浙教版数学八上知识点汇总及典型例题

合集下载

浙教版八年级上数学期中考点及方法汇总全

浙教版八年级上数学期中考点及方法汇总全

可编辑修改精选全文完整版八年级上期中考点及方法汇总考点一、全等的性质和判定5个全等的判定(SSS SAS ASA AAS HL ) 一个反例(SSA )考点二、角平分线定理逆定理、中垂线定理逆定理 1、角平分线定理及逆定理2、中垂线定理及逆定理【典型例题】1、如图,△ABC 的角平分线AP 和外角平分线BP 相交于点P ,求证:点P 也在∠BCD 的平分线上2、如图,已知△ABC 的两边AB ,AC 的垂直平分线相交于点O ,求证:点O 在边BC 的垂直平分线上.考点三、等腰的性质和判定性质:1、等边对等角 2、三线合一判定:1、等角对等边 2、两线合一 (需证明)考点四、等边三角形性质和判定性质:1、三边相等 2、三角相等,都是60° 3、三线合一 4、边长为a ,高是a 23,面积是243a 判定:1、两个角是60° 2、一个角是60°的等腰三角形考点五、直角三角形性质和判定性质:1、锐角互余 2、斜边上的中线等于斜边的一半 3、30°所对直角边是斜边的一半 4、222c b a =+常见的勾股数:(3,4,5) (5, 12 ,13 )(6, 8 , 10 )(7,24,25)(8,15,17)(9,40,41)特殊角的三边关系判定:1、两锐角互余的三角形 2、222c b a =+ 3、一边上的中线等于这边的一半考点六、三角形中的分类讨论(有图有真相,没图有陷阱) 1、三角形边、角、高不确定时需分类讨论2、找等腰三角形:两圆一线求等腰三角形、直角三角形存在性的方法:(1)几何法(2)代数法(将线段用未知数表示出来,再分类讨论)常见作法:1、做几何题先观察有没有特殊三角形:全等三角形、等腰三角形、直角三角形 有没有:中点、等边、等角、特殊角有没有:中线、垂线、角平分线、中垂线 有没有特殊结构:比如222c b a =+,或线段和差2、将条件标注在图上。

(完整版)浙教版初中数学八年级上册知识点及典型例题

(完整版)浙教版初中数学八年级上册知识点及典型例题

数学八年级上册知识点及典型例题第一章平行线1.1同位角、内错角、同旁内角所截,构成了八个角。

如图:直线l , l被直线l321L3 a3L1 14a12358L2 a267的同旁,并且分别位于直线l , ll 的相同一侧,这样的一51. 观察∠1与∠的位置:它们都在第三条直线231对角叫做“同位角”。

2. 观察∠3与∠5的位置:它们都在第三条直线l的异侧,并且都位于两条直线l , l 之间,这样的一对213角叫做“内错角”。

3. 观察∠2与∠5的位置:它们都在第三条直线l的同旁,并且都位于两条直线l , l之间,这样的一对角231叫做“同旁内角”。

想一想问题1.你觉得应该按怎样的步骤在“三线八角”中确定关系角?确定前提(三线)寻找构成的角(八角)确定构成角中的关系角问题2:在上面同位角、内错角、同旁内角中任选一对,请你看看这对角的四条边与“前提”中的“三线”有什么关系?结论:两个角的在同一直线上的边所在直线就是前提中的第三线。

1.2 平行线的判定(1)复习画两条平行线的方法:A A L12L1o抽象成几何图形(图形的平移变换)L1oL B2B.21)怎样用语言叙述上面的图形?提问:(1 被AB所截)(直线l,l 21(2)画图过程中,什么角始终保持相等?2)(同位角相等,即∠1=∠位置关系如何?,3)直线ll (21)l∥l (21(4)可以叙述为:2∵∠1=∠)(∥∴ll ? 1 2。

语言叙述:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简单地说:同位角相等,两直线平行。

21=∠几何叙述:∵∠l∥l(同位角相等,两直线平行)∴ 2 1想一想c a21b若a⊥b,b⊥c则a c2在同一平面内,垂直于同一条直线的两条直线互相平行。

平行线判定方法的特殊情形:2)1.2 平行线的判定(CDAB与=180°,则AB与CD平行吗?②若∠2+∠4图中,直线AB 与CD被直线EF所截,①若∠3=∠4,则平行吗?E1A B432 C DF°42+∠=180°,∠2+∠3=180 ,∠①∵∠3=∠41=∠4 ②∵∠=∠4 ∴∠3 1∴∠=∠3)()∴AB∥CD (∥∴ABCD内错角相等,两直线平行两条直线被第三条直线所截,如果内错角相等,则两条直线平行。

(完整版)浙教版初中数学八年级上册知识点及典型例题

(完整版)浙教版初中数学八年级上册知识点及典型例题

数学八年级上册知识点及典型例题第一章 平行线1.1同位角、内错角、同旁内角如图:直线l 1 , l 2 被直线l 3 所截,构成了八个角。

1. 观察∠ 1与∠5的位置:它们都在第三条直线l 3 的同旁,并且分别位于直线l 1 , l 2 的相同一侧,这样的一对角叫做“同位角”。

2. 观察∠ 3与∠5的位置:它们都在第三条直线l 3的异侧,并且都位于两条直线l 1 , l 2 之间,这样的一对角叫做“内错角”。

3. 观察∠ 2与∠5的位置:它们都在第三条直线l 3的同旁,并且都位于两条直线l 1 , l 2之间,这样的一对角叫做“同旁内角”。

想一想问题1.你觉得应该按怎样的步骤在“三线八角”中确定关系角?确定前提(三线)寻找构成的角(八角) 确定构成角中的关系角问题2:在上面同位角、内错角、同旁内角中任选一对,请你看看这对角的四条边与“前提”中的“三线”有什么关系?结论:两个角的在同一直线上的边所在直线就是前提中的第三线。

