43全自动比表面及孔隙度分析仪解析

合集下载

比表面分析仪

比表面分析仪

比表面分析仪比表面分析仪,是一种用于研究物质表面性质的仪器。

该仪器在材料科学领域具有广泛的应用,能够对材料的表面形貌、物理性质、化学成分等进行分析和表征。

本文将详细介绍比表面分析仪的原理、应用以及未来的发展趋势。

一、比表面分析仪的原理比表面分析仪主要基于物质表面的吸附原理进行分析。

当气体分子与固体表面接触时,会发生吸附现象。

根据吸附剂的类型和实验条件的不同,可以得到不同的吸附等温线。

通过测量气体在单位质量固体表面上的吸附量,可以计算出物质的比表面积。

比表面分析仪通常采用气相吸附法进行表征。

在实验中,气体分子在一定温度和压力条件下与固体表面发生吸附作用,随后通过改变压力或温度,测量吸附量与吸附剂的相应变化关系,从而确定固体材料的比表面积。

常用的气体吸附等温线测量方法有BET法、Langmuir法和柱渗透法等。

二、比表面分析仪的应用比表面分析仪在材料科学和工业生产中有着广泛的应用。

以下将介绍它在材料科学研究和工业生产中的几个方面的应用:1. 材料研究比表面分析仪能够对不同材料的比表面积进行测量,包括金属、陶瓷、塑料、纳米材料等。

通过比表面分析,可以评估材料的孔隙结构、表面活性以及吸附性能等。

这对于研究材料的吸附、催化和分离等性能具有重要意义。

2. 环境分析比表面分析仪在环境科学中也有一定的应用。

例如,通过测量大气颗粒物的比表面积,可以了解颗粒物的来源和组成,从而评估其对环境污染的影响。

此外,比表面分析仪还可以用于研究固体废弃物的表面性质,帮助解决环境污染问题。

3. 催化剂研究催化剂是重要的工业原料,在化学反应中起到催化作用。

比表面分析仪可以用于评估催化剂的活性和稳定性。

通过测量催化剂的比表面积和孔隙结构,可以判断其反应效率和寿命,从而优化催化剂的设计和合成方法。

4. 药物制剂研究比表面分析仪广泛应用于制药工业中的药物制剂研究。

药物的吸附性能和表面活性对于其药效和药代动力学有着重要影响。

通过比表面分析仪可以评估药物的溶解性、吸附速率和释放性能,为药物的制剂开发提供重要的依据。

比表面及孔径分析原理和仪器介绍比表面积介绍比表面积定义为

比表面及孔径分析原理和仪器介绍比表面积介绍比表面积定义为

比表面及孔径分析原理和仪器介绍一、比表面积介绍比表面积定义为单位质量物质的总表面积,国际单位是(m2/g),主要是用来表征粉体材料颗粒外表面大小的物理性能参数。

实践和研究表明,比表面积大小与材料其它的许多性能密切相关,如吸附性能、催化性能、表面活性、储能容量及稳定性等,因此测定粉体材料比表面积大小具有非常重要的应用和研究价值。

材料比表面积的大小主要取决于颗粒粒度,粒度越小比表面积越大;同时颗粒的表面结构特征及形貌特性对比表面积大小有着显著的影响,因此通过对比表面积大小的测定,可以对颗粒以上特性进行参考分析。

研究表明,纳米材料的许多奇异特性与其颗粒变小比表面积急剧增大密切相关,随着近年来纳米技术的不断进步,比表面积性能测定越来越普及,已经被列入许多的国际和国内测试标准中。

二、气体吸附法比表面积测试方法有多种,其中气体吸附法因其测试原理的科学性,测试过程的可靠性,测试结果的一致性,在国内外各行各业中被广泛采用,并逐渐取代了其它测试方法,成为公认的最权威测试方法。

许多国际标准组织都已将气体吸附法列为比表面积测试标准,如美国ASTM的D3037,国际ISO标准组织的ISO-9277。

我国比表面积测试有许多行业标准,其中最具代表性的是国标GB/T19587-2004 《气体吸附BET法测定固体物质比表面积》。

气体吸附法测定比表面积原理,是依据气体在固体表面的吸附特性,在一定的压力下,被测样品颗粒(吸附剂)表面在超低温下对气体分子(吸附质)具有可逆物理吸附作用,并对应一定压力存在确定的平衡吸附量。

通过测定出该平衡吸附量,利用理论模型来等效求出被测样品的比表面积。

由于实际颗粒外表面的不规则性,严格来讲,该方法测定的是吸附质分子所能到达的颗粒外表面和内部通孔总表面积之和。

氮气因其易获得性和良好的可逆吸附特性,成为最常用的吸附质。

通过这种方法测定的比表面积我们称之为“等效”比表面积,所谓“等效”的概念是指:样品的表面积是通过其表面密排包覆(吸附)的氮气分子数量和分子最大横截面积来表征。

全自动比表面积和孔隙分析仪详解73页PPT

全自动比表面积和孔隙分析仪详解73页PPT
全自动比表面积和孔隙分析仪详解
1、战鼓一响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平 等的。 ——波 洛克
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子

