘制”:在这一项设置中也可以做散点图⏹“保存”:•注意:在保存中被选中的项目,都将在数据编辑窗口显示。

•在本例中我们勾选95%的置信区间单值,未标准化残差⏹“选项”:只需要在选择方法为逐步回归后,才需要打开【统计量】按钮⏹“回归系数”复选框组:定义回归系数的输出情况•勾选“估计”可输出回归系数B及其标准误差,t值和p值•勾选“误差条图的表征”则输出每个回归系数的95%可信区间•勾选“协方差矩阵”则会输出各个自变量的相关矩阵和方差、协方差矩阵。

⏹“残差”复选框组:•用于选择输出残差诊断的信息,可选的有Durbin-Watson残差序列相关性检验、个案诊断。

SPSS实现一元线性回归分析实例

SPSS实现一元线性回归分析实例

SPSS实现一元线性回归分析实例2009-12-14 15:311、准备原始数据。

为研究某一大都市报开设周日版的可行性,获得了34种报纸的平日和周日的发行量信息(以千为单位)。

数据如图1所示。

SPSS17.0图12、判断是否存在线性关系。

制作直观散点图:(1)SPSS:菜单Analyze/Regression/linear Regression,如图2所示:图2 (2)打开对话框如图3图3图3中,Dependent是因变量,Independent是自变量,分别将左栏中的sunday选入因变量,daily选入自变量,newspaper作为标识标签选入case labels.(3)点击图3对话框中的plots按钮,如图4所示:图4将因变量DEPENTENT 选入Y:,自变量 ZPRED 选入X: continue 返回上级对话框。

单击主对话框OK.便生成散点图如图5所示:图5从以上散点图可看出,二者变量之间关系趋势呈线性关系。

2、回归方程菜单Analyze/Regression/linear Regression,在图3对话框的右边单击statistics如图6所示:图6regression coefficient回归系数,estimates估计值,confidence intervals level:95%置信区间,model fit拟合模型。

点击continue返回主对话框,单击OK.结果如图7、图8所示:图7图7中第一个图是变量的输入与输出,从图下的提示可知所有变量均输入与输出,没有遗漏。

图7中的第二图是模型总和R值,R平方值,R调整后的平方值,及标准误。

图8图8中第一图为方差统计图,包括回归平方和,自由度,方程检验F值及P值。

图8第二图为回归参数图,从图中可知,constant为回归方程截距,即13.836,回归系数为1.340,标准误分别为:35.804和0.071,及t检验值和95%的置信区间的最大值和最小值。

用spss软件进行一元线性回归分析2017

用spss软件进行一元线性回归分析2017

◦ 由表可见所用的回归模型F统计量值=226.725 ,P值为0.000,因此我们 用的这个回归模型是有统计学意义的,可以继续看下面系数分别检验的结 果。
◦ 由于这里我们所用的回归模型只有一个自变量,因此模型的检验就等价与 系数的检验,在多元回归中这两者是不同的。
step4:线性回归结果

【系数】
step4:线性回归结果

【Anova】 (analysisofvariance方差分析)
◦ 此表是所用模型的检验结果,一个标准的方差分析表。 ◦ Sig.(significant )值是回归关系的显著性系数,sig.是F值的实际显著性 概率即P值。当sig. <= 0.05的时候,说明回归关系具有统计学意义。如果 sig. > .05,说明二者之间用当前模型进行回归没有统计学意义,应该换 一个模型来进行回归。
Case2目的: 分析平均气温和降雨量之间的数量关系
Case2习题要求: 做散点图,查看两因素之间是否线性相关 如果线性相关,接着做线性回归分析,揭示其数量 关系 对回归方程做显著性检验,写出结论
Case2:气温&降雨量


给这个例子的目的是,看大家是否真的理解做散点 图的意义 当散点图都不呈现线性关系,那有多少同学接着就 做了一元线性回归?根本就没有在脑子里思考一下 它究竟是不是一元线性关系。 希望大家在以后的软件学习中,要问自己做每一步 操作的意义何在,不要机械的不思考的动手 Case3:大家用case1的数据,分析一下年蒸发量与 纬度的关系。
利用spss进行一元线性回归 Y'=a+bx
1.根据一个直线方程式,以一个变项的 值预测另一个变项的值,所犯的误差是 最小的。 2.b是回归系数:代表每增加一个单位 的X值,Y值的变化有多大。 3.b值是表示自变项对依变项的影响的 大小和方向。