1.2 平行线的判定(1)复习画两条平行线的方法:oAL 1抽象成几何图形A2L 1提问:(1)怎样用语言叙述上面的图形? (直线l 1,l 2被AB 所截) (2)画图过程中,什么角始终保持相等? (同位角相等,即∠1=∠2) (3)直线l 1,l 2位置关系如何? ( l 1∥l 2) (4)可以叙述为:∵∠1=∠2∴l 1∥l 2 ( ? )语言叙述:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

简单地说:同位角相等,两直线平行。

几何叙述:∵∠1=∠2∴l 1∥l 2 (同位角相等,两直线平行) 想一想12acb若a⊥b,b⊥c则a c平行线判定方法的特殊情形:在同一平面内,垂直于同一条直线的两条直线互相平行。

1.2 平行线的判定(2)图中,直线AB 与CD 被直线EF 所截,①若∠3=∠4,则AB 与CD 平行吗?②若∠2+∠4=180°,则AB 与CD平行吗?①∵∠3=∠4,∠1=∠4 ②∵∠2+∠4=180°,∠2+∠3=180° ∴∠1=∠3 ∴∠3=∠4∴ AB ∥CD ( ) ∴ AB ∥CD ( )① 两条直线被第三条直线所截,如果内错角相等,则两条直线平行。

新浙教版八年级上数学知识点汇总

新浙教版八年级上数学知识点汇总

第一、二章三角形的初步知识和特殊三角形1.三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.2.三角形的角平分线、中线、高线都是线段;三条角平分线和中线分别交于三角形内部一点;锐角三角形的三条高线交于三角形内部一点,直角三角形的三条高线交于直角顶点,钝角三角形的三条高线所在直A线交于三角形外部一点.3.三角形的中线把三角形分成面积相等的两部分.1 如图:AD是三角形ABC的中线,则S△ABD=S△ACD=S△ABC2 BDC4.★★★三角形的三边关系:三角形的任意两边之和大于第三边;任意两边之差小于第三边. 两边之差<第三边<两边之和5.★三角形的一个外角等于与它不相邻的两个内角的和.6.★★★三角形全等的判定定理:SSS、SAS、ASA、AAS,看清楚所用的三个条件,绝对不能用SSA来判定. 直角三角形还可以用斜边直角边相等来判定,即HL.(注意:在直角三角形较多的图形中,往往要用同角或等角的余角相等来证明某两个角相等)注意:像这种△ABC≌△DEF,两个三角形已经用全等符号(≌)表示,说明对应点已经写在了对应位置上,我们在找对应边和对应角时可以根据它们的字母顺序来找,如边AC是△ABC 的第1和3个字母,那么它的对应边应该是△DEF的第1和3个字母,即DF. 这种方法有利于在一些复杂图形中找对应边和角.7.★★★垂直平分线(中垂线)的性质和角平分线的性质.①垂直平分线(中垂线)的性质:线段垂直平分线上的点到线段两个端点的距离相等.几何语言:∵AD⊥BC,BD=CD(注意:两个条件才能表示AD是BC的中垂线)∴AB=AC(注意:结论不要跳步和张冠李戴,关键是理解哪两条线段是点到点的距离)②角平分线的性质:角平分线上的点到角两边的距离相等.几何语言:∵AD平分∠BAC,DE⊥AB,DF⊥AC(注意:三个条件,不要漏掉后面两个垂直,那是表示点到两边的距离)∴DE=DF(注意:结论不要跳步和张冠李戴,关键是理解哪两条线段是点到两边的距离)③记忆方法:垂直平分线是点到点的距离相等. 角平分线是点到线的距离相等.④应用:如图,找一个点使得它到A、B、C三点距离相等,作线段AB、BC、AC中任意两条的中垂线,它们的交点即为所要作的点. (只有一个点满足条件)如图,找一个点使得它到l1、l2、l3三条线的距离相等,作∠BAC、∠BCA、∠ABC中任意两个角的角平分线,它们的交点(一个)即为所要作的点.还可以作三个外角的角平分线,交点有三个.所以满足条件的点总共有4个.8.在同一个三角形中,等边对等角. 在同一个三角形中,等角对等边. (注意条件)9.等腰三角形三线合一的三线是指:底边上的中线、底边上的高线、顶角的平分线. (注意不能笼统的说中线、高线、角平分线三线合一,一定要加上它们的条件)10.在描述某个轴对称图形的对称轴对称轴时,注意对称轴是直线,如:等腰三角形的对称轴是底边上的中线所在直线或底边上的高线所在直线或顶角的平分线所在直线.11.★★★注意需要分类讨论的几种情况.①已知等腰三角形一个角的度数,求另外两个角时,要注意讨论已知角是顶角还是底角,底角的度数一定小于90度.1。

浙教版八年级数学上册第二章知识点+注意点+经典例题

浙教版八年级数学上册第二章知识点+注意点+经典例题

八年级上册第二章《特殊三角形》2.1图形の轴对称[轴对称图形]1.如果一个图形沿某一条直线折叠,直线两旁の部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它の对称轴.2.有の轴对称图形の对称轴不止一条,如圆就有无数条对称轴.3.折叠后重合の点是对应点,叫做对称点。

[轴对称]有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合の点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.[图形轴对称の性质]①关于某直线对称の两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段の垂直平分线。

③轴对称图形の对称轴,是任何一对对应点所连线段の垂直平分线。

④如果两个图形の对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

[轴对称与轴对称图形の区别][线段の垂直平分线](1)经过线段の中点并且垂直于这条线段の直线,叫做这条线段の垂直平分线.(2)线段の垂直平分线上の点与这条线段两个端点の距离相等;反过来,与一条线段两个端点距离相等の点在这条线段の垂直平分线上.因此线段の垂直平分线可以看成与线段两个端点距离相等の所有点の集合.2.2 等腰三角形+2.3等腰三角形性质定理+2.4等腰三角形判定定理[等腰三角形]★1. 有两条边相等の三角形是等腰三角形。

