椭圆周长和面积计算公式[1]

合集下载

椭圆周长

椭圆周长
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。
椭圆周长经典近似公式
以下是几个比较简单的近似公式:
公式一~五为一般精度,满足简单计算需要;
公式六为高精度,满足比较专业一些的计算需要。
这些公式均符合椭圆的基本规律,
当a=b时,L=2aπ,
M=22/7π-1、N=((a-b)/a)^33.697 、)
这是根据椭圆标准公式提炼的,精度很高。
下面是椭圆周长参考对照值:
a---b-------椭圆值
100~000---400.00000000
100~001---400.10983297
100~010---406.39741801
100~025---84.42241100
100~075---552.58730400
100~090---597.31604325
100~099---625.18088479
100~100---628.31853070
(一)椭圆周长计算公式
椭圆周长公式:L=2πb+4(a-b)
椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(二)椭圆面积计算公式
椭圆面积公式: S=πab
椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
这是根据椭圆a=b时的特点推导的,精度一般。
L5=√(4abπ^2+15(a-b)^2)(1+MN)
( M=4/√15-1 、N=((a-b)/a)^9 )

椭圆周长公式是什么怎么推导

椭圆周长公式是什么怎么推导

椭圆周长公式是什么怎么推导椭圆是数学几何中一个重要的图形,在考试中经常出现相关证明题和计算题。

下面是由编辑为大家整理的“椭圆周长公式是什么怎么推导”,仅供参考,欢迎大家阅读本文。

椭圆的周长公式椭圆周长公式:L=2πb+4(a-b)。

椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

椭圆的面积计算公式椭圆面积公式:S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

椭圆的性质范围:焦点在x轴上-a≤x≤a,-b≤y≤b;焦点在y轴上-b≤x≤b,-a≤y≤a。

对称性:关于x轴对称,关于y轴对称,关于原点中心对称。

顶点:(a,0),(-a,0),(0,b),(0,-b)。

离心率:e=c/a。

离心率范围0<E<1。

< p>离心率越大椭圆就越扁,越小则越接近于圆。

拓展阅读:点和直线与椭圆的几何关系点与椭圆点M(x0,y0)椭圆x²/a²+y²/b²=1;点在圆内:x0²/a²+y0²/b²<1;点在圆上:x0²/a²+y0²/b²=1;点在圆外:x0²/a²+y0²/b²>1;跟圆与直线的位置关系一样的:相交、相离、相切。

直线与椭圆y=kx+m①x²/a+y²/b²=1②由①②可推出x²/a²+(kx+m)²/b²=1相切△=0相离△<0无交点相交△>0可利用弦长公式:设A(x1,y1)B(x2,y2)求中点坐标根据韦达定理x1+x2=-b/a,x1*x2=c/a带入直线方程可求出y+y/2=可求出中点坐标。

|AB|=d=√(1+k²)[(x1+x2)²-4x1*x2]=√(1+1/k²)[(y1+y2)²-4x1*x2]。

锥坡计算公式

锥坡计算公式

锥坡体积公式推理注:H-锥坡高度t-锥坡铺砌厚度1:n,1:m为横、纵坡比一、准备:1、椭圆面积为公式:S=πRr 。

2、椭圆周长公式:L=2πR+4(R-r)或L=π(R+r)。

3、四个锥坡平面图形正好组成一个椭圆图形。

4、椭圆标准式:12222=+ry R x5、图形关系:c=m m 21+t 、b=21m +t; d=n n 21+t 、a=21n +t 。

6、令A=m m 21+、B=nn 21+ 、D= AB+(A+B)2、E=(A+B)AB ÷2 、F=1.5(A+B)所以b=Amt,a=Bnt,(c+d) ÷2=(A+B)÷2t 二、锥坡体积公式:1、一个锥坡V 锥=12πRrH 2、扣除铺砌厚度后锥坡体积:V 2=12π(R-a)(r-b)(H-2d c +)3、锥坡铺砌圬工体积: V锥- V 2=12πRrH-12π(R-b)(r-a)(H-2dc +)=12π( mH* nH *H-(mH-Amt) (nH-Bnt) (H-(A+B)t ÷2) =12πmn( H* H *H-(H-At) (H-Bt) (H-(A+B)t ÷2) =12πmn(H 3-(H 2-BHt-AHt+ABt 2)( H-(A+B)t ÷2) =12πmn(H 3-( H 3-BH 2t-AH 2t+ABHt 2-(A+B) H 2t ÷2 +(A+B)BHt 2÷2) +(A+B)AHt 2÷2-(A+B)ABt 3÷2)=12πmn (H 3- H 3+BH 2t+AH 2t-ABHt 2+(A+B) H 2t ÷2 -(A+B)BHt 2÷2) -(A+B)AHt 2÷2+(A+B)ABt 3÷2)=12πmn H 3 (B H t +A H t -AB 22H t +(A+B) H t÷2 -(A+B)B 22Ht ÷2) -(A+B)A 22H t ÷2+(A+B)AB 33Ht ÷2)=12πmn H 3[((B+A) +(A+B) ÷2) Ht-( AB+(A+B)B ÷2+(A+B)A ÷2)22H t +(A+B)AB 33Ht ÷2] =12πmn H 3[1.5(A+B)) H t -( AB+(A+B) 2)22H t +(A+B)AB 33Ht ÷2]=12πmn H 3[F H t-D 22H t +E 33Ht ]三、锥坡基础体积公式:V 基=4T π[(R+e)(r+e)-(R-b)(r-a)]=4T π[(Hm+e)(Hn+e)-( Hm -b)( Hn -a)]=4T π[(H 2mn+ Hme+ Hne+e 2)-( H 2mn- Hma- Hnb+ab)] =4T π[H 2mn+ Hme+ Hne+e 2- H 2mn+ Hma+ Hnb-ab)] =4T π[ Hme+ Hne+e 2 + Hma+ Hnb-ab)] =4T π[ (Hm+ Hn)e + H(ma+ nb)-ab+e 2)]由上式1.6知b=Amt,a=Bnt所以V 基=4Tπ[ (Hm+ Hn)e + H(mBnt+ nAmt)-ABmnt 2+e 2)] =4Tπ[ (Hm+ Hn)e + Hmnt(B+ A)-ABmnt 2+e 2)]注:本推理中的变量a,b 与小桥涵手册P427中变量所指位置不一样,做公式有所差别。

