拓扑优化的一篇经典论文(英文档)
计算机 外文翻译 外文文献 英文文献 基于拓扑结构的分布式无线传感器网络的功率控制
外文出处:Prasan Kumar Sahoo著,Proc of Computing, and Communications Conference, 2005.[C]出版社:IEEE,2005年附件:1.外文资料翻译译文;2.外文原文基于拓扑结构的分布式无线传感器网络的功率控制摘要无线传感器网络由大量的传感器节点电池供电,限制在一定区域内的随机部署的几个应用。
由于传感器能量资源的有限,他们中的每一个都应该减少能源消耗,延长网络的生命周期。
在这篇文章中,一种分布式算法的基础上,提出了无线传感器网络的构建一种高效率能源树结构,而无需定位信息的节点。
节点的能量守恒是由传输功率控制完成的。
除此之外,维护的网络拓扑结构由于能源短缺的节点也提出了协议。
仿真结果表明,我们的分布式协议可以达到类似集中算法的理想水平的能量守恒,可以延长网络的生命周期比其他没有任何功率控制的分布式算法。
关键词:无线网络传感器,分布式算法,功率控制,拓扑结构1.引言近年来在硬件和软件的无线网络技术的发展,使小尺寸、低功耗、低成本、多功能传感器节点[1]的基础上,由传感、数据处理及无线通信组件组成。
这些低能量节点的电池,部署在数百到成千上万的无线传感器网络。
在无线传感器网络系统、音视频信号处理系统,使用更高的发射功率和转发数据包相似的路径是种主要消费传感器的能量。
除此之外,补充能量的电池更换和充电几百节点上的传感器网络应用的大部分地区,特别是在严酷的环境是非常困难的,有时不可行。
因此,节能[2],[3],[4]的传感器节点是一个关键问题,如传感器网络的生命周期的完全取决于耐久性的电池。
传感器节点一般都是自组织建立了无线传感器网络,监察活动的目标和报告的事件或信息多跳中的基站。
有四种主要的报告模式的传感器网络:事件驱动、队列驱动、期刊、查询和混合的报告。
在事件驱动模型,节点报告接收器,同时报告遥感一些事件,例如火灾或水灾而敲响了警钟。
定期报告中,节点模型的数据收集和可聚合所需资料,成为集,然后定期的发送到上游。
Topology Optimzation
Micro-structure Material Approach
Homogenization Method
Variable Density Method Mathematics Programming
拓扑优化专题报告
1.3拓扑优化基本原理
拓扑优化的研究领域法。 连续体拓扑优化是把优化空间的材 料离散成有限个单元(壳单元或者体单 元),离散体结构拓扑优化是在设计空 间内建立一个由有限个梁单元组成的基 结构,然后根据算法确定设计空间内单 元的去留,保留下来的单元即构成最终 的拓扑方案,从而实现拓扑优化。
拓扑优化专题报告
Selection Way
Single Variable Bi-Section Method Golden Section Method Steepest Descent Method Newton Method
拓扑优化专题报告
IF
Multiple Variables
最后在整个拓扑优化过程中将可能用 到的相关工具还有: 三维软件UG、CATIA、PRO/E等建模; ANSYS/NASTRRAN等有限元软件; 数据转换软件如IGES/SAT/STL文件等。 拓扑优化模块如:Optimization、Genesis TOSCA、Optishape等。 拓扑优化还有一些相关的步骤在这里不在 详细介绍。
Where to start? What is the next? When to stop?
Initial guess Optimization algorithm Termination criteria
拓扑优化专题报告
实践证明拓扑优化约97%的时间消耗在 有限元分析过程中,所以选择迭代算法时必 须考虑其迭代收敛性和迭代速度,一般收敛 的迭代次数不应超所20次。目前对于连续空 间问题,使用现有的软件通常能得到材料分 布趋于稳定的优化结果,骨架结构的拓扑优 化结果可直接用于设计,而连续体的问题往 往需要进一步的处理,需要软件和设计者的 共同努力。
参考文献_基于OptiStruct的齿轮拓扑优化
Altair 2012 HyperWorks 技术大会论文集
文简单的算例中已能看出其实用性和准确性,其工程使用价值是很大的。
5 参考文献
[1]张胜兰等编《基于 HyperWorks 应用实例》 [3] HyperWorks Users Manual, Tutorials:Altair [4]王春会 连续体结构拓扑优化设计 西北工业大学硕士学位论文 2005 [5]张展主编《实用齿轮设计计算手册》机械工业出版社 2011
-5-
图5数值不稳定的设置 考虑到齿轮为旋转结构,如果材料分布不以重心对称就会产生很大的转动惯量,不利 于系统受力, 在优化的时候先以沿厚度方向和垂直面方向加了三面对称, 优化后的结果如图 6所示:
-3-
Altair 2012 HyperWorks 技术大会论文集
图6三面对称约束优化结果 此外,把三面约束换成周向循环对称约束同时考虑沿厚度中面向两侧的拔模约束,优 化后的结果如7图所示:
-2-
Altair 2012 HyperWorks 技术大会论文集
可以看到网格质量较好。中间红色区域为本文所要优化的设计区。
图3完成切分的齿轮
图4划分完网格的齿轮
3 优化设置及结果分析
齿轮模型的边界条件为在中间孔内壁和键槽与轮辐接触的两个侧面上的所有节点加固 支约束,从而模拟通过键连接使齿轮和中轴(未画出)刚性连接。实际工况中需要给齿轮的 一条啮合线上沿转动方向加 320N.mm 的扭矩,文中模型将这一载荷简化为一系列多个垂直 于齿面且在某一条啮合线上的多个点载荷,其中每个点上的载荷大小由以下公式计算得到:
图1标准齿轮模型
图2优化设计齿轮模型
在 HyperMesh 模块完成网格的划分。由于考虑到键槽不可或缺,所以以键槽的最高点 画圆将轮辐区切分成两个部分。与此同时,轮齿以及齿根凸台如果一起划分六面体网格,所 得到的网格质量很差,因此在齿根部分也画圆切分。切分完成以后的模型见图3。除轮齿以 外的三个部分采用六面体网格,轮齿采用四面体网格。网格划分完以后得到的模型如图4,
拓扑优化zuoye
关于拓扑优化1. 基本概念拓扑优化是结构优化的一种,结构优化可分为尺寸优化、形状优化、形貌优化和拓扑优化。
拓扑优化以材料分布为优化对象,通过拓扑优化,可以在均匀分布材料的设计空间中找到最佳的分布方案。
拓扑优化相对于尺寸优化和形状优化,具有更多的设计自由度,能够获得更大的设计空间,是结构优化最具发展前景的一个方面。
2. 发展起源拓扑优化的研究历史是从桁架结构开始的。
Maxwell 在1854年首次进行了应力约束下最小桁架的基本拓扑分析。
1904年Michell用解析分析的方法研究了应力约束、一个载荷作用下的结构,得到最优桁架缩影满足的条件,后称为Michell准则,并将符合Michell 准则的桁架称为Michell桁架,也称最小重量桁架,这是结构拓扑优化设计理论研究的一个里程碑。
但是,Michell提出的桁架理论只能用于单工况并依赖于选择适当的应变场,并不能用于工程实际。
直到1964年,Dom、Gomory、Greenberg等人提出基结构法,进一步将数值理论引入该领域,此后拓扑优化的研究重新活跃起来了。
所谓的基结构就是一个由众多构件联结而成的、包括所有载荷作用点、支撑点在内的结构。
Michell桁架理论在近几十年得到了重要的进展。
Cox证明了Michell的桁架同时也是最小柔度设计。
Hegemier等将Michell准则推广到刚度、动力参数约束,以及非线性弹性等情况。
Hemp纠正了其中的一些错误。
Rozvany对MIchell桁架的唯一性和杆件的正交性进行了讨论,对Michell准则做了进一步的修正。
现在,已经建立了多工况以及应力和位移组合约束情况的优化准则。
Dobbs和Fetton使用最速下降法求解多工况应力约束下桁架结构的拓扑优化。
Shen和Schmidt采用分枝定界法求解在应力和位移两类约束下桁架结构在多工况作用下的最优拓扑。
王光远等提出了结构拓扑优化的两相法。
Kirsch针对离散结构的拓扑优化问题提出了一种两阶段算法。
96_拓扑优化技术在汽车减速器壳体设计中的应用_刘明卓
拓扑优化技术在汽车减速器壳体设计中的应用刘明卓北京汽车股份有限公司汽车工程研究院,北京 100021摘要:汽车减速器壳体是汽车底盘的重要部件之一。
主流减速器壳体多采用球墨铸铁材料,设计相对保守,其重量相对较重,迫切需要通过拓扑优化设计减少其重量。
本文论述了减速器壳体结构优化的意义,并针对球墨铸铁材料减速器壳体的受载状况,利用OptiStruct软件探讨一种有效的减速器壳体拓扑优化设计方法,减少自重并提高了壳体的综合力学性能。
关键字:拓扑优化, OptiStruct,减重0.引 言绿色环保理念的提出以及激烈的市场竞争,使得每一个汽车主机厂商面临降低设计成本和设计轻量化性能最优化的考验。
众多汽车厂商都把汽车结构最优化设计放在一个空前的高度,并大范围的采用结构优化工具来解决低成本、高性能、轻量化这三个矛盾。
球墨铸铁减速器壳体作为汽车上最重要的零件之一,其自身重量较重,迫切需要通过拓扑优化设计减轻自重提高力学性能,降低生产成本。
由于球墨铸铁减速器壳体结构复杂,承载多变,力学性能要求较高,因此在优化设计中存在一定的难度。
OptiStruct作为一个非常有效的结构优化工具,被广泛应用于航空航天、汽车等领域,并得到验证。
本文采用OptiStruct来研究汽车减速器壳体的优化设计问题,探讨一种有效的优化设计方法,达到减少自重并提高壳体综合力学性能的效果。
1.汽车减速器壳体结构拓扑优化意义汽车减速器的结构形式因齿轮类型、主动齿轮与从动齿轮的安装方法以及减速形式而异,而减速形式可分为单级减速、双极减速、双速减速、单双级贯通、单双级减速配以轮边减速等[1],减速器结构与工况复杂多变。
在传统设计模式中,车辆工程师对汽车减速器结构先凭经验进行设计,在设计分析之后再修改原设计进行减重。
