高考物理动量守恒定律的应用解题技巧及练习题

合集下载

高中物理动量守恒定律解题技巧及练习题(含答案)

高中物理动量守恒定律解题技巧及练习题(含答案)

高中物理动量守恒定律解题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。

已知磁场的磁感应强度B=0.5T ,导轨的间距与导体棒的长度均为L=0.5m ,导轨的半径r=0.5m ,导体棒的电阻R=1Ω,其余电阻均不计,重力加速度g=10m/s 2,不计空气阻力。

(1)求导体棒刚进入凹槽时的速度大小;(2)求导体棒从开始下落到最终静止的过程中系统产生的热量;(3)若导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16J ,求导体棒第一次通过最低点时回路中的电功率。

【答案】(1) 210/v m s = (2)25J (3)9W 4P = 【解析】 【详解】解:(1)根据机械能守恒定律,可得:212mgh mv = 解得导体棒刚进入凹槽时的速度大小:210/v m s =(2)导体棒早凹槽导轨上运动过程中发生电磁感应现象,产生感应电流,最终整个系统处于静止,圆柱体停在凹槽最低点根据能力守恒可知,整个过程中系统产生的热量:()25Q mg h r J =+=(3)设导体棒第一次通过最低点时速度大小为1v ,凹槽速度大小为2v ,导体棒在凹槽内运动时系统在水平方向动量守恒,故有:12mv Mv = 由能量守恒可得:2212111()22mv mv mg h r Q +=+- 导体棒第一次通过最低点时感应电动势:12E BLv BLv =+回路电功率:2E P R=联立解得:94P W =2.如图,两块相同平板P 1、P 2置于光滑水平面上,质量均为m =0.1kg .P 2的右端固定一轻质弹簧,物体P 置于P 1的最右端,质量为M =0.2kg 且可看作质点.P 1与P 以共同速度v 0=4m/s 向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起,P 压缩弹簧后被弹回(弹簧始终在弹性限度内).平板P 1的长度L =1m ,P 与P 1之间的动摩擦因数为μ=0.2,P 2上表面光滑.求:(1)P 1、P 2刚碰完时的共同速度v 1; (2)此过程中弹簧的最大弹性势能E p .(3)通过计算判断最终P 能否从P 1上滑下,并求出P 的最终速度v 2. 【答案】(1)v 1=2m/s (2)E P =0.2J (3)v 2=3m/s 【解析】 【分析】 【详解】(1)P 1、P 2碰撞过程,由动量守恒定律 01m 2v mv = 解得012/2v v m s ==,方向水平向右 ; (2)对P 1、P 2、P 系统,由动量守恒定律 1022(2)mv Mv m M v '+=+ 解得2033/4v v m s ='=,方向水平向右, 此过程中弹簧的最大弹性势能222102111•2+Mv 2m )0.2222P E mv M v J =-='+(; (3)对P 1、P 2、P 系统,由动量守恒定律 103222mv Mv mv Mv +=- 由能量守恒定律得2222103211112+Mv 2mv +Mg 2222mv Mv L ⋅=⋅+μ 解得P 的最终速度23/0v m s =>,即P 能从P 1上滑下,P 的最终速度23/v m s =3.光滑水平面上质量为1kg 的小球A ,以2.0m/s 的速度与同向运动的速度为1.0m/s 、质量为2kg 的大小相同的小球B 发生正碰,碰撞后小球B 以1.5m/s 的速度运动.求:(1)碰后A 球的速度大小;(2)碰撞过程中A 、B 系统损失的机械能. 【答案】 1.0/A v m s '=,0.25E J =损【解析】试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度. (2)由能量守恒定律可以求出损失的机械能.解:(1)碰撞过程,以A 的初速度方向为正,由动量守恒定律得: m A v A +m B v B =m A v′A +m B v′B 代入数据解:v′A =1.0m/s②碰撞过程中A 、B 系统损失的机械能量为:代入数据解得:E 损=0.25J答:①碰后A 球的速度为1.0m/s ;②碰撞过程中A 、B 系统损失的机械能为0.25J .【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以正确解题,应用动量守恒定律解题时要注意正方向的选择.4.在日常生活中,我们经常看到物体与物体间发生反复的多次碰撞.如图所示,一块表面水平的木板静止放在光滑的水平地面上,它的右端与墙之间的距离L =0.08 m .现有一小物块以初速度v 0=2 m/s 从左端滑上木板,已知木板和小物块的质量均为1 kg ,小物块与木板之间的动摩擦因数μ=0.1,木板足够长使得在以后的运动过程中小物块始终不与墙接触,木板与墙碰后木板以原速率反弹,碰撞时间极短可忽略,取重力加速度g =10 m/s 2.求:(1)木板第一次与墙碰撞时的速度大小;(2)从小物块滑上木板到二者达到共同速度时,木板与墙碰撞的总次数和所用的总时间; (3)小物块和木板达到共同速度时,木板右端与墙之间的距离. 【答案】(1)0.4 s 0.4 m/s (2)1.8 s. (3)0.06 m 【解析】试题分析:(1)物块滑上木板后,在摩擦力作用下,木板从静止开始做匀加速运动,设木板加速度为a ,经历时间T 后与墙第一次碰撞,碰撞时的速度为1v则mg ma μ=,解得21/a g m s μ==①212L at =②,1v at =③ 联立①②③解得0.4t s =,10.4/v m s =④(2)在物块与木板两者达到共同速度前,在每两次碰撞之间,木板受到物块对它的摩擦力作用而做加速度恒定的匀减速直线运动,因而木板与墙相碰后将返回至初态,所用时间也为T .设在物块与木板两者达到共同速度v 前木板共经历n 次碰撞,则有:()02v v nT t a a t =-+∆=∆⑤式中△t 是碰撞n 次后木板从起始位置至达到共同速度时所需要的时间.由于最终两个物体一起以相同的速度匀速前进,故⑤式可改写为022v v nTa =-⑥ 由于木板的速率只能处于0到1v 之间,故有()01022v nTa v ≤-≤⑦ 求解上式得1.5 2.5n ≤≤ 由于n 是整数,故有n=2⑧由①⑤⑧得:0.2t s ∆=⑨;0.2/v m s =⑩从开始到物块与木板两者达到共同速度所用的时间为:4 1.8t T t s =+∆=(11) 即从物块滑上木板到两者达到共同速度时,木板与墙共发生三次碰撞,所用的时间为1.8s .(3)物块与木板达到共同速度时,木板与墙之间的距离为212s L a t =-∆(12) 联立①与(12)式,并代入数据得0.06s m = 即达到共同速度时木板右端与墙之间的距离为0.06m . 考点:考查了牛顿第二定律,运动学公式【名师点睛】本题中开始小木块受到向后的摩擦力,做匀减速运动,长木板受到向前的摩擦力做匀加速运动;当长木板反弹后,小木块继续匀减速前进,长木板匀减速向左运动,一直回到原来位置才静止;之后长木板再次向右加速运动,小木块还是匀减速运动;长木板运动具有重复性,由于木板长度可保证物块在运动过程中不与墙接触,故直到两者速度相同,一起与墙壁碰撞后反弹;之后长木板向左减速,小木块向右减速,两者速度一起减为零.5.如图所示,固定的光滑圆弧面与质量为6kg 的小车C 的上表面平滑相接,在圆弧面上有一个质量为2kg 的滑块A ,在小车C 的左端有一个质量为2kg 的滑块B ,滑块A 与B 均可看做质点.现使滑块A 从距小车的上表面高h =1.25m 处由静止下滑,与B 碰撞后瞬间粘合在一起共同运动,最终没有从小车C 上滑出.已知滑块A 、B 与小车C 的动摩擦因数均为μ=0.5,小车C 与水平地面的摩擦忽略不计,取g =10m/s 2. 求: (1)滑块A 与B 弹性碰撞后瞬间的共同速度的大小; (2)小车C 上表面的最短长度.【答案】(1) v =2.5m/s (2) L =0.375m 【解析】【试题分析】(1)根据机械能守恒求解块A 滑到圆弧末端时的速度大小,由动量守恒定律求解滑块A 与B 碰撞后瞬间的共同速度的大小;(2)根据系统的能量守恒求解小车C 上表面的最短长度.(1)设滑块A 滑到圆弧末端时的速度大小为1v ,由机械能守恒定律有:2A A 11m gh m v 2= 代入数据解得12gh 5m/s v ==.设A 、B 碰后瞬间的共同速度为2v ,滑块A 与B 碰撞瞬间与小车C 无关,滑块A 与B 组成的系统动量守恒, ()12A A B m v m m v =+ 代入数据解得2 2.5m/s v =.(2)设小车C 的最短长度为L ,滑块A 与B 最终没有从小车C 上滑出,三者最终速度相同设为3v ,根据动量守恒定律有:()()A B 2A B C 3m m v m m m v +=++ 根据能量守恒定律有:()()()222311gL=22A B A B A B C m m m m v m m m v μ++-++ 联立以上两代入数据解得0.375m L =【点睛】本题要求我们要熟练掌握机械能守恒、能量守恒和动量守恒的条件和公式,正确把握每个过程的物理规律是关键.6.如图所示,一轻质弹簧的一端固定在滑块B 上,另一端与滑块C 接触但未连接,该整体静止放在离地面高为H 的光滑水平桌面上.现有一滑块A 从光滑曲面上离桌面h 高处由静止开始滑下,与滑块B 发生碰撞并粘在一起压缩弹簧推动滑块C 向前运动,经一段时间,滑块C 脱离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出.已知,2,3A B C m m m m m m ===,求:(1)滑块A 与滑块B 碰撞结束瞬间的速度v ; (2)被压缩弹簧的最大弹性势能E Pmax ; (3)滑块C 落地点与桌面边缘的水平距离 s. 【答案】(1)111233v v gh ==(2)6mgh (323Hh 【解析】 【详解】解:(1)滑块A 从光滑曲面上h 高处由静止开始滑下的过程,机械能守恒,设其滑到底面的速度为1v ,由机械能守恒定律有:2112=A A m gh m v解之得:12v gh =滑块A 与B 碰撞的过程,A 、B 系统的动量守恒,碰撞结束瞬间具有共同速度设为v ,由动量守恒定律有:()1A A B m v m m v =+ 解之得:111233v v gh == (2)滑块A 、B 发生碰撞后与滑块C 一起压缩弹簧,压缩的过程机械能守恒,被压缩弹簧的弹性势能最大时,滑块A 、B 、C 速度相等,设为速度2v 由动量守恒定律有: ()12A A B C m v m m m v =++ 由机械能守恒定律有: ()22max 21()2A A CB B P m v m m m m E v -++=+ 解得被压缩弹簧的最大弹性势能:max 16P E mgh =(3)被压缩弹簧再次恢复自然长度时,滑块C 脱离弹簧,设滑块A 、B 的速度为3v ,滑块C 的速度为4v ,分别由动量守恒定律和机械能守恒定律有:()()34A B A B C m m v m m v m v +=++()()22234111222A B A B C m m v m m v m v +=++ 解之得:30=v ,4123v gh =滑块C 从桌面边缘飞出后做平抛运动:4 s v t =212H gt =解之得滑块C 落地点与桌面边缘的水平距离:23s Hh =7.如图所示,内壁粗糙、半径R =0.4 m 的四分之一圆弧轨道AB 在最低点B 与光滑水平轨道BC 相切。

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N【解析】【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。

(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg,AO部分粗糙且长L=2m,动摩擦因数μ=0.3,OB部分光滑.另一小物块a.放在车的最左端,和车一起以v0=4m/s的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a、b两物块视为质点质量均为m=1kg,碰撞时间极短且不粘连,碰后一起向右运动.(取g=10m/s2)求:(1)物块a与b碰后的速度大小;(2)当物块a相对小车静止时小车右端B到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。

高考物理动量守恒定律的技巧及练习题及练习题(含答案)

高考物理动量守恒定律的技巧及练习题及练习题(含答案)

