【2019年整理】现代医学电子仪器原理与设计课件第二版第一章
现代医学电子仪器原理与设计第二版-第三章PPT课件
.
15
理想情况下:第一级输出不产生共模电压; 选择A1,A2的性能参数,使之精确匹配, 可充分发挥对称电路误差电压抵消的优点, 并能获得低漂移。
第一级放大器放 :A大 d1倍 12数 RRW F1
非理想情况下:考虑A1,A2器件本身的 共模抑制能力:
UocCU M ic 2R-CRU M ic 1R A R d1
.
10
;R;R;R R 1 R 1 ( 1 1 )2 R 2 ( 1 2 )3 R 3 ( 1 3 )F R F ( 1 F )
A c 1(1 1 1 ) 1 ( F 2) 2R F3 R 1(1 1 2 1)1 1 ( F2)
通常: 1,2,3,F 1;
Ac1
1
IR1Ui1R 1U IRFUR FUo
Uo
U
RF R1
Ui1U
Uo1R RF 1R2R 3R3Ui2R RF 1Ui1
1R RF 1R2R 3R3R RF 1Uic1R RF 1R2R 3R3R RF 1U 2id
: ; : U o U o cU odU oc共模 U o 输 d差 出 模
.
9
令 : 1R R F 1 R 2R 3R 3R R F 10 (31)4
CMRR Ad Ac1
为了补偿放大均 器偏 输值 入电 平流及 : 其漂 令:R1//RF R2//R3R1R2,RF R3(316)
此:时 AdR RF 1 (31)7
:A 非理想 c 1 1 情 R R F 1 R 2 R 况 3 R 3 R R 下 F 1 (3 1)8
差动放大电路分析方法; --满足:高共模抑制比;低噪声、低漂移。 生物电放大器前置级的基本要求: 高输入阻抗; 高共模抑制比; 低噪声、低漂移; 差分电路解决了高共模抑制比; 尚未解决问题:高输入阻抗;
现代医学电子仪器原理与设计课件第二版第一章
信号 处理
记录 显示
刺激 激励
信号校准
数据 存储
数据 传输
图1-1 医学电子仪器结构框图
生物信号采集系统:被测对象,传感 器;
生物信号处理系统:信号预处理、信 号处理;
生物信号的记录显示系统:直接记录, 存储记录,数字式显示;
辅助系统:控制和反馈、数据存储和 传输、标准信号产生和外加能量等。
二. 医学仪器的工作方式 直接和间接方式:
一.系统模型与建模关系
建立模型:确 结定 构系统的 , 边界 建模的任 : 务鉴别系统系统 、属 的性 实和 体。活动
提供数:要 据求各个属性关 间系 有 。 确定
在选择模型结构时,要满足两个前提条件: 一是要细化模型研究的目的; 二是要了解有关特定的建模目标与系统结构 性质之间的关系。
系统模型的结构具有以下性质:
仪器内部噪声:UN输= i 2入0l端gUA短NUO路时的噪声电压。
零点漂移:输入量恒定不变(或无输入信号)
时,输出量偏离原起始值而上下漂动,缓慢
变化的现象。CMRR= Ad
共模抑制比:
AC
Ad
Ac
:差模增益; :共模增益。
二.医用仪器的特殊性 生物信号检测(医用诊断仪器):活标体本检化测验
生物系统不同于物理系统,在检测过程中,它 不能休止运转,也不能拆卸。因此,人体及生 物信息的特殊性构成了医用仪器的特殊性。
四.医用仪器分类
诊断用仪器:断 生监 物护 电、 诊生理监 功护 能、
按用途 分
组织成分分析。、像诊断
理疗用仪器:疗 电、 疗磁 、疗 光、超。 声波
第四节 生理系统的建模与仪器设计
构造一个真实系统的模型,在模型上进行实 验,成为系统分析、研究的十分有效的手段。 为了达到系统研究的目的,系统模型用来收 集系统有关信息和描述系统有关实体。也就 是说,模型是为了产生行为数据的一组指令, 它可以用数学公式、图、表等形式表示。模 型是对相应的真实对象和真实关系中那些有 用的和令人感兴趣的特性的抽象,是对系统 某些本质方面的描述,它以各种可用的形式 提供被研究系统的描述信息。