全自动比表面积和孔隙分析仪详解

全自动比表面积和孔隙分析仪详解

应用
药品(Pharmaceuticals)— 比表面和孔隙度对于药物的净化、加 工、混合、压片和包装起主要作用。药品有效期和溶解速率也依赖于 材料的比表面和孔隙度。
陶瓷(Ceramics)— 比表面和孔隙度帮助确定陶瓷的固化和烧结过程 ,确保压坯强度,得到期望的强度、质地、表观和密度的最终产品。
活性炭(Activated Carbons)— 在汽车油气回收、油漆的溶剂回收 和污水污染控制方面,活性炭的孔隙度和比表面必须控制在很窄的范 围内
碳黑(Carbon Black)— 碳黑生产者发现碳黑的比表面影响轮胎的磨 损寿命、摩擦等性能,特定使用的轮胎或者不同车型的轮胎需要不同 材料的比表面
催化剂(atalysts)— 活性的比表面和孔结构极大地影响生产效率 ,限制孔径允许特定的分子进入和离开。化学吸附测试对于催化剂的 选择、催化作用的测试和使用寿命的确定等具有指导作用。
物理吸附和化学吸附的比较
气体吸附过程的静态描述
1.样品的预处理: 在进行气体吸附实验之前,固体表面必须
清除污染物,如水和油。表面清洁(脱气) 过程,大多数情况下是将固体样品置于一 玻璃样品管中,然后在真空下加热。 显示 了预处理后的固体颗粒表面,其含有裂纹 和不同尺寸和形状的孔。
气体吸附过程的静态描述
2.样品的单分子层或多层吸附: 使清洁后的样品处于恒温状态。然后,使
少量的气体(吸附质)逐步进入被抽真空 的样品管。进入样品管的吸附质分子很快 便到达固体样品(即吸附剂)上每一个孔 的表面,即被吸附。
气体吸附过程的静态描述
物理吸附是最普通的一种吸附类型,被吸 附的分子可以相对自由地在样品表面移动。 随着越来越多的气体分子被导入体系,吸 附质会在整个吸附剂表面形成一个薄层。 根据Langmuir 和BET 理论,假设被吸附分子 为单分子层,我们可以估算出覆盖整个吸 附剂表面所需的分子数Nm(见图2)。被吸 附分子数Nm 与吸附质分子的横截面积的乘 积即为样品的表面积。

4.3 全自动比表面及孔隙度分析仪解析

4.3 全自动比表面及孔隙度分析仪解析
微孔(micropore) < 2nm 中孔(mesopore) 2~50nm 大孔(macropore) 50~7500nm 巨孔(megapore) > 7500nm(大气压下水银可进入)
孔容积或孔隙率:单位质量的孔容积, m3/g
测定比表面的方法很多,其中氮吸附法是最常用、 最可靠的方法,已列入国际标准和我国国家标准。氮吸 附法分为静态容量法、静态重量法和动态法(又称连续 流动色谱法)三种。 BET法是BET比表面积检测法的简称,该方法是依 据著名的BET理论为基础而得名。BET是三位科学家 (Brunauer、Emmett和Teller)的首字母缩写,三位科 学家从经典统计理论推导出的多分子层吸附公式基础上, 即著名的BET方程,成为了颗粒表面吸附科学的理论基 础,并被广泛应用于颗粒表面吸附性能研究及相关检测 仪器的数据处理中。
BET二常数公式适合的p/p0范围:0.05~0.25 用BET法测定固体比表面,最常用的吸附质是 氮气,吸附温度在其液化点77.2K附近。 低温可以避免化学吸附的发生。将相对压力控 制在0.05~0.25之间,是因为当相对压力低于0.05时, 不易建立多层吸附平衡;高于0.25时,容易发生毛 细管凝聚作用。
基本原理
在等温条件下,通过测定不同压力下材料对气体 的吸附量, 获得等温吸附线,应用适当的数学模型推 算材料的比表面积, 多孔材料的孔容积及孔径分布, 多组分或载体催化剂的活性组分分散度。
150
Sachtopore 60 Sachtopore 100 Sachtopore 300 Sachtopore 1000 Sachtopore 2000
AS 系列控制图
样品管可以有不同的尺寸和形状,以适合不同质 量和形状的样品。不同样品占用的体积是不同的,因 此,要准确了解特定样品管内的自由体积,应先了解 样品管的体积和样品的体积,或者,直接测定样品管 的自由体积。具体测定步骤如下:

全自动比表面与孔隙度分析仪测试技术要点及维护经验探讨

全自动比表面与孔隙度分析仪测试技术要点及维护经验探讨

当气体 分子 运 动 到 固体 表 面 时 , 由 于气 体 分 子 与 固体 表 面分 子之 间 的 相互 作 用 , 气 体 分 子 便 会 暂
下的 吸附量 , 从 而得 到 吸 附和 脱 附过 程 的平衡 等 温
线, 再通 过 数 据模 型 计 算 得 到样 品 的 比 表 面 、 平 均
顺 序为脱 气站 抽 到真空后 ( 极 限真空 为 5 ×1 0 mm
Hg , 示数 为 1 5 ~5 O m Hg ) , 再进 行 分 析 站抽 真 空
( 低于 3 . 8 x1 0 _ 。 。 mm Hg , 示数 为 2 m Hg ) 。高真
空 系统 、 高精 度 的压力 传 感 器 和 温度 传 感 器 的配 备
定 数量 孔洞 的 固 体 材 料 , 具有相对密度 低、 比 表 面 积高、 选择吸附性和选择 渗透性好等性 能优势 , 因 此 在可 控 药物 释 放 、 催化 、 气 体 分 离 和 过 滤 等 领 域 有 着重 大 技 术 应 用 。气 体 吸 附法 是 测 定 多 孑 L 材 料 孔 结构 参 数 的最 有 效 手 段 。美 国 麦 克 仪 器 公 司 推 出的 AS AP 2 0 2 0 M +C型全 自动 比表 面 与孔 隙度 分 析仪( S u r f a c e Ar e a a n d P o r o s i t y An a l y z e r ) 测 试 原 理 为低 温氮 物理 吸 附静 态 容 量 法 , 即将 经 过 高 真 空
引力 ; 另一 种 为 化 学 吸 附 , 即 吸 附 质 分 子 与 吸 附 剂
之间形 成 表 面 化 学 键… 。多 孔 材 料 是 一 种 含 有 一
证 其体 系 的高真空 度 , 能确 保 两 个样 品 的脱气 处 理

4.3-全自动比表面及孔隙度分析仪解析

4.3-全自动比表面及孔隙度分析仪解析
随晶粒的增大而增加。
金属分散度表示方法
〔1〕分布在载体外表上的金属原子数Ns和总 的金属
原子数Nt之比,用R表示 R= Ns/ Nt
〔2〕催化剂金属组分的外表积SMe 〔3〕金属的晶粒度dMe
金属分散度的表征方法
X射线衍射法(XRD):适用于2~100nm之间晶 粒的分析;
X射线光电子能谱法(XPS):虽可通用于各种 催化剂, 但须
根本原理
在等温条件下,通过测定不同压力下材料对气体 的吸附量, 获得等温吸附线,应用适当的数学模型推 算材料的比外表积, 多孔材料的孔容积及孔径分布, 多组分或载体催化剂的活性组分分散度。
150
Sachtopore 60
Sachtopore 100
Sachtopore 300
120
Sachtopore 1000
3.被吸附气体量的测定
被样品吸附的气体量不能直接测定,可以由 充入样品管自由体积内的气体量与吸附平衡后剩 余气体量相减得到。
0.025 0.020
Cu-HY HY0.015源自Dv(w)0.010
0.005
0.000
2
4
6
8
10
12
14
16
18
Pore Width/A
图1 改性前后分子筛微孔孔径分布
由图1、图2可知:
〔1〕辛酸铜改性后HY分子筛的比外表积、孔容均 减小。
〔2〕在微孔区,当孔径大于肯定值后,少量有机 酸铜盐可以进入分子筛孔径,使得微孔区的孔径略 有减小。
〔3〕在大孔区,孔容的减小比较明显,说明有机 酸铜盐更多的是进入分子筛比较大的孔径处。
金属分散度的测定
分散度与比外表
把物质分散成细小微粒的程度称为分散度 。把肯定大小的物质分割得越小,则分散度

全自动比表面与孔隙度分析仪使用

全自动比表面与孔隙度分析仪使用

数据处理
1)比表面积查看,原始数据右击鼠标,Tables — BET— Multi-point BET
2)孔容结果查看,原始数据右击鼠标,Tables -- total pore volum -- total pore volum
3)介孔的孔径分布查看,原始数据右击鼠标,graphs -- bjh method – desorption - - dv(d)
Autosorb IQ 全自动比表面与孔隙度分析仪使用
冷井
脱气台 气体输骤 1、开气(He、N2) 2、打开仪器开关 3、打开软件(仪器开气 后需要自检3-5min) 4、连接 开总阀 即可
小于10PSI
样品的预处理
1、称量样品
W1:空样品管 W2:样品+样品管
样品的预处理
2、样品脱气

×
×
×
大于760torr
样品分析
如果要更换气体,点击New键, 如果只是更换某种被吸附气体的 参数,点击Copy键。
S :appears if the point is specified for use in the single point BET calculation. M: appears if the point is specified for use in the multipoint BET calculation. T :appears if the point is specified for use in the statistical film thickness calculation. V :appears if the point is specified for use in the total pore volume calculation. L :appears if the point is specified for use in the Langmuir calculations. P :appears if the point is specified for use in the pore size distribution calculations.

