大地测量学基础(第5章大地测量仪器)

合集下载

大地测量学

大地测量学

大地测量学大地测量学是地球学科的重要分支,是测绘科学的基础学科,在测绘专业的课程设置中占有重要的地位和作用。

其主要测定地球大小;研究地球形状;测定地面点的几何位置,将地面点沿法线方向投影于地球椭球面上,用投影点在椭球面上的大地纬度和大地经度表示该点的水平位置,用地面点至投影点的法线距离表示该点的大地高程。

这点的几何位置也可以用一个以地球质心为原点的空间直角坐标系中的三维坐标来表示。

就其本质来说,他是一门地球信息学,即为人类的活动提供地球空间信息的学科。

大地测量学的的内容包括几何大地测量学、物理大地测量学、空间大地测量学。

几何大地测量学主要是研究确定地球形状、大小和确定地面点三维空间的理论及技术、因此有关精密的角度、距离测量、水准测量,地球椭圆球体的参数及模型,椭圆面上测量成果的计算、平差、投影变换以及大地控制网建立的原理和技术方法等,是几何大地测量学的基本内容。

物理大地测量学研究用武力方法(重力测量)确定地球的形状及外部重力场。

它的主要内容是重力测量及其归化、地球及外部重力场模型、大地测量边值问题、重力为理论、球谐函数、利用重力测量研究地球形状及椭圆球体参数等。

空间大地测量学是研究以卫星及其它空间探测器实施大地测量的理论和技术。

主要内容包括卫星多普勒技术,海洋卫星雷达测高,激光卫星测距以及卫星定位系统(GPS)和GLONASS,我国的“北斗”卫星定位导航系统,卫星定位定轨理论以及应用卫星及空间探测器在全国性大地测量控制网,全球性的地球动态参数求定和重力场模型的精华、地壳形变、板块运功的、海空导航、导弹制导等方面的研究。

因此较确切地讲。

空间大地测量学的开创。

使大地测量学迈入了以可变地球为研究对象,实施全球动态就对测量的现代大地测量新时期。

学科发展史——萌芽阶段在17世纪以前,大地测量只是处于萌芽状态。

公元前 3世纪,亚历山大的埃拉托斯特尼首先应用几何学中圆周上一段弧AB的长度S、对应的中心角r同圆半径R的关系,估计了地球的半径长度,由于圆弧的两端A和B大致位于同一子午圈上,以后在此基础上发展为子午弧度测量。

大地测量学基础

大地测量学基础

3、现代在地测量的特征 、 1)、测量范围大,范围从地区、全球乃至宇宙空间; 、测量范围大,范围从地区、全球乃至宇宙空间; 2)、研究对象和范围不断深入、全面和精细,从静态测量 、研究对象和范围不断深入、全面和精细, 发展到动态测量, 发展到动态测量,从地球表面测绘发展到地球内部构造 及动力过程的研究; 及动力过程的研究; 3)、观测精度高; 、观测精度高; 4)、观测周期短。 、观测周期短。
2)、物理大地测量学(理论大地测量学) 、物理大地测量学(理论大地测量学) 基本任务:用物理方法(重力测量) 基本任务:用物理方法(重力测量)确定地球形状及其 外部重力场。 外部重力场。 主要内容:位理论,地球重和场,重力测量及其归算, 主要内容:位理论,地球重和场,重力测量及其归算, 推球地球形状及外部重力场的理论与方法。 推球地球形状及外部重力场的理论与方法。 3)、空间大地测量学 、 以人造地球卫星及其它空间探测器为代表的空间大地测量的理论、 以人造地球卫星及其它空间探测器为代表的空间大地测量的理论、 技术与方法。 技术与方法。
三、大地测量学的基本体系
1、 测量学的两个分支 、 普通测量学:研究小范围的地球表面, 普通测量学:研究小范围的地球表面,认为该范围的地 球表面是平面,且铅垂线彼此平行。 球表面是平面,且铅垂线彼此平行。 大地测量学:研究全球或大范围的地球,认为铅垂线彼 大地测量学:研究全球或大范围的地球, 此不平行,研究地球的形状、大小及重力场。 此不平行,研究地球的形状、大小及重力场。
大地测量学还可进一步 应用大地测量学: 应用大地测量学:以建立国家大地测量控制网为中心内容 椭球大地测量学:坐标系建立、地球椭球性质、 椭球大地测量学:坐标系建立、地球椭球性质、投影数学变换 大地天文测量学:测量天文经度、 大地天文测量学:测量天文经度、纬度及天文方位角 大地重力测量学:重力场、 大地重力测量学:重力场、重力测量方法 海洋大地测量学: 海洋大地测量学 地球动力学: 地球动力学 卫星大地测量学: 卫星大地测量学 大地测量数据处理学: 大地测量数据处理学