平椭圆周长计算公式

平椭圆周长计算公式

平椭圆周长计算公式椭圆周长公式是L=2πb+4(a-b)。

椭圆周长定理是椭圆的周长等于该椭圆短半轴长为半径的圆周长(2b)加上四倍的该椭圆长半轴长与短半轴长的差。

公式描述:公式中a表示椭圆长半轴的长,b表示椭圆短半轴的长,π是圆周率,L示椭圆周长。

椭圆面积公式:S=π(圆周率)×a×b,其中a、b分别是椭圆的长半轴,短半轴的长。

椭圆公式:(x-h)²/a²+(y-k)²/b²=1。

公式描述:公式中a,b分别为长短轴长,中心点为(h,k),主轴平行于x轴。

椭圆的标准方程椭圆的标准方程共分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a^2-c^2=b^2;推导:PF1+PF2>F1F2(P为椭圆上的点 F为焦点)。

椭圆的性质:1、对称性:关于X轴对称,Y轴对称,关于原点中心对称。

2、顶点:(a,0)(-a,0)(0,b)(0,-b)。

3、离心率: e=√(1-b^2/a²)。

4、离心率范围:0<e<1。

5、离心率越小越接近于圆,越大则椭圆就越扁。

6、焦点(当中心为原点时):(-c,0),(c,0)或(0,c),(0,-c)。

7、P为椭圆上的一点,a-c≤PF1(或PF2)≤a+c。

8、椭圆的周长等于特定的正弦曲线在一个周期内的长度。

焦半径焦点在x轴上:|PF1|=a+ex |PF2|=a-ex(F1,F2分别为左右焦点)。

椭圆过右焦点的半径r=a-ex。

过左焦点的半径r=a+ex。

焦点在y轴上:|PF1|=a+ey |PF2|=a-ey(F2,F1分别为上下焦点)。

椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两交点A,B之间的距离,即|AB|=2*b^2/a。

椭圆周长和面积计算公式

椭圆周长和面积计算公式
椭圆周长、面积计算公式
根据椭圆第一定义,用 a 表示椭圆长半轴的长,b 表示椭圆短半轴的长,且 a>b>0。
椭圆周长公式:L=2πb+4(a-b)
椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆
长半轴长(a)与短半轴长(b)的差。
椭圆面积公式: S=πab
椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘
S=πa2T=πa2(K+f) (8) 在等式(8)中 K=0,f=b/a,代入等式中: S=πa2b/a=πab 椭圆面积计算公式:S=πab 关于《椭圆定理》中的 T=k1+f 问题 易亚苏
《椭圆定理》一文中有:“定义 1:K1=2/(π-2),K1 为椭圆第一常数。定义 2:f=b/a,f 为 椭圆向心率(a>b>0)。定义 3:T=K1+f,T 为椭圆周率”。有聪明的网友提出“定义:T=k1+f 没有依据”,现就此问题作出如下分析说明。
(三) 笔者认为任何科学研究的方法都基于:1、发现特殊现象;2、提出假设或猜想;3、利用假设 或猜想做出结论;4、对结论进行检验。《椭圆定理》就是基于这四点写出的短文。笔者认为
论文不在长短,而在其价值。当今的椭圆理论是不完整的(比如只有近似的椭圆周长计算公 式,缺少标准的椭圆周长计算公式),那么“椭圆理论”的依据还需要靠发现来完善。任何科 学的原始依据从哪里来?从发现来。对特殊现象的发现加以总结,通过检验就可以成为理论; 理论升华就是科学,科学也是理论依据的源泉。
积。
椭圆常数由来及周长、面积公式推导过程:
(一)发现椭圆常数
常数在于探索和发现。椭圆三要素:焦距的一半(c),长半轴的长(a)和短半轴的长(b)。