传统设计的缺点是,在修改零件设计之后,零件无法满足刚度和强度等设计要求,同时反复修改设计花费大量的时间,也增加人力和计算的成本。
拓扑优化的好处是,在设计初始阶段就尽可能考虑各个设计指标,使得初始概念设计能基本满足设计要求,减少设计过程的反复迭代,缩短设计周期,并提高设计质量。
拓扑优化_精品文档
-1整数变量问题变为0~1间的连续变量优化模型,获得方程(在设计变
量上松弛整数约束)的最直接方式是考虑以下问题:
min u,
uout
N
s.t.: min 1 min e Ke u f e1
N
vee V
e1
0 e 1, e 1,2,, N
其中 e 可取0-1之间的值
(6)
然而这种方程会导致较大区域内 e 是在0-1之间的值,所以必须添加额外 的约束来避免这种“灰色”区域。要求是优化结果基本上都在 e 1 或
而对于结构拓扑优化来说,其所关心的是离散结构中杆件之间的最优 连接关系或连续体中开孔的数量及位置等。拓扑优化力图通过寻求结构的 最优拓扑布局(结构内有无孔洞,孔洞的数量、位置、结构内杆件的相互 联接方式),使得结构能够在满足一切有关平衡、应力、位移等约束条件 的情形下,将外荷载传递到支座,同时使得结构的某种性能指标达到最优。 拓扑优化的主要困难在于满足一定功能要求的结构拓扑具有无穷多种形式, 并且这些拓扑形式难以定量的描述即参数化。
结构渐进优化法(简称ESO法)
通过将无效的或低效的材料 一步步去掉,获得优化拓扑,方法通 用性好,可解决尺寸优化,还可同时 实现形状与拓扑优化(主要包括应力, 位移/刚度和临界应力等约束问题的 优化)。
2.问题的设定
柔顺机构的拓扑优化
首先假设线性弹性材料有微小的变形
柔顺结构的一个重要运用在于机电系统(MicroElectroMechanical Systems(MEMS),在该系统中小规模的计算使得很难利用刚体结构来实现铰链、 轴承以及滑块处的机动性。
如果我们只考虑线性弹性材料(只发生微小变形)的分析问题,则决定 输出位移的的有限元方法公式为:
拓扑优化在桥梁支座轻量化设计中的应用
拓扑优化在桥梁支座轻量化设计中的应用韩家山;曹翁恺;顾海龙;陈新培【摘要】Taking the bridge bearing as the research object,based on the topology optimization design idea,the lightweight design of structure was carried out with the stiffness maximization of base plate as the design objective. Under the premise that the normal function of bearing was not affected,the bottom full constrained model and the bottom partial constrained model were defined.Two models corresponded to two different initial design areas.The bearings were optimized and analyzed separately.Through the topology optimization,the density contours of cylindrical-shrinkage type and the plate-hollow type were obtained.Based on the cylindrical-shrinkage type density contour,the base plate was rebuilt and the feasibility of topology optimization structure was verif ied.The research results indicate that under the premise of satisfying the performance requirements of bridge bearing,the weight of the bottom plate structure is reduced by 21.2%through the topology optimization of the bottom full constrained model. The results provide a new idea for the lightweight design of bridge bearing.%以桥梁支座为研究对象,基于拓扑优化设计思想,以支座下座板刚度最大化为设计目标对结构进行了轻量化设计.在保证支座正常功能不受影响的前提下,定义了底面全约束模型和底面非全约束模型,对应2种不同的初始设计区域,并分别对支座进行了优化分析.经过拓扑优化得到了外圆中缩式及底板中空式结构的密度图,再基于外圆中缩式密度图对下座板模型进行了二次构建,验证了拓扑优化结构的可行性.研究结果表明,在满足桥梁支座使用性能要求的前提下,底面全约束模型拓扑优化得到的支座下座板结构重量减小了21.2%,为桥梁支座的轻量化设计提供了一种新的思路.【期刊名称】《铁道建筑》【年(卷),期】2018(058)003【总页数】4页(P35-38)【关键词】桥梁支座;拓扑优化;数值计算;轻量化设计;下座板;刚度最大化【作者】韩家山;曹翁恺;顾海龙;陈新培【作者单位】洛阳双瑞特种装备有限公司,河南洛阳 471000;洛阳双瑞特种装备有限公司,河南洛阳 471000;洛阳双瑞特种装备有限公司,河南洛阳 471000;洛阳双瑞特种装备有限公司,河南洛阳 471000【正文语种】中文【中图分类】U443.36作为连接桥梁上下部结构的“关节”,桥梁支座可以将桥梁上部结构中反力和变形可靠地传递给桥梁下部结构,是桥梁结构中的一个重要组成部分[1]。
Altair Engineering的几篇关于拓扑优化的文章(英文)1
Redesign and Optimization of Lift Plate Based on Glass Installation LoadVeeranna B. SheelvanthArvinMeritor, Technical Support CenterBangalore, IndiaAbstractWith the automotive industry moving towards higher durability targets, reduced product development cycle time and lower design costs, the need for simulation has never been higher. This paper explains the use of optimization techniques in the design of a lift plate to reduce the weight and cost without compromising the functional requirements. A step-by-step approach to redesign the lift plate is proposed. As the glass insertion into the lift plate is one or two times in the lifetime of the lift plate, so fatigue life estimation was not considered. The scope of this paper is limited to optimization of lift plate using topology optimization capabilities available in OptiStruct.IntroductionLift Plate is a plastic component, which holds the glass in position and travels along the guide rail when passenger moves the glass up and down with power assistance. Lift Plate is a part of window regulator system, which is housed inside the car door system. Figure1 illustrates the window regulator with glass down position. Design of lift plate requires that it has to withstand target loads exerted when glass assembles onto it. The motivation to use simulation techniques is to redesign the lift plate field failure issues associated with preliminary designs. A lift plate experiences high structural stress states during an assembly event. In this paper it is proposed to use, topology optimization method using Optistruct, a linear structural solver. Optimization is a linear analysis method and does not include non-linear behavior in the model.GlassZLift