★2. 在等腰三角形中,相等の两条边叫做腰,另一条边叫做底边.两腰所夹の角叫做顶角,腰与底边の夹角叫做底角.[等腰三角形の性质]★性质1:等腰三角形の两个底角相等(简写成“等边对等角”)★性质2:等腰三角形の顶角平分线、底边上の中线、底边上の高互相重合(三线合一).特别の:(1)等腰三角形是轴对称图形.(2)等腰三角形两腰上の中线、角平分线、高线对应相等.[等腰三角形の判定定理]★如果一个三角形有两个角相等,那么这两个角所对の边也相等(简写成“等角对等边”).特别の:(1)有一边上の角平分线、中线、高线互相重合の三角形是等腰三角形.(2)有两边上の角平分线对应相等の三角形是等腰三角形.(3)有两边上の中线对应相等の三角形是等腰三角形.(4)有两边上の高线对应相等の三角形是等腰三角形.[等边三角形]三条边都相等の三角形叫做等边三角形,也叫做正三角形.[等边三角形の性质]★等边三角形の三个内角都相等,•并且每一个内角都等于60°[等边三角形の判定方法]★(1)三条边都相等の三角形是等边三角形;★(2)三个角都相等の三角形是等边三角形;★(3)有一个角是60°の等腰三角形是等边三角形.2.5 逆命题和逆定理[逆命题和逆定理]命题:一般地,对某一件事情作出正确或不正确の判断の句子叫做命题。

浙教版八年级数学(上册)第二章知识点+注意点+经典例题

浙教版八年级数学(上册)第二章知识点+注意点+经典例题

八年级上册第二章《特殊三角形》2.1图形の轴对称[轴对称图形]1.如果一个图形沿某一条直线折叠,直线两旁の部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它の对称轴.2.有の轴对称图形の对称轴不止一条,如圆就有无数条对称轴.3.折叠后重合の点是对应点,叫做对称点。

[轴对称]有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合の点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.[图形轴对称の性质]①关于某直线对称の两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段の垂直平分线。

③轴对称图形の对称轴,是任何一对对应点所连线段の垂直平分线。

④如果两个图形の对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

[轴对称与轴对称图形の区别][线段の垂直平分线](1)经过线段の中点并且垂直于这条线段の直线,叫做这条线段の垂直平分线.(2)线段の垂直平分线上の点与这条线段两个端点の距离相等;反过来,与一条线段两个端点距离相等の点在这条线段の垂直平分线上.因此线段の垂直平分线可以看成与线段两个端点距离相等の所有点の集合.2.2 等腰三角形+2.3等腰三角形性质定理+2.4等腰三角形判定定理[等腰三角形]★1. 有两条边相等の三角形是等腰三角形。

★2. 在等腰三角形中,相等の两条边叫做腰,另一条边叫做底边.两腰所夹の角叫做顶角,腰与底边の夹角叫做底角.[等腰三角形の性质]★性质1:等腰三角形の两个底角相等(简写成“等边对等角”)★性质2:等腰三角形の顶角平分线、底边上の中线、底边上の高互相重合(三线合一).特别の:(1)等腰三角形是轴对称图形.(2)等腰三角形两腰上の中线、角平分线、高线对应相等.[等腰三角形の判定定理]★如果一个三角形有两个角相等,那么这两个角所对の边也相等(简写成“等角对等边”).特别の:(1)有一边上の角平分线、中线、高线互相重合の三角形是等腰三角形.(2)有两边上の角平分线对应相等の三角形是等腰三角形.(3)有两边上の中线对应相等の三角形是等腰三角形.(4)有两边上の高线对应相等の三角形是等腰三角形.[等边三角形]三条边都相等の三角形叫做等边三角形,也叫做正三角形.[等边三角形の性质]★等边三角形の三个内角都相等,•并且每一个内角都等于60°[等边三角形の判定方法]★(1)三条边都相等の三角形是等边三角形;★(2)三个角都相等の三角形是等边三角形;★(3)有一个角是60°の等腰三角形是等边三角形.2.5 逆命题和逆定理[逆命题和逆定理]命题:一般地,对某一件事情作出正确或不正确の判断の句子叫做命题。

最新浙教版数学八年级上册全部知识点汇总及试卷含答案(1)

最新浙教版数学八年级上册全部知识点汇总及试卷含答案(1)

第一章 三角形的初步知识复习总目1、掌握三角形的角平分线、中线和高线2、理解三角形的两边之和大于第三边的性质3、掌握三角形全等的判定方法 知识点概要1、 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC 用符号表示为△ABC ,三角形ABC的边AB 可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示. 注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC 是三角形ABC 的符号标记,单独的△没有意义.2、 三角形的分类: (1)按角分类:(2)按边分类:三角形直角三象形斜三角形锐角三角形钝角三角形_C_B _A三角形等腰三角形底边和腰不相等的等腰三角形 等边三角形21DC B AADC BA3、 三角形的主要线段的定义: (1)三角形的中线三角形中,连结一个顶点和它对边中点的线段. 表示法:1.AD 是△ABC 的BC 上的中线.2.BD=DC=12BC. 注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点; ④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段表示法:1.AD 是△ABC 的∠BAC 的平分线.2.∠1=∠2=12∠BAC.注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部; ③三角形三条角平分线交于三角形内部一点; ④用量角器画三角形的角平分线.(3)三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.表示法:1.AD是△ABC的BC上的高线.2.AD⊥BC于D.3.∠ADB=∠ADC=90°.注意:①三角形的高是线段;②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;③三角形三条高所在直线交于一点.4、三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边.5、三角形的角与角之间的关系:(1)三角形三个内角的和等于180 ;(2)三角形的一个外角等于和它不相邻的两个内角的和;(3)三角形的一个外角大于任何一个和它不相邻的内角.(4)直角三角形的两个锐角互余.6、三角形的稳定性:三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性.注意:(1)三角形具有稳定性;(2)四边形没有稳定性.7、全等三角形(1)全等三角形的概念能够完全重合的两个三角形叫做全等三角形。