探索椭圆与抛物线的面积与周长

探索椭圆与抛物线的面积与周长

探索椭圆与抛物线的面积与周长椭圆(Ellipse)与抛物线(Parabola)是平面几何中常见的曲线。

它们的形状和性质各不相同,而本文将探索这两种曲线的面积与周长。

1. 椭圆的面积与周长椭圆是由一个固定点 F(焦点)和到两个固定点 A、B(焦点所在的直径)的距离之和等于定值的点 P 所组成的轨迹。

椭圆的性质决定了它的面积和周长的计算方式。

(1)面积计算:椭圆的面积公式为S = πab,其中 a 和 b 分别表示椭圆的半长轴和半短轴。

根据椭圆的定义,焦点到椭圆上任一点的距离之和等于定值,也可以表示为 2a。

因此通过这一关系,我们可以得到椭圆的面积计算公式。

(2)周长计算:椭圆的周长无法用简单的公式表示,但可以用一定精度的近似值进行计算。

其中一种常用的近似计算方法是椭圆周长公式L ≈ π(a + b) ×(1 + 3h / (10 + (4 - 3h^2)^0.5)),其中 h 为离心率。

2. 抛物线的面积与周长抛物线是由一个平面上一点(焦点)到一个平面上一条直线(准线)的距离等于焦点到准线上任意一点的距离所组成的点的轨迹。

抛物线的形状和性质决定了它的面积和周长的计算方式。

(1)面积计算:抛物线的面积公式为S = (2/3) × π × a × b^2,其中 a 是焦距,b 是抛物线与准线的距离。

(2)周长计算:抛物线的周长也无法用简单的公式表示,但可以用一定精度的近似值进行计算。

一种常用的近似计算方法是使用基于弧长的参数方程计算抛物线的弧长,然后再将弧长转换为周长。

根据椭圆和抛物线的定义和计算公式,我们可以实际应用这些公式来计算具体的椭圆和抛物线的面积与周长。

例如,给定一个椭圆和抛物线的半长轴和半短轴或焦距等参数,我们可以代入公式计算出准确的面积和周长值。

值得注意的是,椭圆和抛物线的面积与周长计算都涉及到π(圆周率)的使用,因此在进行计算时需要确定所使用的π的精度和取值方式。

计算椭圆的周长和面积

计算椭圆的周长和面积

计算椭圆的周长和面积椭圆作为一种特殊的曲线,具有较为独特的性质和特点。

其中,周长和面积是椭圆最基本的几何量,它们的计算方法与其他几何图形有所不同。

本文将介绍如何计算椭圆的周长和面积,并给出相应的计算公式和步骤。

一、椭圆的定义与基本性质在介绍计算椭圆的周长和面积之前,我们先回顾一下椭圆的定义和基本性质。

椭圆是平面上离两点距离之和等于定值的点构成的集合。

这两个点称为椭圆的焦点,焦点的连线称为焦距。

此外,还有一个与焦点之间的距离等于定值的点P,称为椭圆上的一般点。

椭圆上的点P到两个焦点的距离之和等于椭圆的长轴长度。

椭圆的长轴表示椭圆在此轴上的最大直径,通常记为2a。

椭圆的短轴表示椭圆在此轴上的最小直径,通常记为2b。

椭圆的焦距表示两个焦点之间的距离,记为2c。

根据长轴和短轴的关系可以得到椭圆的离心率e的计算公式:e=c/a。

二、椭圆的周长计算下面我们来介绍如何计算椭圆的周长。

椭圆的周长是指椭圆上一点沿着椭圆的边界一圈走的总长度。

计算椭圆的周长需要用到椭圆的离心率。

下面给出椭圆周长计算的公式和步骤。

1. 周长公式椭圆的周长计算公式为:C=2πa(1-e²/4)。

2. 计算步骤(1) 根据给定的椭圆参数a和e,计算出椭圆的焦距c。

(2) 利用计算出的焦距c,带入周长计算公式中,得到椭圆的周长C。

三、椭圆的面积计算接下来我们介绍如何计算椭圆的面积。

椭圆的面积是指椭圆内部的所有点构成的区域的大小。

计算椭圆的面积同样需要用到椭圆的长轴和短轴。

下面给出椭圆面积计算的公式和步骤。

1. 面积公式椭圆的面积计算公式为:S=πab。

2. 计算步骤(1) 根据给定的椭圆参数a和b,带入面积计算公式中,得到椭圆的面积S。

四、示例分析下面通过一个具体的示例来演示如何计算椭圆的周长和面积。

例:已知一个椭圆的长轴长度a为6cm,短轴长度b为4cm,求其周长和面积。

解:1. 计算椭圆的焦距c:由a和e的关系可知,e=c/a,代入已知数据,解得c=√(a^2-b^2)=√(6^2-4^2)=√20=2√5。

高中数学公式整理总结

高中数学公式整理总结

高中数学公式整理总结高中数学公式总结圆的公式1、圆体积=4/3(pi)(r^3)2、面积=(pi)(r^2)3、周长=2(pi)r4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f0】椭圆公式1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.3、椭圆面积公式:s=πab4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。

两角和公式1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb) 4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga) 倍角公式1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))和差化积1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb诱导公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tan α(k∈Z)cot(2kπ+α)=cotα(k∈Z)二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cot α三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cot α五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα高考数学考前冲刺技巧1.整理公式数学的内容更加灵活一些,不需要去背诵,只是会应用就可以了。