PlateXFigure1: Window regulator Assembly with glass held in lift plate.ObjectiveArvinMeritor Door system experienced field failures of Lift Plates during the assembly of the glass for a particular door module. Since original design of the lift plate was for a door module, which had different glass width compared to the new door module, the re-designing of the lift plate was essential and (the) study has been carried out. Redesign of the lift plate considering the manufacturing feasibility was done with the help of Optistruct capabilities for the glass insertion loads, which was critical. Verification was done by ANSYS software to take care about the plastic non-linearity of the problem. The validation was carried out by conducting glass insertion test.In the process of redesigning, to reduce the cost of the product, the whole width of the lift plate has been reduced drastically without affecting the functional requirements. In addition to this, to reduce the number of components as well as number of operations during the assembly process of the glass on to lift plate, snap fit has been successfully replaced by push fit.Proposed Method EffectivenessAn effective Computer Aided Engineering (CAE) method must meet the following requirements:1. Feasible to implement2. Representative of the test3. Design Impact4. Cost EffectiveThe proposed method does! It has been used on multiple lift plate design and development programs at ArvinMeritor with good success.Feasibility / Test RepresentationIn our method and in this paper, we have identified some key elements that influence design of the lift plate. Keeping in mind the cost-payoff proposition, some process details that have a minor influence have been intentionally left out to make the implementation of the proposed method feasible. However, on the whole the simulation process is very much representative of the test procedure.Design ImpactLike any other simulation method, this has not been able to make a perfect correlation with test results. However, the direction provided by the topology optimization has always been effective to guide the design process. Lift plate designs driven by simulation results have always had a substantially higher level of performance compared to their baseline prototypes.Cost EffectiveThe proposed method has been very cost effective to derive multiple design proposals by applying the optimization capabilities. Time required for the model setup for the proposed method is about 2 man-days and based on the optimization direction, the modifications can be done within the HyperMesh very quickly. Computational time is about ½ an hour on a single CPU workstation. The simulation method has enabled Door Systems engineering team at ArvinMeritor to evaluate multiple lift plate design proposals before making a final choice.Lift Plate OverviewAssembly process of push fit type lift plate: First the threaded cable is inserted into the lift plate (just like a thread screw) and lift plate will be held in vertical position (as in the car door) with the tension in the cable, then the glass will be pressed against the lift plate manually and pins will be inserted to lock the glass in position.Assembly process of snap fit type lift plate: First the threaded cable is inserted into the lift plate (just like a thread screw) and lift plate will be held in vertical position. The glass will be pushed in to the lift plat forcefully so that it opens the snap and gets assembled / locked automatically. There is no further manual assembly operation.Nomenclature1. Push fit arrangement with pins in position.2. Threaded cable3. Cable holder4. Snap fit hook5. Tab6. Guides for the glass321546. Figure 3: Latest lift plate design with Snap fit type.Lift Plate Design Criteria• Lift Plate experiences glass assembly load.