初二数学上册知识点归纳浙教版三篇

初二数学上册知识点归纳浙教版三篇

初二数学上册知识点归纳浙教版【三篇】2021初二上数学用例(一) ;同类项的概念:所含字母相同,并且相同字母的大写字母指数也相同的项叫做同类项。

几个常数项也叫乘子。

;判断三四个单项式或项,是否是同类项的两个标准: ;①所含字母相同。

②相同符号的次数也相同。

;判断同类项时与系数无关,与字符排列的顺序也无关。

;合并礼侨的概念:把多项式中的同类项合并成一项叫做合并同类项。

;合并同类项的法则:同类项的系数相加,当期结果作为系数,字母和字母的指数不变。

;合并同类项步骤: ;⑴.准确的找出同类项。

;⑵.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

;⑶.写出合并而后的结果。

;合并同类项时注意: ;(1)如果两个同类项的系数互为相反数,合并同类项后,结果为0。

;(2)不要记住不能合并的项。

;(3)只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

;(4)不是同类项千万不能进行合并。

;2021初二上所数学知识点(二) ;一、平均数、中位数、众数的概念 ;1.平均数 ;平均数是指对在一组数据中所有数据之和再除以中会数据的个数。

;2.中位数 ;中位数是指将统计总体当中暗指的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的自变量变量值就称为平均收入。

;3.众数 ;众数是一组中出现次数最多的数值,叫众数,有时众数在一组数中有好几个。

;二、平均数、中位数、众数的区别 ;1.平均数的大小与一组数据里的每个数均有,其中任何数据的变动都会相应引起惹来平均数的变动。

;2.总数着眼于对各数据出现频率的考察,其大小只与这组数据粗细的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量。

;3.中位数仅与数据的排列有关,一般来说,部分数据的变动对中位数没有影响,当一组数据中所个别数据变动较大时,可用中位数来描述其中开始集中的趋势。

浙教版八年级上册初二数学(基础版)(全册知识点考点梳理、重点题型分类巩固练习)(家教、补习、复习用)

浙教版八年级上册初二数学(基础版)(全册知识点考点梳理、重点题型分类巩固练习)(家教、补习、复习用)