椭圆周长和面积计算公式

椭圆周长和面积计算公式

任一部分椭圆面积椭圆周长(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

(二)椭圆面积计算公式椭圆面积公式:S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。

常数为体,公式为用。

近似L=√(4abπ^2+15(a-b)^2)(1+MN) ( M=4/√15-1 、N=((a-b)/a)^9 ) 近似L=πQ(1+3h/(10+√(4-3h))(1+MN) ( Q=a+b、H=((a-b)/(a+b))^2、M=22/7π-1、M=((a-b)/a)^33.697 、)标准L=Qπ(1+h^2/4+h^4/4^3+h^6/4^4+5^2*h^8/4^7+7^2*h^10/4^8…) (h =(a-b)/(a+b),Q=a+b,)几何图形及计算公式查询1.几何体的表面积体积计算公式圆柱体:表面积:2πRr+2πRh 体积:πRRh (R为圆柱体上下底圆半径,h为圆柱体高)圆锥体:表面积:πRR+πR[(hh+RR)的平方根] 体积: πRRh/3 (r为圆锥体低圆半径,h为其高, 2平面图形名称符号周长C和面积S正方形a—边长C=4a S=a2长方形a和b-边长C=2(a+b) S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA) 四边形d,D-对角线长α-对角线夹角S=dD/2·sinα平行四边形a,b-边长h-a边的高α-两边夹角S=ah=absinα菱形a-边长α-夹角D-长对角线长d-短对角线长S=Dd/2=a2sinα梯形a和b-上、下底长h-高m-中位线长S=(a+b)h/2=mh圆r-半径d-直径C=πd=2πr S=πr2=πd2/4扇形r—扇形半径a—圆心角度数C=2r+2πr×(a/360) S=πr2×(a/360)弓形l-弧长S=r2/2·(πα/180-sinα)b-弦长=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2h-矢高=παr2/360 - b/2·[r2-(b/2)2]1/2r-半径=r(l-b)/2 + bh/2α-圆心角的度数≈2bh/3圆环R-外圆半径S=π(R2-r2) r-内圆半径=π(D2-d2)/4D-外圆直径d-内圆直径椭圆D-长轴S=πDd/4d-短轴3 补充版平面图形名称符号周长C和面积S正方形a—边长C=4aS=a^2长方形a和b-边长C=2(a+b)S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2·sinC=[s(s-a)(s-b)(s-c)]1/2=a^2sinBsinC/(2sinA)四边形d,D-对角线长α-对角线夹角S=d D/2·sinα 平行四边形a,b-边长h-a边的高α-两边夹角S=ah=absinα菱形a-边长α-夹角D-长对角线长d-短对角线长S=Dd/2=a^2sinα梯形a和b-上、下底长h-高m-中位线长S=(a+b)h/2=mh圆r-半径d-直径C=πd=2πrS=πr^2=πd^2/4扇形r—扇形半径a—圆心角度数C=2r+2πr×(a/360)S=πr^2×(a/360)弓形l-弧长b-弦长h-矢高r-半径α-圆心角的度数S=r^2/2·(πα/180-sinα) =r^2arccos[(r-h)/r] - (r-h)(2rh-h^2)1/2 =παr^2/360 - b/2·[r^2-(b/2)^2]1/2=r(l-b)/2 + bh/2≈2bh/3圆环R-外圆半径r-内圆半径D-外圆直径d-内圆直径S=π(R^2-r^2)=π(D^2-d^2)/4椭圆D-长轴d-短轴S=πDd/4立方图形名称符号面积S和体积V正方体a-边长S=6a^2V=a^3长方体a-长b-宽c-高S=2(ab+ac+bc)V=abc棱柱S-底面积h-高V=Sh棱锥S-底面积h-高V=Sh/3棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3 拟柱体S1-上底面积S2-下底面积S0-中截面积h-高V=h(S1+S2+4S0)/6圆柱r-底半径h-高C—底面周长S底—底面积S侧—侧面积S表—表面积C=2πrS底=πr^2S侧=ChS表=Ch+2S底V=S底h=πr^2h空心圆柱R-外圆半径r-内圆半径h-高V=πh(R^2-r^2)直圆锥r-底半径h-高V=πr^2h/3圆台r-上底半径R-下底半径h-高V=πh(R^2+Rr+r^2)/3球r-半径d-直径V=4/3πr^3=πd^3/6球缺h-球缺高r-球半径a-球缺底半径V=πh(3a^2+h^2)/6 =πh^2(3r-h)/3a2=h(2r-h)球台r1和r2-球台上、下底半径h-高V=πh[3(r1^2+r2^2)+h^2]/6 圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr^2=π2Dd^2/4桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D^2+d^2)/12 (母线是圆弧形,圆心是桶的中心) V=πh(2D^2+Dd+3d^2/4)/15。

椭圆面积和体积计算公式

椭圆面积和体积计算公式

椭圆周长公式为L=2πb+4(a-椭圆周长公式:根据椭圆第一定义,用a表示椭圆长半轴的且a>b>0。

椭圆周长公式:L椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差几何关系:点与椭圆点M(x0,y0)椭圆x²/a²+y²/b²=1;点在圆内∶x0²/a²+y0²/b²<1;点在圆上∶ x0²/a²+y0²/b²=1;点在圆外∶;跟圆与直线的位置关系一样的直线与椭圆:y=kx+m①x²/a+y²/b²=1②由①②可推出x²/a²+(kx+m)²/b²=1相切△=0相离△<0无交点相交△>0可利用弦长公)B(x2,y2)求中点坐标:根据韦达定理xl+x2=-b/a,xl*x2=c/a带入直线方程可求出y+AB|=d=√(1+k²)【(x1+x2)²4x1*x2】=√(1+1/k²)【(yl+y椭圆面积计算公式为椭圆面积定理:椭圆的面积等于圆长(a)与短半轴长(b)的乘积。

椭圆形体积计算公式为V=4/3πabc。

在数学中,椭圆是围绕两个焦点的平面中的曲线,使得对于曲线上的每个点,到两个焦点的距离之和是恒定的。

因其是具有两个焦点在相同位置处的特殊类型的椭锥与平面的截线。

周长含义:什么是周长,顾名思义,指一周的长度,即围成物体表面或平面图形一周边线新的数学概念,它和线段、曲线的长度有关,一条曲线、几条线段或几条曲线加几条线段都可构成周长。

周长计算公式:圆:C=πd=2πr(d为直径,r为半径三角形:C=a+b+c (abc为三角四边形:C=a+四边形的边长)特别的长方形C=2(a+b)(a为长,b为宽)正方形:C=4a(a为多边形:C=所有边长之和扇形C=2R+nπR÷180°(n=圆心角面积含义:物体所占面积。

椭圆面积计算公式推导

椭圆面积计算公式推导

轻松搞定椭圆面积计算
椭圆是一种常见的图形,它的面积计算比较复杂,但仍然有几种简便的方法。

下面就让我们来一一探讨。

方法一:利用长轴和短轴计算
椭圆的长轴为a,短轴为b。

则椭圆的面积为S = πab.
方法二:利用周长计算
椭圆的周长可以表示为C = 2πb + 4(a - b),我们可以利用周长来计算椭圆的面积。

设周长为C,短轴为b,则有a = C / (2π) + b / 2π,将其代入椭圆面积公式中,得S = πb² + (C / 2π)b.
方法三:利用积分计算
椭圆的方程为x² / a² + y² / b² = 1,我们可以通过积分来计算其面积。

具体步骤如下:
① 将椭圆方程变形为y² = b²(1 - x² / a²).
② 对 y 从 -b 到 b 进行积分,得到S = 2∫[0, a] b√(1 - x² / a²)dx.
③ 将积分变量代换y = bsinθ,可得S = 2ab∫[0, π / 2] cos²θdθ = πab.
以上就是椭圆面积计算的三种方法,希望能帮助到大家。