比表面及孔径分析仪操作手册

比表面及孔径分析仪操作手册

低温静态容量法测定固体比表面和孔径分布第一部分 基 本 原 理一. 背景知识细小粉末中相当大比例的原子处于或靠近表面。

如果粉末的颗粒有裂缝、缝隙或在表面上有孔,则裸露原子的比例更高。

固体表面的分子与内部分子不同,存在剩余的表面自由力场。

同样的物质,粉末状与块状有着显著不同的性质。

与块状相比,细小粉末更具活性,显示出更好的溶解性,熔结温度更低,吸附性能更好,催化活性更高。

这种影响是如此显著,以至于在某些情况下,比表面积及孔结构与化学组成有着相当的重要性。

因此,无论在科学研究还是在生产实际中,了解所制备的或使用的吸附剂的比表面积和孔径分布有时是很重要的事情。

例如,比表面积和孔径分布是表征多相催化剂物化性能的两个重要参数。

一个催化剂的比表面积大小常常与催化剂活性的高低有密切关系,孔径的大小往往决定着催化反应的选择性。

目前,已发展了多种测定和计算固体比表面积和孔径分布的方法,不过使用最多的是低温氮物理吸附静态容量法。

1.吸附气体与清洁固体表面接触时,在固体表面上气体的浓度高于气相,这种现象称吸附(adsorption)。

吸附气体的固体物质称为吸附剂(adsorbent);被吸附的气体称为吸附质(adsorptive);吸附质在表面吸附以后的状态称为吸附态。

吸附可分为物理吸附和化学吸附。

化学吸附:被吸附的气体分子与固体之间以化学键力结合,并对它们的性质有一定影响的强吸附。

物理吸附:被吸附的气体分子与固体之间以较弱的范德华力结合,而不影响它们各自特性的吸附。

两种吸附的不同特征化 学 吸 附 物 理 吸 附吸附热 吸附速率 发生温度 选择性吸附层 较大需要活化,速率慢高温(高于气体液化点)有选择性,与吸附质、吸附剂性质有关单层较小不需要活化,速率快接近气体液化点无选择性,任何气体可在任何吸附剂上吸附多层由于物理吸附的“惰性”,通过物理吸附的行为及吸附量的大小可以确定固体的表面积、孔体积及其孔径分布。

2.孔的定义固体表面由于多种原因总是凹凸不平的,凹坑深度大于凹坑直径就成为孔。

全自动比表面及孔隙分析仪(BET)麦克和康塔的区别

全自动比表面及孔隙分析仪(BET)麦克和康塔的区别

全自动比表面及孔隙分析仪麦克(Micromeritics)和康塔(Quantachrome):两家的仪器都是目前大家最常用的,做气体吸附,没有太大区别(1)控制页面变化麦克采用等温夹:等温夹适合各种冷浴,包括液氮,液氩,冰水等。

具有专利保护。

康塔采用液位指示灯:时时指示液面,保证及时添加液氮。

好像也是有专利保护的。

(2)微孔分析方法在微孔分析方面,两家用的方法不一样Micromeritics用的是逐步dose法,就是给定一个dose(e.g. 5 cc/g),然后测对应的压力给出的数据是amount relative pressure5 cc/g P110 cc/g P215 cc/g P3...Quantachrome采用固定压力,测对应的吸附量给出的数据是relative pressure amount1E-6 amount 12E-6 amount 23E-6 amount 3所以Micromeritics给出的第一个数据点,吸附量很小而Quantachrome给出的第一个数据点,吸附量较大Quantachrome声称他们的方法最准确,但要很长时间而Micromeritics需要的时间相对少些,但如果 degas不好,低压部分会有个“S”形状康塔的Qudrasorb,就已经就已经可以采取3中方式进行测试,当然包括固定取点,也包括dose,同时还包括低压高压相对测试,和固定与dose并用,功能亦然很强大。

(3)分析站和脱气站以麦克公司的ASAP2020为例,具有一个分析站和两个脱气站,脱气站和分析站各配有独立的真空系统(即脱气站和分析站不共用真空系统),且可以达到脱气+工作站连用;康塔以Autosorb-1MP为例,它的脱气站和分析站共用真空系统,且用康塔仪器在脱气完成后,转移至工作站之前还要再次接触外界气氛。

但是,康塔也有他的好处,他一般Qudrasorb系列就开始采用4个站,可以同时做样。

比表面积及孔隙度分析仪的测量原理是什么?

比表面积及孔隙度分析仪的测量原理是什么?

比表面积及孔隙度分析仪如今被广泛应用于催化剂、燃料电池、电池、纤维、聚合物材料、医药、颜料、化妆品、磁粉、分离膜、过滤器、调色剂、水泥、陶瓷和半导体材料等多个行业,新接触这款仪器的朋友起初可能只能是依样画葫芦,别人怎么用自己就怎么用,到底仪器的原理是什么也不甚清楚。

本文就跟大家聊聊比表面积及孔隙度分析仪的测量原理,并推荐一款还不错的仪器,希望可以帮到大家。

比表面积及孔隙度分析仪在不同仪器上用的原理是不同的,就好比MicrotracBEL 的比表面积及孔隙度分析仪用的是容量法气体吸附和自家研究的ASFM专利,其他公司用的也有重量法等,这些都是根据公司技术选择的。

以MicrotracBEL的比表面积及孔隙度分析仪为例,容量法气体吸附主要测定不同压力下材料对气体的吸附量绘制比表面积曲线,计算得出比表面积及孔隙度。

仪器的原理都大差不差,仪器选得好用的自然才能方便。

这边给大家推荐的是MicrotracBEL 的比表面积及孔隙度分析仪,这款仪器的这几个特点值得为大家推荐。

1.低压力测定:这款仪器有标配分子涡轮泵和较高精度的压力传感器,可以满足低压力的测定;2.利用高气密性的气动阀控制,较传统的电磁阀同样时间内可以保持真空度高出3个数量级;3.实现多样品的测量。