•Snap fit arrangement should deflect more than the glass thickness.Glass Assembly Loads :As explained by the words “Glass Assembly Loads”, loads refer to the loads experienced by the glass on lift plate when it is assembled. This is the load experienced by the plastic lift plate when the glass is forcefully thrusted upon that. Stress on the lift plate is one of the criteria; it should not go behind the yield strength of the material.Snap fit hook should deflect more than the glass thickness:When glass gets assembled on to the lift plate, first it gets contacted with the snap fit hook. Snap fit hook along with tab acts as cantilever beam and snap fit hook should deflect more than the thickness of the glass and then glass slides downward. There is a small hole provided in the glass with a diameter slightly more than the snap and then the glass gets locked automatically as soon as they get aligned together and tab along with snap fit hook will regain its original position.Fe Model SetupFigure 4 illustrates the boundary condition and the loads used in the whole simulations.Boundary ConditionsConsidering the assembly process of glass into the lift plate, the boundary condition is derived. During the glass assembly process, the lift plate will be at the glass down position suspended in the cable, which is under full tension. The inner surface of the cable holder constrained from both translation and rotation.15 lbs (65.5 N)Cable holder inner surface constrained in all DOF’sLoadingGlass insertion load of 15 lbs (65.5 N) was applied on the snap fit hook area as specified by the OEM. This value holds good for both optimization as well as validation.Figure 4: FE model with loads and boundary conditionsMaterial PropertiesAs Optistruct doesn’t support material non-linearity, linear material properties are considered for the optimization process with the below mentioned values.Young’s Modulus, E= 2600 MP a Poisson’s ratio, µ = 0.37Non-Linear material property of lift plate material is considered while validating the optimized design. The figure 5 illustrates the stress strain diagram of plastic material for the ambient temperature of 23° C .Figure 5: Non-linear material property of @ 23° CTopology OptimizationTopology optimization generates the optimal shape of a mechanical structure. The structural shape is generated within a pre-defined design space. In addition, the user provides structural supports and loads. Without any further decisions and guidance of the user, the method will form the structural shape there-by providing a first idea of an efficient geometry. Therefore, topology optimization is a much more flexible design tool and most widely used in automobile industries for the conceptual design.Post- Processing Analysis ResultsThe analysis results obtained from OptiStruct are post-processed with HyperWorks visualization and post-processing module - HyperView and the results are analyzed.Topology OptimizationOptimization was done in two stages. First stage is to address the issue of getting high stress at the top end of the tab and other very important one is at the bottom of the tab.1st Stage OptimizationAs glass directly hits on the top end of the tab, the area where glass hits should bestrong enough to withstand the loads exerted by the glass assembly. Sooptimization was carried out to find out the best design pattern on the backside ofthe tab top. Only the tab was considered as design space and rest of the lift platewas defined as non-design space. Design space is defined as total volumeavailable for the structural modifications. Based on the directions given by postprocessing results of optimization, ribs are modeled on the backside of the tabconsidering the manufacturing feasibility. The figure 6 shows the modified designat the backside of the tab top.Figure 62nd Stage OptimizationBottom of the tab experiences high stress as it acts as cantilever beam when tab hook experiences load. This is the area where the existing design of the lift plate failed during the glass assembly process. Again topology optimization technique was applied to find the exact design at, both the, front and backside of the tab bottom.Figure 9.Figure 10.Figure 7. Figure 8.Figure 7 and figure 8 shows the load transfer path on the front and backside of the tab bottom areas respectively. Figure 9 and Figure 10 shows the front and rear view of tab of the final design, which was arrived, based on the load transfer path.Again the same loads and boundary conditions are used in the optimization process as explained above are considered for the validation of optimized design. Stresses observed at the bottom of the tab as shown in the figure 11 and figure 12 below. Optistruct is used for the optimization and also to get to know the stress and displacements at the conceptual stages