浙教版八年级上册初中数学全册知识点梳理及重点题型巩固练习认识三角形(基础)知识讲解【学习目标】1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法;2. 理解并能够证明三角形内角和定理;3. 掌握并会把三角形按角分类;4. 掌握并会应用三角形三边之间的关系;5. 理解三角形的高、中线、角平分线的概念,掌握它们的画法;并能正确应用概念解题.【要点梳理】要点一、三角形的定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点诠释:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角;③三角形的顶点:即相邻两边的公共端点.(2)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”. (3)三角形的表示:三角形用符号“△”表示,顶点为A、B、C的三角形记作“△ABC”,读作“三角形ABC”,注意单独的△没有意义;△ABC的三边可以用大写字母AB、BC、AC 来表示,也可以用小写字母a、b、c来表示,边BC用a表示,边AC、AB分别用b、c表示.要点二、三角形的内角和三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.要点三、三角形的分类【:与三角形有关的线段三角形的分类】1.按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形 要点诠释:①锐角三角形:三个内角都是锐角的三角形; ②钝角三角形:有一个内角为钝角的三角形. 要点四、三角形的三边关系定理:三角形任意两边之和大于第三边. 要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形. (3)证明线段之间的不等关系.要点五、三角形的三条重要线段三角形的高、中线和角平分线是三角形中三条重要的线段,它们提供了重要的线段或角的关系,为我们以后深入研究三角形的一些特征起着很大的帮助作用,因此,我们需要从【典型例题】类型一、三角形的内角和1.证明:三角形的内角和为180°. 【答案与解析】解:已知:如图,已知△ABC ,求证:∠A+∠B+∠C =180°.证法1:如图1所示,延长BC 到E ,作CD ∥AB .因为AB ∥CD (已作),所以∠1=∠A (两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等). 又∠ACB+∠1+∠2=180°(平角定义), 所以∠ACB+∠A+∠B=180°(等量代换).证法2:如图2所示,在BC 边上任取一点D ,作DE ∥AB ,交AC 于E ,DF ∥AC ,交AB 于点F .因为DF ∥AC (已作),所以∠1=∠C (两直线平行,同位角相等), ∠2=∠DEC (两直线平行,内错角相等). 因为DE ∥AB (已作).所以∠3=∠B ,∠DEC=∠A (两直线平行,同位角相等). 所以∠A=∠2(等量代换).又∠1+∠2+∠3=180°(平角定义), 所以∠A+∠B+∠C=180°(等量代换).【总结升华】理解并掌握三角形内角和的证明方法,有助于帮助我们更深刻的去记忆三角形的内角和是180°.2.在△ABC中,已知∠A+∠B=80°,∠C=2∠B,试求∠A,∠B和∠C的度数.【思路点拨】题中给出两个条件:∠A+∠B=80°,∠C=2∠B,再根据三角形的内角和等于180°,即∠A+∠B+∠C=180°就可以求出∠A,∠B和∠C的度数.【答案与解析】解:由∠A+∠B=80°及∠A+∠B+∠C=180°,知∠C=100°.又∵∠C=2∠B,∴∠B=50°.∴∠A=80°-∠B=80°-50°=30°.【总结升华】解答本题的关键是利用隐含条件∠A+∠B+∠C=180°.本题可以设∠B=x,则∠A=80°-x,∠C=2x建立方程求解.【:与三角形有关的角例1、】举一反三:【变式】已知,如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.【答案】解:已知△ABC中,∠C=∠ABC=2∠A设∠A=x则∠C=∠ABC=2xx+2x+2x=180°解得:x=36°∴∠C=2x=72°在△BDC中, BD是AC边上的高,∴∠BDC=90°∴∠DBC=180°-90°-72°=18°类型二、三角形的分类3.一个三角形的三个内角分别是95°、30°、45°,这个三角形是()A 锐角三角形B 钝角三角形C 直角三角形【答案与解析】解:因为这个三角形的其中一个内角是95°,95°是钝角,所以这个三角形是钝角三角形,故选:B.【总结升华】主要考察了三角形的分类方法.举一反三【变式】一个三角形中,一个内角的度数等于另外两个内角的和的2倍,这个三角形是()三角形A 锐角B 直角C 钝角 D无法判断【答案】C【解析】利用三角形内角和是180°以及已知条件,可以得到其中较大内角的度数为120°,所以三角形为钝角三角形.类型三、三角形的三边关系4.(2015春•滕州市期中)下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()①7cm,5cm,11cm ②4cm,3cm,7cm ③5cm,10cm,4cm ④2cm,3cm,1cm.A.①B.②C.③D.④【思路点拨】根据三角形的三边关系对各选项进行逐一分析即可.【答案】A.【解析】解:①∵7+5>11,∴能围成三角形,②∵3+4=7,∴不能围成三角形,③∵4+5<10,∴不能围成三角形,④∵1+2=3,∴不能围成三角形.能围成三角形的是①,故选A.【总结升华】本题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【:与三角形有关的线段例1】举一反三:【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8.【答案】(1)能;(2)不能;(3)能.类型四、三角形中重要线段5.(2016春•普宁市期末)下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.【思路点拨】根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC 的高.【答案】D;【解析】三角形的高就是从三角形的顶点向它的对边所在直线作垂线,顶点和垂足之间的线段.解答本题首先应找到最长边,再找到最长边所对的顶点.然后过这个顶点作最长边的垂线即得到三角形的高.【总结升华】锐角三角形、直角三角形、钝角三角形都有三条高,并且三条高所在的直线交于一点.这里一定要注意钝角三角形的高中有两条高在三角形的外部,一条高在三角形的内部.举一反三:【变式】如图所示,已知△ABC,试画出△ABC各边上的高.【答案】解:所画三角形的高如图所示.6.如图所示,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC =8cm,求边AC的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD=BD,②△BCD的周长比△ACD 的周长大3.【答案与解析】解:依题意:△BCD的周长比△ACD的周长大3cm,故有:BC+CD+BD-(AC+CD+AD)=3.又∵ CD为△ABC的AB边上的中线,∴ AD=BD,即BC-AC=3.又∵ BC=8,∴ AC=5.答:AC的长为5cm.【总结升华】运用三角形的中线的定义得到线段AD=BD是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法.举一反三:【变式】(2014秋•西昌市期末)下列说法中错误的是()A.三角形三条角平分线都在三角形的内部B.三角形三条中线都在三角形的内部C.三角形三条高都在三角形的内部D.三角形三条高至少有一条在三角形的内部【答案】C.【巩固练习】一、选择题1.一位同学用三根木棒拼成如图所示的图形,其中符合三角形概念的是( )2.如图所示的图形中,三角形的个数共有( )A.1个 B.2个 C.3个 D.4个3.任何一个三角形至少有()个锐角A.1 B.2 C.3 D.不能确定4.已知三角形两边长分别为 4 cm和9 cm,则下列长度的四条线段中能作为第三边的是( )A.13 cm B.6 cm C.5 cm D.4 cm5.为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是( )A.5m B.15m C.20m D.28m6.(2016春•成安县期末)下列说法正确的是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A.①②③ B.①②C.②③D.①③7.(2015•滨州)在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于()A.45°B.60°C.75°D.90°8.如图,AM是△ABC的中线,那么若用S1表示△ABM的面积,用S2表示△ACM的面积,则S1和S2的大小关系是( )A.S1>S2 B.S1<S2 C.S1=S2 D.以上三种情况都有可能9.若△ABC的∠A=60°,且∠B:∠C=2:1,那么∠B的度数为( )A.40° B.80° C.60° D.120°二、填空题10.(2015春•潜江校级期中)一个三角形的周长为81cm,三边长的比为2:3:4,则最长边比最短边长_______________.11.如果三角形的两边长分别是3 cm和6 cm,第三边长是奇数,那么这个三角形的第三边长为________cm.12. (2016•大庆)如图,在△ABC中,∠A=40°,D点是∠ABC和∠ACB角平分线的交点,则∠BDC=.13. 如图,AD、AE分别是△ABC的高和中线,已知AD=5cm,CE=6cm,则△ABE和△ABC的面积分别为________________.14.在△ABC中,(1)若∠A:∠B:∠C=1:2:3,则∠A=_______,∠B=_______,∠C=_______,此三角形为_______三角形;(2) 若∠A大于∠B+∠C,则此三角形为________三角形.三、解答题15.(2015春•太康县期末)在△ABC中,AB=9,AC=2,并且BC的长为偶数,求△ABC的周长.16.如图,在△ABC中,∠BAD=∠CAD,AE=CE,AG⊥BC,AD与BE相交于点F,试指出AD、AF分别是哪两个三角形的角平分线,BE、DE分别是哪两个三角形的中线?AG是哪些三角形的高?17.如图所示,已知AD,AE分别是ΔABC的中线、高,且AB=5cm,AC=3cm,则ΔABD与ΔACD的周长之差为多少,ΔABD与ΔACD的面积有什么关系.18.利用三角形的中线,你能否将图中的三角形的面积分成相等的四部分(给出3种方法)?【答案与解析】一、选择题1. 【答案】D;2. 【答案】C;【解析】三个三角形:△ABC, △ACD, △ABD.3. 【答案】B;4. 【答案】B;【解析】根据三角形的三边关系进行判定.5. 【答案】D;【解析】由三角形三边关系定理可知.只有C选项中3+4>5.故选C (2)画图分析,不难判断出选C.(3)因为第三边满足:|另两边之差|<第三边<另两边之和,故16-12<AB <16+12 即4<AB<28故选D.6.【答案】B;【解析】根据三角形的三条中线都在三角形内部;三角形的三条角平分线都在三角形内部;三角形三条高可以在内部,也可以在外部,直角三角形有两条高在边上作答.7.【答案】C;【解析】解:180°×==75°即∠C等于75°.故选:C.8.【答案】C;【解析】两个三角形等底同高,面积相等9.【答案】B;【解析】根据三角形内角和180°,以及已知条件可以计算得出∠B的度数为120°二、填空题10.【答案】18cm .【解析】解:设三角形的三边长为2x ,3x ,4x ,由题意得,2x+3x+4x=81, 解得:x=9,则三角形的三边长分别为:18cm ,27cm ,36cm , 所以,最长边比最短边长:36﹣18=18(cm ). 故答案是:18cm .11.【答案】5 cm 或7 cm ; 12.【答案】110°【解析】∵D 点是∠ABC 和∠ACB 角平分线的交点,∴有∠CBD=∠ABD=∠ABC , ∠BCD=∠ACD=∠ACB ,∴∠ABC +∠ACB=180°﹣40°=140°,∴∠DBC +∠DCB=70°, ∴∠BDC=180°﹣70°=110°.13.【答案】15cm 2,30cm 2;【解析】△ABC 的面积是△ABE 面积的2倍 . 14.【答案】(1)30°,60°,90°;直角(2)钝角 三、解答题15.【解析】解:根据三角形的三边关系得:9﹣2<BC <9+2, 即7<BC <11, ∵BC 为偶数, ∴AC=8或10,∴△ABC 的周长为:9+2+8=19或9+2+10=21.16.【解析】解:AD 、AF 分别是△ABC ,△ABE 的角平分线.BE 、DE 分别是△ABC ,△ADC 的中线,AG 是△ABC ,△ABD ,△ACD ,△ABG ,△ACG ,△ADG 的高.17.【解析】解: (1)ΔABD 与ΔACD 的周长之差=(AB +BD +AD)-(AD +CD +AC),而BD =CD.所以上式=AB -AC =5-3=2.(2)S ΔABD =21BD ·AE ,S ΔACD =21CD ·AE 。