高考物理动量守恒定律的技巧及练习题及练习题(含答案)一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.如图所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,但不粘连,它们到达最低点后又一起向上运动,并恰好回到O 点(A 、B 均视为质点),重力加速度为g .求:(1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能;(3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆弧轨道与斜面相切 于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,则v 至少为多大时物块A 能沿圆弧轨道运动到Q 点.(计算结果可用根式表示) 【答案】20132v gx =014P E mgx =0(2043)v gx =+【解析】试题分析:(1)A 与B 球碰撞前后,A 球的速度分别是v 1和v 2,因A 球滑下过程中,机械能守恒,有: mg (3x 0)sin30°=12mv 12 解得:103v gx =又因A 与B 球碰撞过程中,动量守恒,有:mv 1=2mv 2…②联立①②得:21011322v v gx ==(2)碰后,A 、B 和弹簧组成的系统在运动过程中,机械能守恒. 则有:E P +12•2mv 22=0+2mg•x 0sin30° 解得:E P =2mg•x 0sin30°−12•2mv 22=mgx 0−34mgx 0=14mgx 0…③ (3)设物块在最高点C 的速度是v C ,物块A 恰能通过圆弧轨道的最高点C 点时,重力提供向心力,得:2c v mg m R=所以:0c v gR gx == C 点相对于O 点的高度: h=2x 0sin30°+R+Rcos30°=(43)+x 0…⑤ 物块从O 到C 的过程中机械能守恒,得:12mv o 2=mgh+12mv c 2…⑥ 联立④⑤⑥得:0(53)o v gx +=…⑦ 设A 与B 碰撞后共同的速度为v B ,碰撞前A 的速度为v A ,滑块从P 到B 的过程中机械能守恒,得:12mv 2+mg (3x 0sin30°)=12mv A 2…⑧ A 与B 碰撞的过程中动量守恒.得:mv A =2mv B …⑨ A 与B 碰撞结束后从B 到O 的过程中机械能守恒,得:12•2mv B 2+E P =12•2mv o 2+2mg•x 0sin30°…⑩ 由于A 与B 不粘连,到达O 点时,滑块B 开始受到弹簧的拉力,A 与B 分离. 联立⑦⑧⑨⑩解得:033v gx =考点:动量守恒定律;能量守恒定律【名师点睛】分析清楚物体运动过程、抓住碰撞时弹簧的压缩量与A 、B 到达P 点时弹簧的伸长量相等,弹簧势能相等是关键,应用机械能守恒定律、动量守恒定律即可正确解题.3.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。

高考物理动量定理解题技巧及经典题型及练习题(含答案)

高考物理动量定理解题技巧及经典题型及练习题(含答案)

⾼考物理动量定理解题技巧及经典题型及练习题(含答案)⾼考物理动量定理解题技巧及经典题型及练习题(含答案)⼀、⾼考物理精讲专题动量定理1.图甲为光滑⾦属导轨制成的斜⾯,导轨的间距为1m l =,左侧斜⾯的倾⾓37θ=?,右侧斜⾯的中间⽤阻值为2R =Ω的电阻连接。

在左侧斜⾯区域存在垂直斜⾯向下的匀强磁场,磁感应强度⼤⼩为10.5T B =,右侧斜⾯轨道及其右侧区域中存在竖直向上的匀强磁场,磁感应强度为20.5T B =。

在斜⾯的顶端e 、f 两点分别⽤等长的轻质柔软细导线连接导体棒ab ,另⼀导体棒cd 置于左侧斜⾯轨道上,与导轨垂直且接触良好,ab 棒和cd 棒的质量均为0.2kg m =,ab 棒的电阻为12r =Ω,cd 棒的电阻为24r =Ω。

已知t =0时刻起,cd 棒在沿斜⾯向下的拉⼒作⽤下开始向下运动(cd 棒始终在左侧斜⾯上运动),⽽ab 棒在⽔平拉⼒F 作⽤下始终处于静⽌状态,F 随时间变化的关系如图⼄所⽰,ab 棒静⽌时细导线与竖直⽅向的夹⾓37θ=?。

其中导轨的电阻不计,图中的虚线为绝缘材料制成的固定⽀架。

(1)请通过计算分析cd 棒的运动情况; (2)若t =0时刻起,求2s 内cd 受到拉⼒的冲量;(3)3 s 内电阻R 上产⽣的焦⽿热为2. 88 J ,则此过程中拉⼒对cd 棒做的功为多少? 【答案】(1)cd 棒在导轨上做匀加速度直线运动;(2)1.6N s g ;(3)43.2J 【解析】【详解】(1)设绳中总拉⼒为T ,对导体棒ab 分析,由平衡⽅程得:sin θF T BIl =+cos θT mg =解得:tan θ 1.50.5F mg BIl I =+=+由图⼄可知:1.50.2F t =+则有:0.4I t =cd 棒上的电流为:0.8cd I t =则cd 棒运动的速度随时间变化的关系:8v t =即cd 棒在导轨上做匀加速度直线运动。

(2)ab 棒上的电流为:0.4I t =则在2 s 内,平均电流为0.4 A ,通过的电荷量为0.8 C ,通过cd 棒的电荷量为1.6C 由动量定理得:sin θ0F t I mg t BlI mv +-=-解得: 1.6N s F I =g(3)3 s 内电阻R 上产⽣的的热量为 2.88J Q =,则ab 棒产⽣的热量也为Q ,cd 棒上产⽣的热量为8Q ,则整个回路中产⽣的总热量为28. 8 J ,即3 s 内克服安培⼒做功为28. 8J ⽽重⼒做功为:G sin 43.2J W mg θ==对导体棒cd ,由动能定理得:F W W'-克安2G 102W mv +=- 由运动学公式可知导体棒的速度为24 m/s 解得:43.2J F W '=2.如图所⽰,⾜够长的⽊板A 和物块C 置于同⼀光滑⽔平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B ⼀起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成⼀体,最终A 、B 、C 都静⽌,求:(i )C 与A 碰撞前的速度⼤⼩(ii )A 、C 碰撞过程中C 对A 到冲量的⼤⼩.【答案】(1)C 与A 碰撞前的速度⼤⼩是v 0;(2)A 、C 碰撞过程中C 对A 的冲量的⼤⼩是32mv 0.【解析】【分析】【详解】试题分析:①设C 与A 碰前速度⼤⼩为1v ,以A 碰前速度⽅向为正⽅向,对A 、B 、C 从碰前⾄最终都静⽌程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =.②设C 与A 碰后共同速度⼤⼩为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =-解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量⼤⼩为032mv .⽅向为负.考点:动量守恒定律【名师点睛】本题考查了求⽊板、⽊块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应⽤动量守恒定律即可正确解题;解题时要注意正⽅向的选择.3.如图所⽰,光滑⽔平⾯上有⼀轻质弹簧,弹簧左端固定在墙壁上,滑块A 以v 0=12 m/s 的⽔平速度撞上静⽌的滑块B 并粘的速度⼤⼩v ;②在整个过程中,弹簧对A 、B 系统的冲量⼤⼩I 。

高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)

高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)

高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)一、高考物理精讲专题动量守恒定律1.如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN 的半径为R =3.2m ,水平部分NP 长L =3.5m ,物体B 静止在足够长的平板小车C 上,B 与小车的接触面光滑,小车的左端紧贴平台的右端.从M 点由静止释放的物体A 滑至轨道最右端P 点后再滑上小车,物体A 滑上小车后若与物体B 相碰必粘在一起,它们间无竖直作用力.A 与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等.物体A 、B 和小车C 的质量均为1kg ,取g =10m/s 2.求(1)物体A 进入N 点前瞬间对轨道的压力大小? (2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ; (2)物体A 在NP 上运动的时间为0.5s (3)物体A 最终离小车左端的距离为3316m 【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得:m A gR=m A v N 2 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体A 进入轨道前瞬间对轨道压力大小为:F N ′=3m A g=30N (2)物体A 在平台上运动过程中 μm A g=m A a L=v N t-at 2代入数据解得 t=0.5s t=3.5s(不合题意,舍去) (3)物体A 刚滑上小车时速度 v 1= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体A 组成系统动量守恒,而物体B 保持静止 (m A + m C )v 2= m A v 1 小车最终速度 v 2=3m/s此过程中A 相对小车的位移为L 1,则2211211222mgL mv mv μ=-⨯解得:L 1=94m物体A 与小车匀速运动直到A 碰到物体B ,A ,B 相互作用的过程中动量守恒: (m A + m B )v 3= m A v 2此后A ,B 组成的系统与小车发生相互作用,动量守恒,且达到共同速度v 4 (m A + m B )v 3+m C v 2=" (m"A +m B +m C ) v 4 此过程中A 相对小车的位移大小为L 2,则222223*********mgL mv mv mv μ=+⨯-⨯解得:L 2=316m 物体A 最终离小车左端的距离为x=L 1-L 2=3316m 考点:牛顿第二定律;动量守恒定律;能量守恒定律.2.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M 2=2 kg ,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上)【答案】25m/s【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒:()20120M v M m M v +=++共,解得5m /s v =共以小球与乙车组成的系统,水平方向动量守恒: ()202M v mv m M v -=+共,解得25m /s v =考点:考查了动量守恒定律的应用【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系统,由系统动量守恒列出等式,联立求解3.如图所示,光滑水平直导轨上有三个质量均为m 的物块A 、B 、C ,物块B 、C 静止,物块B 的左侧固定一轻弹簧(弹簧左侧的挡板质量不计);让物块A 以速度v 0朝B 运动,压缩弹簧;当A 、B 速度相等时,B 与C 恰好相碰并粘接在一起,然后继续运动.假设B 和C 碰撞过程时间极短.那么从A 开始压缩弹簧直至与弹簧分离的过程中,求.(1)A 、B 第一次速度相同时的速度大小; (2)A 、B 第二次速度相同时的速度大小; (3)弹簧被压缩到最短时的弹性势能大小 【答案】(1)v 0(2)v 0(3)【解析】试题分析:(1)对A、B接触的过程中,当第一次速度相同时,由动量守恒定律得,mv0=2mv1,解得v1=v0(2)设AB第二次速度相同时的速度大小v2,对ABC系统,根据动量守恒定律:mv0=3mv2解得v2=v0(3)B与C接触的瞬间,B、C组成的系统动量守恒,有:解得v3=v0系统损失的机械能为当A、B、C速度相同时,弹簧的弹性势能最大.此时v2=v0根据能量守恒定律得,弹簧的最大弹性势能.考点:动量守恒定律及能量守恒定律【名师点睛】本题综合考查了动量守恒定律和能量守恒定律,综合性较强,关键合理地选择研究的系统,运用动量守恒进行求解。

高中物理动量守恒定律解题技巧分析及练习题(含答案)含解析

高中物理动量守恒定律解题技巧分析及练习题(含答案)含解析

高中物理动量守恒定律解题技巧分析及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.冰球运动员甲的质量为80.0kg 。

当他以5.0m/s 的速度向前运动时,与另一质量为100kg 、速度为3.0m/s 的迎面而来的运动员乙相撞。

碰后甲恰好静止。

假设碰撞时间极短,求:(1)碰后乙的速度的大小; (2)碰撞中总动能的损失。

【答案】(1)1.0m/s (2)1400J 【解析】试题分析:(1)设运动员甲、乙的质量分别为m 、M ,碰前速度大小分别为v 、V ,碰后乙的速度大小为V′,规定甲的运动方向为正方向,由动量守恒定律有:mv-MV=MV′…① 代入数据解得:V′=1.0m/s…②(2)设碰撞过程中总机械能的损失为△E ,应有:mv 2+MV 2=MV′2+△E…③ 联立②③式,代入数据得:△E=1400J 考点:动量守恒定律;能量守恒定律2.[物理─选修3-5] (1)天然放射性元素23994Pu 经过次α衰变和 次β衰变,最后变成铅的同位素 。

