直流电机的基本工作原理和结构
直流电动机(原理)
电动机 PN U N I N N 103 kW 发电机 PN UNIN 103 kW
2、直流电动机工作原理
2、直流电动机工作原理
直流电动机是将电能转变成机械能的旋转机械。
把电刷A、B接到直流电源上,电刷A接正极,电刷B接负极。 此时电枢线圈中将有电流流过。 在磁场作用下,有导体产生F=BIL。该电磁力形成电磁转矩,使 电机转子旋转。
思考:电磁力的方向怎么判断?大小与哪些因素有关?分析转动过程?
换向极绕组与电枢绕组串联, 换向磁极的作用是消弱电枢磁场。
(3)电刷装置 与换向器配合,完成交直流的互换。数目与主磁极相同。
电刷座
电刷
3.转子 又称为电枢
(1)电枢铁心
既是主磁路的一部分, 又可以放置电枢绕组。 (2)电枢绕组 电枢绕组与换向器联结。 主要作用产生感应电动势和电 磁转矩,实现机电能量的转换。 (3)换向器 换向器由许多彼此绝缘的钢 质换向片组成一个圆柱体,装在 转子转轴的一端,与电刷装置配 合,完成直流与交流的互换。
二、直流电动机的种类和铭牌
1. 直流电机绕组端子标号: 电枢绕组:始端A1-末端A2 ;换向绕组:始端B1-末端B2 ; 补偿绕组:始端C1-末端C2 ;串励绕组:始端D1末端D2 ; 并励绕组:始端E1-末端E2 ;他励绕组:始端F1-末端F2 2.直流电动机的分类 直流电动机按产生磁场的方式来进行区分,分为两大类:他励和自励。 他励是指通入电动机定子中,产生磁场的电 流If与通入电动机转子,产生转矩的电流 Ia分 别由两个电源提供。 他励的特点是,励磁电流If的大小与 电枢电压U及负载等参数无关。
高中物理 直流电机的基本原理与结构课件
Ia
U Ea Ra
0
电磁转矩T为制动性质转矩,电动机向电源
回馈电能,此时电机运行状态称为发电回馈制动。
2.应用:位能负载高速下放和降低电枢电压调速等场
合。
1.制动原理:由直流电动机拖动的电车在平路行驶,当电
车下坡时电磁转矩T与负载转矩TL(包括摩擦转矩Tf)共 同作用,使电动机转速上升,当n>no时,Ea>U,Ia反向, T反向成为制动转矩,电动机运行在发电回馈制动状态。
(3-3)
式中 Ce一与电动机结构有关的另一常数;
φ一每极磁通(Wb);
n一电动机转速(r/min);
Ea一电枢电动势(V)。 如图3-9所示,直流电动机在旋转时,电枢电动势Ea的 大小与每极磁通φ和电动机转速n的乘积成正比,它的方向与电
枢电流方向相反,在电路中起着限制电流的作用。
第三节 他励直流电动机的运行原 理与机械特性
能耗制动开始瞬间电动机电枢电流为
Ia
UEa Ea RaRbk RaRbk
(3-20)
2.机械特性 能耗制动的机械特性方程
二、反接制动 反接制动有(1)电枢反接制动(2)倒拉反接制动两种方式。 (一)电枢反接制动 1.制动原理:电枢反接制动是将电枢反接在电源上,同时电枢 回路要串接制动电阻RBk。控制电路如图3-21所示。
2.机械特性:倒拉反接制动的机械特性方程式为
机械特性曲线如图3-22b所示 综上所述,电动机进人倒拉反接制动状态必须有位
能负载反拖电动机,同时电枢回路必须串人较大的电阻。 此时位能负载转矩为拖动转矩,而电动机的电磁转矩是制 动转矩,它抑制重物下放的速度,使其安全下放。
三、发电回馈制动 1.发电回馈制动:当电动机转速高于理想空载转速, 即n>no时,电枢电动势Ea大于电枢电压U,电枢电流,
直流发电机的工作原理及结构