现代医学电子仪器原理与设计复习指导(含答案)
现代医学电子仪器原理与设计复习指导(含答案)现代医学电子仪器原理与设计复指导(含答案)第一章医学仪器概述医学仪器的工作方式分为直接和间接、实时和延时、间断和连续、模拟和数字。
根据用途不同,医学仪器通常分为诊断用仪器和理疗用仪器。
诊断用仪器包括生物电诊断与监护、生理功能诊断与监护、人体组织成分的电子分析、人体组织结构形态影像诊断。
理疗用仪器包括电疗、光疗、磁疗与超声波治疗。
生理系统的建模与仿真方法是为了研究、分析生理系统而建立的一个与真实系统具有某种相似性的模型,然后利用这一模型对生理系统进行一系列实验,这种在模型上进行实验的过程就称为系统仿真。
建模是医学仪器设计的第一步和关键,是对生命对象进行科学定量描述的产物。
建模关系即模型的有效性度量主要包括复制有效,在系统输入与输出上认识系统;预测有效,对系统内部状态及总体结构认识清楚;结构有效,内部状态、总体结构及分解结构均有了解等三个层次。
广义而言,生理系统的模型不仅包括人造的物理或数学的模型,也应包括动物模型。
建模即建立一个在某一特定方面与真实系统具有相似性的系统,真实系统称为原型,而这种相似性的系统就称为该原型系统的模型。
模型的建立蕴含的三层意思即理想化、抽象化和简单化。
模型可分为数学模型、物理模型和描述模型三种。
按照真实系统的性质而构造的实体模型即物理模型。
对生理系统而言,其物理模型通常是由非生物物质构成的,根据其与原型相似的形式可分为如下四种类型:几何相似模型、力学相似模型、生理特性相似模型、等效电路模型。
数学模型是用数学表达式来描述事物的数学特性,它不像物理模型那样追求与客观事物的几何结构或物理结构的相似性,但可较好地刻划系统内在的数量联系,从而可定量地探求系统的运转规律。
构造一个数学模型主要包括系统中各个作用环节的描述即寻求一个适当的数学运算关系来描述系统的结构、功能和内在联系和表征系统的固有特征量的提取即主要来源于实验数据的参量提取两个方面的内容。
医学电子仪器与基础电子电路(1).ppt
还应指出,当整流电路加入电容滤波后,二 极管导通时间很短,而导通电流—方面要对电 容充电以补充电容放电时所损耗的电荷,同时 又冲很要大向(负见载图R中L供输出电波,形所加以竖通线过的二部极分管)的,电这流点脉在 选择二极管的最大整流电流时应加以考虑。
电容滤波的优点是电路简单,输出电压的
脉动程度大大减小。但当负载较大时,放电加 快,输出电压的脉动程度仍然较大。如果增加 电容量,则充电电流太大,容易损坏二极管, 故这种电路一般只适用于要求输出电压较高, 负载电流小并且变化也较小的场合。
1.电容滤波
上图是带有电容滤波的半波整流电路,电容C与 负载并联。
当U2为正半周时,二极管D导通,电流向负 载供电,同时对电容C充电。在充电期间,电容 C上的电压Uc逐渐增大,直到接近于交流电压U2 的最大值,此后U2下降,由于此时Uc>U2,二 极管截止,电容C向RL放电,直到二极管又导 通时,电容器又充电,这样由于电容器的充放 电作用,使在一个周期内总有电流供给负载RL。 图(b)是这种电路的输出波形图。从图中可以看 到,加上电容C以后,输出电压的脉动程度要平 滑得多,这就是电容的滤波作用。
时压间就常 较电数 平容τ滑器=。R放L如电×果的C,是快τ采慢愈用取大桥决,式于放或R电L全与时波C间的整长乘流,积的输,电出即容电
滤波电路,其滤波原理与半波整流电容滤波相同,
输出波形见上图。它的特点是在交流电的正、负 半周,整流电流对电容C充电两次,这样电容器 向稳负。载RL放电时间缩短了,因此输出电流就更平
半波整流电路简单,但输出直流电压
的平均值不到电源电压有效值的一半,整 流效率低,而且不平稳,交流成分比较大, 因而并不适用于医学检测仪器中。
2.全波整流电路