SPSS回归分析实验报告

SPSS回归分析实验报告

中国计量学院现代科技学院实验报告实验课程:应用统计学实验名称:回归分析班级:学号:姓名:实验日期: 2012.05.23 实验成绩:指导教师签名:一.实验目的一元线性回归简单地说是涉及一个自变量的回归分析,主要功能是处理两个变量之间的线性关系,建立线性数学模型并进行评价预测。

本实验要求掌握一元线性回归的求解和多元线性回归理论与方法。

二.实验环境中国计量学院现代科技学院机房310三.实验步骤与内容1打开应用统计学实验指导书,新建excel表地区供水管道长度(公里)全年供水总量(万平方米)北京15896 128823 天津6822 64537 河北10771.2 160132 山西5669.3 77525 内蒙古5635.5 59276 辽宁21999 280510 吉林6384.9 159570 黑龙江9065.9 153387 上海22098.8 308309 江苏36632.4 380395 浙江24126.9 235535 安徽7389.4 204128 福建6270.4 118512 江西5094.7 143240 山东26073.9 259782 河南11405.6 185092 湖北15668.6 257787 湖南9341.8 262691 广东35728.8 568949 广西6923.1 134412 海南1726.7 20241 重庆6082.7 71077 四川12251.3 165632 贵州3275.3 45198 云南5208.5 52742 西藏364.9 5363陕西4270 73580甘肃5010 62127青海893 14390宁夏1538.2 22921新疆3670.2 766852.打开SPSS,将数据导入3.打开分析,选择回归分析再选择线性因变量选全年供水总量,自变量选供水管道长度统计里回归系数选估计,再选择模型拟合按继续再按确定会出来分析的结果对以上结果进行分析:(1)回归方程为:y=28484.712+11.610X(X是自变量供水管道长度,Y是因变量全年供水总量)(2)检验1)拟合效果检验根据表2可知,R2=0.819,即拟合效果好,线性成立。

用spss软件进行一元线性回归分析2017

用spss软件进行一元线性回归分析2017

Case2目的: 分析平均气温和降雨量之间的数量关系
Case2习题要求: 做散点图,查看两因素之间是否线性相关 如果线性相关,接着做线性回归分析,揭示其数量 关系 对回归方程做显著性检验,写出结论
Case2:气温&降雨量


给这个例子的目的是,看大家是否真的理解做散点 图的意义 当散点图都不呈现线性关系,那有多少同学接着就 做了一元线性回归?根本就没有在脑子里思考一下 它究竟是不是一元线性关系。 希望大家在以后的软件学习中,要问自己做每一步 操作的意义何在,不要机械的不思考的动手 Case3:大家用case1的数据,分析一下年蒸发量与 纬度的关系。
◦ 由表可见所用的回归模型F统计量值=226.725 ,P值为0.000,因此我们 用的这个回归模型是有统计学意义的,可以继续看下面系数分别检验的结 果。
◦ 由于这里我们所用的回归模型只有一个自变量,因此模型的检验就等价与 系数的检验,在多元回归中这两者是不同的。
step4:线性回归结果

【输入/移去的变量】
◦ 此表是拟合过程中变量输入/移去模型的情况记录,由于我们只引 入了一个自变量,所以只出现了一个模型1(在多元回归中就会依 次出现多个回归模型),该模型中“纬度”为进入的变量,没有移 出的变量,具体的输入/移去方法为“输入”。
step4:线性回归结果
step4:线性回归结果

【Anova】 (analysisofvariance方差分析)
◦ 此表是所用模型的检验结果,一个标准的方差分析表。 ◦ Sig.(significant )值是回归关系的显著性系数,sig.是F值的实际显著性 概率即P值。当sig. <= 0.05的时候,说明回归关系具有统计学意义。如果 sig. > 0.05,说明二者之间用当前模型进行回归没有统计学意义,应该换 一个模型来进行回归。

