位错的弹性性质-完整版

合集下载

2.4 位错的弹性性质

2.4 位错的弹性性质

2.4 位错的弹性性质位错的弹性性质是位错理论的核心与基础。

它考虑的是位错在晶体中引起的畸变的分布及其能量变化。

处理位错的弹性性质有若干种方法,主要的有:连续介质方法、点阵离散方法等。

从理论发展和取得的效果来看,连续介质模型发展得比较成熟。

我们仅介绍位错连续介质模型考虑问题的方法和计算结果,详细的数学推导不作介绍,有兴趣的同学可进一步阅读教学参考书。

一、位错的连续介质模型早在1907年,伏特拉(Volterra)等在研究弹性体形变时,提出了连续介质模型。

位错理论提出来后,人们借用它来处理位错的长程弹性性质问题。

1.位错的连续介质模型基本思想将位错分为位错心和位错心以外两部分。

在位错中心附近,因为畸变严重,要直接考虑晶体结构和原子间的相互作用。

问题变得非常复杂,因而,在处理位错的能量分布时,将这一部分忽略。

在远离位错中心的区域,畸变较小,可视作弹性变形区,简化为连续介质。

用线性弹性理论处理。

即位错畸变能可以通过弹性应力场和应变的形式表达出来。

对此,我们仅作一般性的了解。

2.应力与应变的表示方法(1)应力分量如图1所示。

物体中任意一点可以抽象为一个小立方体,其应力状态可用9个应力分量描述。

它们是:图1 物体中一受力单元的应力分析σxx σxy σxzσyx σyy σyzσzx σzy σzz其中,角标的第一个符号表示应力作用面的外法线方向,第二个下标符号表示该应力的指向。

如σxy表示作用在与yoz坐标面平行的小平面上,而指向y方向的力,显而易见,它表示的是切应力分量。

同样的分析可以知道:σxx,σyy,σzz3个分量表示正应力分量,而其余6个分量全部是切应力分量。

平衡状态时,为了保持受力物体的刚性,作用力分量中只有6个是独立的,它们是:σxx,σyy,σzz,σxy,σxz和σyz,而σxy =σyx,σxz =σzx,σyz =σzy。

同样在柱面坐标系中,也有6个独立的应力分量:σrr,σθθ,σzz,σrθ,σrz,σθz。

位错的弹性性质

位错的弹性性质

zz ( xx yy )
切应力: xy
yx
D
x(x2 y2 ) (x2 y2 )2
xz zx yz zy 0
其中:D b
2 (1 )
同时存在着正应力与切应力; 刃型位错的应力场,对称于多余半原子面; 滑移面上无正应力,只有切应力,且其切应力最大。
正刃型位错的滑移面上侧,在x方向的正应力为压应力; 滑移面下侧,在x方向上的正应力为拉应力
σθr
② 在XZ剖面上θ=0,cosθ=1
D B
③当剖面从r到(r+dr)处, 产生位移db(r)所做功:
④当剖面从r0处扩展到
R
R处,db从0变到b所功:
单位长度的刃错线总能量(应变能):
W刃
Gb2
4 (1)
ln
R r0
2)螺型位错的应变能
在XZ剖面的应力为:
单位长度的螺错线能量:
σθz
W螺
Gb2
4.1 弹性力学基础知识
1)弹性连续介质
所谓弹性连续介质,是对晶体作了简化假设之后提 出的模型:
(1) 晶体是完全弹性体,因此服从胡克定律; (2) 晶体是各向同性的,因此其弹性常数(弹性模 量、泊松比等)不随方向而变化; (3) 晶体内部由连续介质组成,因此晶体中的应力、 应变、位移可用连续函数表示。
半原子面上或与滑移面成45°的晶面上,无切应力。
2)螺型位错的应力场
① 应力场模型与函数
沿xz平面剖开使之沿z轴产生相对位移b,然后再粘合。当然 也要挖去位错线附近的严重畸变区域。
xz
zx
b 2
x2
y
y2
yz
zy
b 2
x2
x

第二章 位错的弹性性质(面缺陷)