(填入铅的三种同位素20682Pb 、20782Pb 、20882Pb 中的一种)(2)某同学利用如图所示的装置验证动量守恒定律.图中两摆摆长相同,悬挂于同一高度,A 、B 两摆球均很小,质量之比为1∶2.当两摆均处于自由静止状态时,其侧面刚好接触.向右上方拉动B 球使其摆线伸直并与竖直方向成45°角,然后将其由静止释放.结果观察到两摆球粘在一起摆动,且最大摆角成30°.若本实验允许的最大误差为±4%,此实验是否成功地验证了动量守恒定律?【答案】(1)8,4,20782Pb ;(2)211P P P ≤4% 【解析】 【详解】(1)设发生了x 次α衰变和y 次β衰变, 根据质量数和电荷数守恒可知,2x -y +82=94, 239=207+4x ;由数学知识可知,x =8,y =4.若是铅的同位素206,或208,不满足两数守恒, 因此最后变成铅的同位素是20782Pb(2)设摆球A 、B 的质量分别为A m 、B m ,摆长为l ,B 球的初始高度为h 1,碰撞前B 球的速度为v B .在不考虑摆线质量的情况下,根据题意及机械能守恒定律得1(1cos 45)h l =-︒①2112B B B m v mgh =② 设碰撞前、后两摆球的总动量的大小分别为P 1、P 2.有P 1=m B v B ③联立①②③式得12(1cos45)B P m gl =-︒ ④ 同理可得2()2(1cos30)A B P m m gl =+-︒ ⑤联立④⑤式得211cos301cos 45A B BP m m P m +-︒=-︒ ⑥ 代入已知条件得221 1.03P P⎛⎫= ⎪⎝⎭⑦ 由此可以推出211P P P -≤4% ⑧ 所以,此实验在规定的范围内验证了动量守恒定律.3.一轻质弹簧一端连着静止的物体B ,放在光滑的水平面上,静止的物体A 被水平速度为v 0的子弹射中并且嵌入其中,随后一起向右运动压缩弹簧,已知物体A 的质量是物体B 的质量的34,子弹的质量是物体B 的质量的14,求:(1)物体A 被击中后的速度大小; (2)弹簧压缩到最短时B 的速度大小。

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.如图所示,质量分别为m 1和m 2的两个小球在光滑水平面上分别以速度v 1、v 2同向运动,并发生对心碰撞,碰后m 2被右侧墙壁原速弹回,又与m 1碰撞,再一次碰撞后两球都静止.求第一次碰后m 1球速度的大小.【答案】【解析】设两个小球第一次碰后m 1和m 2速度的大小分别为和,由动量守恒定律得:(4分) 两个小球再一次碰撞,(4分)得:(4分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒的公式列式可得2.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M 2=2 kg ,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上)【答案】25m/s【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒:()20120M v M m M v +=++共,解得5m /s v =共以小球与乙车组成的系统,水平方向动量守恒: ()202M v mv m M v -=+共,解得25m /s v =考点:考查了动量守恒定律的应用【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系统,由系统动量守恒列出等式,联立求解3.28.如图所示,质量为m a=2kg的木块A静止在光滑水平面上。

一质量为m b= lkg的木块B以初速度v0=l0m/s沿水平方向向右运动,与A碰撞后都向右运动。

木块A与挡板碰撞后立即反弹(设木块A与挡板碰撞过程无机械能损失)。

高考物理动量守恒定律的应用及其解题技巧及练习题(含答案)

高考物理动量守恒定律的应用及其解题技巧及练习题(含答案)

高考物理动量守恒定律的应用及其解题技巧及练习题 (含答案)一、高考物理精讲专题动量守恒定律的应用1.竖直平面内存在着如图甲所示管道,虚线左侧管道水平,虚线右侧管道是半径R=1m 的半圆形,管道截面是不闭合的圆,管道半圆形部分处在竖直向上的匀强电场中,电场强度 E=4X 10/m .小球a 、b 、c 的半径略小于管道内径, b 、c 球用长L 2m 的绝缘细轻杆连接,开始时c 静止于管道水平部分右端P 点处,在M 点处的a 球在水平推力F 的作用下由静止向右运动,当 F 减到零时恰好与b 发生了弹性碰撞,F-t 的变化图像如图乙所示,且满足F 2 t 2 —.已知三个小球均可看做质点且 m a =0.25kg , m b =0.2kg , m c =0.05kg ,小球 (1) 小球a 与b 发生碰撞时的速度 v o ; (2) 小球c 运动到Q 点时的速度v ;(3) 从小球c 开始运动到速度减为零的过程中,小球 c 电势能的增加量.【答案】(1) V 4m/s (2) v=2m/s (3) E p 3.2J 【解析】【分析】对小球 a ,由动量定理可得小球 a 与b 发生碰撞时的速度;小球a 与小球b 、c 组 成的系统发生弹性碰撞由动量守恒和机械能守恒可列式,小球c 运动到Q 点时,小球b 恰好运动到P 点,由动能定理可得小球 c 运动到Q 点时的速度;由于b 、c 两球转动的角速 度和半径都相同,故两球的线速度大小始终相等,从c 球运动到Q 点到减速到零的过程列能量守恒可得; 解:⑴对小球a ,由动量定理可得I m a V 。

0 由题意可知,F-图像所围的图形为四分之一圆弧 ,面积为拉力F 的冲量,由圆方程可知S 1m 2 代入数据可得:v 0 4m/s(2)小球a 与小球b 、c 组成的系统发生弹性碰撞 , 由动量守恒可得 m a V 0 m a V | (m b m c )v 21 2 1 2 12由机械能守恒可得 m a v 0m a v 1 (m b m c )v 222 2解得 V 1 0, V 2 4m/ sA E阳1r c 带q=5 x 1'0)C 的正电荷,其他小球不带电,不计一切摩擦, g=10m/s 2,求小球c运动到Q点时,小球b恰好运动到P点,由动能定理1 2 1 2 m c gR qER ㊁血 mjv ㊁血 mjv ?代入数据可得v 2m/ s⑶由于b 、c 两球转动的角速度和半径都相同,故两球的线速度大小始终相等,假设当两球速度减到零时,设b 球与O 点连线与竖直方向的夹角为 从c 球运动到Q 点到减速到零的过程列能量守恒可得:1 2(m b m c )v qERsin 22.如图所示,小明参加户外竞技活动,站在平台边缘抓住轻绳一端,轻绳另一端固定在 '点,绳子刚好被拉直且偏离竖直方向的角度0 =60.小明从A 点由静止往下摆,达到 O 点正下方B 点突然松手,顺利落到静止在水平平台的平板车上,然后随平板车一起向右运 动•到达C 点,小明跳离平板车(近似认为水平跳离),安全落到漂浮在水池中的圆形浮漂 上•绳长L=1.6m ,浮漂圆心与 C 点的水平距离x=2.7m 、竖直高度y=1.8m ,浮漂半径 R=0.3m 、不计厚度,小明的质量m=60kg ,平板车的质量 m=20kg ,人与平板车均可视为质点,不计平板车与平台之间的摩擦.重力加速度g=10m/s 2,求:_*』吩(1) 轻绳能承受最大拉力不得小于多少? (2) 小明跳离平板车时的速度在什么范围?(3) 若小明跳离平板车后恰好落到浮漂最右端,他在跳离过程中做了多少功 ?【答案】(1) 1200N (2) 4m/s Wv< 5m/s( 3) 480J 【解析】 【分析】(1)首先根据机械能守恒可以计算到达B 点的速度,再根据圆周运动知识计算拉力大小.(2)由平抛运动规律,按照位移大小可以计算速度范围( 3)由动量守恒和能量守恒规律计算即可. 【详解】解(I)从A 到B .由功能关系可得1 2 mgL(1 cos ) mv ①2代人数据求得v=4 m/s ②m b gR(1cos ) m c gRsin 解得sin0637因此小球c 电势能的增加量: E p qER(1 sin ) 3.2J2在最低点B处,T mg mv③联立①②解得,轻绳能承受最大拉力不得小于T=1200N(2) 小明离开滑板后可认为做平抛运动1 2竖直位移y gt1 2 3④2离C点水平位移最小位移x R v min t⑤离C点水平位移最大为X R V min t⑥联立④⑤⑥解得小明跳离滑板时的速度 4 m/s Wvw 5 m/s(3) 小明落上滑板时,动量守恒mv (m m0)V| ⑦代人数据求得V i=3 m/s⑧离开滑板时,动量守恒(m m0)v| mv C m o V2⑨将⑧代人⑨得V2=-3 m/s由功能关系可得1 2 1 2 1 2 W ( — mv C m0v2) m m0 v1⑩.2 2 2解得W=480 J3. 某种弹射装置的示意图如图所示,光滑的水平导轨MN右端N处于倾斜传送带理想连接,传送带长度L=15.0m,皮带以恒定速率v=5m/s顺时针转动,三个质量均为m=1.0kg的滑块A、B C置于水平导轨上, B C之间有一段轻弹簧刚好处于原长,滑块B与轻弹簧连接,C未连接弹簧,B C处于静止状态且离N点足够远,现让滑块A以初速度V0=6m/s 沿B、C 连线方向向B运动,A与B碰撞后粘合在一起•碰撞时间极短,滑块C脱离弹簧后滑上倾角0 =37的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C与传送带之间的动摩擦因数卩=0.8重力加速度g=10m/s2, sin37=0.6, cos37°0.8.1滑块A、B碰撞时损失的机械能;2滑块C在传送带上因摩擦产生的热量Q;3若每次实验开始时滑块A的初速度V。

高中物理动量守恒定律的应用技巧(很有用)及练习题含解析

高中物理动量守恒定律的应用技巧(很有用)及练习题含解析

高中物理动量守恒定律的应用技巧(很有用)及练习题含解析一、高考物理精讲专题动量守恒定律的应用1.如图所示质量为m的物块A在光滑的水平面上以一定的速度向右滑行,质量为2m的圆弧体静止在光滑水平面上,光滑圆弧面最低点与水平面相切,圆弧的半径为R,圆弧所对的圆心角θ=53°,物块滑上圆弧体后,刚好能滑到圆弧体的最高点,重力加速度为g。

求(1)物块在水平面上滑行的速度大小;(2)若将圆弧体锁定,物块仍以原来的速度向右滑行并滑上圆弧体,则物块从圆弧面上滑出后上升到最高点的速度大小及最高点离地面的高度。

【答案】(1)06 5v gR=(2)232 55v gR =66125 h R =【解析】【分析】(1)A、B组成的系统在水平方向动量守恒,应用动量守恒定律与机械能守恒定律可以求出物块A的速度。

(2)圆弧体固定,物块上滑过程机械能守恒,应用机械能守恒定律可以求出到达圆弧体上端时的速度,离开圆弧体后物块做斜上抛运动,应用运动的合成与分解可以求出到达最高点的速度,应用机械能守恒定律可以求出上升的最大高度。

【详解】(1)物块与圆弧体组成的系统在水平方向动量守恒,物块到达最高点时两者速度相等,以向右为正方向,由动量守恒定律得:mv0=(m+2m)v,由机械能守恒定律得:12m v02=12(m+2m)v2+mgR(1−cosθ),解得:06 5v gR =(2)对物块,由机械能守恒定律得:12m v02=12m v12+mgR(1−cosθ),解得:12 5v gR=物块从圆弧最高点抛出后,在水平方向做匀速直线运动,竖直方向做竖直上抛运动,物块到达最高点时,物块的速度:v2=v1cosθ=3255gR,由机械能守恒定律得:12m v02=mgh+12m v22,解得:h=66125R ; 【点睛】本题考查了动量守恒定律与机械能守恒定律的应用,分析清楚物体运动过程是解题的前提,应用动量守恒定律、机械能守恒定律即可解题。