椭圆周长公式是什么怎么推导

椭圆周长公式是什么怎么推导

椭圆周长公式是什么怎么推导椭圆是数学几何中一个重要的图形,在考试中经常出现相关证明题和计算题。

下面是由编辑为大家整理的“椭圆周长公式是什么怎么推导”,仅供参考,欢迎大家阅读本文。

椭圆的周长公式椭圆周长公式:L=2πb+4(a-b)。

椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

椭圆的面积计算公式椭圆面积公式:S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

椭圆的性质范围:焦点在x轴上-a≤x≤a,-b≤y≤b;焦点在y轴上-b≤x≤b,-a≤y≤a。

对称性:关于x轴对称,关于y轴对称,关于原点中心对称。

顶点:(a,0),(-a,0),(0,b),(0,-b)。

离心率:e=c/a。

离心率范围0<E<1。

< p>离心率越大椭圆就越扁,越小则越接近于圆。

拓展阅读:点和直线与椭圆的几何关系点与椭圆点M(x0,y0)椭圆x²/a²+y²/b²=1;点在圆内:x0²/a²+y0²/b²<1;点在圆上:x0²/a²+y0²/b²=1;点在圆外:x0²/a²+y0²/b²>1;跟圆与直线的位置关系一样的:相交、相离、相切。

直线与椭圆y=kx+m①x²/a+y²/b²=1②由①②可推出x²/a²+(kx+m)²/b²=1相切△=0相离△<0无交点相交△>0可利用弦长公式:设A(x1,y1)B(x2,y2)求中点坐标根据韦达定理x1+x2=-b/a,x1*x2=c/a带入直线方程可求出y+y/2=可求出中点坐标。

|AB|=d=√(1+k²)[(x1+x2)²-4x1*x2]=√(1+1/k²)[(y1+y2)²-4x1*x2]。

椭圆周长和面积计算公式

椭圆周长和面积计算公式

椭圆定理(又名:椭圆猜想)椭圆定理易亚苏(关键词:椭圆周长公式、椭圆周长定理、椭圆面积公式、椭圆面积定理等。

)圆完美的和谐,椭圆和谐的完美。

一、椭圆第一定义椭圆第一定义:平面内与两个定点F1、F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

椭圆第一定义的数学表达式:MF1+MF2=2a>F1F2 (由于网上发文的遗憾,公式和符号略有缺陷,相信您能够看懂。

)M为动点,F1、F2为定点,a为常数。

在椭圆中,用a表示长半轴的长,b表示短半轴的长,且a>b>0;2c表示焦距。

二、椭圆定理(一)椭圆定理Ⅰ(椭圆焦距定理)椭圆定理Ⅰ:任意同心圆,小圆任意切线与大圆形成的弦等于以大圆半径为长半轴长、小圆半径为短半轴长的椭圆焦距。

该椭圆中心在同心圆圆心,焦点在圆心以焦距一半为半径的圆上。

附图:椭圆的奥秘图解之一(焦距定理)(略)(二)椭圆定理Ⅱ(椭圆第一常数定理)定义1:K1=2/(π-2),K1为椭圆第一常数。

定义2:f=b/a,f为椭圆向心率(a>b>0)。

定义3:T=K1+f,T为椭圆周率。

椭圆定理Ⅱ:椭圆是同心圆依照勾股定理和谐组合,椭圆第一常数K1的数值加上椭圆向心率f的数值等于椭圆周率T的数值。

(三)椭圆定理Ⅲ(椭圆第三常数定理)椭圆具有三特性,也称椭圆三态。

1、当椭圆b>c时,椭圆为向外膨胀型,其焦点在以b为半径的圆内;2、当椭圆b=c时,椭圆为相对稳定型,其焦点在以b为半径的圆上;3、当椭圆b<c时,椭圆为向内收缩型,其焦点在以b为半径的圆外。

定义:任意椭圆长半轴的长a为该椭圆单位,用A表示,称为椭圆单位。

根据椭圆第一定义,a2=b2+c2,且a>b>0,则有:b2+c2=1(椭圆单位)当b=c时,2b2=1(椭圆单位),b=根号1/2(椭圆单位)。

定义:K3=根号1/2,K3为椭圆第三常数。

椭圆周长和面积计算公式

椭圆周长和面积计算公式

椭圆定理(又名:椭圆猜想)椭圆定理易亚苏(关键词:椭圆周长公式、椭圆周长定理、椭圆面积公式、椭圆面积定理等。

)圆完美的和谐,椭圆和谐的完美。

一、椭圆第一定义椭圆第一定义:平面内与两个定点F1、F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

椭圆第一定义的数学表达式:MF1+MF2=2a>F1F2 (由于网上发文的遗憾,公式和符号略有缺陷,相信您能够看懂。

)M为动点,F1、F2为定点,a为常数。

在椭圆中,用a表示长半轴的长,b表示短半轴的长,且a>b>0;2c表示焦距。

二、椭圆定理(一)椭圆定理Ⅰ(椭圆焦距定理)椭圆定理Ⅰ:任意同心圆,小圆任意切线与大圆形成的弦等于以大圆半径为长半轴长、小圆半径为短半轴长的椭圆焦距。

该椭圆中心在同心圆圆心,焦点在圆心以焦距一半为半径的圆上。

附图:椭圆的奥秘图解之一(焦距定理)(略)(二)椭圆定理Ⅱ(椭圆第一常数定理)定义1:K1=2/(π-2),K1为椭圆第一常数。

定义2:f=b/a,f为椭圆向心率(a>b>0)。

定义3:T=K1+f,T为椭圆周率。

椭圆定理Ⅱ:椭圆是同心圆依照勾股定理和谐组合,椭圆第一常数K1的数值加上椭圆向心率f的数值等于椭圆周率T的数值。

(三)椭圆定理Ⅲ(椭圆第三常数定理)椭圆具有三特性,也称椭圆三态。

1、当椭圆b>c时,椭圆为向外膨胀型,其焦点在以b为半径的圆内;2、当椭圆b=c时,椭圆为相对稳定型,其焦点在以b为半径的圆上;3、当椭圆b<c时,椭圆为向内收缩型,其焦点在以b为半径的圆外。