第二章  位错的弹性性质(面缺陷)

第三节面缺陷Planar defects晶界孪晶界相界大角度晶界小角度晶界外表面内表面外表面:指固体材料与气体或液体的分界面。

它与摩擦、吸附、腐蚀、催化、光学、微电子等密切相关。

内界面:分为晶粒界面、亚晶界、孪晶界、层错、相界面等一、外表面Surface特点:外表面上的原子部分被其它原子包围,即相邻原子数比晶体内部少;表面成分与体内不一;表面层原子键与晶体内部不相等,能量高;表层点阵畸变等。

表面能:晶体表面单位面积自由能的增加,可理解为晶体表面产生单位面积新表面所作的功γ = dW/ds表面能与表面原子排列致密度相关,原子密排的表面具有最小的表面能;表面能与表面曲率相关,曲率大则表面能大;表面能对晶体生长、新相形成有重要作用。

二、晶界和亚晶界grain boundary and sub-grain boundary晶界Grain boundary:在多晶粒物质中,属于同一固相但位向不同的晶粒之间的界面称为晶界。

是只有几个原子间距宽度,从一个晶粒向另外一个晶粒过渡的,且具有一定程度原子错配的区域。

晶粒平均直径:0.015-0.25mm亚晶粒Sub-grain:一个晶粒中若干个位向稍有差异的晶粒;平均直径:0.001mm亚晶界Sub-grain boundary:相邻亚晶粒之间的界面晶界分类(根据相邻晶粒位相差)小角度晶界:(Low-angle grain boundary)相邻晶粒的位相差小于10º亚晶界一般为2º左右。

大角度晶界:(High-angle grain boundary)相邻晶粒的位相差大于10º大角度晶界小角度晶界相邻晶粒各转θ/2同号刃位错垂直排列相互垂直的两组刃位错垂直排列两组螺位错构成§θ<10°§由位错构成§位错密度↑——位向差↑——晶格畸变↑——晶界能↑位错密度——决定位向差与晶界能注:位错类型与排列方式——决定小角晶界的类型Ni3(Al-Ti)中的倾斜晶界——旋转10°——10°以上,一般在30°~40°重合点阵模型↓重合点阵+台阶模型↓重合点阵+台阶+小角晶界模型重合位置点阵模型Coincidence site lattice model当两个相邻晶粒的位相差为某一值时,若设想两晶粒的点阵彼此通过晶界向对方延伸,则其中一些原子将出现有规律的相互重合。

第二章 位错的弹性性质A0318

第二章  位错的弹性性质A0318

t
t
Fd
t
Fd
t
若在外正应力 的作用下,对刃型位错来说,会在垂直 于滑移面的方向运动,即发生攀移,也称为攀移力(climb force) Fy。 Fy = - b
Fy 的方向与位错线攀移方向一致 为拉应力时,Fy向下

Fy
公式推导
外力τ使长为l的位错移动了ds, τ作功dw1
dw1 (t l ds)b
位错间的作用力
通过彼此的应力场实现:
1)两平行螺位错的交互作用
由于应力场中只有切应力分量,所以只受到径向作用力fr:
fr
t1b2

Gb1b2
2 r
排斥
吸引

2)两平行刃位错的交互作用
在位错e1的应力场中存在切应 力和正应力,分别导致e2沿x方 向滑移和沿y方向攀移
沿x方向的切应力分量(滑移):
dW

1 2

z
z
dV
dV 2r dr L
z

Gb
2r
z

b
2r
dW 1 Gb b 2r dr L 2 2r 2r
Gb 2 dr L
4r
3 作用在位错上的力 force on a dislocation
在外切应力 t 的作用下,位错的移动可以理解为有一个垂直于位错线 的力 Fd 作用于位错线上。Fd = t b
结果:
应变:y