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅ ⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J3.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A球与B球碰撞中损耗的机械能.当B、C速度相等时,弹簧伸长量最大,弹性势能最大,结合B、C在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答4.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图象如图乙所示.求:①物块C的质量?②B离开墙后的运动过程中弹簧具有的最大弹性势能E P?【答案】(1)2kg(2)9J【解析】试题分析:①由图知,C与A碰前速度为v1=9 m/s,碰后速度为v2=3 m/s,C与A碰撞过程动量守恒.m c v1=(m A+m C)v2即m c=2 kg②12 s时B离开墙壁,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大(m A+m C)v3=(m A+m B+m C)v4得E p=9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.5.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块并留在其中,与木块用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧被压缩瞬间的速度,木块、的质量均为.求:•子弹射入木块时的速度;‚弹簧被压缩到最短时弹簧的弹性势能.【答案】22()(2)Mm aM m M m++b【解析】试题分析:(1)普朗克为了对于当时经典物理无法解释的“紫外灾难”进行解释,第一次提出了能量量子化理论,A正确;爱因斯坦通过光电效应现象,提出了光子说,B正确;卢瑟福通过对粒子散射实验的研究,提出了原子的核式结构模型,故正确;贝克勒尔通过对天然放射性的研究,发现原子核有复杂的结构,但没有发现质子和中子,D错;德布罗意大胆提出假设,认为实物粒子也具有波动性,E错.(2)1以子弹与木块A组成的系统为研究对象,以子弹的初速度方向为正方向,由动量守恒定律得:解得:.2弹簧压缩最短时,两木块速度相等,以两木块与子弹组成的系统为研究对象,以木块的初速度方向为正方向,由动量守恒定律得:解得:由机械能守恒定律可知:.考点:本题考查了物理学史和动量守恒定律6.匀强电场的方向沿x轴正向,电场强度E随x的分布如图所示.图中E0和d均为已知量.将带正电的质点A在O点由能止释放.A离开电场足够远后,再将另一带正电的质点B放在O点也由静止释放,当B在电场中运动时,A、B间的相互作用力及相互作用能均为零;B离开电场后,A、B间的相作用视为静电作用.已知A的电荷量为Q,A和B的质量分别为m和.不计重力.(1)求A在电场中的运动时间t,(2)若B的电荷量q =Q,求两质点相互作用能的最大值E pm(3)为使B离开电场后不改变运动方向,求B所带电荷量的最大值q m【答案】(1)(2)145QE0d (3)Q【解析】【分析】【详解】解:(1)由牛顿第二定律得,A在电场中的加速度 a ==A在电场中做匀变速直线运动,由d =a得运动时间 t ==(2)设A、B离开电场时的速度分别为v A0、v B0,由动能定理得QE0d =mqE0d =A、B相互作用过程中,动量和能量守恒.A、B相互作用为斥力,A受力与其运动方向相同,B受的力与其运动方向相反,相互作用力对A做正功,对B做负功.A、B靠近的过程中,B的路程大于A的路程,由于作用力大小相等,作用力对B做功的绝对值大于对A做功的绝对值,因此相互作用力做功之和为负,相互作用能增加.所以,当A、B最接近时相互作用能最大,此时两者速度相同,设为v,,由动量守恒定律得:(m +)v,= mv A0 +v B0由能量守恒定律得:E Pm= (m+)—)且 q =Q解得相互作用能的最大值 E Pm=145QE0d(3)A、B在x>d区间的运动,在初始状态和末态均无相互作用根据动量守恒定律得:mv A+v B= mv A0 +v B0根据能量守恒定律得:m+=m+解得:v B = -+因为B不改变运动方向,所以v B = -+≥0解得:q≤Q则B所带电荷量的最大值为:q m =Q7.氡是一种放射性气体,主要来源于不合格的水泥、墙砖、石材等建筑材料.呼吸时氡气会随气体进入肺脏,氡衰变时放出α射线,这种射线像小“炸弹”一样轰击肺细胞,使肺细胞受损,从而引发肺癌、白血病等.若有一静止的氡核22286Rn 发生α衰变,放出一个速度为0v 、质量为m 的α粒子和一个质量为M 的反冲核钋21884Po 此过程动量守恒,若氡核发生衰变时,释放的能量全部转化为α粒子和钋核的动能。

高中物理动量守恒定律解题技巧讲解及练习题(含答案)

高中物理动量守恒定律解题技巧讲解及练习题(含答案)

【答案】 v0 v0
【解析】设 A、B 球碰撞后速度分别为 v1 和 v2 由动量守恒定律得 2mv0=2mv1+mv2
且由题意知

解得 v1= v0,v2= v0 视频
7.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到 108K 时,可
以发生“氦燃烧”。
①完成“氦燃烧”的核反应方程:
由于 A、B 整体恰好不再与 C 碰撞,故 v1 vC
联立以上三式可得 vA =2m/s。
【考点定位】(1)核反应方程,半衰期。
(2)动量守恒定律。
8.如图,一质量为 M 的物块静止在桌面边缘,桌面离水平地面的高度为 h.一质量为 m 的 子弹以水平速度 v0 射入物块后,以水平速度 v0/2 射出.重力加速度为 g.求: (1)此过程中系统损失的机械能; (2)此后物块落地点离桌面边缘的水平距离.
mgL=
1 2
mv02-
1 2
m(
v0 2
)2-
1 2
2m(
v0 4
)2
解得 5v02 16gL
(3)对 A 滑上 C 直到最高点的作用过程,A、C 系统水平方向上动量守恒,则有:
A、C 系统机械能守恒:
mv0 +mvB=2mv 2
mgR=1 m(v0 )2 1 m(v0 )2 1 2mv2 22 24 2
小球 B 与地面碰撞后根据没有动能损失所以 B 离开地面上抛时速度 v0 vB 4m / s
所以 P 点的高度 hp
v02 vB 2g
'2
0.75m
考点:动量守恒定律 能量守恒
6.牛顿的《自然哲学的数学原理》中记载,A、B 两个玻璃球相碰,碰撞后的分离速度和 它们碰撞前的接近速度之比总是约为 15∶ 16.分离速度是指碰撞后 B 对 A 的速度,接近速 度是指碰撞前 A 对 B 的速度.若上述过程是质量为 2m 的玻璃球 A 以速度 v0 碰撞质量为 m 的静止玻璃球 B,且为对心碰撞,求碰撞后 A、B 的速度大小.

高中物理动量守恒定律解题技巧及练习题(含答案)

高中物理动量守恒定律解题技巧及练习题(含答案)