用SPSS做回归分析

用SPSS做回归分析

用SPSS做回归分析回归分析是一种统计方法,用于研究两个或多个变量之间的关系,并预测一个或多个因变量如何随着一个或多个自变量的变化而变化。

SPSS(统计软件包的统计产品与服务)是一种流行的统计分析软件,广泛应用于研究、教育和业务领域。

要进行回归分析,首先需要确定研究中的因变量和自变量。

因变量是被研究者感兴趣的目标变量,而自变量是可能影响因变量的变量。

例如,在研究投资回报率时,投资回报率可能是因变量,而投资额、行业类型和利率可能是自变量。

在SPSS中进行回归分析的步骤如下:1.打开SPSS软件,并导入数据:首先打开SPSS软件,然后点击“打开文件”按钮导入数据文件。

确保数据文件包含因变量和自变量的值。

2.选择回归分析方法:在SPSS中,有多种类型的回归分析可供选择。

最常见的是简单线性回归和多元回归。

简单线性回归适用于只有一个自变量的情况,而多元回归适用于有多个自变量的情况。

3.设置因变量和自变量:SPSS中的回归分析工具要求用户指定因变量和自变量。

选择适当的变量,并将其移动到正确的框中。

4.运行回归分析:点击“运行”按钮开始进行回归分析。

SPSS将计算适当的统计结果,包括回归方程、相关系数、误差项等。

这些结果可以帮助解释自变量如何影响因变量。

5.解释结果:在完成回归分析后,需要解释得到的统计结果。

回归方程表示因变量与自变量之间的关系。

相关系数表示自变量和因变量之间的相关性。

误差项表示回归方程无法解释的变异。

6.进行模型诊断:完成回归分析后,还应进行模型诊断。

模型诊断包括检查模型的假设、残差的正态性、残差的方差齐性等。

SPSS提供了多种图形和统计工具,可用于评估回归模型的质量。

回归分析是一种强大的统计分析方法,可用于解释变量之间的关系,并预测因变量的值。

SPSS作为一种广泛使用的统计软件,可用于执行回归分析,并提供了丰富的功能和工具,可帮助研究者更好地理解和解释数据。

通过了解回归分析的步骤和SPSS的基本操作,可以更好地利用这种方法来分析数据。

用spss软件进行一元线性回归分析2017

用spss软件进行一元线性回归分析2017

step4:线性回归结果

【Anova】 (analysisofvariance方差分析)
◦ 此表是所用模型的检验结果,一个标准的方差分析表。 ◦ Sig.(significant )值是回归关系的显著性系数,sig.是F值的实际显著性 概率即P值。当sig. <= 0.05的时候,说明回归关系具有统计学意义。如果 sig. > 0.05,说明二者之间用当前模型进行回归没有统计学意义,应该换 一个模型来进行回归。
Case2目的: 分析平均气温和降雨量之间的数量关系
Case2习题要求: 做散点图,查看两因素之间是否线性相关 如果线性相关,接着做线性回归分析,揭示其数量 关系 对回归方程做显著性检验,写出结论
Case2:气温&降雨量


给这个例子的目的是,看大家是否真的理解做散点 图的意义 当散点图都不呈现线性关系,那有多少同学接着就 做了一元线性回归?根本就没有在脑子里思考一下 它究竟是不是一元线性关系。 希望大家在以后的软件学习中,要问自己做每一步 操作的意义何在,不要机械的不思考的动手 Case3:大家用case1的数据,分析一下年蒸发量与 纬度的关系。

【模型汇总】 此表为所拟合模型的情况汇总,显示在模型1中:
◦ 相关系数R=0.904 ◦ 拟合优度R方=0.816 ◦ 调整后的拟合优度=0.813
◦ 标准估计的误差=92.98256

R方(拟合优度):是回归分析的决定系数,说明自变量和因 变量形成的散点与回归曲线的接近程度,数值介于0和1之间, 这个数值越大说明回归的越好,也就是散点越集中于回归线上。
“模型拟合度”复选框: “R方变化”复选框: “描述性”复选框:
“部分相关和偏相关性”复选框:

SPSS如何进行线性回归分析操作 精品

SPSS如何进行线性回归分析操作 精品

SPSS如何进行线性回归分析操作本节内容主要介绍如何确定并建立线性回归方程。

包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归。

为了确保所建立的回归方程符合线性标准,在进行回归分析之前,我们往往需要对因变量与自变量进行线性检验。

也就是类似于相关分析一章中讲过的借助于散点图对变量间的关系进行粗略的线性检验,这里不再重复。

另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。

一、一元线性回归分析用SPSS进行回归分析,实例操作如下:1.单击主菜单Analyze / Regression / Linear…,进入设置对话框如图7-9所示。

从左边变量表列中把因变量y选入到因变量(Dependent)框中,把自变量x选入到自变量(Independent)框中。

在方法即Method一项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立回归方程时把所选中的全部自变量都保留在方程中。

所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。

具体如下图所示:2.请单击Statistics…按钮,可以选择需要输出的一些统计量。

如RegressionCoefficients(回归系数)中的Estimates,可以输出回归系数及相关统计量,包括回归系数B、标准误、标准化回归系数BETA、T值及显著性水平等。

Model fit 项可输出相关系数R,测定系数R2,调整系数、估计标准误及方差分析表。

上述两项为默认选项,请注意保持选中。

设置如图7-10所示。

设置完成后点击Continue返回主对话框。

回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反回归分析的假定,为此需进行多项残差分析。

由于此部分内容较复杂而且理论性较强,所以不在此详细介绍,读者如有兴趣,可参阅有关资料。

3.用户在进行回归分析时,还可以选择是否输出方程常数。

SPSS学习系列27.回归分析报告

SPSS学习系列27.回归分析报告

27. 回归分析回归分析是研究一个或多个变量(因变量)与另一些变量(自变量)之间关系的统计方法。

主要思想是用最小二乘法原理拟合因变量与自变量间的最佳回归模型(得到确定的表达式关系)。

其作用是对因变量做解释、控制、或预测。

回归与拟合的区别:拟合侧重于调整曲线的参数,使得与数据相符;而回归重在研究两个变量或多个变量之间的关系。

它可以用拟合的手法来研究两个变量的关系,以及出现的误差。

回归分析的步骤:(1)获取自变量和因变量的观测值;(2)绘制散点图,并对异常数据做修正;(3)写出带未知参数的回归方程;(4)确定回归方程中参数值;(5)假设检验,判断回归方程的拟合优度;(6)进行解释、控制、或预测。

(一)一元线性回归一、基本原理一元线性回归模型:Y=0+1X+ε其中 X 是自变量,Y 是因变量, 0, 1是待求的未知参数, 0也称为截距;ε是随机误差项,也称为残差,通常要求ε满足:① ε的均值为0; ② ε的方差为 2;③ 协方差COV(εi , εj )=0,当i≠j 时。

即对所有的i≠j, εi 与εj 互不相关。

二、用最小二乘法原理,得到最佳拟合效果的01ˆˆ,ββ值: 1121()()ˆ()niii nii x x yy x x β==--=-∑∑, 01ˆˆy x ββ=- 三、假设检验1. 拟合优度检验计算R 2,反映了自变量所能解释的方差占总方差的百分比,值越大说明模型拟合效果越好。

通常可以认为当R 2大于0.9时,所得到的回归直线拟合得较好,而当R 2小于0.5时,所得到的回归直线很难说明变量之间的依赖关系。

2. 回归方程参数的检验回归方程反应了因变量Y 随自变量X 变化而变化的规律,若 1=0,则Y 不随X 变化,此时回归方程无意义。

所以,要做如下假设检验:H 0: 1=0, H 1: 1≠0; (1) F 检验若 1=0为真,则回归平方和RSS 与残差平方和ESS/(N-2)都是 2的无偏估计,因而采用F 统计量:来检验原假设β1=0是否为真。