仪器可以实现一个站微孔空隙测定,2个站的Kr同时测定低比表面,3个站的介孔孔隙和比表面积同时测定,多种模式能有效地缩短分析时间,相对而言更快捷;4.校正简便。

测试全过程采用较为准确的ASFM自由体积校正,不必要再使用液位恒定装置,更加简便快捷;5.可以实现多种吸附介质的兼容。

仪器可以实现包含比表面及孔径分布、其它非腐蚀性气体吸附、氪气Kr的低比表面测试、化学吸附、蒸气吸附、其它有机液体的蒸汽吸附等,一个仪器做多种介质的吸附,省心省力省钱;6.操作简便。

采用全自动化设计,仅需点击鼠标,即可完成,节省人力和时间成本。

比表面积及孔隙度分析仪的选购使用以及作用原理都是比较重要的,希望本文可以给到大家一些帮助。

浅述全自动比表面积及孔分析仪的应用

浅述全自动比表面积及孔分析仪的应用

温度下 ,通入含 有氮气的混合气体 ,采用的气体是氦氮混合 气, 氮气为被吸附气体 , 氦气为载气。当样品进仪器进行液氮 浴时 , 器内温度 降低 至 一 9 . 氏度 , 仪 15 8摄 氮分子能量降低 , 在 范德华力作用下被固体表面吸附 , 达到动态平衡 , 形成近似于 单分子层的状态 。 由于 固体表面对气体的吸附作用 , 混合气中 的一部分氮气就会被样品吸附 , 其浓度便会降低 , 而物质 的比 表面积数值 与它的吸附量成正比 ,仪器 内置 的检 测器检测 到
的吸附峰 , 等吸附饱和后氦氮混合气的比例又恢复到原比值 , 基 线重新走平 。 脱附过程 : 吸附过程完毕后 , 等基线 完全走平就可进行脱 附操作 。 脱附操作其实是一个解除液氮浴的过程 , 在常温下吸 附 到物质表面的氮分子会解吸 出来 ,从而使混合气体的氮气 浓度升高 , 仪器 内置的检测器检测到这一变化后 , 数据处理系 统 会将相应 的 电压 变化 曲线转化 为数字 信号通过 计算机运 算, 从而 出现一个 正置的脱附峰 , 等脱 附过 程结束后 , 氦氮 混 合气的比例又恢 复到原 比值 , 基线重新 走平 。
收稿 日 : 010— 4 期 21—2 1
(S P2 2 M A A 0 0 )
中 国 陶 瓷 工 业
21 0 1年 第 3期
表 1 测 试 结 果
T b. Te t g rs l a 1 si e ut n s
被 样 质 () 测 品 量g 样品 称 、 、 名 、
7 787 5 4 . 0
3 78 4 8 .3 3 4 27 4 1 .O 2
7 08 1 7 .4 2
3 2.o 2 7 1o 3 5.6 9 9 O6
42 .

全自动比表面和孔隙度分析仪

全自动比表面和孔隙度分析仪

全自动比表面和孔隙度分析仪*仪器型号:美国康塔(Quantachrome Instruments)AUTOSORB-1(1) 设备名称及用途*1.1 该分析系统是全自动运行的孔径系统,它能在同时测定四个样品的同时,独立地对另外两个样品进行脱气操作。

该系统可以全面测定比表面,孔径分析范围从0.35nm-950um。

(2) 微孔及介孔分析技术指标2.1 该系统必须能产生所需要的吸附和脱附数据,并能计算给出的表面积和如下条目中所列的有关数学模型和参数:*2.1.1 等温线:用户可以在指定的目标压力选择数据点的个数。

*2.1.2 BET比表面积,朗格莫尔表面积*2.1.3 BJH 孔径分布,*2.1.4 Dollimore-Heal*2.1.5 Dubinin-Radushkevich 微孔面积2.1.6 t法:微孔表面积,中孔表面积,微孔体积,相关系数。

*2.1.7 微孔孔径分布模型:至少有MP, HK, SF, DA, 非定域密度函数理论(NLDFT)10种以上。

*2.1.8 密度函数理论(DFT)核心数据库必须包括以下模型:●N2 at 77K on carbon (slit pore, NLDFT equilibrium model)●N2 at 77K on carbon (cylindrical pore, NLDFT equilib. model)●N2 at 77K on carbon (slit/cylindrical pore, NLDFT equilib. model)●Ar at 77K on carbon (slit pore, NLDFT equilibrium model)●Ar at 87K on carbon (cylindrical pore, NLDFT equilibrium model)●CO2 at 273K on carbon (slit pore, NLDFT equilibrium model)●N2 at 77K on silica (cylindrical pore, NLDFT equilibrium model)●N2 at 77K on silica (cylindrical pore, NLDFT ads. branch model)●Ar at 87K on zeolites/silica (spherical/cylindrical pore, NLDFT equilibrium model)●Ar at 87K on zeolites/silica (spherical/cylindrical pore, NLDFT adsorption branch model)●Ar at 87K on zeolites/silica (cylindrical pore, NLDFT equilibrium model)●Ar at 87K on zeolites/silica (cylindrical pore, NLDFT adsorption branch model)*2.1.9 必须提供GCMC模型方法*2.1.10 必须提供QSDFT碳材料计算模型*2.1.11 分形维数:Neimark-Kiselev (NK), Frenkel-Halsey-Hill (FHH)2.2 工作条件必须满足以下要求:*2.2.1 压力传感器系统:分析站必须具有3个不同测量位置的传感器。