定义:任意椭圆长半轴的长a为该椭圆单位,用A表示,称为椭圆单位。

根据椭圆第一定义,a2=b2+c2,且a>b>0,则有:b2+c2=1(椭圆单位)当b=c时,2b2=1(椭圆单位),b=根号1/2(椭圆单位)。

定义:K3=根号1/2,K3为椭圆第三常数。

椭圆的面积公式和周长公式

椭圆的面积公式和周长公式

椭圆的面积公式和周长公式你有没有想过,日常生活中的许多物体其实都是椭圆形的?比如一个足球,或者我们常见的椭圆形游泳池。

椭圆看似普通,但它的数学之美可不容小觑哦!今天就让我们一起来探讨一下椭圆的面积和周长公式,了解它们的奥秘吧。

1. 椭圆的基本概念首先,我们来搞清楚椭圆到底是什么。

椭圆啊,简单来说,就是一个“拉长了”的圆。

它有两个焦点,整个形状看起来就像是一个被轻轻拉伸过的圆形。

1.1 椭圆的定义椭圆是这样一个平面图形:每一个点到两个固定点(焦点)的距离之和是一个常数。

听上去有点复杂,不过不用担心,实际就是一种圆的延伸形态。

1.2 焦点的概念焦点这玩意儿可以理解为椭圆的两个“眼睛”,它们决定了椭圆的形状。

焦点之间的距离决定了椭圆的“扁平”程度。

2. 椭圆的面积公式说到椭圆的面积,这可是很有用的一个公式。

它的计算方法比你想象的要简单得多。

椭圆的面积公式是:[ text{面积} = pi times a times b ]。

其中,(a) 和 (b) 分别是椭圆的长轴半径和短轴半径。

也就是说,只要你知道了椭圆的长轴和短轴的长度,就可以轻松算出它的面积了。

2.1 长轴和短轴长轴就是椭圆中间最长的一条线,短轴则是最短的一条。

简单来说,长轴是椭圆的“横身”,短轴是“竖身”。

2.2 如何计算拿到长轴和短轴的长度后,你只需用公式代入,就能快速计算出椭圆的面积。

比如,长轴是10米,短轴是6米,那么面积就是:[ text{面积} = pi times 5 times 3 = 15pi ]。

这样一来,椭圆的面积就是 (15pi) 平方米啦!3. 椭圆的周长公式椭圆的周长公式稍微复杂一点,不过也不难搞懂。

因为椭圆不像圆那样简单,所以没有一个固定的公式能计算出准确的周长。

不过,有个很接近的近似公式可以用:[ text{周长} approx pi left(3(a + b) sqrt{(3a + b)(a + 3b)}right) ]。

椭圆周长和面积计算公式

椭圆周长和面积计算公式

椭圆周长和面积计算公式椭圆定理(又名:椭圆猜想)椭圆定理易亚苏(关键词:椭圆周长公式、椭圆周长定理、椭圆面积公式、椭圆面积定理等。

)圆完美的和谐,椭圆和谐的完美。

一、椭圆第一定义椭圆第一定义:平面内与两个定点F1、F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

椭圆第一定义的数学表达式:MF1+MF2=2a>F1F2(由于网上发文的遗憾,公式和符号略有缺陷,相信您能够看懂。

)M为动点,F1、F2为定点,a为常数。

在椭圆中,用a表示长半轴的长,b表示短半轴的长,且a>b>0;2c表示焦距。

二、椭圆定理(一)椭圆定理Ⅰ(椭圆焦距定理)椭圆定理Ⅰ:任意同心圆,小圆任意切线与大圆形成的弦等于以大圆半径为长半轴长、小圆半径为短半轴长的椭圆焦距。

该椭圆中心在同心圆圆心,焦点在圆心以焦距一半为半径的圆上。

附图:椭圆的奥秘图解之一(焦距定理)(略)(二)椭圆定理Ⅱ(椭圆第一常数定理)定义1:K1=2/(π-2),K1为椭圆第一常数。

定义2:f=b/a,f为椭圆向心率(a>b>0)。

定义3:T=K1+f,T为椭圆周率。

椭圆定理Ⅱ:椭圆是同心圆依照勾股定理和谐组合,椭圆第一常数K1的数值加上椭圆向心率f的数值等于椭圆周率T的数值。

(三)椭圆定理Ⅲ(椭圆第三常数定理)椭圆具有三特性,也称椭圆三态。

1、当椭圆b>c时,椭圆为向外膨胀型,其焦点在以b为半径的圆内;2、当椭圆b=c时,椭圆为相对稳定型,其焦点在以b为半径的圆上;3、当椭圆b<c时,椭圆为向内收缩型,其焦点在以b为半径的圆外。

< p="">定义:任意椭圆长半轴的长a为该椭圆单位,用A表示,称为椭圆单位。

根据椭圆第一定义,a2=b2+c2,且a>b>0,则有:b2+c2=1(椭圆单位)当b=c时,2b2=1(椭圆单位),b=根号1/2(椭圆单位)。

椭圆周长和面积计算公式

椭圆周长和面积计算公式

椭圆周长和面积计算公式椭圆周长、面积公式椭圆定理(又名:椭圆猜想)椭圆定理(关键词:椭圆周长公式、椭圆周长定理、椭圆面积公式、椭圆面积定理等。

)一、椭圆第一定义椭圆第一定义:平面内与两个定点F1、F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

椭圆第一定义的数学表达式:MF1+MF2=2a>F1F2(由于网上发文的遗憾,公式和符号略有缺陷,相信您能够看懂。

)M为动点,F1、F2为定点,a为常数。

在椭圆中,用a 表示长半轴的长,b表示短半轴的长,且a>b>0;2c表示焦距。

二、椭圆定理(一)椭圆定理Ⅰ(椭圆焦距定理)椭圆定理Ⅰ:任意同心圆,小圆任意切线与大圆形成的弦等于以大圆半径为长半轴长、小圆半径为短半轴长的椭圆焦距。

该椭圆中心在同心圆圆心,焦点在圆心以焦距一半为半径的圆上。

附图:椭圆的奥秘图解之一(焦距定理)(略)(二)椭圆定理Ⅱ(椭圆第一常数定理)定义1:K1=2/(π-2),K1为椭圆第一常数。

定义2:f=b/a,f为椭圆向心率(a>b>0)。

定义3:T=K1+f,T为椭圆周率。

椭圆定理Ⅱ:椭圆是同心圆依照勾股定理和谐组合,椭圆第一常数K1的数值加上椭圆向心率f的数值等于椭圆周率T的数值。

(三)椭圆定理Ⅲ(椭圆第三常数定理)椭圆具有三特性,也称椭圆三态。

1、当椭圆b>c时,椭圆为向外膨胀型,其焦点在以b 为半径的圆内;2、当椭圆b=c时,椭圆为相对稳定型,其焦点在以b 为半径的圆上;3、当椭圆b<c时,椭圆为向内收缩型,其焦点在以b 为半径的圆外。