直流发电机的工作原理及结构电机的可逆运行原理两个定理与两个定则1、电磁感应定理在磁场中运动的导体将会感应电势,若磁场、导体和导体的运动方向三者互相垂直,则作用导体中感应的电势大小为: e = B- l • v符号物理量单位B磁场的磁感应强度Wb/m2 v导体运动速度米/秒I导体有效长度me感应电势V电势的方向用右手定则2.电磁力定律载流导体在磁场中将会受到力的作用,若磁场与载流导体互相垂直(见下图),作用在导体上的电磁力大小为: f = B • I • i单位符号物理量Ai导体中的电流mI导体有效长度Nf电磁力力的方向用左手定则(一)直流发电机的工作原理1.直流发电机的原理模型图1 1 B 直猱友电机工作炽理2•发电机工作原理團直猱我电机工作原建a、直流电势产生用电动机拖动电枢使之逆时针方向恒速转动,线圈边a b和c d分别切割不同极性磁极下的磁力线,感应产生电动势直流发电机的工作原理就是把电枢线圈中感应产生的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势因为电刷A通过换向片所引出的电动势始终是切割N极磁力线的线圈边中的电动势。
所以电刷A始终有正极性,同样道理,电刷B始终有负极性。
所以电刷端能引出方向不变但大小变化的脉动电动势b、结论线圈内的感应电动势是一种交变电动势,而在电刷AB端的电动势却是直流电动势。
直流发电机[浏览次数:约145次]*直流发电机是一种把机械能转换为直流电输岀的电机,流电动机具有良好的起动性能和调速性能,因此广泛应用于要求调速平滑,调速范围广等对调速要求较高的电气传动系统中,如电力机车、无轨电车、轧钢机起重设备等。
目录*直流发电机的结构*直流发电机的部件功能・直流发电机的工作原理*直流发电机的额定值直流发电机的结构直流电机I區I的结构可分为静止和转动两部分,静止部分称为定子,旋转部分称为转子(也称电枢)图1与图2分别为直流电机的纵剖面示意图和横剖面示意图。
第03章 直流电机
于一个极距 。
极距 定义为
Qu
2p
y应1 等于或接近
由于 Qu不一定能被极数 2整p除,而 又必y1须为整数,可使
Q y u 整数
式中 为小于1的分数。1 2 p 称为整距绕组,
称为长
距绕组,
称为短距绕组y。1 因短距绕组有利于换向y1,对
于叠绕组还可节约y1端部 用铜,故常被采用。
第二节距 y2
交流电动机。
3.2 直流电机的电枢绕组
一、电枢绕组的基本概念
电枢绕组由许多形状完全相同的元件(亦称为线圈)按一 定规律排列和连接而成。
每个元件有两个出线端, 一个称为首端,另一个 称为末端。 一个元件由两条元件边 和前、后端接线组成。
同一个元件的首端和末端分别接到两个不同的换向片上。同 一个换向片上,连有一个元件的首端和另一个元件的末端。
3、直流电机的可逆运行
直流电机是作为发电机运行还是作为电动机运行,主要 在于外部条件,即输入给电机的功率形式。
若从电刷上输入给电机 电功率时,电机作电动机运 行,经转轴向外输出机械功 率。
当从轴上输入给电机 机械功率时,电机作发电机 运行,通过电刷向外部输 出电能.
同一台电机既能作发电机又能作电动机运 行,称为电机的可逆运行。
说明:组成各支路的元件在电枢上处于对称位置,各支路电动势大小相等, 故从闭合电路内部来看,各支路电动势恰巧互相抵消,不会产生环流。
设槽内每层有u 个元件边,则每个实际槽包含 u个“虚
槽”,每个虚槽的上、下层各有一个元件边。若用 Q代
表槽数,Q
代表虚槽数,则
u
Qu uQ S K
电枢绕组的节距
第一节距 y1
一个元件的两个元件边在电枢表面所跨的距离(即跨距)称 为第一节距。用所跨虚槽数表示。
第1章直流电机
1.1 直流电机的基本工作原理与结构 1.2 直流电机电枢绕组简介 1.3 直流电机的电枢反应 1.4 直流电机的电枢电动势和电磁转矩 1.5 直流电机的换向 1.6 直流发电机 1.7 直流电动机
思考题与习题
第1章 直流电机
1.1 直流电机的基本工作原理和结构
测速
电源
励磁机 伺服
第1章 直流电机
合成磁势曲线
饱和时磁阻 不为常数不 能简单叠加
电枢磁场磁通 密度分布曲线
Bx
主磁场的 磁通密度 分布曲线
B0 x
Bax
不饱和两条曲线逐点叠 加后得到负载时气隙磁 场的磁通密度分布曲线