b
2r
— —仅轴向有应变
应力: z
z
Gz

Gb
2r
rr zz r r ry yr 0

位错的弹性性质

位错的弹性性质

(2) 位错的应变能
位错附近的原子离开了正常的平衡位置,使点 阵发生了畸变,导致晶体的能量增加,增加的能量 称为畸变能或应变能。其包括位错中心区域的应变 能和位错应力场引起的弹性应变能。
其中位错中心区域点阵畸变很大,不能用线弹 性理论计算其弹性应变能。据估计,这部分能量大 约占总应变能的10%左右,故通常予以忽略。
0 L r0 4 r
(1) 单位长度螺型位错的弹性应变能Ws为:
Ws
W L
s
Gb2
4
ln
R r0
(2) 刃位错的弹性应变能计算较复杂,其单位长 度刃位错的弹性应变能WE为:
WE
W L
E
Gb2
4 1
ln
R r0
(3) 混合位错的弹性应变能等于螺位错的弹性能和 刃位错的弹性能之和。
r0为位错中心区域的半径,可取 r0 b 2.5108cm R为位错应力场的最大作用半径,在实际晶体中 受亚晶的限制,可取 R 104cm ,则单位长度位 错的应变能为:
3.2.3 位错的弹性性质
晶体中有位错存在时,位错线及其周围的晶格 产生严重畸变,畸变处的晶体原子偏离平衡位置, 能量增高。位错线及其周围区域产生弹性应变和应 力场。
采用弹性力学方法来分析位错线周围的应力分 布,所得结果不适于位错中心区(中心区的原子排 列特别紊乱,既不能看成连续介质,也不是小位移, 超出了弹性变形的范围,因此,虎克定律不再适 用),它只适于位错中心区以外的区域(直到无穷 远处)。
形成刃位错时没有轴向位移,只有径向位移, 因而位移是二维的(平面应变)。但刃位错应力场 比螺位错复杂,此处不加讨论。其最后结果如下:
xx
D
y 3x2 x2
y2 y2 2

晶体缺陷5-位错的弹性性质

晶体缺陷5-位错的弹性性质

1)单位长度位错线的应变能U为:
U=αGb2
取值中限0.75
=0.75×4×1010×(2.5×10-10)2
=18.75×10-10J/m
2)严重变形金属,单位体积(cm3)内位错应变能为: U=18.75×10-10×1011 =187.5J/cm3
换算成单位质量(g)铜晶体内位错的应变能为: U=(187.5/8.9)J/g
4
ln r0
3、混合位错的弹性能
U刃
1
1
U螺
3 2 U螺
U混
Gb2
4k
ln
R r0
Gb2
其中:k=1-v/(1-vcos2θ),0.5≤α≤1
结论
UT U el Gb 2
(1)总应变能 UT=U0+Uel
Uel∝lnR/r0
长程,
U0
1 10
UT
可忽略。
(2)UT∝b2,晶体中稳定的位错具有最小的柏氏矢
似:对圆柱体上各点产生两种切应力,即 tz t z
t z t θz
t z t θz
从这个圆柱体中取一个半径为r的薄壁圆筒展开,
便能看出在离开中心r处的切应变为
t z
t z
G
Gb
2r
b 2 r
yL
r0
z
r P tz θ t z b
t z
L
x
过P点取平面展开
t z
b
2 r
P
z
t z t z
t z
课前复习
1.什么是应力,其表达式是什么?
应力是作用在单位面积上的力 σ=F/A
2.螺位错应力场的应力分量的极坐标表示。
0 0

位错理论3-位错的弹性性质资料

位错理论3-位错的弹性性质资料

x2
x
y2
s xx s yy s zz s xy s yx 0
11
Stress field of screw dislocation ➢螺位错应力场特点:
只有切应力( sqz、szq分量),无正
应力分量 应力场对称于螺位错的位错线——轴
对称:切应力分量大小只与距位错线 中心的距离r有关,与q无关。
➢ 因为只有sqz和eqz:
➢ 所以:
W V
1 2
s
qz
e qz
1 Gb
2 2r
b
2r
Gb 2
8 2r 2
➢ 考虑位错微元:半径为r,厚度dr,长度L的管
状体元
dW
1 2
s
eqz qz
dV
1 2
Gb
2r
b
2r
d (2r dr L)
Gb 2L
4r
dr
➢ 设位错中心半径为r0,应力场范围半径为R,所
s ii s ij
Eeii Geij
G
E
2(1
)
6
目录
➢弹性理论基础 ➢位错的应力场 ➢位错的应变能 ➢位错所受的力 ➢位错的线张力 ➢位错间的相互作用力
7
Stress field of dislocation
➢ 位错晶格畸变应力场 ➢ 以位错中心的某点为定点,应力场描述为:
or
4
Basis of elasticity theory
➢应变分量(应变张量strain tensor):
➢只err,有eq6q个, e独zz, 立erq分, e量rz,:eqez;xx, eyy, ezz, exy, exz, eyz;