高中物理动量守恒定律解题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.如下图,质量M=1kg的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽局部嵌有cd 和ef两个光滑半圆形导轨,c与e端由导线连接,一质量m=lkg的导体棒自ce端的正上方h=2m处平行ce由静止下落,并恰好从ce端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好.磁场的磁感应强度B=0.5T,导轨的间距与导体棒的长度均为L=0.5m,导轨的半径r=0.5m ,导体棒的电阻R=1 Q,其余电阻均不计,重力加速度g=10m/s2,不计空气阻力.⑴求导体棒刚进入凹槽时的速度大小;(2)求导体棒从开始下落到最终静止的过程中系统产生的热量;(3)假设导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16J,求导体棒第一次通过最低点时回路中的电功率.9 _【答案】(1) v 2、10m/s (2)25J (3)P - W4【解析】【详解】解:⑴根据机械能守恒定律,可得:mgh - mv2 2解得导体棒刚进入凹槽时的速度大小:v 2g0m / s(2)导体棒早凹槽导轨上运动过程中发生电磁感应现象,产生感应电流,最终整个系统处于静止,圆柱体停在凹槽最低点根据水平守恒可知,整个过程中系统产生的热量:Q mg(h r) 25J(3)设导体棒第一次通过最低点时速度大小为V I ,凹槽速度大小为v2,导体棒在凹槽内运动时系统在水平方向动量守恒,故有:mv1 Mv?1 2 1 2由能重寸恒可得:一mv1 mv2 mg(h r) Q12 2导体棒第一次通过最低点时感应电动势: E BLv1 BLv2E2回路电功率:P. ........ . 9联立解得:P -W42.如图,两块相同平板P i、P2置于光滑水平面上,质量均为m = 0.1kg. P2的右端固定一轻质弹簧,物体P置于P i的最右端,质量为M = 0.2kg且可看作质点.P i与P以共同速度vo= 4m/s向右运动,与静止的P2发生碰撞,碰撞时间极短,碰撞后P i与P2粘连在一起,压缩弹簧后被弹回(弹簧始终在弹性限度内).平板P i的长度L=1m , P与P i之间的动摩擦因数为科=0.2, P2上外表光滑.求:-厂। A B vWm(i)P i、P2刚碰完时的共同速度v i;(2)此过程中弹簧的最大弹性势能E P.(3)通过计算判断最终P能否从P i上滑下,并求出P的最终速度V2.【答案】(i) v i=2m/s (2)E P=0.2J (3)v2=3m/s【解析】【分析】【详解】(i) P i、P2碰撞过程,由动量守恒定律mV. 2mM解得V i v°- 2m / s,方向水平向右;2(2)对P i、P2、P系统,由动量守恒定律2mv i Mv o (2m M )V2…3斛得v2 -v0 3m/s,方向水平向右,4i o i o i o此过程中弹簧的最大弹性势能E P -?2mv i2 + -Mv2 — (2m M )v22 0.2J -2 2 2(3)对P i、F2、P系统,由动量守恒定律2mv i Mv o 2mv3 Mv?i o i o i c 1c由能重寸恒TH律得一2mv〔+ Mv 02mv3Mv2 + Mg L2 2 2 2解得P的最终速度v2 3m/s 0,即P能从P i上滑下,P的最终速度v2 3m/s3.光滑水平面上质量为ikg的小球A, 量为2kg的大小相同的小球B发生正碰I~~H J I,,,,,.Cbr,〞(i)碰后A球的速度大小;(2)碰撞过程中A、B系统损失的机械能. 以2.0m/s的速度与同向运动的速度为i.0m/s、质,碰撞后小球B以i.5m/s的速度运动.求:【答案】v A i.0m/s, E损0.25J【解析】试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度.(2)由能量守恒定律可以求出损失的机械能.解:(1)碰撞过程,以A的初速度方向为正,由动量守恒定律得:m A V A+m B V B=m A V A+m B v B代入数据解:v A=1.0m/s②碰撞过程中A、B系统损失的机械能量为:甘-1 2 1 2 _1 / 2 _1 」E损-彳与口『 A彳叫.B代入数据解得:E损=0.25J答:①碰后A球的速度为1.0m/s;②碰撞过程中A、B系统损失的机械能为0.25J.【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以正确解题,应用动量守恒定律解题时要注意正方向的选择.4.在日常生活中,我们经常看到物体与物体间发生反复的屡次碰撞.如下图,一块外表水平的木板静止放在光滑的水平地面上,它的右端与墙之间的距离L= 0.08 m.现有一小物块以初速度vo = 2 m/s从左端滑上木板,木板和小物块的质量均为 1 kg,小物块与木板之间的动摩擦因数-0.1,木板足够长使得在以后的运动过程中小物块始终不与墙接触, 木板与墙碰后木板以原速率反弹,碰撞时间极短可忽略,取重力加速度g=10 m/s2.求:可________________ 「J(1)木板第一次与墙碰撞时的速度大小;(2)从小物块滑上木板到二者到达共同速度时,木板与墙碰撞的总次数和所用的总时间;(3)小物块和木板到达共同速度时 ,木板右端与墙之间的距离.【答案】(1) 0.4 s 0.4 m/s (2) 1.8 s. (3) 0.06 m【解析】试题分析:(1)物块滑上木板后,在摩擦力作用下,木板从静止开始做匀加速运动,设木板加速度为a,经历时间T后与墙第一次碰撞,碰撞时的速度为V I那么mg ma,解得a g 1m/s2①,1 , 2 LL - at ②,v1 at ③ 2联立①②③ 解得t 0.4s, v1 0.4m/s④(2)在物块与木板两者到达共同速度前,在每两次碰撞之间,木板受到物块对它的摩擦力作用而做加速度恒定的匀减速直线运动,因而木板与墙相碰后将返回至初态,所用时间也为T.设在物块与木板两者到达共同速度v前木板共经历n次碰撞,那么有:v V O 2nT t a a t ⑤式中At是碰撞n次后木板从起始位置至到达共同速度时所需要的时间.由于最终两个物体一起以相同的速度匀速前进,故⑤ 式可改写为2v V o 2nTa⑥由于木板的速率只能处于 .到v1之间,故有0 v02nTa 2v1⑦求解上式得1.5 n 2.5由于n是整数,故有n=2®由①⑤⑧ 得:t 0.2s⑨;v 0.2m/s⑩从开始到物块与木板两者到达共同速度所用的时间为:t 4T t 1.8s (11)即从物块滑上木板到两者到达共同速度时,木板与墙共发生三次碰撞,所用的时间为1. 8s.............. 一…,……、、,,一 1 2(3)物块与木板到达共同速度时,木板与墙之间的距离为s L — a t2 (12)2联立①与(12)式,并代入数据得s 0.06m即到达共同速度时木板右端与墙之间的距离为0. 06m.考点:考查了牛顿第二定律,运动学公式【名师点睛】此题中开始小木块受到向后的摩擦力,做匀减速运动,长木板受到向前的摩擦力做匀加速运动;当长木板反弹后,小木块继续匀减速前进,长木板匀减速向左运动, 一直回到原来位置才静止;之后长木板再次向右加速运动,小木块还是匀减速运动;长木板运动具有重复性,由于木板长度可保证物块在运动过程中不与墙接触,故直到两者速度相同,一起与墙壁碰撞后反弹;之后长木板向左减速,小木块向右减速,两者速度一起减为零.5.如下图,固定的光滑圆弧面与质量为6kg的小车C的上外表平滑相接,在圆弧面上有一个质量为2kg的滑块A,在小车C的左端有一个质量为2kg的滑块B,滑块A与B均可看做质点.现使滑块A从距小车的上外表高h=1.25m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出.滑块A、B与小车C的动摩擦因数均为斤0.5,小车C与水平地面的摩擦忽略不计,取g=10m/s2.求:(1)滑块A与B弹性碰撞后瞬间的共同速度的大小;【试题分析】(1)根据机械能守恒求解块A滑到圆弧末端时的速度大小,由动量守恒定律求解滑块A与B碰撞后瞬间的共同速度的大小;(2)根据系统的能量守恒求解小车C上外表的最短长度.(1)设滑块A滑到圆弧末端时的速度大小为v i,由机械能守恒定律有:m A gh — m A V i2代入数据解得v i ,2gh 5m/s .设A、B碰后瞬间的共同速度为V2,滑块A与B碰撞瞬间与小车C无关,滑块A与B组成的系统动量守恒, m A V i m A m B V2代入数据解得V2 2.5m/s .(2)设小车C的最短长度为L,滑块A与B最终没有从小车C上滑出,三者最终速度相同设为V3,根据动量守恒定律有:m A m B v2m A m B m C v31 2 1 2根据能重寸恒TH律有:m A m B gL= m A m B v2m A m B m C v;2 2联立以上两代入数据解得L 0.375m【点睛】此题要求我们要熟练掌握机械能守恒、能量守恒和动量守恒的条件和公式,正确把握每个过程的物理规律是关键.6.如下图,一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但未连接,该整体静止放在离地面高为H的光滑水平桌面上.现有一滑块A从光滑曲面上离桌面h高处由静止开始滑下,与滑块B发生碰撞并粘在一起压缩弹簧推动滑块C向前运动,经一段时间,滑块C脱离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出.(1)滑块A与滑块B碰撞结束瞬间的速度V;(2)被压缩弹簧的最大弹性势能E pmax;(3)滑块C落地点与桌面边缘的水平距离s.【答案】(1) v 1V l I J2gh (2) mg" (3)—VHh 3 3 6 3【解析】【详解】解:(1)滑块A从光滑曲面上h高处由静止开始滑下的过程,机械能守恒,设其滑到底面的1 2速度为v1,由机械能守恒定律有:m A gh —m A%解之得:v 1 2gh滑块A 与B 碰撞的过程, A 、B 系统的动量守恒,碰撞结束瞬间具有共同速度设为 v,由动量守恒定律有: m A v 1 m A m B v1 1 ----- 斛之信:vV i — 2gh 3 3 ,(2)滑块A 、B 发生碰撞后与滑块 C 一起压缩弹簧,压缩的过程机械能守恒,被压缩弹簧的 弹性势能最大时,滑块 A 、B 、C 速度相等,设为速度 V 2 由动量守恒定律有:m A v 1 m A m B m C v 2122由机械能寸恒TH 律有: E Pmax (m A m B )v m A m B m C v 221解得被压缩弹簧的最大弹性势能:E Pmax -mgh Pmax6(3)被压缩弹簧再次恢复自然长度时,滑块C 脱离弹簧,设滑块 A 、B 的速度为V3,滑块C 的速度为V4,分别由动量守恒定律和机械能守恒定律有:121 21 2-m A m B v m A m B v -m e v^ 2221 -------解之得:v 3 0, v 4 -42gh3 . 滑块C 从桌面边缘飞出后做平抛运动:s v 4t12H2g t2解之得滑块C 落地点与桌面边缘的水平距离:s — JHh3R= 0.4 m 的四分之一圆弧轨道 AB 在最低点B 与光滑水平轨道BC 相切.质量m 2 = 0.2 kg 的小球b 左端连接一轻质弹簧,静止在光滑水平轨道上,另 一质量m 〔 = 0.2 kg 的小球a 自圆弧轨道顶端由静止释放,运动到圆弧轨道最低点 B 时对轨道的压力为小球a 重力的2倍,忽略空气阻力,重力加速度(1)小球a 由A 点运动到B 点的过程中,摩擦力做功 W f ;(2)小球a 通过弹簧与小球b 相互作用的过程中,弹簧的最大弹性势能 E p ; (3)小球a 通过弹簧与小球 b 相互作用的整个过程中,弹簧对小球 b 的冲量I .【答案】(1)四:(2) E P =0.2J ⑶ I=0.4N?sm A m B v m A m B v m C v 47.如下图,内壁粗糙、半径g= 10 m/s 2.求:【解析】(1)小球由静止释放到最低点B的过程中,据动能定理得小球在最低点B时: 据题意可知乐=2四乱联立可得悭f=-0网(2)小球a与小球b把弹簧压到最短时,弹性势能最大,二者速度相同,此过程中由动量守恒定律得::,1 1=4mi + m* 超 + & 由机械能守恒定律得2 2户弹簧的最大弹性势能E p=0.4J小球a与小球b通过弹簧相互作用的整个过程中, a球最终速度为由动量守恒定律啊也=mi0 + m*4由能量守恒定律: 根据动量定理有:得小球a通过弹簧与小球b相互作用的整个过程中,弹簧对小球b的冲量I的大小为I=0.8N s8.如下图,在沙堆外表放置一长方形木块A,其上面再放一个质量为m=0.10kg的爆竹B,木块的质量为M=6.0kg.当爆竹爆炸时,因反冲作用使木块陷入沙中深度h=5cm,而木块所受的平土阻力为f=80N .假设爆竹的火药质量以及空气阻力可忽略不计, g取10m/s2,求爆竹能上升的最大高度.【答案】h 60m【解析】试题分析:木块下陷过程中受到重力和阻力作用,根据动能定理可得1 2 ,、(mg f )h 0 Mv1 (1)2爆竹爆炸过程中木块和爆竹组成的系统动量守恒,故有mv2 Mv i (2)爆竹完后,爆竹做竖直上抛运动,故有v2 2gh(3)联立三式可得:h 600m考点:考查了动量守恒定律,动能定理的应用点评:根底题,比拟简单,此题容易错误的地方为在A下降过程中容易将重力丢掉9.在竖直平面内有一个半圆形轨道ABC,半彳空为R,如下图,A、C两点的连线水平,B点为轨道最低点.其中AB局部是光滑的,BC局部是粗糙的.有一个质量为m的乙物体静止在B处,另一个质量为2m的甲物体从A点无初速度释放,甲物体运动到轨道最低点与乙物体发生碰撞,碰撞时间极短,碰撞后结合成一个整体,甲乙构成的整体滑上BC轨道,最高运动到D点,OD与OB连线的夹角0 60°甲、乙两物体可以看作质点,重力加速度为g,求:(1)甲物与乙物体碰撞过程中,甲物体受到的冲量.(2)甲物体与乙物体碰撞后的瞬间,甲乙构成的整体对轨道最低点的压力.(3)甲乙构成的整体从B运动到D的过程中,摩擦力对其做的功.【答案】⑴—mj2gR ,方向水平向右.(2)压力大小为:一mg ,方向竖直向3 31下.(3)W f= - mgR .【解析】【分析】(1)先研究甲物体从A点下滑到B点的过程,根据机械能守恒定律求出A刚下滑到B点时的速度,再由动量守恒定律求出碰撞后甲乙的共同速度,即可对甲,运用动量定理求甲物与乙物体碰撞过程中,甲物体受到的冲量.(2)甲物体与乙物体碰撞后的瞬间,对于甲乙构成的整体,由牛顿第二定律求出轨道对整体的支持力,再由牛顿第三定律求得整体对轨道最低点的压力.(3)甲乙构成的整体从B运动到D的过程中,运用动量定理求摩擦力对其做的功.【详解】1甲物体从A点下滑到B点的过程,1 2根据机械能守恒定律得:2mgR — 2mv2,2解得:v0"2gR,甲乙碰撞过程系统动量守恒,取向左方向为正,根据动量守恒定律得:2mv o m 2m mv ,解得:v —J2gR ,甲物与乙物体碰撞过程,对甲,由动量定理得:I甲2mv 2mv0 2 m,2gR ,方向:水平向右;2甲物体与乙物体碰撞后的瞬间,对甲乙构成的整体,2由牛顿第二定律得:F m 2mg m 2m —R (17)斛得:F —mg,根据牛顿第三定律,对轨道的压力F' F ——mg 方向:竖直向下;3o _ _ 1 _ 23对整体,从B到D过程,由动能定理得:3mgR 1 cos60 W f 0 — 3mv2一... ... ...................... 1 _解得,摩擦力对整体做的功为:W f -mgR ;6【点睛】解决此题的关键按时间顺序分析清楚物体的运动情况,把握每个过程的物理规律,知道碰撞的根本规律是动量守恒定律 .摩擦力是阻力,运用动能定理是求变力做功常用的方法.10.如下图,一质量为m=1 5kg的滑块从倾角为 .=37.的斜面上自静止开始滑下,斜面末端水平(水平局部光滑,且与斜面平滑连接,滑块滑过斜面末端时无能量损失),滑块离开斜面后水平滑上与平台等高的小车.斜面长s=10m,小车质量为M=3 5kg,滑块与斜面及小车外表的动摩擦因数科=0. 35,小车与地面光滑且足够长,取g=10m/s2.求:(1)滑块滑到斜面末端时的速度(2)当滑块与小车相对静止时,滑块在车上滑行的距离【答案】(1) 8 m/s (2) 6. 4m【解析】试题分析:(1)设滑块在斜面上的滑行加速度a,由牛顿第二定律,有mg (sin 0 -cos 0 ) =ma代入数据得:a=3. 2m/s2又:s= — at22解得t=2 . 5s到达斜面末端的速度大小v 0=at=8 m/s(2)小车与滑块到达共同速度时小车开始匀速运动,该过程中小车与滑块组成的系统在水平方向的动量守恒,那么:mv= (m+M v代入数据得:v=2 . 4m/s滑块在小车上运动的过程中,系统减小的机械能转化为内能,得:mgL= 1 mv o2- 1 〔m+M v2 2 2代入数据得:L=6. 4m考点:牛顿第二定律;动量守恒定律;能量守恒定律【名师点睛】此题考查动量守恒定律及功能关系的应用,属于多过程问题,需要分阶段求解;解题时需选择适宜的物理规律,用牛顿定律结合运动公式,或者用动量守恒定律较简单,此题是中档题.11.如下图,小球A质量为m,系在细线的一端,线的另一端固定在.点,.点到水平面的距离为h.物块B质量是小球的5倍,置于粗糙的水平面上且位于.点正下方,物块与水平面间的动摩擦因数为也现拉动小球使线水平伸直,小球由静止开始释放,运动到最低点时与物块发生正碰〔碰撞时间极短〕,反弹后上升至最高点时到水平面的距离为小球与物块均视为质点,不计空气阻力,重力加速度为g,求碰撞过程物块获得的冲16量及物块在地面上滑行的距离.气—一1 : hI**+ 'pl Ih【答案】——16【解析】【分析】对小球下落过程由机械能守恒定律可求得小球与物块碰撞前的速度;对小球由机械能守恒可求得反弹的速度,再由动量守恒定律可求得物块的速度;对物块的碰撞过程根据动量定理列式求解获得的冲量;对物块滑行过程由动能定理可求得其滑行的距离.【详解】小球的质量为m,设运动到最低点与物块相撞前的速度大小为v i,取小球运动到最低点时的重力势能为零,根据机械能守,值定律有:mgh=1mv i22解得:v i= 2ghh 1 ’2设碰撞后小球反弹的速度大小为V1,同理有:mg —— mv i16 2解得:〃1 =,设碰撞后物块的速度大小为V2,取水平向右为正方向,由动量守恒定律有:mv1=-mv' 1+5mv2解得:V2= 'g h由动量定理可得,碰撞过程滑块获得的冲量为I=5mv2=l m,2gh物块在水平面上滑行所受摩擦力的大小为F=5科mg设物块在水平面上滑行的时间为t,由动能定理有:1 2Fs 0 5mv22…口h解得:s16【点睛】此题综合考查动量守恒定律、机械能守恒定律及动能定理,要注意正确分析物理过程,选择适宜的物理规律求解.12.如下图,粗细均匀的圆木棒A下端离地面高H,上端套着一个细环B. A和B的质量均为m, A和B间的滑动摩擦力为f,且fvmg.用手限制A和B使它们从静止开始自由下落.当A与地面碰撞后,A以碰撞地面时的速度大小竖直向上运动,与地面发生碰撞时间极短,空气阻力不计,运动过程中A始终呈竖直状态.求:假设A再次着地前B不脱离A, A的长度应满足什么条件?y.8m好〞---------q【答案](mg + D【解析】试题分析:设木棒着地时的速度为l v°,由于木棒与环一起自由下落,那么即寸期木棒弹起竖直上升过程中,由牛顿第二定律有:对木棒:『+ mgwi=z:-解得:m,方向竖直向下对环:・mg 7G2 = ---------解得瓶方向竖直向下可见环在木棒上升及下降的全过程中一直处于加速运动状态,所以木棒从向上弹起到再次着地的过程中木棒与环的加速度均保持不变木棒在空中运动的时间为在这段时间内,环运动的位移为-- ■-要使环不碰地面,那么要求木棒长度不小于X,即12弁8叫?〞LW解得:Op +「考点:考查了牛顿第二定律与运动学公式的综合应用【名师点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力。