利用spss进行一元线性回归

利用spss进行一元线性回归
勾选“模型拟合度”,在结果中会输出“模型汇总”表 勾选“估计”,则会输出“系数”表 “绘制”:在这一项设置中也可以做散点图 “保存”: 注意:在保存中被选中的项目,都将在数据编辑窗口显示。 在本例中我们勾选 95% 的置信区间单值,未标准化残差 “选项”:只需要在选择方法为逐步回归后,才需要打开
【统计量】按钮
“回归系数”复选框组:定义回归系数的输出情况
勾选“估计”可输出回归系数 B及其标准误差, t 值和 p值 勾选“误差条图的表征”则输出每个回归系数的 95% 可信区间 勾选“协方差矩阵”则会输出各个自变量的相关矩阵和方差、协方差矩 阵。
“残差”复选框组:
用于选择输出残差诊断的信息,可选的有 Durbin-Watson 残差序列相关 性检验、个案诊断。
【模型汇总】 此表为所拟合模型的情况汇总,显示在模型
相关系数 R=0.904 拟合优度 R方=0.816 调整后的拟合优度 =0.813 标准估计的误差 =92.98256
1 中:
R方(拟合优度):是回归分析的决定系数,说明自变量和因变量形 成的散点与回归曲线的接近程度,数值介于 0 和1 之间,这个数值越大 说明回归的越好,也就是散点越集中于回归线上。
【选项】按钮
注意:选项按钮只需要在选择方法为逐步回归后,才需要打开
“步进方法标准”单选钮组:设置纳入和排除标准,可按 P值或 F 值来设置。 “在等式中包含常量”复选框:用于决定是否在模型中包括常数 项,默认选中。 “缺失值”单选钮组:用于选择对缺失值的处理方式,可以是不 分析任一选入的变量有缺失值的记录(按列表排除个案)而无论 该缺失变量最终是否进入模型;不分析具体进入某变量时有缺失 值的记录(按对排除个案);将缺失值用该变量的均数代替(使 用均值替代)。

spss一元线性回归分析

spss一元线性回归分析

spss一元线性回归分析回归分析(regression analysis)即是要追本溯源,即追溯因变量的变化与哪些自变量的相关,如果因变量的变化与自变量的变化之间存在相关,那么自变量就可能(并不必然是)是因变量的原因。

相关是因果关系的必要条件,但是相关并不意味必然有因果关系,发现了相关性,只是说明在统计学意义上两个变量之间可能存在因果关系,之后还要探讨因果链条。

回归分析既要考察两个变量是否共同变化,还要预先设定哪个变量是原因、哪个是结果。

一、回归分析与相关分析的区别1.回归分析是预设因果关系的相关分析相关分析研究的都是随机变量,不预设变量之间有因果关系,不区分因变量和自变量;回归分析则预设变量之间有因果关系,区分因变量和自变量。

回归分析是由此及彼,参照自变量的信息,来预测因变量的值。

回归分析的目的是改进预测的准确度,把标志猜测误差总量的平方和减到最低程度。

回归分析的步骤,首先是要看因变量和自变量是否以及如何先后呼应(如果无法根据数据分辨事实上的时间先后,可以分辨逻辑次序的先后。

逻辑次序的先后,即在特定场景下不能想象一个变量在时间上先于另一个变量,而需要有逻辑关系),这里的是和否,也就是“显著”和“不显著”,判断方法是显著性检验。

如果确定有显著呼应,再看呼应程度的高低正负。

2.回归分析量化了两个变量关系的本质相关分析主要衡量了两个变量是否关联以及关联的密切程度,而回归分析不仅可以揭示变量之间的关系和影响程度,还可以根据回归模型进程预测。

二、回归分析的类型回归分析主要包括线性回归及非线性回归,线性回归又分为简单线性回归、多元线性回归。

非线性回归,需要通过对数转换等方式,转换为线性回归进行分析。

这次主要介绍线性回归分析,非线性回归后续有机会再做详细的分享。

三、简单线性回归分析的步骤1.根据预测目标,确定自变量和因变量围绕业务问题和目标,从经验、常识、历史数据研究等,初步确定自变量和因变量。

2.进行相关分析(1)通过绘制散点图的方式,从图形化的角度初步判断自变量和因变量之间是否具有相关关系;(2)通过皮尔逊相关系数r值,判断自变量与因变量之间的相关程度和方向,才决定是否运用线性回归分析法来预测数值。

spss回归

spss回归

spss回归SPSS回归介绍:SPSS(Statistical Package for the Social Sciences)是一种广泛使用的统计分析软件,被广泛应用于社会科学、生物科学、工程等领域。