位错的弹性性质

位错的弹性性质

一般情况下,任意一点存在36个常数cij值。晶体的对称 性越强,独立的弹性常数数目越少。在弹性连续介质中, 只有2个独立的cij值,工程上分别用E、G标记:
E为正应变弹性模量,也叫杨氏模量: iiEii
G为切应变弹性模量,也叫切变模量: iiGii
E和G之间存在如下关系:E=G/2(1-ν),其中ν是表示
优点 缺点
模型简单
中心区不适用,忽略晶体结构的影响
.
11
1)刃位错的应力场
① 应力场模型
1. 在圆柱体中心挖出一 个半径为rO的小洞
2. 沿xoz平面从外部切 通至中心
3. 在切开的两面上加外 力,使其沿x轴作相 对位移b;再把切开的 面胶合起来
4. 撤去外力
这样的圆柱体与包含一个刃型位错的晶体相似。
W螺
4
ln r0
.
18
3)混合位错的应变能
单位长度的混合位错能量:
W混
Gb2
4k
lnR r
0
k 1v1cvo2s
R—位错应力场最大作用范围的半径
r0 —位错中心区域的半径 θ—混合位错的柏氏矢量与位错线的夹角
α—由位错的类型、密度(R值)决定,其值0.5~1.0
上述公式可简化为: WGb2
.
19
W1 W2
F l D l D b
F b
.
29
特点
➢ 作用在单位位错线上的力F与外加切应力τ 及柏氏矢量b成正比,由于同一位错线各 点柏氏矢量b相同,所以当外加切应力均 匀作用在晶体上时,位错线各点所受力的 大小是相同的。
➢ 作用于位错线上的力F与外加切应力τ的方
向不一定是一致的(纯刃型位错与τ同向,
讨论

位错的弹性性质

位错的弹性性质

z
而相应的切应力便为
b 2r
z z G z
Gb 2r
G称为剪切模量,其余应力分量均为0。
rr zz r r rz zr 0
若用直角坐标表示
螺型位错的应力场具有以下特点:

(1)只有切应力分量,正应力分量全为零,这表明螺位错 不引起晶体的膨胀和收缩。
第二个下标代表应力方向。
例如
xy
表示作用在x面上沿y轴方向的应力(所谓x 面就是外法线沿x轴方向的平面。
x x , y y 和 z z 三个正应力通常简写为 x , y 和 z
从以上讨论可知,要确定一点的应力状态,需要给出通 过该点的3个正交平面上的9个应力分量。
x , x y , x z , பைடு நூலகம் y , y x , y z , z , z x , z y
体表面的外法线方向相反,则此力为压力,它所产生的应力就 是压应力。拉应力和压应力都和作用面垂直,统称为正应力。 如果作用力平行于作用面,则此力称为剪力(切力),单 位面积上的剪力就称为剪应力,它力图改变物体的形状,而不
改变体积。
在一般情形下,作用力和作用面即不垂直,也不平行,此 时它所引起的应力就可以分为正应力和剪应力 。

物体中任意一点的应力状态均可用九个应力分量描述,图分
别用直角坐标和圆柱坐标说明这九个应力分量的表达方式。
(a)直角坐标; (b)圆柱坐标的正应力及切应力表示办法 物体中一点(图中放大为六面体)的应力分量
下面我们讨论应力的标注方 法及其意义。
表示正应力, 表示剪应力。
不同面和方向的应力下标区别, 第一个下标代表应力的作用面,
的大小与G和b成正比,与r成反比,即随着与位错距离的