高中物理动量守恒定律的应用解题技巧及经典题型及练习题(含答案)及解析

高中物理动量守恒定律的应用解题技巧及经典题型及练习题(含答案)及解析
8.如图所示,质量为m=0.5kg的小球用长为r=0.4m的细绳悬挂于O点,在O点的正下方有一个质量为m1=1.0kg的小滑块,小滑块放在一块静止在光滑水平面上、质量为m2=1.0kg的木板左端.现将小球向左上方拉至细绳与竖直方向夹角θ=60°的位置由静止释放,小球摆到最低点与小滑块发生正碰并被反弹,碰撞时间极短,碰后瞬间细绳对小球的拉力比碰前瞬间的减小了△T=4.8N,而小滑块恰好不会从木板上掉下.已知小滑块与木板之间的动摩擦因数为μ=0.12,不计空气阻力,重力加速度g取10m/s2.求:
4.在游乐场中,父子两人各自乘坐的碰碰车沿同一直线相向而行,在碰前瞬间双方都关闭了动力,此时父亲的速度大小为v,儿子的速度大小为2v.两车瞬间碰撞后儿子沿反方向滑行,父亲运动的方向不变且经过时间t停止运动.已知父亲和车的总质量为3m,儿子和车的总质量为m,两车与地面之间的动摩擦因数均为μ,重力加速度大小为g,求:
(2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R;
(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q.
【详解】
(1)设弹簧恢复到自然长度时A、B的速度分别为vA、vB,由动量守恒定律: 由能量关系:
解得vA=2m/s;vB=4m/s
(2)设B经过d点时速度为vd,在d点:
v′= 0.4m/s
(2)小球与小滑块碰撞过程,动量守恒
mv= -mv′+m1v1
v1= (v+v′) = 1.2m/s
小滑块在木板上滑动过程中,动量守恒
m1v1=(m1+m2)v2
v2= v1= 0.6m/s
由能量守恒可得
μm1gL= m1v12- (m1+m2)v22

高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)

高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)

(1)A、B 相碰后瞬间的共同速度的大小; (2)A、B 相碰前弹簧具有的弹性势能; (3)若在斜面顶端再连接一光滑的半径 R=x0 的半圆轨道 PQ,圆弧轨道与斜面相切 于最高点 P,现让物块 A 以初速度 v 从 P 点沿斜面下滑,与 B 碰后返回到 P 点还具有向上 的速度,则 v 至少为多大时物块 A 能沿圆弧轨道运动到 Q 点.(计算结果可用根式表示)
mv2 (m M )v mv2
解得:v=0.40m/s

P1、P2、M
为系统:
f2L
1 2
mv22
1 (m 2
M )v2
代入数值得:L=3.8m
滑板碰后,P1 向右滑行距离: s1
v2 2a1
0.08m
P2 向左滑行距离: s2
v22 2a2
2.25m
所以 P1、P2 静止后距离:△S=L-S1-S2=1.47m
根据能量守恒定律得: m + = m +
解得:vB = - +
因为 B 不改变运动方向,所以 vB = - + ≥0
解得: q≤ Q
则 B 所带电荷量的最大值为:qm = Q
5.如图所示,质量为 m 的由绝缘材料制成的球与质量为 M=19m 的金属球并排悬挂.现将 绝缘球拉至与竖直方向成 θ=600 的位置自由释放,下摆后在最低点与金属球发生弹性碰 撞.在平衡位置附近存在垂直于纸面的磁场.已知由于磁场的阻尼作用,金属球将于再次 碰撞前停在最低点处.求经过几次碰撞后绝缘球偏离竖直方向的最大角度将小于
450.
【答案】最多碰撞 3 次 【解析】 解:设小球 m 的摆线长度为 l
小球 m 在下落过程中与 M 相碰之前满足机械能守恒:

高考物理动量守恒定律的应用解题技巧讲解及练习题(含答案)及解析

高考物理动量守恒定律的应用解题技巧讲解及练习题(含答案)及解析

高考物理动量守恒定律的应用解题技巧讲解及练习题(含答案)及解析一、高考物理精讲专题动量守恒定律的应用1.如图所示,有两足够长倾角皆为037θ=的粗糙斜面AB 和CD 通过一小段平滑的园弧与光滑的水平面BC 连接,两质量相等的可视为质点的小滑块a 和b 与斜面AB ,CD 的动摩擦因数因数分别为10.5μ=,20.25μ=。

开始时小滑块a 在斜面AB 上距水平面高为1.2h m =处的P 点由静止下滑,物块b 静止在水平面BC 上。

已知小滑块a 与b 的碰撞为弹性碰撞,重力加速度210/g m s =,sin37°=0.6,cos=37°=0.8。

求:(1)小滑块a 第一次与小滑块b 碰撞前的速度1v ; (2)小滑块b 第一次碰撞后,沿CD 斜面上滑的距离1s ; (3)小滑块a 、b 在斜面上运动的总路程a s 与b s 。

【答案】(1)22/m s (2)0.5m (3)229m , 109m 【解析】 【详解】(1)小滑块a 第一次与小滑块b 碰撞前,由动能定理:2111cos sin 2h mgh mg mv μθθ-⋅= 解得:122/v m s =(2)因ab 质量相等,则ab 发生弹性碰撞时满足动量守恒和能量守恒:'112mv mv mv =+2'22112111222mv mv mv =+ 解得'10v =,2122/v v m s ==物块b 滑上最高点的过程中由动能定理:212121-sin cos 0-2mgs mg s mv θμθ-⋅= 解得s 1=0.5m(3)b 滑到斜面底端时的速度:222132112cos -22mg s mv mv μθ-⋅= 解得32/=v m sb 与a 碰后再次交换速度,则此时b 的速度为零,a 的速度为v 4=2m/s ,则a 沿斜面上升速度减为零时:212241cos sin 0-2mg s mgs mv μθθ-⋅-=解得:s 2=0.2m返回到底端时:212251cos sin 2mg s mgs mv μθθ-⋅+=, 解得50.8/v m s =在底部a 与b 碰撞后再次交换速度,则b 的速度:60.8/v m s =, 上升到顶端时:232351-sin cos 0-2mgs mg s mv θμθ-⋅=; 解得s 3=0.05m ;因每次滑块上升到顶端再回到底端时的路程成等比关系,其中公比q =0.1, 由数学知识可知:222222110.19a s s s m q ⨯=-=-=--;(2sin 37hs m ==o) 1220.510110.19b s s m q ⨯===--2.如图所示,一质量M =4kg 的小车静置于光滑水平地面上,左侧用固定在地面上的销钉挡住.小车上表面由光滑圆弧轨道BC 和水平粗糙轨道CD 组成,BC 与CD 相切于C , BC 所对圆心角θ=37°,CD 长L =3m .质量m =1kg 的小物块从某一高度处的A 点以v 0=4m/s 的速度水平抛出,恰好沿切线方向自B 点进入圆弧轨道,滑到D 点时刚好与小车达到共同速度v =1.2m/s .取g =10m/s 2,sin37°=0.6,忽略空气阻力.(1)求A 、B 间的水平距离x ; (2)求小物块从C 滑到D 所用时间t 0;(3)若在小物块抛出时拔掉销钉,求小车向左运动到最大位移年时滑块离小车左端的水平距离.【答案】(1)1.2m (2)1s (3)3.73m 【解析】 【分析】 【详解】(1)由平抛运动的规律得:tan θ=0gtvx = v 0t 得:x =1.2m(2)物块在小车上CD 段滑动过程中,由动量守恒定律得:mv 1=(M +m ) v由功能关系得:fL=12mv12-12(M+m)v2对物块,由动量定理得:-ft0=m v-m v1得:t0=1s(3)有销钉时:mgH+12mv02=12mv12由几何关系得:H-12gt2=R(1-cosθ)B、C间的水平距离:x BC=R sinθμmgL=12mv12-12(M+m)v2若拔掉销钉,小车向左运动达最大位移时,速度为0,此时物块速度为4m/s由能量守恒:mgH=μmg(Δx-x BC)得:Δx=3.73m3.如图所示,两个滑块A、B静置于同一光滑水平直轨道上.A的质量为m,现给滑块A向右的初速度v0,一段时间后A与B发生碰撞,碰后A、B分别以的速度向右运动.求:① B的质量;②碰撞过程中A对B的冲量的大小.【答案】(1)(2)【解析】【详解】① 根据动量守恒定律可得:,② 根据动量定理可得:,4.如图所示,倾角 的足够长的斜面上,放着两个相距L0、质量均为m的滑块A和B,滑块A 的下表面光滑,滑块B 与斜面间的动摩擦因数tan μθ=.由静止同时释放A 和B ,此后若A 、B 发生碰撞,碰撞时间极短且为弹性碰撞.已知重力加速度为g ,求:(1)A 与B 开始释放时,A 、B 的加速度A a 和B a ; (2)A 与B 第一次相碰后,B 的速率B v ;(3)从A 开始运动到两滑块第二次碰撞所经历的时间t . 【答案】(1)sin A a g θ=;0B a =(202sin gL θ3)023sin L g θ【解析】 【详解】解:(1)对B 分析:sin cos B mg mg ma θμθ-=0B a =,B 仍处于静止状态对A 分析,底面光滑,则有:mg sin A ma θ= 解得:sin A a g θ=(2) 与B 第一次碰撞前的速度,则有:202A A v a L =解得:02sin A v gL θ=所用时间由:1v A at =,解得:012sin L g t θ=对AB ,由动量守恒定律得:1A B mv mv mv =+ 由机械能守恒得:2221111222A B mv mv mv =+ 解得:100,2sin B v v gL θ==(3)碰后,A 做初速度为0的匀加速运动,B 做速度为2v 的匀速直线运动,设再经时间2t 发生第二次碰撞,则有:2212A A x a t =22B x v t =第二次相碰:A B x x = 解得:0222sin L t g θ=从A 开始运动到两滑块第二次碰撞所经历的的时间:12t t t =+ 解得:023sin L t g θ=5.如图所示,质量均为m 的A 、B 两球套在悬挂的细绳上,A 球吊在绳的下端刚好不滑动,稍有扰动A 就与绳分离A 球离地高度为h ,A 、B 两球开始时在绳上的间距也为h ,B 球释放后由静止沿绳匀加速下滑,与A 球相碰后粘在一起(碰撞时间极短),并滑离绳子.若B 球沿绳下滑的时间是A 、B 一起下落到地面时间的2倍,重力加速度为g ,不计两球大小及空气阻力,求:(1)A 、B 两球碰撞后粘在一起瞬间速度大小;(2)从B 球开始释放到两球粘在一起下落,A 、B 两球组成的系统损失的机械能为多少? 【答案】12gh (2) 34mgh【解析】 【详解】(1)设B 球与A 球相碰前的速度大小为1v ,则1112h v t =碰撞过程动量守恒,设两球碰撞后的瞬间共同速度为2v ,根据动量守恒定律有122mv mv =两球一起下落过程中,222212h v t gt =+122t t =解得:212v gh =(2)B 球下滑到碰撞前,损失的机械能21112E mgh mv ∆== 由(1)问知,1v gh = 因此112E mgh ∆=磁撞过程损失的机械能为222121112224E mv mv mgh ∆=-⨯=因此整个过程损失的机械能为1234E E E mgh ∆=∆+∆=6.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