回归分析是SPSS中最为常用的统计方法之一,用于研究因变量与一个或多个自变量之间的关系。

本文将详细介绍SPSS回归分析的基本概念、步骤和结果的解读。

一、回归分析的基本概念1.1 回归方程回归方程是用来描述因变量和自变量之间关系的数学模型。

简单线性回归方程可以表示为Y = a + bX,其中Y为因变量,X为自变量,a和b分别为截距项和斜率。

当存在多个自变量时,可以采用多元回归方程进行分析。

1.2 相关系数相关系数可以衡量因变量和自变量之间的关系强度和方向。

在SPSS 中,常用的相关系数有Pearson相关系数和Spearman秩相关系数。

Pearson相关系数适用于连续变量,而Spearman秩相关系数则适用于有序变量或非线性关系。

二、回归分析的步骤2.1 数据准备在进行回归分析之前,需要准备好所需的数据。

数据可以来自调查问卷、实验或其他收集方式。

在SPSS中,可以通过导入数据文件或手动输入数据来进行分析。

2.2 设计回归模型在设计回归模型时,需要确定自变量和因变量的关系类型。

如果自变量和因变量之间存在线性关系,则可以使用简单线性回归模型。

如果存在多个自变量,则需要使用多元回归模型。

2.3 进行回归分析在SPSS中,进行回归分析非常简单。

只需要选择分析菜单下的回归选项,然后将因变量和自变量选择到相应的字段中。

SPSS会自动计算回归方程和相关系数,并提供结果解读。

2.4 分析结果解读回归分析结果包括回归系数、显著性水平、拟合优度等指标。

回归系数表示自变量对因变量的影响程度,显著性水平表示回归模型的可靠性,拟合优度可以评估回归模型的拟合程度。

三、实例分析为了更好地理解SPSS回归分析的步骤和结果,下面将给出一个实例分析。

SPSS10一元线性回归

SPSS10一元线性回归

然后,定义变量。将数据录入之后(录入方法与 Excel 近似),即可进入 Variable View 定义变量(图 2)。这里只说定义名称——在 Name 下按顺序给出名称。Data View 的列对应于 Data View 的行(图 3)。
图 2 进入 Data View
1
图 3 定义变量名称
再说调入数据。也可以从 Excel 中调入数据,不过 Excel 的工作表 sheet 最好是干净 的,即除了原始数据以外没有其它内容。调入的方法是,在标题栏下的图标中点击 , 或者打开下拉菜单 File,选择 Open→Data (图 4),在随后弹出的对话框中将“文件类 型”改为“Excel( *.xls)”(图 5);然后在“查找范围( I)”中找到保存数据的目录 (图 6);再然后选中文件名称,点击“打开( O)”,再弹出的对话框中指定数据所在 的工作表( Worksheet )(图 7 )。点击“ OK ”确定, Excel 中保存的数据就会出现在 SPSS 的数据显示区(图 8)。只要在 Excel 中存在数据标志,SPSS 就会默认原来的数据 标志为变量名称,而不必再在 SPSS 中为变量命名(但好像只能显示前四位汉字,如“最 大积雪深度”的后面两个字就显示不了;如果在 Excel 中的变量名称前四位汉字同名,在 SPSS 中只能承认前面的一个变量,后一个变量必须重新命名)。

显然小于10%-15%,检验可以通过。
s 1.419 0.0388 y 36.53
a R es i du a ls St a ti s ti c s
Predicted Value Std. Predicted Value Standard Error of .449 .912 Predicted Value Adjusted Predicted 22.557 50.928 Value Residual -1.911 2.369 Std. Residual -1.347 1.670 Stud. Residual -1.758 1.897 Deleted Residual -3.257 3.059 Stud. Deleted Residual -2.100 2.393 Mahal. Distance .002 2.820 Cook's Distance .003 1.089 Centered Leverage Value .000 .313 a. Dependent Variable: 灌溉面积y(千亩)