位错理论3-位错的弹性性质

位错理论3-位错的弹性性质
47同号位错稳定状态亚稳定状态48interactionedgedislocationxx使位错ii攀移的作用力分量xx为正应力分量对攀移起作用当y0在滑移面上fxx当y0在滑移面上fxx49interactionedgedislocation同号位错50imageforce当位错处于晶体表面附近时便有自动移向表面以降低应变能的趋势表面对位错具有吸引力假想力镜像力映象力晶体中位错移至表面消失两异号位错相互吸引相遇而抵消
31
Line tension of dislocation
位错的线张力:
因为位错的总应变能与位错线的长度成 正比; 所以为了降低系统的能量,必须有位错 线由曲变直,由长变短的自发倾向。
该倾向视为:一个张力沿位错线作用 位错线张力T定义:使位错线增长一 定长度dl所做的功W,即:
3 s E Ee 2
e e
所以,刃位错的弹性应变能比螺位错大50%
24
Strain energy of mixed dislocation
混合位错:
因为: b b b b cosq b sin q m e s
所以
2 2 2 2 Gb sin q R Gb cos q R m s e Ee Ee Ee ln ln 4 (1 ) r0 4 r0
20
Strain energy of screw dislocation 单位长度的螺位错的应变能Eess:
Gb R E ln 4 r0
S e
2
21
Strain energy of edge dislocation 刃位错Eee:
位错在滑移面上 (x方向)只有切 应力分量sqr 且q=0
对于位错,除了位错中心严重畸变区外, 均适用于上述模型。

第五章位错的弹性性质

第五章位错的弹性性质

第五章位错的弹性性质绪论:⑴固体弹性理论主要是研究各向同性的连续固体在弹性变形(质点和对位移很小)时应力和应变分布。

⑵①如果某部分物体受的作用力是沿物体表面(界面)的外法线方向,它所产生的应力就是拉应力。

②如果作用力和物体表面的外法线方向相反,则此力为压力,它所产生的应力就是压应力。

③拉应力和压应力都和作用面垂直,统称为正应力 5.1⑴直角坐标表示:⑵极坐标表示:⑶平衡状态,有切应力互等定律。

否则六面体将发生转动。

⑷应变分量: ⑸应力与应变:5.1位错的应力场1.位错周围的弹性应力场弹性体假设模型:⑴晶体是完全弹性体;⑵ 晶体是各向同性的;⑶ 晶体中没有空隙,由连续介质组成。

2.螺位错的应力场⑴圆柱体的应力场与位错线在z 轴,对圆柱体上各点产生两种切应力 从这个圆柱体中取一个半径为r 的薄壁圆筒展开,便能看出在离开中θθτ=τzz心r 处的切应变为由于圆柱只在z 轴方向有位移,在xy 方向都没有位移,所以其他分量都为0:螺位错应力场的特点: 采用直角坐标: ①只有切应力分量(σθz 、σz θ),而无正应力。

②螺位错产生的切应力大小只与r 的大小有关,即只与离位错线的距 离成反比,而与θ、z 无关。

其应力场关于位错线是对称的。

3刃位错的应力场直角坐标表示:刃位错应力场的特点:①同时存在着正应力与切应力;②刃型位错的应力场,对称于多余半原子面;③滑移面上无正应力,只有切应力,且其切应力最大。

④正刃型位错的滑移面上侧,在x 方向的正应力为压应力; 滑移面下侧,在x 方向上的正应力为拉应力⑤半原子面上或与滑移面成45°的晶面上,无切应力。

5.2位错的弹性能⑴单位体积正应变能:2E 21V u ε= 单位体积切应变能:2G 21V u γ⋅=⑵单位长度螺位错的弹性应变能为:02s r Rln 4Gb L u U π==⑶单位长度刃位错的弹性应变能为:(取υ=1/3) r2b ⋅π⋅=γrGb G πγττθθ2z z =⋅==∴s U 23 s U 11U e =υ-=⑷混合位错的弹性能 : 其中:0.5≤α≤1 ⑸结论①总应变能U T =U 0+U el ②U T ∝b2,晶体中具有最小b 的位错最稳定b 大的位错有可能分解成b 小的位错,以降低系统的能量③螺位错比刃位错易形成。