物理中性线偏离几何中性线
第1章 直流电机
二、当电刷不在几何中性线上时
电刷从几何中性线偏 移 角,电枢磁动势 轴线也随之移动 角,如图(a)(b)所示。
第1章 直流电机
1.1.1 直流电机的主要结构
第1章 直流电机
直流电机截面图
第1章 直流电机
直流电机主磁极
第1章 直流电机
换向极
换向极是安装 在两相邻主磁 极之间的一个 小磁极,它的 作用是改善直 流电机的换向 情况,使电机 运行时不产生 有害的火花。
第1章 直流电机
电刷装置
电刷装置—— 电刷装置是电 枢电路的引出 (或引入)装 置
电机运行时,所有物理量与额定值相同——电机运 行于额定状态。电机的运行电流小于额定电流——欠载 运行;运行电流大于额定电流——过载运行。长期欠载 运行将造成电机浪费,而长期过载运行会缩短电机的使 用寿命。电机最好运行于额定状态或额定状态附近,此 时电机的运行效率、工作性能等比较好。
第1章 直流电机
第1章 直流电机
1.1直流电机的工作原理和结构
2
§1-1 直流电机的工作原理和结构
一、直流电机的工作原理
直流电机是直流发电机和直流 电动机的总称。直流电机具有可 逆性,既可作直流发电机使用, 也可作直流电动机使用。
14
§1-1 直流电机的工作原理和结构
(2)电枢绕组
电枢绕组的作用是产生 感应电势和通过电流产生 电磁转矩,实现机电能量 转换。它是直流电机的主 要电路部分。
电枢绕组通常都用圆形或矩形截面的导线绕制而成,再按一定 规律嵌放在电枢槽内,上下层之间以及电枢绕组与铁心之间都要 妥善地绝缘。为了防止离心力将绕组甩出槽外,槽口处需用槽楔 将绕组压紧,伸出槽外的绕组端接部分用玻璃丝带绑紧。绕组端 头则按一定规律嵌放在换向器钢片的升高片槽内,并用锡焊或氩 弧焊焊牢。
12
(3)换向极
§1-1 直流电机的工作原理和结构
换向极又称附加极,安装在相邻两主磁极的几何 中心线上。 Why?在1.7讲
换向极的作用是改善直流电机换向。在小容量电 机(1kw以下)中,有时换向极只有主磁极的一半, 或不安装换向极。 (4)电刷装置
电刷与换向器相配合,在电动机中起到逆变(将 直流变为交流)作用;而在发电机中则起到整流 (将交流变为直流和结构
(3)换向器 换向器的作用是
在电刷间得到直流电 动势,并保证每个磁 极下电枢导体电流方 向不变,以产生恒定 方向的电磁转矩。
16
§1-1 直流电机的工作原理和结构
3、气隙
气隙是定子和转子(电枢)之间自然形成的间 隙。它是电机主磁路的一部分,是电机能量转换的 媒介。气隙的大小对电机运行的影响很大。小容 量电机约为1-3mm,大容量电机可为几毫米。
直流电机的基本工作原理和结构
直流电机的基本工作原理和结构直流电机是一种将电能转化成机械能的设备。
它的基本工作原理是基于电磁感应和洛伦兹力的相互作用。
下面将从两个方面详细介绍直流电机的基本工作原理和结构。
一、基本工作原理:直流电机由电枢和磁极组成。
电枢是由若干个串联的绕组和电刷组成,绕组中通有直流电流。
磁极包括永磁体或电磁铁。
当通入电源后,电枢绕组中会产生一个磁场,磁极的磁场与电枢绕组的磁场相互作用,产生一个作用于电枢绕组的力矩,导致电枢绕组转动。
转动时,电枢绕组和磁极的相对位置不断发生变化,因此电枢绕组中的电流的方向和大小都会不断变化,从而生成了交流电。
交流电进一步作用于电枢绕组和磁极,使得电枢绕组持续转动。
二、结构:1.电枢:电枢是直流电机的核心部件,通常由绕组和电刷组成。
绕组通常由铜线绕制而成,并固定在电枢铁心上。
绕组中通过电流产生磁场,使得电枢能够旋转。
电刷是连接电枢绕组和外部电源的导电碳刷,通过摩擦和电枢的接触来提供电流。
2.磁极:磁极也是直流电机的重要组成部分,它提供了电枢绕组所需的磁场。
磁极可以是永磁体或者电磁铁。
永磁体通常由稀土磁体或者铁氧体磁体制成,具有较强的磁场。