定义:任意椭圆长半轴的长a为该椭圆单位,用A表示,称为椭圆单位。

根据椭圆第一定义,a2=b2+c2,且a>b>0,则有:b2+c2=1(椭圆单位)当b=c时,2b2=1(椭圆单位),b=根号1/2(椭圆单位)。

定义:K3=根号1/2,K3为椭圆第三常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆定理(又名:椭圆猜想)椭圆定理易亚苏(关键词:椭圆周长公式、椭圆周长定理、椭圆面积公式、椭圆面积定理等。

)圆完美的和谐,椭圆和谐的完美。

一、椭圆第一定义椭圆第一定义:平面内与两个定点F1、F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

椭圆第一定义的数学表达式:MF1+MF2=2a>F1F2 (由于网上发文的遗憾,公式和符号略有缺陷,相信您能够看懂。

)M为动点,F1、F2为定点,a为常数。

在椭圆中,用a表示长半轴的长,b表示短半轴的长,且a>b>0;2c表示焦距。

二、椭圆定理(一)椭圆定理Ⅰ(椭圆焦距定理)椭圆定理Ⅰ:任意同心圆,小圆任意切线与大圆形成的弦等于以大圆半径为长半轴长、小圆半径为短半轴长的椭圆焦距。

该椭圆中心在同心圆圆心,焦点在圆心以焦距一半为半径的圆上。

附图:椭圆的奥秘图解之一(焦距定理)(略)(二)椭圆定理Ⅱ(椭圆第一常数定理)定义1:K1=2/(π-2),K1为椭圆第一常数。

定义2:f=b/a,f为椭圆向心率(a>b>0)。

定义3:T=K1+f,T为椭圆周率。

椭圆定理Ⅱ:椭圆是同心圆依照勾股定理和谐组合,椭圆第一常数K1的数值加上椭圆向心率f的数值等于椭圆周率T的数值。

(三)椭圆定理Ⅲ(椭圆第三常数定理)椭圆具有三特性,也称椭圆三态。

1、当椭圆b>c时,椭圆为向外膨胀型,其焦点在以b为半径的圆内;2、当椭圆b=c时,椭圆为相对稳定型,其焦点在以b为半径的圆上;3、当椭圆b<c时,椭圆为向内收缩型,其焦点在以b为半径的圆外。

定义:任意椭圆长半轴的长a为该椭圆单位,用A表示,称为椭圆单位。

根据椭圆第一定义,a2=b2+c2,且a>b>0,则有:b2+c2=1(椭圆单位)当b=c时,2b2=1(椭圆单位),b=根号1/2(椭圆单位)。

定义:K3=根号1/2,K3为椭圆第三常数。

椭圆定理Ⅲ:椭圆第三常数K3与椭圆单位决定椭圆特性。

当椭圆b>c时,椭圆向心率(f)大于椭圆第三常数(K3),椭圆离心率(e)小于椭圆第三常数(K3),椭圆为向外膨胀型;当椭圆b=c时,椭圆向心率(f)和椭圆离心率(e)都等于椭圆第三常数(K3),椭圆为相对稳定型;当椭圆b<c时,椭圆离心率(e)大于椭圆第三常数(K3),椭圆向心率(f)小于椭圆第三常数(K3),椭圆为向内收缩型。

三、椭圆周长、面积计算公式和定理(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

(二)椭圆面积计算公式椭圆面积公式:S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。

常数为体,公式为用。

圆是同心圆依照勾股定理和谐组合。

椭圆中有常数K1和K2,椭圆的常数与椭圆周长、面积计算公式,一个为体,一个为用。

一、椭圆周长、面积计算公式根据椭圆第一定义,用a表示椭圆长半轴的长,b表示椭圆短半轴的长,且a>b>0。

椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

椭圆面积公式:S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

二、椭圆常数由来及周长、面积公式推导过程(一)发现椭圆常数常数在于探索和发现。

椭圆三要素:焦距的一半(c),长半轴的长(a)和短半轴的长(b)。

椭圆三要素确定任意两项就确定椭圆。

椭圆三要素其中两项的某种数学关系决定椭圆周长和面积。

椭圆的周长取值范围:4a<L<2πa(1)椭圆周长猜想:L=(2πa-4a)T (2)T是猜想的椭圆周率。

将(1)等式与(2)等式合并,得:4a<(2πa-4a)T<2πa(3)根据不等式基本性质,将不等式(3)同除(2πa-4a),有:4a/(2πa-4a) <T<2πa /(2πa-4a) (4)简化表达式(4):2/(π-2)<T<π/(π-2)定义:K1=2/(π-2);K2=π/(π-2)计算K1、K2的值会发现K1、K2是两个非常奇特的数:K1=1.75193839388411……K2=2.75193839388411……椭圆第二常数:K2=K1+1椭圆常数的发现过程描述简单,得来却要复杂得多。

(二)椭圆周长公式推导长期以来我们只用椭圆离心率e=c/a来描述椭圆,却忽视了椭圆a与b的关系。

定义:椭圆向心率为f,f=b/a 。

根据椭圆第一定义,椭圆向心率f,有0<f<1的范围。

K1+f<K2的数学关系正是椭圆周长计算时存在的数学关系。

定义:T=K1+f,将此等式代入等式(2)则有:L=(2πa-4a)T=2(π-2)a(K1+f)=2(π-2)a(2/(π-2)+b/a)=2πb+4(a-b)椭圆周长计算公式:L=2πb+4(a-b)(三)椭圆面积公式推导椭圆面积的取值范围:0<S<πa2(5)(由于网上发文的遗憾,公式和符号略有缺陷,相信您能够看懂。