第五章位错的弹性性质

第五章位错的弹性性质

第五章位错的弹性性质绪论:⑴固体弹性理论主要是研究各向同性的连续固体在弹性变形(质点和对位移很小)时应力和应变分布。

⑵①如果某部分物体受的作用力是沿物体表面(界面)的外法线方向,它所产生的应力就是拉应力。

②如果作用力和物体表面的外法线方向相反,则此力为压力,它所产生的应力就是压应力。

③拉应力和压应力都和作用面垂直,统称为正应力 5.1⑴直角坐标表示:⑵极坐标表示:⑶平衡状态,有切应力互等定律。

否则六面体将发生转动。

⑷应变分量: ⑸应力与应变:5.1位错的应力场1.位错周围的弹性应力场弹性体假设模型:⑴晶体是完全弹性体;⑵ 晶体是各向同性的;⑶ 晶体中没有空隙,由连续介质组成。

2.螺位错的应力场⑴圆柱体的应力场与位错线在z 轴,对圆柱体上各点产生两种切应力 从这个圆柱体中取一个半径为r 的薄壁圆筒展开,便能看出在离开中θθτ=τzz心r 处的切应变为由于圆柱只在z 轴方向有位移,在xy 方向都没有位移,所以其他分量都为0:螺位错应力场的特点: 采用直角坐标: ①只有切应力分量(σθz 、σz θ),而无正应力。

②螺位错产生的切应力大小只与r 的大小有关,即只与离位错线的距 离成反比,而与θ、z 无关。

其应力场关于位错线是对称的。

3刃位错的应力场直角坐标表示:刃位错应力场的特点:①同时存在着正应力与切应力;②刃型位错的应力场,对称于多余半原子面;③滑移面上无正应力,只有切应力,且其切应力最大。

④正刃型位错的滑移面上侧,在x 方向的正应力为压应力; 滑移面下侧,在x 方向上的正应力为拉应力⑤半原子面上或与滑移面成45°的晶面上,无切应力。

5.2位错的弹性能⑴单位体积正应变能:2E 21V u ε= 单位体积切应变能:2G 21V u γ⋅=⑵单位长度螺位错的弹性应变能为:02s r Rln 4Gb L u U π==⑶单位长度刃位错的弹性应变能为:(取υ=1/3) r2b ⋅π⋅=γrGb G πγττθθ2z z =⋅==∴s U 23 s U 11U e =υ-=⑷混合位错的弹性能 : 其中:0.5≤α≤1 ⑸结论①总应变能U T =U 0+U el ②U T ∝b2,晶体中具有最小b 的位错最稳定b 大的位错有可能分解成b 小的位错,以降低系统的能量③螺位错比刃位错易形成。

位错的弹性性质

位错的弹性性质
9
公式应用: 当r 趋近于0时,应力发散,因而上述结果不适合位错 中心区域,即严重畸变区,线弹性理论不适用,这也 是弹性模型采用空心(半径为r0)圆柱的原因,空心 区域为核心区域。 当r和b接近时,应力达到理论切变强度,并且应变超 过10%,因而r0取值范围在b到4b之间,即绝大多数 r0≤1nm。
3
三.基础弹性力学知 识
物体中任意点的应力状态均 可用9个应力分量描述: 直角坐标系 正应力分量:
xx