电磁铁则通过通电产生磁场,磁场的强弱可以通过控制电流的大小来调节。
3.单向采用:直流电机一般采用单向传动方式,即通过电刷和电枢绕组的摩擦来传递电流。
这种传动方式可以保持电流的持续通路,从而使得电枢能够持续地旋转。
4.输出轴和机械负载:直流电机的输出轴是连接电枢绕组和机械设备的部件,通过输出轴将电机的机械能转移到外界。
机械负载是电机输出轴上需要驱动的设备,可以是风扇、泵、机床等各种机械设备。
总的来说,直流电机的基本工作原理是通过电枢绕组和磁极之间的相互作用产生旋转力矩,利用单向传动方式将电流传递到电机的旋转部分,从而实现将电能转化成机械能。
直流电机的结构包括电枢、磁极、单向传动方式、输出轴和机械负载等组成部分。
通过以上的工作原理和结构的介绍,我们可以更好地理解直流电机的运行机制。
电机与拖动教案——第二章 直流电机
第二章直流电机2.1直流电机的基本工作原理及结构一、基本工作原理(一)直流电机的构成(1)定子:主磁极、换向磁极、机座、端盖、电刷装置;(2)转子:电枢铁心、电枢绕组、换向装置、风扇、转轴(3)气隙**注意:同步电机—旋转磁极式;直流电机—旋转电枢式。
1.直流发电机的工作原理:实质上是一台装有换向装置的交流发电机;(1)原理:导体切割磁力线产生感应电动势(2)特点:e=BLV;a、电枢绕组中电动势是交流电动势b、由于换向器的整流作用,电刷间输出电动势为直流(脉振)电动势c、电枢电动势——原动势;电磁转矩——阻转矩(与T、n反向)2.直流电动机的工作原理:实质上是一台装有换向装置的交流电动机;(1)原理:带电导体在磁场中受到电磁力的作用并形成电磁转矩,推动转子转动起来(2)特点:f=BiLa、外加电压并非直接加于线圈,而是通过电刷和换向器再加到线圈b、电枢导体中的电流随其所处磁极极性的改变方向,从而使电磁转矩的方向不变。
c、电枢电动势——反电势(与I反向);电磁转矩——驱动转矩(与n同向)**说明:直流电机是可逆的,它们实质上是具有换向装置的交流电机。
3、脉动的减小——电枢绕组由许多线圈串联组成(二)直流电机的基本结构1、主磁极——建立主磁场(N、S交替排列)a、主极铁心——磁路,由1.0~1.5mm厚钢板构成b、励磁绕组——电路、由电磁线绕制2、机座——磁路的一部分(支承)框架,钢板焊接或铸刚3.电枢铁心——磁路,0.5mm厚硅钢片叠压而成(外圆冲槽)4.电枢绕组——电路。
电磁线绕制(闭合回路,由电刷分成若干支路)换向器——换向片间相互绝缘(用云母或塑料)电刷装置a、电刷——石墨或金属石墨b、刷握、刷杆、连线(铜丝辨)5.换向极——改善换向,由铁心、绕组构成(放置于主极之间或绕组与电枢绕组串联)(三)励磁方式1.定义:主磁极的激磁绕组所取得直流电源的方式;2.分类:以直流发电机为例分为:他励式和自励式(包括并励式、串励式和复励式)他励:激磁电流较稳定;并励:激磁电流随电枢端电压而变;串励:激磁电流随负载而变,由于激磁电流大,激磁绕组的匝数少而导线截面积较大;复励:以并激绕组为主,以串激绕组为辅。
1直流电机的工作原理和基本结构
未标注时,即为定额工作方式。 • (8)绕组温升或绝缘等级 • (9)电机的型号:开启式,防护式,封闭式,防爆
式。 • (10)其他:制造厂家,出厂年月,出厂序号。
2020年3月8日 第25页
小结
• 常用的直流电机是换向器式电机,其电枢导 体感应的电势是交变的,经过换向器和电刷 的作用才得到直流电压。为了得到平稳的直 流电压,电枢绕组由许多分布于电枢表面的 线圈(元件)组成。
• 而且由于有换向器,使它比交流电机费工费料,造价昂贵。 运行时换向器需要经常维修,寿命也较短。
2020年3月8日 第5页
三、直流电机的发展状况
• 大功率半导体元件发展很快,它的可靠性、价格、 控制方便等指标日益改进,在某些场合,已经可以 成功地用可控整流电源代替直流发电机了。不过, 有些性能(如波形平滑等)仍不及直流发电机。