如:上式中πa2为π乘a的二次方。

)椭圆面积猜想:S=πa2T(6)T是猜想的椭圆面积率。

将(5)等式与(6)等式合并,得:0<πa2T<πa2(7)根据不等式基本性质,将不等式(7)同除πa2,则有:0<T<1。

可得:S=πa2T=πa2(K+f)(8)在等式(8)中K=0,f=b/a,代入等式中:S=πa2b/a=πab椭圆面积计算公式:S=πab关于《椭圆定理》中的T=k1+f问题易亚苏《椭圆定理》一文中有:“定义1:K1=2/(π-2),K1为椭圆第一常数。

定义2:f=b/a,f为椭圆向心率(a>b>0)。

定义3:T=K1+f,T为椭圆周率”。

有聪明的网友提出“定义:T=k1+f没有依据”,现就此问题作出如下分析说明。

(一)在《椭圆常数K1、K2的由来与周长、面积公式推导》中,有“T是猜想的椭圆周率”,并“定义:T=K1+f”(《椭圆定理》中也有此定义,见上)。

《椭圆常数K1、K2的由来与周长、面积公式推导》中还有表达式:2/(π-2)<T<π/(π-2)。

定义:K1=2/(π-2);K2=π/(π-2)。

这样定义理当无可非议。

那么,K1<T<K2,因为k2=k1+1,也可以说T是k1到k1+1之间的数,数学表达式为:k1<T<k1+1。

对于具体椭圆而言k1<T<k1+f,f为椭圆向心率,f=b/a,0<f<1。

(a>b>0)(参见《椭圆定理》)。

因为0<f<1,所以k1<T<k1+1与T=K1+f有同样的代数内含。

所谓“同样的代数内含”是思维数学。

由椭圆定义,a>b>0,因为f=b/a,即0<f<1。

当b接近0时,椭圆接近双直线,其长度近似于4a;当b接近a 时,椭圆接近圆,其周长近似于2πa。

当b在0与a之间变化时,形状为椭圆,其周长为L=2πb+4(a-b)。

以下作简要分析,如果把椭圆的a作为椭圆单位,那么f=B(椭圆单位),B=b/a(椭圆单位),其中0<B<1,也即0<f<1。

T=k1+f,k1<T<k1+1或k1<T<k2,即是2/(π-2)<T<π/(π-2)。

注:椭圆单位的概念很重要,切记并体会其内含!在《椭圆定理》短文中首次提出了“椭圆单位”的概念,“定义:任意椭圆长半轴的长a为该椭圆单位,用A表示,称为椭圆单位”。

其实T=k1+f的定义既是从椭圆中的代数内含关系推理而来,也是基于“椭圆单位”的思考而来。

(二)研究椭圆时笔者发现了K1、K2两个非常奇特的数:K1=1.75193839388411……K2=2.75193839388411……这两个奇特的数里包含了π,π是圆周率,f=b/a是0到1之间的小数,那么对于椭圆来说T=k1+f是一个也包含了π的特定数,所以定义T为“椭圆周率”。

椭圆周率与圆周率不同,圆周率是固定的值π,椭圆周率是变化的值T=k1+f,它随椭圆b与a的比值变化而变化。

从某种意义上说圆是椭圆的范围,由于椭圆定义了a>b>0,所以只能称“圆是椭圆的范围”,而不能称圆是特殊的椭圆。

但是在研究椭圆时以椭圆a为半径的圆起到了很好的参考,所以笔者在《椭圆定理》中对圆和椭圆这两种几何图形,只能发出“圆完美的和谐,椭圆和谐的完美”这样的感叹。

(三)笔者认为任何科学研究的方法都基于:1、发现特殊现象;2、提出假设或猜想;3、利用假设或猜想做出结论;4、对结论进行检验。

《椭圆定理》就是基于这四点写出的短文。

笔者认为论文不在长短,而在其价值。

当今的椭圆理论是不完整的(比如只有近似的椭圆周长计算公式,缺少标准的椭圆周长计算公式),那么“椭圆理论”的依据还需要靠发现来完善。

任何科学的原始依据从哪里来?从发现来。

对特殊现象的发现加以总结,通过检验就可以成为理论;理论升华就是科学,科学也是理论依据的源泉。

(四)椭圆周长无疑在4a<L<2πa范围变化,并与f=b/a值存在某种对应的关系,其核心就是T=k1+f。

椭圆里的B (B=b/a椭圆单位)从0到1的平滑变化,必然导致其椭圆周长的平滑变化。

椭圆是平滑的闭合曲线,其周长与f=b/a的变化有着必然的对应变化数学关系。

所以笔者在《椭圆定理》中要定义f为椭圆向心率,f=b/a,(a>b>0)。

如果引用椭圆单位,则4<L<2π(椭圆单位)。

在《椭圆定理》短文中有“后附《椭圆的奥秘》椭圆周长、面积验算公式表”,可惜网上尚未能表示出“验算公式表”,相信您用Excel可以很容易作出“验算公式表”,并可以对椭圆周长计算公式L=2πb+4(a-b)进行序列的直观检验。

椭圆周长计算公式L=2πb+4(a-b)中虽然没有出现椭圆周率T,但这个公式是通过椭圆周率T推导演变而来。

常数为体,公式为用。

(五)当今尚无标准的椭圆周长计算公式是基础科学中的遗憾之一,现在科学中所使用的椭圆周长都是近似值,这也是科学的遗憾之一,所以研究椭圆周长计算公式是十分有意义的。

笔者认为一个公式的对与错,既有意义也没有意义,因为科学是发展的,科学是循序渐进的过程。

科学探索的过程是寂寞而愉快的,但我们要认识到今天的正确不代表明天的正确,如果没有这样的观念,科学也就难于进步。

相关文档
最新文档