右图是全波整流电路。它 实际上是由两个半波整流 电路组成,这样就可以完 全利用交流电的每一个半 周,故称为全波整流。变 压器B的次级线圈具有中心 抽头“O”,A、B两点电压 大小相等,位相差为180。 其整流原理是在电源电压 的正、负半周时,二极管 D上l、总D有2轮同流一导方通向,的负电载流R通L 过。
医用电子仪器分析与维护 第1章_医学仪器概述
核心:自然科学+工程技术 研究对象:生物体
人体的结构、功能和其他生命现象;
目的:防病、治病、人体功能辅助及卫生保健 的人工材料、制品、装置和系统。
3
医学仪器与生物医学工程
生物医学工程多种学科与生物医学相结 合的产物。
4
医学仪器与生物医学工程
现代医学仪器与生物医学工程学的关系
医学仪器是生物医学工程成果的载体。 生物医学工程研究的成果是现代医学仪器设计和 开发的核心和基础。
47
Zr是传感器与被测对象的阻抗 Vr是生物电信号 Zi为系统的输入阻抗, Vi为输入电压
1.4 医学仪器的特性与分类
4)灵敏度(sensitivity):
---指仪器在稳态下输出变化量和输入变化量之比,可表示 为: A0 S A i 式中S为灵敏度,A0和Ai分别为输出量变化和输入量变化
保持或恢复到能执行所需功能的状态所进行的 全部技术措施和管理活动。
68
1.5 医学仪器的开发与维修
医学仪器故障诊断与维修通用法则 什么是医学仪器维修?
修复或校正医学仪器系统故障。 什么是医学仪器系统?
仪器系统 操作者 环境 仪器
医学仪器系统三要素
69
Ad CMRR AC
Ad差模增益, Ac为共模增益
共模抑制比主要由电路的对称度决定,也是克服温度漂移 的重要因素。
54
1.4 医学仪器的特性与分类
二、医学仪器的特殊性: 人体检测特殊性
生物信号特殊性
噪声特性:
个体差异与系统性
接触界面的多样性
生理机能的自然性
55
操作与安全性
1.4 医学仪器的特性与分类
现代医学电子仪器原理与设计课件第二版第五章
平均压:是在整个心动周期动脉压一平均值,由下式计算:
MP通常用以评价整个心血管系M 统的 状D P 况。 P S P D P (51 ) ○ 例如:整个心血管的阻力( SVR)便可用平均压3( MP),中心静脉压( CVP)和心排量
(CO)求得。
平
均
左 心
压 (
MP
室
压
S ( M V C R C P ) V 8 O ( 0 5 P 2 ) )
ICL7106 3位半数字万用表芯片,它 包括A/D 转换电路、LED 数码管显示、 驱动 ,仅仅使用一只 DC9V 电池,数 字电压表就可以正常使用了。Rp2为满 量程调整电位器。
U U;I I 0
运放A4:U1 U1 UO1 U1
R1 RT
03 导 管 进 入 测 压 部 位 , 可 能 影 响 血 液 正 常 流 通 , 甚 至 产 生 堵塞现象,从而造成测压误差。
04 传 感 器 的 感 压 面 与 插 入 体 内 的 测 压 导 管 端 口 不 是 处 在 同 一等压面上,其差值将直接导致测压误差,尤其是在测 量数值较低的静脉压时这个误差不能忽视。
1
连接导管腔与血压传感器 的管道,若采用可塑性较 强的一般输液管,其管腔 可能因血压的高低而舒张 和收缩,也可能因外部物 品挤压管道或管道扭动、 弯曲或管外的振动而导致 测压误差即产生所谓的的 导管鞭形畸变,如图512C所示。
2
在血压监护系统中,所使 用的连接三通接头制作各 异、内腔粗细不匀,导致 血液流动时的局部速度改 变,也会影响测压精度。
大气压力在人体中分布是均匀的,当测量人体相对压力值时,大气压力变化不会影响测量结果。但是, 当测量绝对压力时,大气压的变化就必须考虑,即在测量过程中应随时标测当时的大气压。
现代医学电子仪器原理与设计课件第二版_第二章[46P][5.65MB]
设放大器输出端噪声为U no , 是由U ns ,U n 和I n 造成, 它们各自对U no的贡献:
U ns : U o1 U ns
Zi A Rs Z i
b)
I.