of the design as the analysis is based on linear assumptions. Since the lift plate is a plastic component, to take account of material non-linearity the final design validation is carried using ANSYS as a solver. Post processing is carried out in HyperView because of enhanced features and intuitive user interface.48*MPa49.8* MPaFigure 11: Front view of the lift plate Figure 12: Rear view of the lift plateThe glass installation is a once in a lifetime of the lift plate, so fatigue life calculations have not been done. The stress obtained at the base of the tab of 49.8*MP a is considered to be safer against the Yield strength of the lift plate material is~60*MP a.Figure 13 shows the displacement plot of the lift plate. When theglass gets assembled on to the lift plate, it contacts the snap fithook, so the displacement is 5.7* mm which is more than the glassthickness which is about 4.1*. So conclusion is that the optimizeddesign meets the second criteria and design is good as per theflexibility criteria.5.7* mmFigure 13: Displacement plotThe output options discussed in this section are only illustrative examples of results that can be post-processed. The analyst must determine and post-process the necessary outputs, depending on the goals of his analysis.Table: Results Summary# Design Analysis Load Case Displacementat snap fithook (mm)MinimumDisplacementRequiredVon-MisesStress(MPa)Weight of theLift plate(gms)Yield Strength(MPa)1 OptimizedDesign Material Non-Linear15 lbs * 5.7 * 4.1 * 49.83 * 73 * ~ 60 ** Magnitudes are just for reference, not the actual values.Benefits SummaryAs noted in the earlier sections, this approach reduces the product development costs by minimizing the number of expensive prototypes that need to be tested. Based on the directions given by Optimization, design changes can be quickly evaluated by changing the FE model that is correlated with test setup. This method not only minimizes product development time, but also offers a structurally optimized lift plate to the end customer. Another advantage of optimization method is that the toggle between preprocessor and the optimization process is very easy as it is in a single window of the HyperWorks. It facilitates the engineering team to study the response of the lift plate assembly process in detail. It is often difficult to study this in the test lab or in the assembly line because lift plate assembly is a very short event and simulation overcomes this problem. The results can be post-processed and viewed multiple times from different orientations to study the response of the lift plate for glass installation loads and as per the optimization directions, design can be changed till the safe stress value.ConclusionThe proposed simulation approach for glass assembly or insertion has proven to be an effective tool in the design / redesign and development of lift plate for the glass insertion load case.ACKNOWLEDGMENTSThe authors would like to acknowledge ArvinMeritor Door Systems Engineering team for all their support in designing and developing simulation methods for lift plate.REFERENCES[1]. Devadas Kumbla, Pan Shi and Joseph Saxon, “Simulation Methods for Door Module Design”.。
OptiStruct拓扑优化技术在飞机结构设计中的应用
OptiStruct拓扑优化技术在飞机结构设计中的应用Application of Topology Optimization Technology OptiStruct in Designing of the Aircraft Structure郭琦(中航飞机西安飞机分公司,陕西西安,710089)【摘要】随着优化技术在飞机结构设计中的深入应用,传统的结构设计方法已发生了改变。
本文介绍了优化技术的设计理论和方法,运用有限元分析和优化工具OptiStruct对飞机某结构接头进行拓扑优化分析,并验证其强度和刚度都满足设计要求。
说明拓扑优化能在产品概念设计阶段寻求最佳的设计方案,对缩短产品设计研发周期和提高产品质量有着重要的意义。
关键词:有限元分析拓扑优化 OptiStruct 结构分析Abstract:w ith the further application of optimization technique in designing of the aircraft structure, the structure design method of traditional already change. This paper introduces the design theory and method of optimization Technology, use of the finite element analysis and optimization tool OptiStruct to topology optimization of a certain connector structure, and verify its strength and stiffness meet the design requirements. Explain the topology optimization is helpful to seek the best design scheme in the conceptual phase of products, and have important significance for reduce the product design cycle and improve the quality of products.Key words: Finite element analysis, Topology optimization, OptiStruct, Structure optimization1引言结构优化技术是当前CAE技术发展的一个热点,其已被广泛应用到各工业领域[1]。