部分,又是电枢绕组的支撑 部件;电枢绕组就嵌放在电 枢铁心的槽内。为减少电枢 铁心内的涡流损耗,铁心一 般用厚0.5mm且冲有齿、槽 的型号为DR530或DR510的 硅钢片叠压夹紧而成,如图 所示。小型电机的电枢铁心 冲片直按压装在轴上,大型 电机的电枢铁心冲片先压装 在转子支架上,然后再将支 架固定在轴上。为改善通风, 冲片可沿轴向分成几段,以 构成径向通风道。
2020年3月8日 第13页
• 2.电刷装置
直流电机的基本工作原理及结构
0
A
If0 I f I fN F f 0 IN
1.3.2 直流电机负载时的负载磁场
直流电机带上负载后,电枢绕组 中有电流,电枢电流产生的磁动势称 为电枢磁动势。电枢磁动势的出现使 电机的磁场发生变化。
右图为一台电刷放在几何中性 线的两极直流电机的电枢磁场分布 情况。
假设励磁电流为零,只有电枢电 流。由图可见电枢磁动势产生的气隙 磁场在空间的分布情况,电枢磁动势 为交轴磁动势。
电枢磁场磁通 密度分布曲线
主磁场的 磁通密度 分布曲线
两条曲线逐点叠加后得 到负载时气隙磁场的磁
通密度分布曲线
Bx
B0x
B ax
由图可知,电刷在几何中性线时的电枢反应的特点:
1)、使气隙磁场发生畸变
空载时电机的物理中性线与几何中性线重合。负载后由于 电枢反应的影响,每一个磁极下,一半磁场被增强,一半被削
当电枢旋转到右图所示位置时
原N极性下导体ab转到S极下, 受力方向从左向右,原S 极下 导体cd转到N极下,受力方向 从右向左。该电磁力形成逆时 针方向的电磁转矩。线圈在该 电磁力形成的电磁转矩作用下 继续逆时针方向旋转。
与直流发电机相同,实际的 直流电动机的电枢并非单一线圈, 磁极也并非一对。
直流电 动机的 工作原 理示意 图:
换向问题很复杂,换向不良会在电刷与换向片之间产生 火花。当火花大到一定程度,可能损坏电刷和换向器表面, 使电机不能正常工作。
产生火花的原因很多,除了电磁原因外,还有机械的原 因。此外换向过程还伴随着电化学和电热学等现象。
1.5.2 换向的电磁理论
换向元件中的电动势:
自感电动势 e和L 互感电动势 eM:换向元件(线圈)在换向过程
二、直流电动机工作原理
第三章 直流电机
(1)用原动机拖动电枢逆时 针方向恒速转动(原动机输入 机械力【机械功率】) (2)线圈边ab和cd以相同转 速顺次切割不同极性磁极下的 磁场,线圈中产生了交变的电 动势;(机械能转换为电能) (3)换向器配合电刷对电流 的换向作用,电刷A、B端的 电动势为直流电动势。(交流 转换为直流)
Flash:电刷上的电动势
一台直流电机作为
电动机运行——在直流电机的两电刷端上加上直流电压,电枢旋 转,拖动生产机械旋转 ,输出机械能;
电能转换为机械能
发电机运行——用原动机拖动直流电机的电枢,电刷端引出直流 电动势,作为直流电源,输出电能。
机械能转为电能
注意:不要孤立的看待发电机和电动机问题
视频:直流发电机-直流电动机系统
换向器节距:yc=(K-1)/p=7
元件数S=槽数Q=换向片数K=15;
yc =8-1=7
y1=4-1=3
电流流向: A1—5号换向片-5上-8下-12上-15下-4上-7下-11上-14下 -3上-6下-10上-13下-2上-5下-12号换向片-B1 A2—12号换向片4上-7下-11上-14下-3上--6下-10上-3下 -15上-15号换向片-B2
N
N - U +
+ U -
S
S
由电磁力产生转矩的过程:
(1)线圈ax中通入直流电流时,电流从 a端流入,从x端流出;
B
A(2)线圈边a和x上均受到电磁力,根
据左手定则确定力的方向。 (3)这一对电磁力形成了作用于电枢 的一个电磁转矩,将产生逆时针旋转。
把这个装有线圈的铁质 圆柱体称为电枢。 (1)按照这种模式下,电枢将如何运动?