高中物理动量守恒定律的技巧及练习题及练习题(含答案)含解析.docx

高中物理动量守恒定律的技巧及练习题及练习题(含答案)含解析.docx

高中物理动量守恒定律的技巧及练习题及练习题( 含答案 ) 含解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、 m,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度v0向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能(2)第一次碰撞过程中甲对乙的冲量【答案】(1) 1 mv02; (2)4mv0【解析】【详解】解: (1)设第一次碰撞刚结束时甲、乙的速度分别为v1、 v2,之后甲做匀速直线运动,乙以v2初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速v2度相等,有: v12而第一次碰撞中系统动量守恒有:2mv02mv1 mv2由以上两式可得: v1v0, v2v0 2所以第一次碰撞中的机械能损失为:E 1g2mgv021g2mgv121mv221mv02 2224(2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:I mv20 mv02.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。

某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为 M=l kg,点火后全部压缩气体以 v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有m的压缩气体,每级总2质量均为M,点火后模型后部第一级内的全部压缩气体以速度v o从底部喷口在极短时间2内竖直向下喷出,喷出后经过2s时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。

喷气过程中的重力和整个过程中的空气阻力忽略不计, g 取 10 m / s2,求两种模型上升的最大高度之差。

【答案】 116.54m【解析】对模型甲:0 M m v甲mv0v甲21085m200.56 m h甲 =92g对模型乙第一级喷气:0M m v乙1m v022解得:v乙130ms2s 末:v乙‘1=v乙1gt10msh乙1= v乙21v '乙2140m2 g对模型乙第一级喷气:Mv乙‘1 =(M m)v乙2mv02222解得:v乙2=670 m9sh乙2= v乙2222445m277.10 m 2g81可得:h h乙1+h乙2h甲 =9440m116.54m 。

高考物理动量守恒定律解题技巧及经典题型及练习题(含答案)

高考物理动量守恒定律解题技巧及经典题型及练习题(含答案)

高考物理动量守恒定律解题技巧及经典题型及练习题(含答案)一、高考物理精讲专题动量守恒定律1.(16分)如图,水平桌面固定着光滑斜槽,光滑斜槽的末端和一水平木板平滑连接,设物块通过衔接处时速率没有改变。

质量m1=0.40kg的物块A从斜槽上端距水平木板高度h=0. 80m处下滑,并与放在水平木板左端的质量m2=0.20kg的物块B相碰,相碰后物块B滑行x=4.0m到木板的C点停止运动,物块A滑到木板的D点停止运动。

已知物块B与木板间的动摩擦因数=0.20,重力加速度g=10m/s2,求:(1) 物块A沿斜槽滑下与物块B碰撞前瞬间的速度大小;(2) 滑动摩擦力对物块B做的功;(3) 物块A与物块B碰撞过程中损失的机械能。

【答案】(1)v0=4.0m/s(2)W=-1.6J(3)E=0.80J【解析】试题分析:①设物块A滑到斜面底端与物块B碰撞前时的速度大小为v0,根据机械能守恒定律有m1gh=12m12v (1分)v02gh,解得:v0=4.0 m/s(1分)②设物块B受到的滑动摩擦力为f,摩擦力做功为W,则f=μm2g(1分)W=-μm2gx解得:W=-1.6 J(1分)③设物块A与物块B碰撞后的速度为v1,物块B受到碰撞后的速度为v,碰撞损失的机械能为E,根据动能定理有-μm2gx=0-12m2v2解得:v=4.0 m/s(1分)根据动量守恒定律m1v0=m1v1+m2v(1分)解得:v1=2.0 m/s(1分)能量守恒12m12v=12m121v+12m2v2+E(1分)解得:E=0.80 J(1分)考点:考查了机械能守恒,动量守恒定律2.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图象如图乙所示.求:①物块C的质量?②B离开墙后的运动过程中弹簧具有的最大弹性势能E P?【答案】(1)2kg(2)9J【解析】试题分析:①由图知,C与A碰前速度为v1=9 m/s,碰后速度为v2=3 m/s,C与A碰撞过程动量守恒.m c v1=(m A+m C)v2即m c=2 kg②12 s时B离开墙壁,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大(m A+m C)v3=(m A+m B+m C)v4得E p=9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.3.如图,质量分别为m1=1.0kg和m2=2.0kg的弹性小球a、b,用轻绳紧紧的把它们捆在一起,使它们发生微小的形变.该系统以速度v0=0.10m/s沿光滑水平面向右做直线运动.某时刻轻绳突然自动断开,断开后两球仍沿原直线运动.经过时间t=5.0s后,测得两球相距s=4.5m,则刚分离时,a球、b球的速度大小分别为_____________、______________;两球分开过程中释放的弹性势能为_____________.【答案】①0.7m/s, -0.2m/s ②0.27J【解析】试题分析:①根据已知,由动量守恒定律得联立得②由能量守恒得代入数据得考点:考查了动量守恒,能量守恒定律的应用【名师点睛】关键是对过程分析清楚,搞清楚过程中初始量与末时量,然后根据动量守恒定律与能量守恒定律分析解题4.如图所示,一辆质量M=3 kg 的小车A 静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。

高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)含解析

高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)含解析

高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。

(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅ ⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J3.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答4.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。

高考物理动量守恒定律的应用解题技巧及经典题型及练习题(含答案)含解析

高考物理动量守恒定律的应用解题技巧及经典题型及练习题(含答案)含解析

高考物理动量守恒定律的应用解题技巧及经典题型及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律的应用1.如图所示质量为m的物块A在光滑的水平面上以一定的速度向右滑行,质量为2m的圆弧体静止在光滑水平面上,光滑圆弧面最低点与水平面相切,圆弧的半径为R,圆弧所对的圆心角θ=53°,物块滑上圆弧体后,刚好能滑到圆弧体的最高点,重力加速度为g。

求(1)物块在水平面上滑行的速度大小;(2)若将圆弧体锁定,物块仍以原来的速度向右滑行并滑上圆弧体,则物块从圆弧面上滑出后上升到最高点的速度大小及最高点离地面的高度。

【答案】(1)06 5v gR=(2)232 55v gR =66125 h R =【解析】【分析】(1)A、B组成的系统在水平方向动量守恒,应用动量守恒定律与机械能守恒定律可以求出物块A的速度。

(2)圆弧体固定,物块上滑过程机械能守恒,应用机械能守恒定律可以求出到达圆弧体上端时的速度,离开圆弧体后物块做斜上抛运动,应用运动的合成与分解可以求出到达最高点的速度,应用机械能守恒定律可以求出上升的最大高度。

【详解】(1)物块与圆弧体组成的系统在水平方向动量守恒,物块到达最高点时两者速度相等,以向右为正方向,由动量守恒定律得:mv0=(m+2m)v,由机械能守恒定律得:12m v02=12(m+2m)v2+mgR(1−cosθ),解得:06 5v gR =(2)对物块,由机械能守恒定律得:12m v02=12m v12+mgR(1−cosθ),解得:12 5v gR=物块从圆弧最高点抛出后,在水平方向做匀速直线运动,竖直方向做竖直上抛运动,物块到达最高点时,物块的速度:v2=v1cosθ=3255gR,由机械能守恒定律得:12m v02=mgh+12m v22,解得:h=66125R ; 【点睛】本题考查了动量守恒定律与机械能守恒定律的应用,分析清楚物体运动过程是解题的前提,应用动量守恒定律、机械能守恒定律即可解题。

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h="0.3" m (h 小于斜面体的高度).已知小孩与滑板的总质量为m 1="30" kg ,冰块的质量为m 2="10" kg ,小孩与滑板始终无相对运动.取重力加速度的大小g="10" m/s 2.(i )求斜面体的质量;(ii )通过计算判断,冰块与斜面体分离后能否追上小孩? 【答案】(i )20 kg (ii )不能 【解析】试题分析:①设斜面质量为M ,冰块和斜面的系统,水平方向动量守恒:222()m v m M v =+系统机械能守恒:22222211()22m gh m M v m v ++= 解得:20kg M =②人推冰块的过程:1122m v m v =,得11/v m s =(向右)冰块与斜面的系统:22223m v m v Mv '=+ 22222223111+222m v m v Mv ='解得:21/v m s =-'(向右) 因21=v v ',且冰块处于小孩的后方,则冰块不能追上小孩. 考点:动量守恒定律、机械能守恒定律.2.光滑水平轨道上有三个木块A 、B 、C ,质量分别为3A m m =、B C m m m ==,开始时B 、C 均静止,A 以初速度0v 向右运动,A 与B 相撞后分开,B 又与C 发生碰撞并粘在一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小.【答案】065B v v = 【解析】 【分析】【详解】设A 与B 碰撞后,A 的速度为A v ,B 与C 碰撞前B 的速度为B V ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得: 对A 、B 木块:0A A A B B m v m v m v =+对B 、C 木块:()B B B C m v m m v =+由A 与B 间的距离保持不变可知A v v = 联立代入数据得:065B v v =.3.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理动量守恒定律的应用解题技巧及练习题一、高考物理精讲专题动量守恒定律的应用1.如图所示,质量为M 的木块A 静置于水平面上,距A 右侧d 处有固定挡板B,一质量为m 的小物体C,以水平速度v 0与A 相碰,碰后C 、A 粘连在一起运动,CA 整体与B 碰撞没有能量损失,且恰好能回到C 、A 碰撞时的位置所有碰撞时间均不计,重力加速度为g 。

求:(1)C 与A 碰撞前后,C 损失的机械能; (2)木块A 与水平面间动摩擦因数μ。

【答案】(1)202(2)2()k M m Mmv E M m +∆=+ (2)2224()m v gd M m μ=+【解析】 【详解】解:(1)设C 、A 碰后瞬时速度大小为v ,根据动量守恒则有:0()mv m M v =+ 由于C 与A 碰撞,C 损失的机械能:2201122E mv mv ∆=- 解得:22(2)2()M m Mmv E M m +∆=+ (2)由动能定理得:21()20()2M m g d M m v μ-+•=-+ 解得:224()m v gd M m μ=+2.如图所示,质量为M=2kg 的木板A 静止在光滑水平面上,其左端与固定台阶相距x ,右端与一固定在地面上的半径R=0.4m 的光滑四分之一圆弧紧靠在一起,圆弧的底端与木板上表面水平相切。

质量为m=1kg 的滑块B(可视为质点)以初速度08/v m s =从圆弧的顶端沿圆弧下滑,B 从A 右端的上表面水平滑入时撤走圆弧。

A 与台阶碰撞无机械能损失,不计空气阻力,A 、B 之间动摩擦因数0.1μ=,A 足够长,B 不会从A 表面滑出,取g=10m/s 2。

(1)求滑块B 到圆弧底端时的速度大小v 1;(2)若A 与台阶碰前,已和B 达到共速,求A 向左运动的过程中与B 摩擦产生的热量Q(结果保留两位有效数字);(3)若A 与台阶只发生一次碰撞,求x 满足的条件。