干扰耦合途径
传导耦合:经导线传播把干扰引入测试系统。 如:交流电源线、测试系统中的长线 。 经公共阻抗耦合: Rcs
Vc1 Vcs
II.
前 置 级
电 路 I
电 路 II
Rce
III.
近场: 远场: 2 2
电场和磁场耦合
:电磁波波长
电场干扰:主要以电容耦合引入。 磁场干扰:主要以电感性耦合引入干扰。 近场干扰: 1MHz 近场<300m 30kHz 近场<10km。
第一节 人体电子测量系统中的电磁干扰
一. 干扰的引入
干扰形成的三个条件:干扰源、耦合通道(即引 入方式)与敏感电路(即接收电路)。
干扰源 耦合通道 敏感电路
a)
干扰源:能产生一定的电磁能量而影响周围电路 正常工作的物体或设备。
自然界的干扰 外界干扰源: 周围电气、电子设备的干扰 50Hz工频干扰
Zin
Zin
ZG
Cd2 ZG
人体内位移电流通过右腿接地电阻ZG产生共模 干扰,在理想情况下,共模干扰通过系统的高共 模抑制比被克服。
VI.
生物电测量中磁场的电感性耦合(图2-14)
在人体和测试系统输入回路构成环路时,将在环路中感 应出干扰电压,其幅度为: SB cos
一般病室中B cos 3.2 10 7 Wb / m 2 则50 Hz感应电压 100 S ( V )。 回路面积限定在0.1m 2以下方可使电感耦合干扰电压小于10V
现代医学电子仪器原理与设计考试重点(精简版)
现代医学电子仪器原理与设计考试重点现代医学电子仪器原理与设计考试重点第一章医学仪器概述 1、人体系统的特征人体是一个复杂的自然系统,分为器官自控制系统、神经控制系统、内分泌系统和免疫系统。
器官自控制系统具有不受神经系统和内分泌系统控制的机制,如心脏的收缩与舒张。
神经控制系统是一种由神经进行快速反应的控制调节机制,如人的喜怒哀乐。
内分泌系统通过循环系统的路径将信息传到全身细胞进行控制。
免疫系统识别异物,排斥异物。
2、人体控制功能的特点负反馈机制、双重支配性、多重层次性、适应性、非线性。
3、生物信号的基本特性不稳定性、非线性、概率性、信号弱、噪声强、频率范围低。
4、生物信号类型电信号机体的各种生物电利用材料的物理变化非电信号利用化学反应把化学成分、浓度转换成电信号利用生物活性物质选择性识别来测定生化性质 5、医学电子仪器从功能上来说主要有生理信号检测和治疗两大类。
6、医学电子仪器的基本构成 1)生物信号采集系统包括被测对象、传感器或电极 2)生物信号处理系统包括信号与处理和信号处理预处理一般包括过压保护、放大、识别4)辅助系统包括控制和反馈、数据存储和传输、标准信号产生和外加能量源控制和反馈分为开环和闭环两种调节控制系统。
手动控制、时间程序控制均属开环控制;通过反馈回路对控制对象进行调节的自动控制系统称为闭环系统。
外加能量源是指仪器向人体施加的能量准确度---越小越好,不存在准确度为零的仪器,准确度也称为精度准确度=精密度可以表示在相同条件下用同一种方法测量所得数值的接近程度。
3) 输入阻抗---越大越好,外加输入变量与相应应变量之比生物放大电极应大于输入电阻的100倍电极-皮肤接触电阻 2~150K 引线和保护电阻 10~30K 体表电极 10~150K 4) 灵敏度输出变化量与引起它变化的输入变化量之比。