浙教版八年级上册数学第一章《三角形的初步知识》知识点及典型例题

浙教版八年级上册数学第一章《三角形的初步知识》知识点及典型例题

浙教版八年级上册数学第一章《三角形的初步知识》知识点与典型例题考点一、判断三条线段能否组成三角形考点二、求三角形的某一边长或周长的取值X 围考点三、判断一句话是否为命题,以与改成“如果……那么……〞的形式 考点四、利用角平分线、垂线〔90°角〕、三角形的外角、内角和、全等三角形来计算角度 考点五、利用垂直平分线的性质、角平分线的性质、全等三角形来计算线段长度考点六、证明三角形全等,以与在三角形全等的基础之上进一步证明线段、角度之间的数量关系 考点七、画三角形的高线、中线、角平分线,以与基本图形的尺规作图法 考点八、方案设计题,求河宽等问题例1、已知两条线段的长分别是3cm 、8cm ,要想拼成一个三角形,且第三条线段a 的长为奇数,问第三条线段应取多少厘米?1、某一三角形的两边长分别是3和5,则该三角形的周长的取值X 围为〔〕 A 、10≤a <16 B 、10<a ≤16 C 、10<a <16 D 、2<a <82、能把一个三角形分成面积相等的两部分是三角形的〔 〕A 、中线B 、高线C 、角平分线D 、过一边的中点且和这条边垂直的直线3、已知一个三角形的三条高的交点不在这个三角形的内部,则这个三角形〔 〕A. 必定是钝角三角形B. 必定是直角三角形C. 必定是锐角三角形D. 不可能是锐角三角 4、△ABC 的三个不相邻外角的比为2:3:4,则△ABC 的三个内角的度数分别为。

例2、如图,已知△ABC 中,BE 和CD 分别为∠ABC 和∠ACB 的平分线,且BD=C E ,∠1=∠2。

说明BE=CD 的理由。

[设计意图]本例主要考察了角平分线和三角形全等的条件和性质,要说明两条线段相等的方法可以通过说明三角形全等来解决。

例3、已知AE ,AD 分别为△ABC 中BC 边上的中线和高线,且AB=7cm ,AC=5cm ,则△ACE 和△ABE 的周长之差为多少厘米?△ACE 和△ABE 的面积之比为多少?[设计意图]本例主要考察了三角形中线、高线的性质,重在格式的书写上。

浙教版八年级数学上册知识点汇总

浙教版八年级数学上册知识点汇总

浙教版八年级数学上册知识点汇总八年级(上册)1.三角形的初步知识1.1.认识三角形三角形内角和为180度。

三角形任何两边之和大于第三边。

在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

连结三角形的一个顶点与该顶点的对边中点的线段,叫做三角形的中线。

从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线。

1.2.定义与命题定义:能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义。

命题:判断某一件事情的句子叫命题。

正确的命题成为真命题,不正确的命题称为假命题。

用推理的方法判断为正确的命题叫做定理,定理也可以作为判断其他命题真假的依据。

1.3.证明要判断一个命题是真命题,往往需要从命题的条件出发,根据已知的定义、基本事实、定理(包括推论),一步步推得结论成立。

这样的推理过程叫做证明。

三角形一边的延长线和另一条相邻的边组成的角,叫做该三角形的外角。

三角形的外角和即是它不相邻的两个内角的和。

1.4.全等三角形能够重合的两个图形称为全等图形。

能够重合的两个三角形叫做全等三角形。

两个全等三角形重合时,能互相重合的顶点叫做全等三角形的对应顶点,互相重合的边叫做全等三角形的对应边,互相重合的角叫做全等三角形的对应角。

全等三角形的对应边相称,对应角相称。

1.5.三角形全等的断定三边对应相称的两个三角形全等(简写成“边边边”或“SSS”)当三角形的三条边长确定时,三角形的形状、大小完全确定,这个性质叫做三角形的稳定性,这是三角形特有的性质。

两边及其夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)垂直于一条线段,并且平分这条线段的直线叫做这条线段的垂直平分线,简称中垂线。

线段垂直平分线上的点到线段两端的距离相等。

两个角及其夹边对应相称的两个三角形全等(简写成“角边角”或“ASA”)两角及其中一个角的对边对应相等的两个三角形全等(简写成“角角边”或“AAS”)角平分线上的点到角两边的距离相等。