基于optistruct的望远镜主框架拓扑优化设计
基于OptiStruct的望远镜主框架拓扑优化设计Topologic Optimization Design of Telescope Main Frame Based on Optistruct马肇材1,2,陈华1,2,刘伟1MA Zhao-cai1,2, CHEN Hua1,2, LIU Wei1(1.中国科学院长春光学精密机械与物理研究所,吉林长春 130033;2.中国科学院研究生院,北京 100039)(1.Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China;2.Graduate School of the Chinese Academy of Sciences,Beijing100039,China)摘要:针对某航空望远镜主结构的重量过高的问题,提出了对航空相机望远镜主框架进行拓扑优化设计的方法。
基于拓扑优化理论,在重力过载的工况下对望远镜主框架拓扑优化,以整个框架作为设计变量,以框架的体积分数和固有频率作为约束条件,选结构的柔度最小化为目标函数,建立拓扑优化模型。
采用MSC.PATRAN/NASTRAN软件对航空望远镜拓扑优化结果进行仿真,分析结果表明,结构的重量减少了77%,结构静态刚度提高,动态刚度符合要求,温度变化环境下光学成像条件改善。
关键词:拓扑优化;刚度;航空望远镜中图分类号:V447.3 (V-航空航天) 文献标识码:AAbstract: In order to reduce the weight of an aerial telescope main structure, a topologic optimization design method of the aerial telescope main frame was presented. The telescope main frame with overloaded gravity was optimized based on topologic theory. The topologic optimization model takes the whole frame as variation, takes volume fraction and natural frequency as computing constrains, takes the maximal structure stiffness as the objective function. The resulted model was analyzed with MSC.PATRAN/NASTRAN software. The result indicated that the structure’s total weight was reduced 77%, the structure’s static stiffness increased, the dynamic stiffness was suitable and the optical imaging condition was improved.Key words: topologic optimization; stiffness; aerial telescope1 引言在航空相机概念设计阶段,为了保证航空相机能适应机载平台上复杂的工作环境(如冲击、振动、高低温变化、低气压等),有良好的成像质量,因此需要相机具有良好的结构刚度的同时也要保证相机反射镜具有良好的热稳定性[1]。
拓扑优化技术在发动机减噪中的应用
拓扑优化技术在发动机减噪中的应用陈馨李云涛王成奇瑞汽车股份有限公司发动机工程研究院CAE部摘要: 在某款车型试验中发现高速噪声过大,经分析是高速时发电机振动过大造成的。
针对此问题,本文采用OptiStruct软件,应用拓扑优化技术,对发电机支架进行了优化分析,在此基础上对支架进行了结构改进。
试验结果证明,改进后的结构噪声得到有效降低,优化效果明显。
关键词:支架,OptiStruct,拓扑优化,噪声1 前言在某款车型试验中发现高速噪声过大,如图1和图2所示,通过对发动机、车身振动分析,发现主要噪声是高速下发电机振动过大引起的,因此需要对发电机支架进行结构改进,提高发电机系统的固有模态频率,以避开此频段,尽量减少共振的可能性[1]。
图2 瞬态响应幅值曲线随着有限元计算理论、技术及分析软件的发展,优化技术为工程设计提供了有力的工具[2][3][4]。
此次针对发电机支架,采用有限元计算方法,利用软件内部的优化功能,对支架进行了拓扑优化分析,并以此为基础对支架进行改进[5]。
2原支架模态分析2.1 建立有限元模型发电机支架的作用是将发电机固定在缸体上,并给发电机提供足够的支撑防止发电机在工作过程中振动过大,因此发电机支架不仅要有足够的刚度和强度,还须具备良好的动态性能。
本发电机支架上除了安装发电机外,还装载了动力转向泵以及惰轮,因此分析的时候模型包括:支架,发电机,动力转向泵,惰轮,缸体及螺栓。
上述部件均采用二阶四面体单元,有限元模型如图3所示。
各部件之间采用螺栓连接,缸体切取与支架相连的部分模型,对缸体进行全约束。
2.2 模态计算结果对发电机支架系统进行约束模态分析,得到前5阶模态及振型(见表1和图4)。
从计算结果中可知支架的一阶固有频率为207Hz ,与试验中噪声过大时的转速频率基本吻合,说明该转速下发电机支架振动对噪声贡献最大。
为此要进行结构优化,提高支架一阶固有频率。
表1 支架及其附件前5阶固有频率3 支架拓扑优化3.1拓扑优化的模型及设计空间定义拓扑优化的目的是寻找结构的最佳材料分布方案。
Ad Hoc网络论文:Ad Hoc网络拓扑重构方案的设计与仿真
Ad Hoc网络论文:Ad Hoc网络拓扑重构方案的设计与仿真【中文摘要】Ad Hoc网络是由一组带有无线通信收发装置的移动终端节点组成的一个多跳、临时性、无中心网络,因其在军事、抢险救灾等领域中的重要应用而受到广泛关注。
Ad Hoc网络分布式组网、节点移动性强、无线信道等特点使网络拓扑容易遭遇故障,导致网络性能下降,Ad Hoc网络重构问题的研究对于保证网络的可靠性、抗毁性和健壮性具有重要的作用。
研究Ad Hoc网络拓扑重构问题,将Ad Hoc网络拓扑重构分为重构触发和重构实现两个阶段。
在重构触发阶段,设计基于有向图的拓扑级故障诊断算法,将网络拓扑级故障分为单节点不可达、不可达节点构成连通子图和不可达节点不能构成连通子图三类,分别设计故障模型,通过故障模型之间的转化,比较节点和链路故障概率,从而定位故障。
在重构实现阶段,首先利用Ad Hoc网络路由协议的维护机制实现路由重构,恢复路由;对路由重构无法恢复的故障,设计基于k跳邻域扩散连通恢复的拓扑重构方案;网络恢复连通后,基于拓扑的高效性设计拓扑优化方案。
使用NS2网络模拟软件对所提Ad Hoc网络拓扑重构方案进行仿真,结果表明,网络发生故障时,随网络规模的增大和拓扑变化频率的提高,基于图的拓扑级故障诊断算法均能以较高的正判率定位故障;采用拓扑重构实现方案,能使网络有效恢复连通性,使成功分组投递率、传输延时和控制开销等网络性能得到改善。
【英文摘要】Ad Hoc networks is a multi-hop temporaryautonomous system of mobile nodes with wireless transmitters and receivers without relying on preexisting network infrastructure. Because of its important applications such as military field, emergency rescue and disaster relief, it has attracted a wide attention. The features of Ad Hoc networks such as distributed networking, node mobility and wireless communications, make it easily encounter faults which lead to the decreasing of the network performance. It has great significance to research on the topology reconstruction for assuring reliability, invulnerability and robustness in Ad Hoc networks.Research on the problem of topology reconstruction in Ad Hoc networks, and it divides into two stages, which are the trigger stage and the implementation stage. In the first stage, a fault diagnosis algorithm based on directed graph is proposed for topology level. The faults are divided into single unreachable node, connected subnet of unreachable nodes, and unconnected subnet of unreachable nodes. Three kinds of fault models is designed and transformed. The faults can be located by the comparison of the node fault probability and the link fault