当输入为单位输入量是,输出量的大小即为灵敏度的量值。
5)频率响应仪器保持线性输出时允许其输入频率范围的变化,是衡量系统增益随频率变化的尺度 6)信噪比信号功率PS与噪声功率PN 之比 7)零点漂移仪器的输入量在恒定不变干扰源:能产生一定的电磁能量而影响周围电路正常工作的物体或设备主要干扰是近场50赫兹干扰源,因为生物电信号中大都包含有50赫兹的频率成分,而且生物电信号的强度远小于50赫兹的干扰。
现代医学电子仪器原理与设计PPT课件
要求离患者2.5m范围内要取得等电位化, 这个范围称为患者环境。 现代医学电子仪器原理与设计
四、预防电击的措施 (七)辅助绝缘
在基础绝缘的基础上,再加强一层绝缘, 称为辅助绝缘。
现代医学电子仪器原理与设计
四、预防电击的措施
(八)医用安全超低压电源
3.信号隔离
在绝缘部分中,触体部分和其他部分之间进 行了电路绝缘,但还必须能够传送信号,能实 现这个任务的就是信号隔离。
现代医学电子仪器原理与设计
四、预防电击的措施 信号隔离是依靠电磁耦合或光电耦合来传
送信号的。
现代医学电子仪器原理与设计
第三节 医用电子仪器的接地 一、医院配电方式
载 接 地 方 式
电气安全:把意外电击的危险降低到尽可能 小的程度。
对于医用电子仪器在临床上的应用而言, 安全指的是应用过程中确保对患者和医护人员 不造成危害,即保证人员的安全。另外,广义 而言,医用电子仪器的电气安全还应包括仪器 本身的安全。
现代医学电子仪器原理与设计
二、电流的生理效应
人体的体液是包含有多种离子的液体构成 的,是一种比较复杂的特殊电解质,因此人体 本身就是一个良好的导体,当人体成为电路的 一部分时,就有电流通过人体,从而引起生理 效应。 注意:引起生理效应和人体损伤的直接因素是
任何两个插座地线之间的电压不应超过 20mV,而电阻不应超过0.1Ω。在任一插座地 线和任一病人附近的外露导体表面之间的电 压不应超过0.5V,电阻不应超过0.5Ω。 3.绝缘电源系统的检验
现代医学电子仪器原理与设计
现代医学电子仪器原理与设计
三、产生电击的因素 电阻性泄漏电流的形成是由于电源线或变 压器一次侧与金属外壳间存在的绝缘电阻造成 的。
医学电子仪器原理与技术课件
心电监护仪的应用场景包括手术室、重症监护室、急诊室 等,用于实时监测患者的心电情况,及时发现异常并采取 相应措施。
心电监护仪的优点包括操作简便、实时性强、可长时间连 续监测等,但也存在一些局限性,如易受干扰、不能完全 替代心电图机等。
介绍医学电子仪器中使用的各种算法,如 信号处理算法、控制算法等。
软件开发工具
软件测试与验证
阐述在医学电子仪器软件开发中使用的工 具和技术,如集成开发环境(IDE)、版本 控制系统等。
说明如何对医学电子仪器的软件进行测试 和验证,以确保其功能和性能。
医学电子仪器的系统集成与测试
系统集成
描述如何将医学电子仪器的硬件和软件 进行集成,形成一个完整的系统。
总线技术
采用标准化的总线技术,如USB、CAN等,实现模块 之间的通信。
集成测试
在仪器制造过程中,需要进行严格的集成测试,确保 各个模块之间的兼容性和稳定性。
03
医学电子仪器的技术
医学电子仪器的信号检测技术
信号检测技术
医学电子仪器通过特定的传感器将生理信号 转换为电信号,以便进行后续处理和分析。
