最终版线性代数期末复习题.doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数
一. 单项选择题
1.设A 、B 均为n 阶方阵,则下列结论正确的是 。 (a)若A 和B 都是对称矩阵,则AB 也是对称矩阵 (b)若A ≠0且B ≠0,则AB ≠0
(c)若AB 是奇异矩阵,则A 和B 都是奇异矩阵 (d)若AB 是可逆矩阵,则A 和B 都是可逆矩阵
2. 设A 、B 是两个n 阶可逆方阵,则()1-⎥⎦
⎤⎢⎣⎡'AB 等于( ) (a )()1-'A ()1-'B (b) ()1-'B ()1-'A (c )()
'-1B )(1'-A (d )()
'
-1B ()1-'A
3.n m ⨯型线性方程组AX=b,当r(A)=m 时,则方程组 . (a) 可能无解 (b)有唯一解 (c)有无穷多解 (d)有解
4.矩阵A 与对角阵相似的充要条件是 . (a)A 可逆 (b)A 有n 个特征值
(c) A 的特征多项式无重根 (d) A 有n 个线性无关特征向量 5.A 为n 阶方阵,若02
=A ,则以下说法正确的是 .
(a) A 可逆 (b) A 合同于单位矩阵 (c) A =0 (d) 0=AX 有无穷多解
6.设A ,B ,C 都是n 阶矩阵,且满足关系式ABC E =,其中E 是n 阶单位矩阵, 则必有( )
(A )ACB E = (B )CBA E = (C )BAC E = (D )
BCA E =
7.若233
32
31
232221
131211
==a a a a a a a a a D ,则=------=33
32
3131
2322
212113
1211111434343a a a a a a a a a a a a D ( ) (A )6- (B )6 (C )24 (D )24- 二、填空题
1.A 为n 阶矩阵,|A|=3,则|AA '|= ,| 1
2A A -*
-|= .
2.设⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=300120211A ,则A 的伴随矩阵=*A ; 3.设A =⎥
⎦
⎤⎢
⎣⎡--1112,则1
-A = 。
4.3R 中的向量()()12
3,222αβ''==,γβα22=-,则=γ ,|α|= .
5. 设3阶矩阵A 的行列式8||=A ,已知A 有2个特征值-1和4,则另一特征值为
6.二次型32212
3222143214422),,,(x x x x x x x x x x x f ---+=对应的矩阵是 .
7.已知三维向量空间的一组基为:]1,1,0[],1,0,1[],0,1,1[321===ααα,则向量]0,0,2[=α在这组基下的坐标为: 。
8. 如果二次型31212
322213212232),,(x x x x tx x x x x x f ++++=是正定的,则t 的取值范围
是 。 三、解答题
1. 设X B AX =+,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=101111010A ,⎥⎥
⎥⎦
⎤⎢⎢⎢⎣⎡--=350211B ,求X
2. 计算
d
b
d
b c a c a 0
0000000
3.求向量组⎪⎪⎪
⎭
⎫
⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛-=93916,131,143,1524321αααα的一个极大线性无关组,并将其
他向量用该极大线性无关组线性表出.
4.设线性方程组⎪⎩⎪
⎨⎧=-+=+-=-+0
302022321
321321x x x x x x x x x λ, 问λ取何值时方程组有非零解?并求通解,写出其基
础解系.
5. 已知方程组⎪⎩⎪
⎨⎧=++--=+-=++2
321
321321424
k x kx x x x x kx x x
(1)k 为何值时,方程组有唯一解?无穷多解?无解? (2)在有无穷多解时,求出方程组的通解。
6.已知二次型323121321222),,(x x x x x x x x x f ++=,利用正交变换化f 为标准形,并写出相应的正交矩阵. 四、证明题
若2240A A E --=,证明A E +可逆,并求1
()A E -+.
答案
一、(1) d (2)a (3) d (4) d (5) d (6)d (7)d
二、(1) 9 ; 1
3-n (2) ⎥⎥
⎥⎦⎤⎢⎢⎢⎣⎡---200130336 (3) ⎥⎦⎤
⎢⎣⎡2111 (4) ⎪
⎪⎪⎭
⎫
⎝⎛210 ;14 (5) -2 (6) ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡----220222021 (7)]1,1,1[- (8)35t >
三、(1) 由X B AX =+得:()A E X B -=-
因为 110101102A E -⎡⎤
⎢⎥-=-⎢⎥⎢⎥--⎣⎦
, 30A E -=-≠,所以A E -可逆 。 1210332
1()13311033A E -⎡⎤
--⎢⎥⎢
⎥⎢⎥-=-
-⎢⎥
⎢
⎥⎢⎥
-⎢⎥⎣
⎦
,故131()2011X A E B --⎡⎤⎢⎥=-=-⎢⎥⎢⎥-⎣⎦ (2) 2)(bc ad -
(3) 321,,ααα ;
32143
8
32317αααα-+-
= (4) 1=λ时有非零解 ; ()T
k X 110= k 取任意数 ()T
110为基础解系
(5) )4)(1(1
1
211
11
-+=--=k k k
k A
(1) 当1-≠k 且4≠k 时,方程组有唯一解;
(2) 当1-=k 时, []→⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡-----=111142114111 b A ⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡---300083204111 )(])([A r b A r ≠ ,方程组无解;