【答案】(1)14m/s v = (2) 5.3J Q ≈ (3)1m x ≥ 【解析】 【分析】滑块下滑时只有重力做功,根据机械能守恒求得滑块到达底端时的速度;木板与台阶碰撞后,滑块与木板组成的系统总动量水平向右,则只发生一次碰撞,根据动量守恒和动能定理分析求解; 【详解】(1)滑块B 从释放到最低点,由动能定理得:22101122mgR mv mv =- 解得:14m/s v =(2)向左运动过程中,由动量守恒定律得:12()mv m M v =+ 解得:24m/s 3v =由能量守恒定律得:221211()22Q mv m M v =-+ 解得: 5.3J Q ≈(3)从B 刚滑到A 上到A 左端与台阶碰撞前瞬间, A 、B 的速度分别为v 3和v 4, 由动量守恒定律得:mv 1=mv 4+Mv 3若A 与台阶只碰撞一次,碰撞后必须满足:Mv 3≥|mv 4 对A 板,应用动能定理:23102mgx Mv μ=- 联立解得:1m x ≥ 【点睛】本题木块在小车上滑动的类型,分析物体的运动过程,对于系统运用动量守恒列方程,对于单个物体运用动能定理列式求解位移,都是常用的思路,要加强这方面的练习,提高解决综合问题的能力.3.如图所示,光滑轨道abc 固定在竖直平面内,ab 为四分之一圆弧轨道,bc 段水平,且与ab 圆弧相切于b 点,在光滑水平地面上紧靠轨道c 端,停着质量为3M kg =、长度为0.5L m =的平板车,平板车上表面与bc 等高、现将可视为质点的物块从与圆心O 等高的a 点静止释放,物块滑至圆弧轨道最低点b 时的速度大小为2/b v m s =,对轨道的压力大小等于30N ,之后物块向右滑上平板车。

取重力加速度210/g m s =,不计空气阻力。

()1求该物块的质量;()2若物块最终未从平板车上滑落,求物块在平板车上滑动过程中产生的热量。

【答案】()1该物块的质量是1kg 。

()2物块在平板车上滑动过程中产生的热量是1.5J 。

【解析】 【分析】(1)先研究物块在圆弧轨道上下滑的过程,由机械能守恒定律可求出物块运动到b 点的速度,在b 点,轨道的支持力和重力的合力提供向心力,由牛顿第二定律列式,可求出物块的质量。

(2)再研究物块在平板车上运动的过程,物块先做匀减速运动,平板车做匀加速运动,当两者的速度相等时相对静止,之后一起匀速运动。

在此过程中,物块与平板车组成的系统动量守恒,由动量守恒定律可以求出物块与平板车的最终速度,并求出这个过程中产生的热量。

【详解】(1)设四分之一圆弧的半径为R ,物块的质量为m ,在b 点轨道对物块的支持力为F ,物块从a 到b 由机械守恒定律有: 212b mgR mv =物块运动到b 点,由牛顿第二定律有:2bv F mg m R-=联立解得3F mg =由牛顿第三定律知30F N = 联立解得:1m kg =(2)设物块与平板车的共同速度为v ,物块在平板车上滑行过程中产生的热量为Q ,取水平向右为正方向,由动量守恒定律有: ()b mv m M v =+ 由能量守恒定律有:()221122b Q mv m M v =-+。

联立解得: 1.5Q J = 【点睛】对于物块在小车滑动的类型,关键要理清物体的运动过程,知道物块在平板车上滑动时遵守动量守恒定律和能量守恒定律。

4.如图所示,一个质量为m 1=2kg 的小球a 用一根长为R=1.25m 的轻绳悬挂于O 点静止。

小球a 的右侧水平地面上有一竖立支架,支架上放置另一小球b ,两小球刚好接触但之间无弹力,且两球球心在同一水平线上,小球b 的质量为m 2=4kg ,支架高h=3.2m 。

现把小球a 拉至左侧与O 点等高处,此时轻绳刚好拉直,然后由静止释放球a ,到达最低点时两球相碰,碰后球a 向左做圆周运动,上升的最大高度为h′=0.05m 。

小球b 碰后的瞬间立即受到一个大小F=20N 的水平向右恒力。

取g=10m/s 2。

求: (1)碰撞前后的瞬间轻绳的弹力大小之比; (2)球b 着地时的动能。

【答案】(1)12259T T =;(2)226k E J = 【解析】 【详解】解:(1)碰撞前后瞬间球a 的速度大小分别为1v 、2v ,根据机械能守恒有: 碰撞前:21111m gh m v 2=碰撞后:21121m gh m v 2'-=根据牛顿运动定律得碰撞前瞬间:21111v T m g m R-=碰撞后瞬间:22211v T m g m R-=联立解得:12T 25T 9= (2两小球碰撞过程,根据动量守恒定律有:111223m v m v m v =-+ 解得:3v 3m /s =小球b 碰撞后,竖直方向上做自由落体运动,有:21h gt 2=,y v gt = 解得:t 0.8s =,y v 8m /s =水平方向上球b 碰后在恒力作用下做匀加速直线运动,根据牛顿运动定律有:2F m a = 根据运动学公式,有:x 3v v at =+ 球b 着地时的速度为:22x y v v v =+球b 着地时的动能为:2k 21E m v 2= 解得:k E 226J =5.如图所示,AB 是半径R=0.80m 的光滑1/4圆弧轨道,半径OB 竖直,光滑水平地面上紧靠B 点静置一质量M=3.0kg 的小车,其上表面与B 点等高。

现将一质量m=1.0kg 的小滑块从A 点由静止释放,经B 点滑上小车,最后与小车达到共同速度。

已知滑块与小车之间的动摩擦因数μ=0.40。

重力加速度g 取10m/s 2。

求:(1)滑块刚滑至B 点时,圆弧对滑块的支持力大; (2)滑块与小车最后的共同速度;(3)为使滑块不从小车上滑下,小车至少多长。

【答案】(1)(2)(3)【解析】 【分析】根据“滑块从光滑圆弧滑下,滑上小车最后达到共同速度”可知,本题考查物体做多过程的运动问题,根据曲线运动优先选择动能定理求速度,板块模型优先选用动量守恒定律求速度,能量守恒定律求摩擦生热列式计算. 【详解】(1)滑块由A 至B ,由机械能守恒定律得: 经B 点时,由牛顿第二定律得:联立解得:(2)滑块滑上小车后,对滑块与小车组成的系统,由动量守恒定律得:解得共同速度:(3)滑块滑上小车后,对滑块与小车组成的系统, 由能量守恒定律得:联立可得:,即小车至少长1.5m【点睛】本题综合力学的三个观点解决运动问题,涉及瞬时力和运动的关系时考虑牛顿第二定律和运动学公式;涉及变力、曲线、位移考虑动能定理;涉及内力作用的系统选择动量守恒定律;摩擦生热涉及相对位移考虑能量守恒定律.6.如图所示,一质量为3m 、厚度h=0.05m 的木板C ,静放在粗糙水平地面上。

在木板C上静放一质量为2m 的弹性小物块B :B 所处位置的右侧光滑,长L 1=0.22m ;左侧粗糙,长L 2=0.32m ;B 与其左侧的动摩擦因数μ1=0.9:竖直固定、半径R=0.45m 的光滑14圆弧轨道,其最低点与木板C 右端等高相切。

现有一质量为m 的弹性小物块A ,从轨道最高点由静止下滑。

已知C 与地面间动摩擦因数μ2=0.25,小物块A 、B 可看为质点,重力加速度g 取10m/s 2。

试求:(1)A 刚滑上C 时的速度大小; (2)A 、B 碰后瞬间的速度大小;(3)试分析判断,小物块A 是否会滑离木板C ;如果会,试求小物块A 落地瞬间与木板C 右端的水平距离。

【答案】(1)3m/s (2)v1=-1m/s ,v2=2m/s (3)会,0.108m 【解析】 【详解】(1)对物体A ,由动能定理有2012mgR mv = 解得02gR=3m/s v =(2)弹性小物块A 和B 碰撞,设向左为正方向,动量守恒定律有0122mv mv mv =+又能量守恒定律2220121112222mv mv mv =+ 解得v 1=-1m/s ,v 2=2m/s(3)由于小物块B 向左运动进入C 的粗糙区域,则C 不会向右运动,而小物块A 运动方向向右,C 上表面右边光滑,故A 将会从C 右边飞出在A 未飞出C 时,对B 有1122mg ma μ⋅= 得2119m/s a g μ==对C 有1222-63u mg u mg ma ⋅⋅= 得a 2=1m/s 2 设经过t 1时间BC 共速,此时A 还未从C 飞出21121-v v a t a t ==共 得t 1=0.2s ;=0.2m/s v 共A 的位移大小111x v t = 得1=0.2m xB 的位移2221111-2x v t a t = 可得:x 2=0.22m C 的位移232112x a t =可得x 3=0.02m由于x 1+x 3=0.22=L 1,故此时A 刚好从C 的右端飞出; x 2-x 3=0.2<L 2,故共速时B 没有从C 左端飞出 设BC 共速时可以相对静止一起减速对BC 有2355u mg ma ⋅= 解得232 2.5m/s a u g ==对B :3122f ma u mg =<⋅ ,故BC 将相对静止一起减速 设BC 一起减速到0的时刻为t 3,位移为X BC ,则:330-v a t =共 32BC v X t =共得3=0.08s =0.008m BC t X ,对A :飞出后做平抛运动:2212h gt =得220.1h t s g== 12=0.1m A X v t = 由t 2>t 3可知,BC 停下后A 才落地故A 落地瞬间与木板C 右端得水平距离=0.108m BC A X X X =+V7.如图所示,物块A 、C 的质量均为m ,B 的质量为2m ,都静止于光滑水平台面上,A 、B 间用一不可伸长的轻质短细线相连.初始时刻细线处于松弛状态,C 位于A 右侧足够远处.现突然给A 一瞬时冲量,使A 以初速度v 0沿A 、C 连线方向向C 运动,A 与C 相碰后,粘合在一起.①A 与C 刚粘合在一起时的速度为多大?②若将A 、B 、C 看成一个系统,则从A 开始运动到A 与C 刚好粘合的过程中系统损失的机械能. 【答案】①2016v v = ②201336E mv ∆= 【解析】 【详解】①轻细线绷紧的过程,A 、B 这一系统动量守恒,以水平向右为正,则012mv m m v +=()解得1013v v =,之后A 、B 均以速度v 1向右匀速运动,在A 与C 发生碰撞过程中, A 、C 这一系统动量守恒,则有,12mv m m v +=()解得2016v v =, ②轻细线绷紧的过程,A 、B 这一系统机械能损失为△E 1,则22210101113223E mv mv mv ∆=-⨯=, 在A 与C 发生碰撞过程中,A 、C 这一系统机械能损失为△E 2,则222212*********E mv mv mv ∆=-⨯=, 则A 、B 、C 这一系统机械能损失为21201336E E E mv ∆=∆+∆=8.如图所示,长木板质量M=3 kg ,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg 的物块A ,右端放着一个质量也为m=1 kg 的物块B ,两物块与木板间的动摩擦因数均为μ=0.4,AB 之间的距离L=6 m ,开始时物块与木板都处于静止状态,现对物块A 施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.(1).为使物块A 与木板发生相对滑动,F 至少为多少?(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】 【分析】 【详解】(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mga m s mμ-==∕ 木板和B 的加速度大小为:B mga M m=+μ=1m/s 2设物块滑到木板右端所需时间为t ,则:x A -x B =L 即221122A B a t a t L -=解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/sAB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B '机械能守恒:12mv a 2+12mv B 2=12mv a '2+12mv B '2 解得:v A '=2m/s v B '=8m/s9.如图所示,水平轨道与半径为0.5m 的半圆形光滑竖直轨道相连,固定在地面上。

相关文档
最新文档