probability. In the second stage, the maintenance mechanism in routing protocol is used to implement routing reconstruction. Relatively, a topology reconstruction schemebased on k-hop neighborhoods dispersion is proposed for the situations that routing reconstruction cannot work effectively. Moreover, a topology optimization scheme based on topology high effectiveness is proposed.The network simulation software NS2 was adopted to evaluate network performance after using the topology reconstruction scheme.Simulation results show that the network faults can be located with higher correct ratio by fault diagnosis algorithm based on directed graph as the increment of network scale and the frequency of network topology changing. And the connectivity of network can be effectively recovered after using the topology reconstruction scheme, and the network performances are improved such as the parameters of the packet delivery ratio, transmission delay, and control overhead and so on.【关键词】Ad Hoc网络故障诊断拓扑重构图论【英文关键词】Ad Hoc networks Fault diagnosis Topology reconstruction Graph theory【目录】Ad Hoc网络拓扑重构方案的设计与仿真摘要5-6Abstract6第1章绪论9-17 1.1 Ad Hoc网络概述9-13 1.2 Ad Hoc网络拓扑重构问题的提出13-14 1.3 研究目的及意义14-16 1.4 论文组成16-17第2章网络拓扑重构技术的研究现状17-29 2.1 Ad Hoc网络拓扑重构概述17 2.2 故障诊断方法研究现状17-22 2.2.1 有线网的故障诊断技术18-20 2.2.2 自组网的故障诊断技术20-22 2.3 拓扑重构技术研究现状22-28 2.3.1 拓扑重构概述22 2.3.2 拓扑重构的分类22-23 2.3.3 拓扑重构的实现机制23-24 2.3.4 典型算法介绍24-28 2.4 小结28-29第3章 Ad Hoc网络拓扑重构方案设计29-47 3.1 拓扑重构方案的基本思想29 3.2 拓扑重构触发的方案设计29-39 3.2.1 定义及假设30-32 3.2.2 节点和链路的故障概率函数32-34 3.2.3 故障模型的建立34 3.2.4 故障诊断34-39 3.3 拓扑重构实现方案设计39-45 3.3.1 定义及假设40 3.3.2 拓扑连通性恢复40-42 3.3.3 拓扑优化42-45 3.4 小结45-47第4章 Ad Hoc网络拓扑重构的实现及仿真分析47-65 4.1 NS 简介47-48 4.2 重构触发在NS2中的实现48-50 4.2.1 信息采集48-50 4.2.2 故障诊断50 4.3 重构实现在NS2中的实现50-55 4.3.1 连通性恢复52-53 4.3.2 网络拓扑优化53-55 4.4 仿真结果及性能分析55-64 4.4.1 故障诊断性能分析55-58 4.4.2 拓扑重构实现后网络性能分析58-64 4.5 小结64-65第5章结束语65-69 5.1 论文工作总结65-66 5.2 未来工作的展望66-69参考文献69-73致谢73。
工程结构拓扑优化的理论研究及应用_满宏亮
提要本文首先介绍了国内外拓扑优化技术的研究发展现状,讨论了拓扑优化的原理、方法以及各种拓扑优化算法。
其次,着重研究了SIMP 材料插值方法,建立了基于SIMP 理论的连续体结构拓扑优化模型,选取准则优化法对其密度迭代格式进行了推导;并且利用MATLAB软件编程实现,有效地进行了平面结构的分析和拓扑优化设计。
然后,分析了拓扑优化中的数值计算不稳定性现象,研究了能够有效消除拓扑优化中的数值计算不稳定性现象的各种解决方法,并对其进行了比较。
最后,利用连续体结构拓扑优化求解理论和算法,使用结构有限元分析软件Hyperworks 对具体工程结构部件进行了拓扑优化设计研究,成功地应用到了实际工程问题中,算例结果表明了该优化方法的有效性和正确性。
关键词:有限元拓扑优化材料插值模型数值计算不稳定性优化求解算法Key words: FEA Topology optimization Material InterpolationModel Numerical Calculation Instabilities Optimization Solution Algorithm-i-目录第一章绪论 (1)1.1 前言 (1)1.2 国内外拓扑优化研究概况 (3)1.3 本文研究内容及意义 (9)第二章现代结构拓扑优化理论 (11)2.1 拓扑的概念 (11)2.1.1 拓扑学的由来 (11)2.1.2 拓扑学及拓扑性质 (13)2.2 结构拓扑优化原理和方法 (16)2.2.1 拓扑优化的基本原理 (17)2.2.2 结构拓扑优化设计方法 (17)2.2.3 拓扑优化设计方法比较 (21)2.3 拓扑优化设计的优化算法概述 (22)2.3.1 优化算法分类 (22)2.3.2 拓扑优化常用算法 (24)第三章连续体结构拓扑优化的模型建立与求解算法 (27)3.1 连续体结构拓扑优化设计的模型描述 (29)3.2 数学模型的有限元离散 (34)3.2.1 单元应变和应力.........................................34吉林大学硕士研究生学位论文-ii-3.2.2 单元平衡方程 (35)3.2.3 连续体结构拓扑优化的数学模型的有限元离散形式 (38)3.3 基于SIMP 理论的优化准则法 (39)第四章结构拓扑优化程序实现 (45)4.1 基于SIMP 理论的优化准则法迭代分析流程 (45)4.2 优化过程的MA TLAB 编程实现 (47)4.3 计算实例 (48)4.3.1 单一工况简支梁算例 (48)4.3.2 单一工况悬臂梁算例 (49)4.3.3 多工况简支梁算例 (50)第五章连续体结构拓扑优化中数值不稳定问题的研究 (51)5.1 多孔材料问题 (52)5.2 棋盘格式问题 (52)5.2.1 棋盘格现象 (52)5.2.2 棋盘格式产生的原因 (53)5.2.3 棋盘格解决方法 (53)5.3 网格依赖性问题 (56)5.3.1 网格依赖性现象 (56)5.3.2 网格依赖性问题产生的原因 (57)5.3.3 网格依赖性解决方法 (57)5.4 局部极值问题 (59)5.5 克服数值不稳定现象几种主要方法的比较.......................60目录-iii-第六章拓扑优化技术的应用 (61)6.1 拓扑优化分析软件介绍 (61)6.2 拓扑优化技术的应用举例 (65)6.3 拓扑优化技术应用算例 (67)6.3.1 算例一某型轿车车门内板的拓扑优化 (67)6.3.2 算例二某型轿车控制臂的拓扑优化 (71)第七章全文总结与展望 (75)7.1 全文总结 (75)7.2 研究展望 (76)参考文献 (77)摘要 (I)Abstract (I)致谢.......................................................... I-1-第一章绪论1.1 前言近年来,随着计算机技术和数值方法的快速发展,工程中许多大型复杂结构问题都可以采用离散化的数值计算方法并借助计算机得到解决。
基于MSC_Nastran_optishape拓扑优化的应用研究