、 yy 、 zz
yx xz
、 、 、 、 、
xy zx zy
切应力分量:
yz
下角标含义: 第一个符号表示应力作用面 法线方向,第二个符号表示 应力方向
4
圆柱坐标系
b 2r
Z Z G Z
Gb 2r
r rz zr 0
8
若用直角坐标表示:

yz


zy
zx
xz
Gb x 2 2 2 x +y Gb y 2 2 2 x +y
yy

xxBiblioteka zz


xy


yx
0
因此,螺型位错的应力场具有以下特点: (1)只有切应力方向,正应力分量全为零,这表明螺 型位错不会引起晶体的膨胀和收缩。 ( 2 )螺型位错所产生的切应力分量只与 r 有关(成反 比),而与θ,z无关。只要r一定, τzθ 就是常数。螺 型位错应力场是径向对称的,即同一半径上的切应力 相等,随着与位错距离的增大,应力值减小。
2016/1/7 14
15
2
二.分析方法:
1.位错中心附近:畸变严重,须直接考虑晶体结构 和原子之间的相互作用; 2.远离位错中心区:畸变较小,可简化为连续弹性 介质,用线弹性理论进行处理,位错的畸变就以弹 性应力场和应变能形式表达。 理论基础:弹性连续介质模型 假设:1.晶体是完全弹性体,完全服从虎克定律, 即不 存在塑性变形; 2. 各向同性; 3. 连续介质,不存在结构间隙。

《材料科学基础》课件3.2.4位错的弹性性质

《材料科学基础》课件3.2.4位错的弹性性质

fy
b2
Gb1b2 y(3x 2 y 2 ) 2π(1 ) (x 2 y 2 )32
b2
Gb1b2 y(3x 2 y 2 ) 2π(1 ) (x 2 y 2 )2
2
1
4
3
2
1
4
平行刃位错和螺位错间的交互作用 因为平行的刃位错和螺位错的应力场没有重叠的分量,所
以,它们间的交互作用为零。
ES
Gb 2
4
ln
R r0
(2) 刃型位错应变能
单位长度刃型位错应变能
Ee
Gb2
4 (1
v)
ln
R r0
(3)混合位错的应变能
设混合位错的柏氏矢量b与位错线交角为θ,则:
be b sin, bs b cos
EM Ee ES
Gb2 sin2 lnR Gb2 cos2 lnR
4(1r) r0
a) 位错的应力场 位错线附近的原子偏离了正常位置,引起点阵畸变,从而产 生应力场。 (1)位错中心部,原子排列特别紊乱,超出弹性变形范围 (2)中心区外,应力场用各向同性连续介质弹性理论来处理。 (3)分析位错应力场时,常设想把中心区挖去,而在中心区以 外的区域采用弹性连续介质模型导出应力场公式。 假设:1.完全服从虎克定律,即不存在塑性变形;
定量计算2个位错间交互作用力的简单方法:把其中一个位错 (A)的应力场看作是另一位错(B)的“外加应力场”,这应力 场对B位错的作用力就是A位错对B位错的作用力。
两个平行螺位错间的交互作用
➢ S1和S2是2个平行z轴的螺位错,它们的柏氏矢量分别为b1和b2, S1位错在z轴, S2位错处在(r,θ)处。
如果作用力平行于作用面,则此力为剪力(切力),单位 面积上的切力被称为切应力。它力图改变物体的形状,而不 改变体积。

材料科学基础_第三章__晶体的缺陷(五)位错的弹性性质

材料科学基础_第三章__晶体的缺陷(五)位错的弹性性质

采用直角坐标
取代Displacement:
ux 0
uy 0
uz
b
2
b
2
tg 1 (
y )
x
线应变Strain:
x
dux dx
0
y
duy dy
0
z
duz dz
0
xy( 12)
ux y
uy x
0
xz
uz x
ux z
b y
2 ( x2
y2)
yz
uz y
uy z
b x
2 ( x2
y2)
Stresses: s x x s yy s zz xy yx 0
xy
2
Gb
(1
)
x( x2 y2 ) (x2 y2 )2
zx zy 0
zx z刃y 型0位错周围的应力场
sx
Gb
2 (1 )
y(3 x 2 (x2
y2) y2 )2
s
y
Gb
2 (1
)
y( x2 y2 ) ( x2 y2 )2
s z (s x s y )
xy
Gb
有些材料常数 GPa= kN/mm2 = 10 9 Pa 工程上用 kg/cm2 = 0.1 MPa
当材料在外力作用下不能产生位移时,它的几何 形状和尺寸将发生变化,这种形变就称为应变 (Strain)。材料发生形变时内部产生了大小相等但 方向相反的反作用力抵抗外力.把分布内力在一点的 集度称为应力(Stress),应力与微面积的乘积即微 内力.或物体由于外因(受力、湿度变化等)而变形 时,在物体内各部分之间产生相互作用的内力,以抵 抗这种外因的作用,并力图使物体从变形后的位置回 复到变形前的位置。