用SPSS进行一元线性回归分析

用SPSS进行一元线性回归分析
中输入数据。建立因变量历期“历期” 在 SPSS 数据编辑窗口中,创建“年份”、“ 温度”和“发蛾盛期” 变量,并把数据输入相应的变量中。或者打 开已存在的数据文件“DATA6-1.SAV”。
2)启动线性回归过程 单击 SPSS 主菜单的“Analyze”下的“Regression”中“ Linear”项,将打开如图1-1所示的线性回归过程窗口。
8)其它选项 在主对话框里单击“Options” 按钮,将打开如图1-6所示的对话框。
图1-6 “ Options”设置对话框 ①“Stepping Method Criteria”框用于进行逐步回归时内部数值的设定。其中各项为: “Use probability of F” 如果一个变量的 F 值的概率小于所设置的进入值(Entry) ,那么这个变量将被选 入回归方程 中; 当变量的 F 值的概率大于设置的剔除值 (Removal) , 则该变量将从回归方程中被剔除。 由此可见,设置 “Use probability of F” 时,应使进入值小于剔除值。 “Ues F value” 如果一个变量的 F 值大于所设置的进入值( Entry) , 那么这个变量将被选入回归方程中; 当变量的 F 值小于设置的剔除值(Removal) ,则该变量将从回归方程中被剔除。同时,设置“ Use F value” 时,应使进 入值大于剔除值。 ②“Include constant in equation ”选择此项表示在回归方程中有常数项。 本例选中“Include constant in equation ”选项在回归方程中保留常数项。 ③“Missing Values”框用于设置对缺失值的处理方法。其中各项为: “Exclude cases listwise” 剔除所有含有缺失值的观测值。 “Exchude cases pairwise”仅剔除参与统计分析计算的变量中含有缺失值的观测量。 “Replace with mean”用变量的均值取代缺失值。 本例选中“Exclude cases listwise” 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

spss一元回归分析详细操作与结果分析
Case1:降水&纬度
Case1数据说明:
⏹53个台站的年降水量、年蒸发量、纬度和海拔数据
⏹在本例中,把降水量P作为因变量,纬度作为自变量Case1目的:
⏹分析降水量和纬度之间的数量关系
Case1操作要点:
⏹做散点图,查看两因素之间是否线性相关
⏹如果线性相关,接着做线性回归分析,揭示其数量关系⏹对回归方程做显著性检验
打开spss的数据编辑器,编辑变量视图
注意:因为我们的数据中“台站名”最多是5个汉字,所以字符串宽度最小为10才能全部显示。

编辑数据视图,将excel数据复制粘贴到spss中
⏹从菜单上依次点选:图形—旧对话框—散点/点状⏹定义简单分布,设置Y为年降水量,X为纬度
⏹由散点图发现,降水量与纬度之间线性相关
给散点图添加趋势线的方法:
•双击输出结果中的散点图
•在“图表编辑器”的菜单中依次点击“元素”—“总计拟合线”,由此“属性”中加载了“拟合线”
•拟合方法选择“线性”,置信区间可以选95%个体,应用
step3:线性回归分析
⏹从菜单上依次点选:分析—回归—线性
⏹设置:因变量为“年降水量”,自变量为“纬度”
⏹“方法”:选择默认的“进入”,即自变量一次全部进入的方法。

⏹“统计量”:
•勾选“模型拟合度”,在结果中会输出“模型汇总”表
•勾选“估计”,则会输出“系数”表
⏹“绘制”:在这一项设置中也可以做散点图
⏹“保存”:
•注意:在保存中被选中的项目,都将在数据编辑窗口显示。

•在本例中我们勾选95%的置信区间单值,未标准化残差
⏹“选项”:只需要在选择方法为逐步回归后,才需要打开
【统计量】按钮
⏹“回归系数”复选框组:定义回归系数的输出情况
•勾选“估计”可输出回归系数B及其标准误差,t值和p值
•勾选“误差条图的表征”则输出每个回归系数的95%可信区间
•勾选“协方差矩阵”则会输出各个自变量的相关矩阵和方差、协方差矩阵。