THANKS
感谢观看
超声成像仪的应用实例
超声成像仪是一种利用超声波回声成 像的医学电子仪器,可以无创地观察 人体内部结构,广泛应用于妇科、产 科、心血管等领域。
超声成像仪的优点包括无创、无痛、 无辐射等,但也存在一些局限性,如 对气体和骨骼的穿透能力较弱、分辨 率较低等。
超声成像仪的应用场景包括产前检查 、妇科疾病诊断、心脏疾病评估等, 能够提供高清晰度的图像,帮助医生 准确判断病情。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单性:实用的前提下,模型越简单越好;
多面性:对同一系统可以产生相应于不同层 次的多种模型;
模型的有效性用符合程度来度量,它可分为 以下三个不同级别的模型有效:
现代医学电子仪器 原理与设计
第二版
主 编 余学飞 主 讲 叶哲江
课程要求
课 程 要 求: 课程要求:不得缺席、迟到、早退。 作业,辅导(周四下午系办)。 考试成绩:平时成绩20%,实验10%,考试 70%。
本课程意义:
专业定位为:医用仪器设计、使用及维护。 学习医用仪器的结构、原理; 撑握医用仪器设计、使用、维护方法; 为就业及工作打下一定的基础。
第一章 医学仪器概述
医学仪器:主要用于对人体的疾病进 行诊断和治疗,其作用对象是复杂的 人体,所以医学仪器与其它仪器相比 有其特殊性。
在医学仪器没有大量出现前,医生主 要凭经验通过手和五官来获取诊断信 息。现在,医学仪器可以将人体的各 种信息提供给医生观察和诊断。
y kx b
第一节 生物信号知识简介
1. 噪声特性:
生物信号一般为微弱、低频信号,常见的交流感 应噪声和电磁感应噪声危害较大。一般来说,限 制噪声比放大信号更有意义。
2. 个体差异与系统性:
个体差异相当大,医用仪器必须适应人体的差异。 人体又是一个复杂的系统测定某部分机能状态时 必须考虑相关因素的影响。
3. 生理机能的自然性:
在检测时,应防止仪器。
生理系统建模:是对系统整体各个层次的行 为、参数及其关系建立数学模型的工作,最 终希望用数学的形式表达出来。
建模的目的:是为了更好地了解生物系统的 行为及规律,为生物控制奠定基础。
意义:生物系统建模与仿真可以将生物系统 简化为数学模型并对此模型进行计算分析, 从而代替实际的复杂、长期、昂贵及至无法 实现的实验,大大提高研究效率和定量性, 并可研究人为施加控制条件以影响生物系统 运行过程。
四. 医用仪器分类
诊断用仪器:生物电诊断监护、生理功能诊断监护、
按用途分
组织成分分析、像诊断。
理疗用仪器:电疗、光疗、磁疗、超声波治疗。
第四节 生理系统的建模与仪器设计
构造一个真实系统的模型,在模型上进行实 验,成为系统分析、研究的十分有效的手段。 为了达到系统研究的目的,系统模型用来收 集系统有关信息和描述系统有关实体。也就 是说,模型是为了产生行为数据的一组指令, 它可以用数学公式、图、表等形式表示。模 型是对相应的真实对象和真实关系中那些有 用的和令人感兴趣的特性的抽象,是对系统 某些本质方面的描述,它以各种可用的形式 提供被研究系统的描述信息。
一. 人体系统的特征 人体是一个复杂的自然系统,它由八大系统组成: 运动、循环、呼吸、消化、排泄、神经、内分泌 和生殖系统组成。