7.4 位错的弹性性质

7.4  位错的弹性性质
3、刃型位错的应力场
建立刃型位错力学模型 模型中,OO′为位错线所在的位臵,MNOO′为滑移面,z-y 面相当于多余的半原子面。 应用弹性力学求出厚壁筒的刃型位错应力场公式:
Gb y(3x 2 y 2 ) xx 2 (1 ) ( x 2 y 2 ) 2
yy
即 刃位错弹性应变能比螺位错弹性应变能约大50%。
二、位错的应变能
3、混合位错的应变能
任何一个位错线与其柏氏矢量b成φ角的混合位错,可分 解为一个柏氏矢量模为bsinφ的刃位错和一个柏氏矢量 模为bcosφ的螺位错。 分别算出两位错分量应变能,其和即为混合位错应变能:
Gb2 sin 2 R Gb2 cos2 R Gb2 R E混 E刃 E螺 ln ln ln 4 (1 ) r0 4 r0 4k r0
用直角坐标方式表达九个应力分量: 正应力分量:σxx、σyy、σzz 切应力分量:τxy、τyz、τzx、τyx、τzy、τxz。 下角标: σxx
表示应力作用面法线方向, 表示应力的指向。
直角坐标的正应力及切应力的表示方法
一、位错的应力场
用圆柱坐标方式表达九个应力分量: 正应力分量:σrr、σθθ、σzz), 切应力分量:τrθ、τθr、τθz、τzθ、τzr、τrz 下角标: 第一个符号表示应力作用 面的外法线方向; 第二个符数,均为0.5~1。G为切变模量。
二、位错的应变能
例题
已知铜晶体的切变模量G=4×1010Nm-2,位错的柏氏矢 量等于原子间距,b=2.5×10-10m,取α=0.75,
(1)计算铜晶体内单位长度位错线的应变能。 (2)计算单位体积的严重变形铜晶体内储存的位错应变 能。(设位错密度为1011m/cm3) 解:(1)U=αGb2=18.75×10-10J/m

2.位错的弹性应力场

2.位错的弹性应力场


柱坐标下:
σrr =σ =σzz =σ =σzr = 0 θθ rθ σ = Gb θz 2πr ε = b θz 4πr
特点:只有切应力,没有正应力 应力应变中心对称(与θ无关) 应力应变与r反比
刃型位错的应力应变场
刃型位错的应力场
D=
Gb 2π(1-ν)
进一步可由胡克定律求出应变
刃型位错的应力场分布
2 Gb f '= 2r
TEM下的刃型位错

因何产生:
应变能 拉长位错线必增加应变能,线张力可抵抗该变化
1)直线位错的线张力 外力克服线张力T做功,会增加其弹性应变 能。直位错线伸长dl T *dl=(W/L)*dl T=W/L 即直线位错的线张力等于单位长度位错的应变能 2)曲线位错的线张力 T≈1/2 Gb2

位错的回复力 指线张力作用下曲线位错变直的力,指向 曲率中心
1 [σxx (σyy σzz )] E 1 εyy [σyy (σxx σzz )] E 1 εzz [σzz (σxx σyy )] E 1 εyz σyz 2G 1 εzx σzx 2G 1 εyy σxy 2G εxx
பைடு நூலகம்
σxx = (λ+ 2G)εxx +λεyy +λεzz σyy =λεxx + (λ+ 2G)εyy +λεzz σzz =λεxx +λεyy + (λ+ 2G)εzz σxy = 2Gεxy σxz = 2Gεxz σyz = 2Gεyz 其中G = E/2(1 +ν)
1 r
3.位错的应变能

因何而生: 畸变。 又称自能 E=Ec+Ee 忽略较小的错排能Ec,E=Ee 表示为;W/L——单位长度位错线的能量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档