全自动比表面和孔隙率测定仪安全操作规程

全自动比表面和孔隙率测定仪安全操作规程
1.2打开仪器开关,将ELECTRONICS和MAINS同时扳上;
1.3开启计算机,打开ASIQ Win软件,点击“iQ: default”下拉列表下的“Instrument profiles”中comm.settings,在弹出的窗口中设置仪器的ip地址为192.168.0.150,然后设置电脑的ip地址为192.168.0.151
1.4点击“iQ: default”下拉列表下的“Instrument profiles”中gas input settings ,
在弹出的窗口中设置仪器的进气端口,仪器通过自检后点击connect连接成功后红色背景变成绿色。
2样品预处理
2.1称量样品
用分析天平称空管重量W1,然后称量空管加样品重量W2;
2.2样品脱气
2.2.1将称重的样品管套上加热包,装于脱气站上,拧紧螺母;
2.2.2操作ASIQ Win软件根据样品的性质设置脱气程序进行脱气工作;
2.2.3脱气结束后称量并记录下样品重量为W3。
3样品分析
3.1分析参数的设置
3.1.1右击鼠标Analysis下拉菜单中选择edit parameters,在弹出的对话框中Common选项内选择P0 options为station evacuation cross-over中则根据样品的实际情况进行选择;
3.1.2在station 1选项中analysis模块内可选择,cell type则根据实际情况选用合适的样品管;
3.1.3在points模块内可调用6BET(比表面测试),mesopore point(介孔分布)micropore point微孔分布);
3.1.4设置完成后点击中OK键即可。
4测试结束后数据处理
防护措施

全自动比表面积分析仪

全自动比表面积分析仪

全自动比表面积分析仪全自动比表面积分析仪(Automated Specific Surface Area Analyzer,ASSA)是一种新型的分析仪器,可以用于快速、精确地测量材料表面积。

仪器结构和原理ASSA由装有气流量计、压力传感器、温度传感器、分子筛装置和电子控制器等多个部分组成。

它的工作原理是基于密闭系统中吸附等温线的测量。

分析过程中,ASSA将样品置于密闭室内,经过程控制器的气体进入系统中。

当气体通过样品时,会吸附在样品表面上,形成一个厚度很薄的气体层。

此时,气体分子之间会产生吸引力,使气体分子向样品表面凝聚。

当样品表面吸附饱和时,气体进一步凝聚的程度达到平衡状态。

在此状态下,ASSA开始测量样品表面积。

它会通过温度和压力的变化来计算出吸附等温线和脱附等温线之间的面积差。

这个面积差就是样品的比表面积。

分析过程使用ASSA进行分析时,首先需要将样品制成适当的形状。

通常情况下,样品需要粉碎,并且在一定的湿度和温度条件下平均分布在样品架上。

接下来,样品和蒸汽均衡,以保证在温度变化时,样品适应了系统气体环境。

接下来,聚集气体开始进入系统中,并且流经样品。

流动的时间很短,只有几秒钟左右,在这个时间段内,样品表面会吸收一定数量的流过的气体。

然后,流经样品的气体持续地向系统中注入。

当样品表面趋于饱和时,流经样品的气体会变化,ASSA会测量样品表面吸附脱附的等温线。

样品表面的比表面积可以通过将吸附等温线和脱附等温线之间的面积差做积分获得。

优点和应用ASSA具有性能稳定、精度高、测量速度快、操作简单等优点。

它可以用于分析多种粉末、纤维、膜以及其他多孔性材料的比表面积。

比表面积分析的结果可以用于帮助制定材料的使用和产品设计方案。

比表面积是材料表面与体积的比例,是材料性能的关键参数之一。

比表面积越大,表面能力就越强,相应的,气体分子与材料表面直接相互作用的可能性也就越大。

因此,将比表面积作为分析参数,可以帮助分析材料的化学性质和物理性质,也可以用于粉末成分分析、催化剂表面活性分析以及纤维材料中孔隙大小的测量等。

全自动比表面积及孔隙度仪操作规程及注意事项

全自动比表面积及孔隙度仪操作规程及注意事项

全自动比表面积及孔隙度仪操作规程及注意事项一、 准备1、检查气体钢瓶压力值0.1-0.15MP;2、冷阱位置杜瓦瓶在开机状态下始终保持有液氮;3、注意分析杜瓦瓶中液氮位置。