⏹“残差”复选框组:
•用于选择输出残差诊断的信息,可选的有Durbin-Watson残差序列相关性检验、个案诊断。

⏹“模型拟合度”复选框:
•模型拟合过程中进入、退出的变量的列表,以及一些有关拟合优度的检验:R,R2和调整的R2, 标准误及方差分析表。

⏹“R方变化”复选框:
•显示模型拟合过程中R2、F值和p值的改变情况。

⏹“描述性”复选框:
•提供一些变量描述,如有效例数、均数、标准差等,同时还给出一个自变量间的相关矩阵。

⏹“部分相关和偏相关性”复选框:
•显示自变量间的相关、部分相关和偏相关系数。

⏹“共线性诊断”复选框:
•给出一些用于共线性诊断的统计量,如特征根(Eigenvalues)、方差膨胀因子(VIF)等。

⏹以上各项在默认情况下只有“估计”和“模型拟合度”复选框被选中。

⏹用于选择需要绘制的回归分析诊断或预测图。

•可绘制的有标准化残差的直方图和正态分布图,应变量、预测值和各自变量残差间两两的散点图等。

【保存】按钮
⏹许多时候我们需要将回归分析的结果存储起来,然后用得到的残差、
预测值等做进一步的分析,保存按钮就是用来存储中间结果的。

•可以存储的有:预测值系列、残差系列、距离(Distances)系列、预测值可信区间系列、波动统计量系列。

下方的按钮可以让我们选择将这些
新变量存储到一个新的SPSS数据文件或XML中。

•注意:选项按钮只需要在选择方法为逐步回归后,才需要打开
•“步进方法标准”单选钮组:设置纳入和排除标准,可按P值或F 值来设置。

•“在等式中包含常量”复选框:用于决定是否在模型中包括常数项,默认选中。

•“缺失值”单选钮组:用于选择对缺失值的处理方式,可以是不分析任一选入的变量有缺失值的记录(按列表排除个案)而无论该缺失变量最终是否进入模型;不分析具体进入某变量时有缺失值的记录(按对排除个案);将缺失值用该变量的均数代替(使用均值替代)。

【输入/移去的变量】
•此表是拟合过程中变量输入/移去模型的情况记录,由于我们只引入了一个自变量,所以只出现了一个模型1(在多元回归中就会依次出现多个回归模型),该模型中“纬度”为进入的变量,没有移出的变量,具体的
输入/移去方法为“输入”。

⏹【模型汇总】
此表为所拟合模型的情况汇总,显示在模型1中:
•相关系数R=0.904
•拟合优度R方=0.816
•调整后的拟合优度=0.813
•标准估计的误差=92.98256
⏹R方(拟合优度):是回归分析的决定系数,说明自变量和因变量形
成的散点与回归曲线的接近程度,数值介于0和1之间,这个数值越大说明回归的越好,也就是散点越集中于回归线上。

【Anova】(analysisofvariance方差分析)
•此表是所用模型的检验结果,一个标准的方差分析表。

•Sig.(significant )值是回归关系的显著性系数,sig.是F值的实际显著性概率即P值。

当sig. <= 0.05的时候,说明回归关系具有统计学意义。

如果sig. > 0.05,说明二者之间用当前模型进行回归没有统计学意义,
应该换一个模型来进行回归。

•由表可见所用的回归模型F统计量值=226.725 ,P值为0.000,因此我们用的这个回归模型是有统计学意义的,可以继续看下面系数分别检验
的结果。

•由于这里我们所用的回归模型只有一个自变量,因此模型的检验就等价与系数的检验,在多元回归中这两者是不同的。

⏹【系数】
•此表给出了包括常数项在内的所有系数的检验结果,用的是t检验,同时还会给出标化/未标化系数。

可见常数项和“纬度”都是有统
计学意义的。

•由此得到年降水量与纬度之间的一元回归方程为:
⏹Y=-82.188X+3395.584
Case2数据说明:
⏹伦敦12个月的平均气温、降雨量数据
⏹在本例中,把降雨量作为因变量,平均气温作为自变量Case2目的:
⏹分析平均气温和降雨量之间的数量关系
Case2习题要求:
⏹做散点图,查看两因素之间是否线性相关
⏹如果线性相关,接着做线性回归分析,揭示其数量关系⏹对回归方程做显著性检验,写出结论
⏹给这个例子的目的是,看大家是否真的理解做散点图的意

⏹当散点图都不呈现线性关系,那有多少同学接着就做了一
元线性回归?根本就没有在脑子里思考一下它究竟是不是一元线性关系。

⏹希望大家在以后的软件学习中,要问自己做每一步操作的
意义何在,不要机械的不思考的动手
⏹Case3:大家用case1的数据,分析一下年蒸发量与纬度
的关系。

相关文档
最新文档