P 1
额定电流
N
PN
12 13.45(kw) 0.892
直流电机的基本工作原理和结构
直流电机的基本工作原理和结构现在行驶在马路上的电动汽车越来越多了,大家考虑过电动汽车的动力源是什么呢?还有现在逐渐走进大众视野的无人机,无人机是由什么驱动的呢?想必大家心中都已经有了答案:它们都是由直流电机驱动。
其实直流电机的应用非常广泛,小到电动玩具,大到各种加工机床都有直流电机的身影。
直流电机是电机的主要类型之一,它的主要特点是使用直流电。
一、直流电机的基本工作原理直流电机是直流发电机和直流电动机的统称。
直流发电机是由原动机带动转子旋转,将机械能转换成直流电能,进而对负载供电。
直流电动机是外施直流电源在定、转子上,进而转子旋转带动同轴负载运转,将直流电能转化成机械能。
下图1是直流发电机的工作模型。
图1 直流发电机的工作模型图1中N、S是两个在空间固定不动的磁极,可以是永久磁铁,也可以是电磁铁;abcd是一个装在可以转动的铁磁圆柱体(转轴)上的线圈,合称为电枢,也就是电机的转子;线圈的首、末端分别连接到与电枢同轴旋转的两个圆弧形的铜片上,称为换向片,换向片之间及换向片与转轴之间是相互绝缘的;A和B是两个与换向片相接触,但空间上静止不动的铜片,称为电刷。
从电刷A、B引出即可对负载供电。
当原动机拖动电枢,也就是转子,以转速n恒速旋转时,导体ab和cd切割磁力线而感应电动势,其方向可用右手定则确定。
整个线圈的电势方向是e dcba,即从d到a。
此时如果在电刷之间接上负载,就有电流产生,为负载供电。
当电枢转过180°时,线圈abcd中感应电动势的方向为e abcd,即从a到d。
因为电刷的原因,因而流过外部负载的电流方向不变,所以说发电机发出的是直流电。
根据以上两个特定位置的分析,可以得出直流发电机以下几个结论:(1)在电枢线圈内的感应电动势e a及电流i a都是交流电,通过换向片及电刷的整流(交流变直流)作用才变成外部两电刷间的直流电动势,使外部电路得到方向不变的直流电流;(2)发电机电枢线圈中的感应电动势e a与其电流i a的方向始终一致;(3)虽然电枢线圈是旋转的且电枢线圈中的电流是交变的,但从空间上看N极与S极下的电枢电流的方向不变,因此由电枢电流所产生的磁场在空间上是一个恒定不变的磁场;(4)电枢绕组电流与磁场相互作用产生电磁力f。
直流电机的工作原理与基本结构
2)在电刷AB两端接上直流电源。
-
S
2.直流电动机的工作原理分析
电刷AB接直流电源: A接正极,B接负极。
图a 导体ab处于N极下时,电枢逆时针旋转
当导体ab处于N极下、cd处于S极下时,ab中的电流由a流向 b,cd中的电流由c流向d,整个线圈中的电流顺时针流动。 用左手定则判定:导体ab受力方向从右向左;导体cd受力方 向从左向右,形成逆时针方向的电磁转矩,带动电枢逆时针 旋转。
直流电机的工作原理与基本结构
一、直流电机简介
1.直流电机的定义
直流电机是通以直流电流的旋转电机,是电能和机械 能相互转换的设备。
将机械能转换为电能的是直流发电机; 将电能转换为机械能的是直流电动机。
与交流电机一样,直流电机的工作也遵循“导体切割 磁力线产生感应电动势”“载流导体在磁场中会受到 电磁力的作用”,这两条基本物理原理。
2.直流电机的特点(与交流电机相比)
●直流电动机的优点
调速性能好,启动转矩大,过载能力强。
●直流发电机的优点
性能好,能提供无脉动的大功率直流电源,输出电压还可 以精确调节和控制。
●直流电机的缺点
1)制造工艺复杂,消耗有色金属较多,生产成本高。 2)运行时电刷和换向器之间容易产生火花,工作可靠性较 差,维护比较困难。
2.直流电动机的工作原理分析
图a
图b
图c
图d
直流电动机工作过程分解图
直流电动机电刷两端接入的是直流电源,经过换向片和电刷 流到电枢线圈中的电流,却是交变的。
在恒定的励磁磁场作用下,位于N极下的电枢导体受力方向 始终不变,位于S极下的电枢导体受力方向也始终不变。
实际电机有多个位于不同角度的电枢线圈,它们产生的电磁 转矩方向始终不变,能够带动电枢朝某个方向连续旋转。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁极中心及附近的气 隙小且均匀,磁通密度较 大且基本为常数,靠近极 尖处,气隙逐渐变大,磁 通密度减小;极尖以外, 气隙明显增大,磁通密度 显著减少,在磁极之间的 几何中性线处,气隙磁通 密度为零。
极身
极靴 几何中性线
(a)气隙形状
第1章 直流电机
空载时的气隙磁通密度为 一平顶波,如下图(b) 所示。
与电刷A接触的导体总是位于N 极下,与电刷B接触的导体总是位 于S极下,电刷A的极性总是正的, 电刷B的极性总是负的,在电刷A、 B两端可获得直流电动势。
实际直流发电机的电枢是根据实际需要有多个线圈。线圈分 布在电枢铁心表面的不同位置,按照一定的规律连接起来,构成 电机的电枢绕组。磁极也是根据需要N、S极交替旋转多对。
第1章 直流电机
直流电 动机的 工作原 理示意 图:
第1章 直流电机
1.1.3 直流电机的铭牌数据
指轴上输出 的机械功率
电动机
额定功率PN
额定条件下电机
发电机
指电刷间输出的 额定电功率
所能提供的功率
额定电压U N 在额定工况下,电机
额定电流I N
出线端的平均电压
额定转速nN
发电机:是指输出额定电压;
在额定电压下,运行于 额定功率时对应的电流
在额定电压、额定电流下,运
电动机:是指输入额定电压。
行于额定功率时对应的转速.