二. 人体控制功能的特点
负反馈机制:人体系统对外界干扰是稳定的。 反馈:将输出信息传递到输入端称为反馈。 负反馈:输出反馈量与输入量的极性相反。 负反馈的作用: 双重支配性:生物体很少以一个变量的正负值来单独控制。 多重层次性:上一级环路对下一级环路进行控制。 适应性:根据外界的刺激改变控制系统本身。 非线性:
一. 系统模型与建模关系
建立模型结构 : 确定系统的边界,
建模的任务
:
鉴别系统系统的实体、 属性和活动。
提供数据 : 要求各个属性间有确定关系。
在选择模型结构时,要满足两个前提条件: 一是要细化模型研究的目的;
二是要了解有关特定的建模目标与系统结构性 质之间的关系。
系统模型的结构具有以下性质:
二. 医学仪器的工作方式 直接和间接方式:
直接工作方式: 间接工作方式:
实时和延时方式:
实时工作方式: 延时工作方式:
间断和连续: 模拟和数字:
Z=Vi Ii
第三节 医学仪器的特性与分类
一. 医学仪器的主要技术特性
1.
准确度:
准确度
理论值 测量值 理论值
100%
2. 精密度:在相同条件下用同一种方法多次测量所 得数值的接近程度。
4. 接触界面的多样性:
传感器(电极)与被测对象间有一个合适接触良好 的界面。
5. 操作与安全性:
医用仪器的检测对象是人体。应确保电气安全、辐 射安全、热安全和机械安全,有时因操作失误产生 的危害也是不允许的。
操作者是医生或医辅人员,仪器操作必须简单、 安全、适用、可靠。
三. 典型医学参数(了解) P9 表1-1
反馈 控制
信号 处理
记录 显示
刺激 激励
信号校准
数据 存储
数据 传输
图1-1 医学电子仪器结构框图
生物信号采集系统:被测对象,传感 器;
生物信号处理系统:信号预处理、信 号处理;
生物信号的记录显示系统:直接记录, 存储记录,数字式显示;
辅助系统:控制和反馈、数据存储和 传输、标准信号产生和外加能量等。
3. 输入阻抗: Z X1 X2
4. 灵敏度:输出变化量与引起它变化的输入变化量 之比。
S = PS N PN
5. 频率响应:仪器保持线性输出时,允许输入频率变 化的范围。
6. 信噪比:信号功率与噪声功率之比。 S PS 噪 声:除被测信号之外的任何干扰。 N PN
噪声内外部部噪噪声声::电电路磁本干身扰的热噪声等。 仪器内部噪声:输入端短路时的噪声电压。
y kx b
三. 生物信息的基本特性
不稳定性:如心电、血压等由于精神紧张, 心电畸变,血压升高。 非线性: 概率性: 四. 生物信息的检测与处理 生物信号检测:微弱、低频信号检测。 生物信号处理:时域、频域信号处理。
第二节 医学仪器的结构和工作方式
一. 医学仪器的基本构成
信号 采集
信号 预处理
U
Ni=20
lg
U NO AU
7. 零点漂移:输入量恒定不变(或无输入信号)时, 输出量偏离原起始值而上下漂动,缓慢变化的现象。
8. 共模抑制比: CMRR= Ad
AC
Ad :差模增益;Ac :共模增益。
二. 医用仪器的特殊性 生物信号检测(医用诊断仪器): 标本化验
活体检测
生物系统不同于物理系统,在检测过程中,它不 能休止运转,也不能拆卸。因此,人体及生物信 息的特殊性构成了医用仪器的特殊性。