二、 开机1、打开外围设备包括:油泵、干泵、电脑、打印机等;2、打开仪器主机开关(白色按钮),仪器和分子泵指示灯亮(显示绿色);3、双击桌面ASAP2020图标打开应用软件;三、 作样操作步骤1、处理样品(必要时先烘干)并称量两个质量:A:空管质量(包括sealfrit密封塞)、B:管加样品的总质量,B-A=脱气前样品质量;2、建立样品文件file-open-sample information file;3、编辑文件信息并保存;4、点击unit-start degas 进行脱气,点击browse选择样品文件;5、脱气后,称管加样品质量C,与空管质量比较,C-A=脱气后样品实际质量;6、点击unit-sample analysis 进行分析,点击browse 选择被选文件,输入样品质量(脱气后样品实际质量)做微孔样品时,开始分析前需要进行第二阶段脱气。

最好在分析站分析前用2号加热包给样品手动加热,操作如下:进入仪器脱气示意图(点击unit1-degas-show degas schematic),点击unit1-degas-enable manual control(进入手动模式),设定二号加热包温度(根据实际样品而定)。

A.如果是颗粒,不容易被抽飞起的样品,进行仪器分析示意图(点击unit1-show instrument schematic),点击unit1-enable manual control(进入手动模式),可以直接打开7、9、2阀门;(建议按B方法)B.如果是粉末样品,最好回填氮气,操作如下:进行仪器分析示意图(点击unit1-show instrument schematic),点击unit1-enable manual control(进入手动模式),关闭所有阀门,打开PS、5、4、7、P1阀门回填一个大气压。

比表面及孔径分析原理和仪器介绍比表面积介绍比表面积定义为

比表面及孔径分析原理和仪器介绍比表面积介绍比表面积定义为

比表面及孔径分析原理和仪器介绍一、比表面积介绍比表面积定义为单位质量物质的总表面积,国际单位是(m2/g),主要是用来表征粉体材料颗粒外表面大小的物理性能参数。

实践和研究表明,比表面积大小与材料其它的许多性能密切相关,如吸附性能、催化性能、表面活性、储能容量及稳定性等,因此测定粉体材料比表面积大小具有非常重要的应用和研究价值。

材料比表面积的大小主要取决于颗粒粒度,粒度越小比表面积越大;同时颗粒的表面结构特征及形貌特性对比表面积大小有着显著的影响,因此通过对比表面积大小的测定,可以对颗粒以上特性进行参考分析。

研究表明,纳米材料的许多奇异特性与其颗粒变小比表面积急剧增大密切相关,随着近年来纳米技术的不断进步,比表面积性能测定越来越普及,已经被列入许多的国际和国内测试标准中。

二、气体吸附法比表面积测试方法有多种,其中气体吸附法因其测试原理的科学性,测试过程的可靠性,测试结果的一致性,在国内外各行各业中被广泛采用,并逐渐取代了其它测试方法,成为公认的最权威测试方法。

许多国际标准组织都已将气体吸附法列为比表面积测试标准,如美国ASTM的D3037,国际ISO标准组织的ISO-9277。

我国比表面积测试有许多行业标准,其中最具代表性的是国标GB/T19587-2004 《气体吸附BET法测定固体物质比表面积》。

气体吸附法测定比表面积原理,是依据气体在固体表面的吸附特性,在一定的压力下,被测样品颗粒(吸附剂)表面在超低温下对气体分子(吸附质)具有可逆物理吸附作用,并对应一定压力存在确定的平衡吸附量。