浙教版初二上册数学总复习知识点

浙教版初二上册数学总复习知识点

a三角形的初步知识1一、三角形的基本概念:1、三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形。

三角形ABC 记作:△ABC 。

2、相关概念: 三角形的边:组成三角形的三条线段。

记作: AB 、AC 、BC 。

三角形的内角:每两条边所组成的角(简称三角形的角)。

记作:∠A 、∠B 、 ∠C3、三角形的分类:⎪⎩⎪⎨⎧⎩⎨⎧等边三角形一般等腰三角形等腰三角形不等腰三角形按边分:三角形)1(⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧钝角三角形等腰直角三角形一般直角三角形直角三角形锐角三角形按角分:三角形)2(二、三角形三边关系:1、三角形任何两边的和大于第三边。

几何语言:若a 、b 、c 为△ABC 的三边,则a+b>c,a+c>b, b+c>a. 这个在实际解题中该怎样应用?2、三边关系也可表述为:三角形任何两边的差都小于第三边。

三、三角形的内角和定理:三角形三个内角的和等于1800。

几何语言:△ABC 中,∠A+∠B+∠C=1800。

四、三角形的三线: 问题1、如何作三角形的高线、角平分线、中线?问题2、三角形的高线、角平分线、中线各有多少条,它们的交点在什么位置?问题3、三角形的中线有什么应用?C B A例题与练习例1、如图,在△ABC 中,D 、E 是BC 、AC 上的两点,连接BE 、AD 交于点F 。

问:(1)、图中有多少个三角形?把它们表示出来。

(2)、△AEF 的三条边是什么?三个角是什么?练习:右图中有几个三角形例2、已知线段a b c 满足a+b+c=24cm, a:b=3:4, b+2a=2c ,问能否以a 、b 、 c 为三边组成三角形,如果能,试求出这三边,如果不能,请说明理由。

练习1、四组线段的长度分别为2,3,4;3,4,7; 2,6,4;7,10,2。

其中能摆成三角形的有( ) A .一组 B .二组 C .三组 D .四组2、已知三角形两条边长分别为13厘米和6厘米,那么第三边长应是多少厘米?3、已知三角形两条边长分别为19厘米和8厘米,第三边与其中一边相等,那么第三边长应是多少厘米?例3、在△ABC 中,∠A :∠B :∠C=1:2:3,求三角形各角的度数,并判断它是什么三角形。

浙教版八年级上册数学第二章特殊三角形全部知识点、考点及练习

浙教版八年级上册数学第二章特殊三角形全部知识点、考点及练习

浙教版八年级上册数学第二章特殊三角形全部知识点、考点及练习本章主要研究了等腰三角形、直角三角形和特殊三角形的性质和判定,其中包括了勾股定理和HL定理等知识。

等腰三角形的两腰相等,两底角也相等,三线合一,是对称图形,有一条对称轴。

等边三角形三边相等,三个内角也相等,是正多边形,有三条对称轴。

直角三角形有一个直角和两个锐角,斜边上的中线等于斜边的一半,两直角边的平方和等于斜边的平方,可以用勾股定理判断。

角平分线是指从角的顶点到对边的线段,它可以被平分线所穿过。

等腰三角形的判定方法是有两边相等或两角相等。

但需要注意的是,有两腰相等的三角形不一定是等腰三角形。

等边三角形的判定方法是三边相等或三个角都是60度。

直角三角形的判定方法是有一个角是90度或两个角相加等于90度或两直角边的平方和等于斜边的平方。

最后,需要注意的是,一条边上的中线等于该边长度的一半并不一定能直接判断某三角形是直角三角形,但可以在解题时提供帮助。

直角三角形全等的判定方法是斜边和一个锐角对应相等。

角平分线可以被平分线穿过,这个性质可以在解题时使用。

研究特殊三角形时,需要明确性质与判定的区别,不能混淆。

一般来说,根据边角关系判断一个图形形状通常用的是判定,而根据图形形状得到边角关系则是性质。

等腰三角形的腰是在已知一个三角形是等腰三角形的情况下才给出的名称,即先有等腰三角形,后有腰。

因此,在判定一个三角形是等腰三角形时,不能将理由说成是“有两腰相等的三角形是等腰三角形”。

直角三角形斜边上的中线不仅可以用来证明线段之间的相等关系,而且它也是今后研究直角三角形问题较为常用的辅助线,熟练掌握可以为解题带来不少方便。

勾股定理反映的是直角三角形两直角边和斜边之间的平方关系。

解题时应注意分清哪条是斜边,哪条是直角边,不要一看到字母“c”就认定是斜边。

另外,不要一看到直角三角形两边长为3和4,就认为另一边一定是5.HL”是仅适用于判定直角三角形全等的特殊方法,只有在已知两个三角形均是直角三角形的前提下,此方法才有效。

新版浙教版数学八上知识点汇总及典型例题[3]

新版浙教版数学八上知识点汇总及典型例题[3]

新版浙教版数学八上知识点汇总及典型例题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(新版浙教版数学八上知识点汇总及典型例题(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为新版浙教版数学八上知识点汇总及典型例题(word版可编辑修改)的全部内容。

21D CB ADCB A第一章 三角形的初步知识复习总目1、掌握三角形的角平分线、中线和高线2、理解三角形的两边之和大于第三边的性质3、掌握三角形全等的判定方法 知识点概要1、 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.三角形有三条边,三个内角,三个顶点。

组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC 用符号表示为△ABC,三角形ABC 的边AB 可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示. 注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC 是三角形ABC的符号标记,单独的△没有意义.2、 三角形的分类: (1)按角分类:(2)按边分类:3、 三角形的主要线段的定义:(1)三角形的中线三角形中,连结一个顶点和它对边中点的线段. 表示法:1。

AD 是△ABC 的BC 上的中线. 2。

BD=DC=12BC 。

注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点; ④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段表示法:1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