额定励磁电流I fN
对应于额定电压、额定电流、额 定转速及额定功率时的励磁电流
电机铭牌上还标有其它数 据,如励磁电压、出厂日 期、出厂编号等。
第1章 直流电机
此外,电机铭牌上还标有其它数据,如励磁电压、出厂日期、 出厂编号等。
右图为一台电刷放在几何中性 线的两极直流电机的电枢磁场分布 情况。
假设励磁电流为零,只有电枢电 流。由图可见电枢磁动势产生的气隙 磁场在空间的分布情况,电枢磁动势 为交轴磁动势。
第1章 直流电机
如果认为直流电机电枢上 有无穷多整距元件分布,则电 枢磁动势在气隙圆周方向空间
分布呈三角波,如图中 Fa所x 示。
1.4.1 直流电机的电枢电动势
产生:电枢旋转时,主磁场在电枢绕组中感应的电动势简称为电
枢电动势。
大小:
Ea
pN Φn 60 a CeΦnFra bibliotek其中Ce
pN 60a
为电机的结构常数
(电动势常数
)
可见,直流电机的感应电动势与电机结构、气隙磁通及转速有关。
性质: 发电机——电源电势(与电枢电流同方向);
第1章 直流电机
1.1 直流电机的基本工作原理和结构
1.1.2 直流电机的工作原理
一、直流发电机工作原理
直流发电机是将机械能转变成电能的旋转机械。
右图为直流发电机的物理模型, N、S为定子磁极,abcd是固定在 可旋转导磁圆柱体上的线圈,线圈 连同导磁圆柱体称为电机的转子或 电枢。线圈的首末端a、d连接到两 个相互绝缘并可随线圈一同旋转的 换向片上。转子线圈与外电路的连 接是通过放置在换向片上固定不动 的电刷进行的。
电动机——反电势(与电枢电流反方向).
第1章 直流电机
1.4.2 直流电机的电磁转矩 产生:电枢绕组中有电枢电流流过时,在磁场内受电磁力的作用,该
力与电枢铁心半径之积称为电磁转矩。
大小:
Tem
pN 2 πa
ΦIa
CT ΦIa
其中CT
pN为电机的转矩常数,有 2 πa
CT
9.55Ce
可见,制造好的直流电机其电磁转矩与气隙磁通及电枢电 流成正比
1.2 直流电机的电枢绕组简介
1.2.1 直流枢绕组基本知识
元件:构成绕组的线圈称为绕组元件,分单匝和多匝两种。
元件的首末端:每一个元件均引出两根线与换向片相连,其中 一根称为首端,另一根称为末端。
极距:相邻两个主磁极轴线沿电枢表面之间的距离,用 表示。
t=D
2p 叠绕组:指串联的两个元件总是后一个元件的端接部分紧叠在前 一个元件端接部分,整个绕组成折叠式前进。
第1章 直流电机
1.2.3 单波绕组
单波绕组的特点是合成节距与换向节距相等,展开图如下 图所示。
两个串联元件放在 同极磁极下,空间位置 相距约两个极距;沿圆 周向一个方向绕一周后, 其末尾所边的换向片落 在与起始的换向片相邻 的位置。
第1章 直流电机
单波绕组的并联支路图: 单波绕组的特点
1)同极下各元件串联 起来组成一条支路,支 路对数为1,与磁极对 数无关;
第1章 直流电机
单叠绕组的展开图
第1章 直流电机
根据单叠绕组的展开图可以得到绕组的并联支路电路图:
单叠绕组的的特点:
1)同一主磁极下的元件 串联成一条支路,主磁极 数与支路数相同。 2)电刷数等于主磁极数, 电刷位置应使感应电动势 最大,电刷间电动势等于 并联支路电动势。 3)电枢电流等于各支路 电流之和。
中的 i
i
iiaa
ia ia
iiiiaa
电流方向如图所示,大小为 i ia 。
元件1
电枢移到电刷与换向片2接触时,元
件1的被短路,电流被分流。
ii11 i2
12
电刷仅与换向片2接触时,元件1 中
的电流方向如图所示,大小为 i ia
2i2a2iaia
第1章 直流电机
元件从开始换向到换向终了所经历的时间,称为换向周 期。换向周期通常只有千分之几秒。直流电机在运行中,电 枢绕组每个元件在经过电刷时都要经历换向过程。
换向问题很复杂,换向不良会在电刷与换向片之间产生 火花。当火花大到一定程度,可能损坏电刷和换向器表面, 使电机不能正常工作。