第34卷第5期河北工业大学学报2005年10月V ol.34No.5JOURNAL OF HEBEI UNIVERSITY OF TECHNOLOGY October2005文章编号:1007-2373(2005)05-0063-05基于64河北工业大学学报第34卷可以对产品的结构外型和轮廓进行优化分析,以达到使结构受力均匀与节省材料的理想效果.1拓扑优化的基本概念及其理论1.1基本概念通常把在给定设计空间、支撑条件、载荷条件和某些工艺设计等要求下,确定结构构件的相互连接方式,结构内有无空洞,空洞的数量、位置等拓扑形式,使结构能将外载荷传递到支座,同时使结构的某种形态指标达到最优,这个过程成为拓扑优化.根据优化的对象不同,结构拓扑优化可分为两类:一种是连续体结构的拓扑优化,该方法主要是确定优化对象内部有无空洞及空洞的大小、形状和形状等;另一种以桁架为代表的离散结构拓扑优化,该方法主要是确定优化对象的节点间单元的相互连接方式,同时也包括节点的删除与增加.拓扑优化的目的是寻求结构的刚度在设计空间最佳的分配形式,或在设计域空间寻求结构最佳的分布形式,以优化结构的某些性或减轻结构的重量.基于以Bendsoe 和Kikechi 提出的均匀化方法[1],拓扑优化基本思想是在组成拓扑结构的材料中引入微结构,优化过程中以微结构的几何尺寸作为设计变量,对于二维问题,每一个微结构都具有一个矩形空洞,如图1所示.在优化过程中,孔的边缘尺寸及旋转角度a 、b 、作为设计变量,通过体积约束或边界条件来使目标函数最小化或者最大化.同时在优化过程中假定优化区域是由有限个单胞构成的,单胞的布局具有周期性.在Nastran-optishape 中针对二维或三维的拓扑优化问题提供了3种单胞结构[2],如图2所示.1.2均匀化方法的基本理论均匀化方法是连续体结构拓扑优化研究中应用最广的方法,其用于工程设计,主要是来建立材料微结构尺寸与材料宏观弹性性质之间的关系.材料的宏观弹性性质,如密度、弹性模量等等,可以表述为以下的等式[3]:=1|,(1)=1|,(2)=1|.(3)式中:为均匀化后的材料宏观弹性性质;为特征变形参数,用以表示单胞的特征变形模态,可以通过求解等式(4)得到=0.(4)式中:和表示坐标系统,分别用以描述单元和虚拟变形.图1由单胞构成的设计域Fig.1Design domain consisting of porous media 图2单胞的微结构的形状Fig.2Types of unitcells65邢素芳,等:基于MSC.Nastran-optishape 拓扑优化的应用研究第5期对于静态的拓扑优化问题,当设计区域的材料的体积限定的情况下,目标函数可以表示为如下的形式2ds.t..(6)在这种情况下,目标函数对设计变量的敏感性可以表示为如下的形式=.(7)其中:为应变;为材料的填充率;为体积约束;==1=1s .t .d .(9)此时目标函数——平均特征值对设计变量的敏感性可以表示为如下的形式[4]2,(10)=,=.(11)其中:为质量矩阵;为特征模态;66河北工业大学学报第34卷来计算的.因此初始设定的值非常关键.在体积约束限制的条件下,Move limit的初始设定值越大,拓扑优化的结果相对越理想,但是也并不是Move limit设定值最大结果就最好.另外,Move limit设定的值确定后,体积约束限制过大的话拓扑优化结果相对就不理想,出现了明显的“棋盘效应”.因此在对具体结构进行拓扑优化中,需要对Move limit具体分析和试算才能获得比较好的初始值.在多次试算中,Move limit初始设定取0.3,Constraint Ratio取0.4,这样的结果相对最优[6].3算例算例1:该算例为一两端简支的二维平板结构,板的长度为2000mm,宽度为500mm,受3个集中载荷2和=2×10MPa,泊松比67邢素芳,等:基于MSC.Nastran-optishape 拓扑优化的应用研究第5期算例2:该算例为三维拱形结构的拓扑优化分析,该结构两端为固定约束,受节点集中载荷的作用,利用MSC.Patran 前后处理器,对结构进行网格划分、施加边界条件和载荷及定义材料特性,如图7所示.梁的弹性模量=0.3.在进行分析时,定义删除率为0.3.最后利用MSC.Nastran-optishape 得到了如图8所示的拓扑优化结果.4结论1)在对结构进行拓扑优化时需要界定优化区域与非优化区域,必须考虑优化区域与非优化区域单元网格划分时的网格协调.如果两区域的网格不协调,那么最终的拓扑优化结果不准确,甚至优化不能进行;2)优化结果对网格划分密度非常敏感.一般来说,有限元网格较密时所产生的拓扑结果较为清晰,而网格较粗时会产生混乱结果;3)在体积约束限制(Constraint Ratio )的条件下,Move limit 的初始设定值越大,拓扑优化的结果相对越理想,但是也并不是Move limit 设定值最大结果就最好.另外,Move limit 设定的值确定后,体积约束限制(Constraint Ratio )过大的话拓扑优化结果相对就不理想,出现了明显的“棋盘效应”.因此在对具体结构进行拓扑优化中,需要对Move limit 具体分析和试算才能获得比较好的初始值;4)通过对二维平面结构及三维实体结构进行拓扑优化,所得出的结构优化方案是合理的受力承载结构,显示了该软件所进行的拓扑优化方法是有效的和便捷的,可以广泛应用于工程实际.参考文献:[1]Bendsoe M P ,Kikuchi N .Generating optimal topologies in structural design using a homogenization method [J ].Comp Meth App Mesh &Eng ,1988,71:197-224.[2]Fern P ,Guedes J M ,Rodrigues H .Topology optimization of three-dimensional linear elastic structure with a constraint on perimeter [J ].Computer&structure ,1999,97:583-594.[3]MSC .Nastran-Optishape Release Guide (Version3.0)[Z ].MSC.Visual Nastran Enterprise .[4]PedersenC BW ,Buhl T ,Sigmund O .Topology synthesis of large-displacement compliant mechanisms [J ].Int J Numer Methods Engrg ,2001,50:2683-2705.[5]隋允康,杜家政,彭细荣.MSC.Nastran 有限元动力分析与优化设计实用教程[M ].北京:科学出版社,2004.[6]张永昌.MSC.Nastran 有限元分析理论基础与应用[M ].北京:科学出版社,2004.图7拱形结构的有限元网格、载荷及边界条件Fig.7The meshed model of arch structure 图8拱形结构结构优化后的结果Fig.8Topology optimization result。
基于Optistruct拓扑优化的平衡悬架优化改进研究
基于Optistruct拓扑优化的平衡悬架优化改进研究作者:刘汉如来源:《科技创业月刊》 2014年第10期刘汉如(华菱星马汽车(集团)股份有限公司安徽马鞍山243061)摘要:为提高平衡悬架优化效率,缩短改进时间,结合Optistruct拓扑优化方法,在3种平衡悬架典型工况和12种整车运行工况中对平衡悬架进行三维拓扑优化,通过对拓扑优化结果的分析,指导产品改进设计,并在整车运行工况中验证。
对某型号平衡悬架的优化实例表明,改进方案可显著降低平衡悬架应力水平,实现优化目的。
关键词:Optistruct;拓扑优化;平衡悬架中图分类号:TH132文献标识码:Adoi:10.3969/j.issn.1665-2272.2014.10.0790 前言重型汽车的平衡悬架上接车架,下连后桥,承担将车架载荷传递向车桥,并调节与之相连的两汽车后桥受载情况的功能。
实际使用中,因重型汽车承载大,道路条件恶劣,平衡悬架承受复杂多变载荷,出现了一些裂纹甚至断裂情况。
一旦出现此类情况,即需对平衡悬架整体进行更换,因此,改进平衡悬架结构以提高使用寿命,对于提高行驶安全性和降低维护成本有重要意义。
Optistruct是Altair公司仿真分析套件的一部分,在结构的计算机拓扑优化领域应用广泛。
软件可计算约束条件下结构的传力路径,根据传力路径调整材料分布。
但对复杂结构,其优化结果无法直接应用,需要进行分析解读并结合部件结构做出选择。
本文采用多工况优化,分析确定了3种平衡悬架典型工况和12种整车运行典型工况,在Optistruct中对平衡悬架进行三维拓扑优化,通过分析其优化结果,为平衡悬架改进方案的设计提供方向指导,提高设计效率。
1 模型建立与标定该平衡悬架尺寸为535×162×458mm,主要包括支架、轴头和轴管三个部分。
平衡悬架与车架通过螺栓连接,经钢板弹簧和推力杆与两后桥相连。
支架采用四面体网格,轴管与轴头采用六面体网格,单元格大小为10mm。
论拓扑学在翻译研究中的运用的论文-外语翻译论文
论拓扑学在翻译研究中的运用的论文外语翻译论文摘要:从拓扑学的视角看待翻译研究,可以发现:实现源文化成功进入到目的文化中,必须对目的文化的表达结构进行变形或变通处理,即采用适当的翻译方法,以实现两者的“拓扑等价”。
这些形式多样的翻译方法,虽然涉及到读音、词法、语法和比喻等不同层面,却依然可以归纳到异化和归化两种翻译理论的框价当中。
关键词:拓扑学;翻译研究;异化;归化一、拓扑学和翻译:一个类比拓扑学(topology)是数学的一门分科,研究几何图形在一对一的双方连续变换下不变的性质,例如,画在橡皮膜的图形当橡皮受到变形但不破裂或折迭时,有些性质还是保持不变,如曲线的闭合性,两曲线的相交性等[1]。
拓扑学是几何学的一个分支,但它和通常的平面几何、立体几何有所不同。
通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。
拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。
举例来说,平面几何里把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。
然而,在拓扑学中,运动中图形无论大小或者形状都要发生变化;换言之,拓扑学中没有不能弯曲的元素,每一个图形的大小、形状都可改变。
拓扑学不讨论两个图形全等的概念,但是讨论拓扑等价的概念。
比如,尽管圆和方形、三角形的形状、大小不同,在拓扑变换下,它们都是等价图形。
以下的三个图形可以存在拓扑等价;换言之,从拓扑学的角度看,它们可以是完全一样的东西。
拓扑学思考问题的基本出发点是:无须考虑原来图形的大小、形状,仅需考虑点和线的个数。
在一个球面上任选一些点用不相交的线把它们连接起来,这样球面就被这些线分成许多块。
在拓扑变换下,点、线、块的数目仍和原来的数目一样,这就是拓扑等价。
一般地说,对于任意形状的闭曲面,只要不把曲面撕裂或割破,他的变换就是拓扑变换,就存在拓扑等价。
有这样一个有趣的小游戏:如何让一个一元硬币穿过一个一角硬币大的纸孔,同时又不能损害纸孔原来的大小?事实上,采用拓扑学方法便能顺利地完成这个过程,其方法如下:把纸张按纸孔的直径对折,然后两边向下捏,使纸孔的直径变大(纸孔并没有损坏),这样一元的硬币便能顺利穿过这个一角硬币大的纸孔了。