通过测定出该平衡吸附量,利用理论模型来等效求出被测样品的比表面积。

由于实际颗粒外表面的不规则性,严格来讲,该方法测定的是吸附质分子所能到达的颗粒外表面和内部通孔总表面积之和。

氮气因其易获得性和良好的可逆吸附特性,成为最常用的吸附质。

通过这种方法测定的比表面积我们称之为“等效”比表面积,所谓“等效”的概念是指:样品的表面积是通过其表面密排包覆(吸附)的氮气分子数量和分子最大横截面积来表征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
该仪器主要用于固体粉末的测试,可以得到等温吸附-脱附曲线(达到1000个数 据点),单点,多点BET比表面,Langmuir比表面,总孔体积,应用Halsey, Harkins-Jura曲线,通过T-PLOT方法计算微孔的总孔体积和面积等。
利用低温氮物理吸附(静态容量法)原理,即低温下(通常在液氮温度下),物质 的吸附为物理吸附,可以通过质量平衡方程、静态气体平衡和压力测定来测定吸附 过程。已知量气体由气路充入样品管后,会引起压力下降,由此计算吸附平衡时被 吸附气体的摩尔质量,从而确定等温吸附 -脱附曲线并利用理论模型来等效求出被测 样品的比表面积和孔径分布参数。
?BET二常数公式适合的 p/p0范围:0.05~0.25
用BET法测定固体比表面,最常用的吸附质是 氮气,吸附温度在其液化点 77.2K附近。
低温可以避免化学吸附的发生。将相对压力控 制在0.05~0.25之间,是因为当相对压力低于 0.05时, 不易建立多层吸附平衡;高于 0.25时,容易发生 毛 细管凝聚 作用。
基本原理
在等温条件下,通过测定不同压力下材料对气体 的吸附量 , 获得等温吸附线,应用适当的数学模型推 算材料的 比表面积 , 多孔材料的 孔容积 及孔径分布 , 多组分或载体催化剂的 活性组分分散度。
150
120
[cc/g] 90
STP
me Volu
60
30
Sachtopore 60 Sachtopore 100 Sachtopore 300 Sachtopore 1000 Sachtopore 2000
各类孔相应的测试方法
微孔: 低温静态容量法测定。液氮温度下,用氪气作 为吸附气体。(在液氮温度下,氪气的饱和蒸 气压为3~5mmHg, p/p0的p就可以很小)。
中孔: 低温静态容量法测定。液氮温度下,以氮气作 为吸附气体。
大孔: 压泵法测定。
全自动比表面积及孔隙度分析仪 Gemini V2380
§3.5 全自动比表面及孔隙度分析仪
Automatic surface area and porosity analyzer
引言
比表面积和孔径分布 是表征多相催化剂物化性 能的两个重要参数。一个催化剂的比表面积大小常 常与催化剂活性的高低有密切关系,孔径的大小往 往决定着催化反应的选择性。
定义
比表面积 :单位质量物质的总表面积( m2/g), 是超细粉体材料 特别是纳米材料 最重要的物性之一。
可以观察到 迟滞回线。 ? 在p/p0值较高的区域可观察到一个平台,有时以
等温线的最终转而向上结束 (不闭合)。
V和VI型等温线的特点
? V型等温线的特征是向相对压力轴凸起。 V型等温 线来源于微孔和介孔固体上的弱气-固相互作用, 而且相对不常见。
? V型等温线以其吸附过程的 台阶状特性 而著称。这 些台阶来源于 均匀非孔表面 的依次多层吸附。这种 等温线的完整形式,不能由液氮温度下的氮气吸附 来获得。
0
0
0.2
0.4
0.6
0.8
1
P/P 0
由国际纯粹与应用化学联合会(IUPAC )提出 的物理吸附等温线分类
I型等温线的特点
? 在低相对压力区域,气体吸附量有一个快速增长。 这归因于微孔填充 。
? 随后的水平或近水平平台表明,微孔已经充满,没 有或几乎没有进一步的吸附发生。
? 达到饱和压力时,可能、分子筛沸
石和某些多孔氧化物 ,表现出这种等温线。
II型和III等温线的特点
? II型等温线一般由 非孔或大孔固体 产生。B点通 常被作为单层吸附容量结束的标志。
? III型等温线以向相对压力轴凸出为特征。这种 等温线在 非孔或大孔固体上发生弱的气-固相 互作用时出现,而且 不常见。
IV型等温线的特点
? IV型等温线由 介孔固体 产生。 ? 典型特征是 等温线的吸附曲线与脱附曲线不一致 ,
(3)B点法
当C值很大时, B点对应第一层吸附达到饱 和,其吸附量 VB近似等于Vm,由Vm求出吸附剂 的比表面积。
(4)单点法
氮吸附时 C常数一般都在 50-300之间,所 以在BET作图时截距常常很小,在比较粗略的
计算中可忽略,即把 p/p0在0.05~0.25左右的一个 实验点和原点相连,由它的斜率的倒数计算 Vm 值,再求算比表面积。
(2)BET比表面积:
实验测定固体的吸附等温线,可得到一系 列不同压力 p下的吸附量值 V,将p/V(p0-p)对p/p0 作图,为一直线,截距为 1/VmC,斜率为(C1)/VmC。
Vm=1/( 截距 +斜率 )
吸附剂的比表面积: SBET=Vm·L·σm
?此公式目前测比表面应用最多;
?以77K,氮气吸附为准,此时 σm=16.2 ? 2
BET吸附等温方程
(1)吸附等温方程: BET理论的吸附模型是建立在 Langmuir吸附模型基础上的,同时认为物理吸附可分 多层方式进行,且不等表面第一层吸满,在第一层之上 发生第二层吸附,第二层上发生第三层吸附,……,吸 附平衡时,各层均达到各自的吸附平衡,最后可导出:
式中,C为常数 此即一般形式的BET等温方程,因为实验的目的是 要求出C和Vm,故又称为BET二常数公式。
孔:固体表面由于多种原因总是凹凸不平的,凹 坑深度大于凹坑直径就成为孔。
微孔(micropore) < 2nm 中孔(mesopore) 2~50nm 大孔(macropore) 50~7500nm 巨孔(megapore) > 7500nm(大气压下水银可进入)
孔容积或孔隙率: 单位质量的孔容积, m3/g
测定比表面的方法很多,其中氮吸附法是最常用、 最可靠的方法,已列入国际标准和我国国家标准。氮吸 附法分为静态容量法、静态重量法和动态法(又称连续 流动色谱法)三种。
BET法是BET比表面积检测法的简称,该方法是依 据著名的BET理论为基础而得名。BET是三位科学家 (Brunauer、Emmett和Teller)的首字母缩写,三位科 学家从经典统计理论推导出的多分子层吸附公式基础上, 即著名的BET方程,成为了颗粒表面吸附科学的理论基 础,并被广泛应用于颗粒表面吸附性能研究及相关检测 仪器的数据处理中。
相关文档
最新文档