21D CB ADCBA第一章 三角形的初步知识复习总目1、掌握三角形的角平分线、中线和高线2、理解三角形的两边之和大于第三边的性质3、掌握三角形全等的判定方法 知识点概要1、 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.三角形有三条边,三个角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的角; 相邻两边的公共端点是三角形的顶点, 三角形ABC 用符号表示为△ABC ,三角形ABC 的边AB 可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示.注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC 是三角形ABC 的符号标记,单独的△没有意义.2、 三角形的分类: (1)按角分类:(2)按边分类:3、 三角形的主要线段的定义: (1)三角形的中线三角形中,连结一个顶点和它对边中点的线段. 表示法:1.AD 是△ABC 的BC 上的中线. 2.BD=DC=12BC. 注意:①三角形的中线是线段;②三角形三条中线全在三角形的部; ③三角形三条中线交于三角形部一点; ④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个角的平分线与它的对边相交,这个角顶点与交点之间的线段 表示法:1.AD 是△ABC 的∠BAC 的平分线.2.∠1=∠2=12∠BAC. 三角形直角三象形斜三角形锐角三角形钝角三角形_C_B _A三角形等腰三角形不等边三角形底边和腰不相等的等腰三角形 等边三角形D CB A注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的部; ③三角形三条角平分线交于三角形部一点; ④用量角器画三角形的角平分线.(3)三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段. 表示法:1.AD 是△ABC 的BC 上的高线.2.AD ⊥BC 于D.3.∠ADB=∠ADC=90°.注意:①三角形的高是线段;②锐角三角形三条高全在三角形的部,直角三角形有两条高是边,钝角三角形有两条高在形外;③三角形三条高所在直线交于一点.4、三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边. 注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边.5、 三角形的角与角之间的关系: (1)三角形三个角的和等于180 ;(2)三角形的一个外角等于和它不相邻的两个角的和; (3)三角形的一个外角大于任何一个和它不相邻的角. (4)直角三角形的两个锐角互余. 6、三角形的稳定性:三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性. 注意:(1)三角形具有稳定性;(2)四边形没有稳定性.7、全等三角形 (1)全等三角形的概念能够完全重合的两个三角形叫做全等三角形。

(2)三角形全等的判定三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。

直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL 定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL ”) (3)全等变换只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。

全等变换包括一下三种:(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。

(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。

(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。

中考规律盘点及预测三角形的两边之和大于第三边的性质历年来是经常考到的填空题的类型,三角形角度的计算也是考到的填空题的类型,三角形全等的判定是很重要的知识点,在考试中往往会考到。

典例分析例1 如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A、AB=ACB、BD=CDC、∠B=∠CD、∠BDA=∠CDA例2 1、在△ABC中,已知∠B = 40°,∠C = 80°,则∠A = (度)2、在△ABC中,∠A = 60°,∠C = 50°,则∠B的外角= 。

3、下列长度的三条线段能组成三角形的是()A.3cm,4cm,8cmB.5cm,6cm,11cmC.5cm,6cm,10cmD.3cm,8cm,12cm4、小华要从长度分别为5cm、6cm、11cm、16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是_ .____.______.例3 如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()例4 如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=ACB.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CADD.∠B=∠C,BD=DC第二章 特殊三角形复习总目1、掌握等腰三角形的性质及判定定理2、了解直角三角形的基本性质 2、掌握勾股定理的计算方法 知识点概要1、图形的轴对称性质:对称轴垂直平分连接两个对称点的线段;成轴对称的两个图形是全等图形2、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。

即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边三角形的各个角都相等,并且每个角都等于60°。

3、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。

(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。

(2)要会区别三角形中线与中位线。

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

三角形中位线定理的作用:位置关系:可以证明两条直线平行。

数量关系:可以证明线段的倍分关系。

常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

结论2:三条中位线将原三角形分割成四个全等的三角形。

结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

结论4:三角形一条中线和与它相交的中位线互相平分。

结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

4、直角三角形的性质 (1)直角三角形的两个锐角互余(2)在直角三角形中,30°角所对的直角边等于斜边的一半。

(3)直角三角形斜边上的中线等于斜边的一半(4)勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ (5)摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD •=2⇒AB AD AC •=2CD ⊥AB AB BD BC •=2(6)常用关系式由三角形面积公式可得:AB •CD=AC •BC中考规律盘点及预测特殊三角形中的等腰三角形与第一章的全等三角形的证明结合起来这种题型会常出现,等腰三角形的性质是基础知识,必须得掌握并灵活的运用到各类题型中去,这类题型中考也是必考的。

典例分析例1 在△ABC中,AB=AC,∠1=12∠ABC,∠2=12∠ACB,BD与CE相交于点O,1)如图,∠BOC的大小与∠A的大小有什么关系?2)若∠1=13∠ABC,∠2=13∠ACB,则∠BOC与∠A大小关系如何?3)若∠1=1n∠ABC,∠2=1n∠ACB,则∠BOC与∠A大小关系如何?例2 如图,P是等边三角形ABC的一点,连结PA、PB、PC,•以BP为边作∠PBQ=60°,且BQ=BP,连结CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论.(2)若PA:PB:PC=3:4:5,连结PQ,试判断△PQC的形状,并说明理由.例3 已知:在中,,,,求的度数.例4 如图,已知:在中,,,,.求:的度数.第三章一元一次不等式复习总目1、理解不等式的三个基本性质2、会用不等式的基本性质解一元一次不等式并掌握不等式的解题步骤3、会解由两个一元一次不等式组成的不等式组知识点概要一、不等式的概念1、不等式:用不等号表示不等关系的式子,叫做不等式。

2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

4、求不等式的解集的过程,叫做解不等式。

5、用数轴表示不等式的方法二、不等式基本性质1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。

②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;三、一元一次不等式1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1四、一元一次不等式组1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

3、求不等式组的解集的过程,叫做解不等式组。

4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。

②不等式的两边都加上或减去同一个整式,不等号的方向不变。

③不等式的两边都乘以或者除以一个正数,不等号方向不变。

④不等式的两边都乘以或除以同一个负数,不等号方向相反。

相关文档
最新文档