产生火花的原因很多,除了电磁原因外,还有机械的原 因。此外换向过程还伴随着电化学和电热学等现象。
1.3.1直流电机的空载磁场
右图为一台四极直流电机空载时的磁场示意图。
当励磁绕组的串联匝数 为N ,f 流过电流 ,I f每极 的励磁磁动势为:
Ff I f N f
第1章 直流电机
漏磁通
磁力线不进入电枢铁心, 直接经过气隙、相邻磁极 或定子铁轭形成闭合回路
漏磁路
主磁通
磁力线由N极出来,经气隙、 电枢齿部、电枢铁心的铁轭、 电枢齿部、气隙进入S极,再 经定子铁轭回到N极
电机运行时,所有物理量与额定值相同——电机运行于 额定状态。电机的运行电流小于额定电流——欠载运行;运 行电流大于额定电流——过载运行。长期欠载运行将造成电 机浪费,而长期过载运行会缩短电机的使用寿命。电机最好 运行于额定状态或额定状态附近,此时电机的运行效率、工 作性能等比较好。
第1章 直流电机
通密度分布曲线
Bx
B0 x
Bax
第1章 直流电机
由图可知,电刷在几何中性线时的电枢反应的特点:
1)、使气隙磁场发生畸变
空载时电机的物理中性线与几何中性线重合。负载后由于 电枢反应的影响,每一个磁极下,一半磁场被增强,一半被削
弱,物理中性线偏离几何中性线角,磁通密度的曲线与空载
时不同。
2)、对主磁场起去磁作用
第1章 直流电机
当电枢旋转到右图所示位置时
原N极性下导体ab转到S极下, 受力方向从左向右,原S 极下 导体cd转到N极下,受力方向 从右向左。该电磁力形成逆时 针方向的电磁转矩。线圈在该 电磁力形成的电磁转矩作用下 继续逆时针方向旋转。
与直流发电机相同,实际的 直流电动机的电枢并非单一线圈, 磁极也并非一对。
单叠绕组 单波绕组
y y1 y2 y y1 y2
换向节距 yk :同一元件首末端连接的换向片之间的距离。
1.2.2. 单叠绕组
单叠绕组的特点是相邻元件(线圈)相互叠压,合成节距与换向节
距均为1,即: y yk 1。
单叠绕组的展开图是把放在铁心槽里、构成绕组的所有元件取出 来画在一张图里,展示元件相互间的电气连接关系及主磁极、换向片、 电刷间的相对位置关系。
几何中性线:两相邻主磁极的轴线对称分布,此处B=0; 物理中性线:B=0处的直线位置
1、当电刷在几何中性线上时,将 主磁场分布和电枢磁场分布叠加, 可得到负载后电机的磁场分布情况, 如图(a)所示。
第1章 直流电机
电枢磁场磁通 密度分布曲线
主磁场的 磁通密度 分布曲线
两条曲线逐点叠加后得 到负载时气隙磁场的磁
第1章 直流电机
二、直流电动机工作原理
在磁场作用下,N极性下导体
直流电动机是将电能转变 ab受力方向从右向左,S 极下导
成机械能的旋转机械。
体cd受力方向从左向右。该电磁
把电刷A、B接到直流电源 力形成逆时针方向的电磁转矩。
上,电刷A接正极,电刷B接负 当电磁转矩大于阻转矩时,电机
极。此时电枢线圈中将电流流过。转子逆时针方向旋转。
一般直流电机额定运行时,额定磁
通 N设定在图中 A点,即在磁化特
性曲线开始进入饱和区的位置。
0
A
If0 If
I fN F f 0 IN
第1章 直流电机
1.3.2 直流电机负载时的负载磁场
直流电机带上负载后,电枢绕组 中有电流,电枢电流产生的磁动势称 为电枢磁动势。电枢磁动势的出现使 电机的磁场发生变化。
性质: 发电机——制动(与转速方向相反);
电动机——驱动(与转速方向相同)。
第1章 直流电机
1.5 直流电机的换向
1.5.1 换向概述
直流电机的某一个元件经过电刷,从一条支路换到另一条
支路时,元件里的电流方向改变,即换向。
为了分析方便假定换向片的宽度等于 va
电刷的宽度。 电刷与换向片1接触时,元件1
由于主磁极下气隙长度基 本不变,而两个主磁极之间, 气隙长度增加得很快,致使电 枢磁动势产生的气隙磁通密度