大地测量学基础

大地测量学基础

大地水准面
地球自然表面
大地测量学基础
基本概念:参考椭球面①
参考椭球面:一个以椭圆的短轴为旋转轴的 旋转椭球体的表面。 椭球体的大小和大地体十分接近。参考椭球 面可用数学模型表示。
1、代表地球的数学表面; 2、大地测量计算的基准面; 3、研究大地水准面的参考面; 4、地图投影的参考面。
大地测量学基础
大地测量学基础
地球自然表面
地球的形状和大小
水准面 大地水准面 参考椭球面
地球的形状是一个南北极稍扁的,类似于一个 椭圆绕其短轴旋转的椭球体。
测量工作的基准面是大地水准面,基准线是铅垂线
测量计算的基准面是参考椭球面,基准线是法线
大地测量学基础
基本概念:坐标系
坐标系指的是描述空间位置的表达形式,即采 用什么方法来表示空间位置。 人们为了描述空间位置,采用了多种方法,从 而也产生了不同的坐标系,如直角坐标系、极 坐标系等。 一个坐标系是由原点位置、轴的指向和定义在 坐标系下点位的参数(坐标分量)所确定的。 地面坐标系的指向可以用它们的极、平面和轴 来描述。
大地测量学基础
基本概念:水准面
水准面: 任何静止的液体表面称为水准面,是
一个处处与重力方向垂直的连续曲面。铅垂线和
水准面是测量工作所依据的线和面。随着高度的
不同,水准面有无数个。平均海水面是其中的一
个。
离心力
P


线

垂球

大地测量学基础
基本概念:大地水准面
大地水准面:平均海水面向陆地、岛屿延伸而形成的封 闭曲面。它所包围的形体叫大地体。 由于地球内部质量分布不均匀,使得地面上各点的铅垂 线方向产生不规则的变化,因而大地水准面实际上是一 个连续的封闭的但有微小起伏的不规则曲面,无法用数 学模型来表示。

大地测量学基础:第5章 大地测量基本技术与方法(1)

大地测量学基础:第5章  大地测量基本技术与方法(1)
第五章 大地测量基本技术与方法
§5-1 建立国家平面大地控制网的基本原理 §5-2 建立国家高程控制网的基本原理 §5-3 建立工程测量控制网的基本原理 §5-4 大地测量仪器 §5-5 精密角度测量方法 §5-6 精密距离测量方法 §5-7 精密高差测量方法 备讲1—精密水准仪与水准尺的检验 备讲2—球气差系数和大气折光系数 备讲3—三角高程测量的精度 备讲4—垂线偏差对三角高程的影响
折角,折线上的转折点叫导线点(控制点)。 • 测定导线点平面坐标的工作叫导线测量。通过测量导线边长和转
折角,再根据起算点及附合点的已知数据,可求出所有导线点的 平面坐标。
β
D
• 导线的形式:附合导线、闭合导线、支导线和导线网。
• 导线网是由若干条附合导线或闭合导线构成的网状图形。 • 导线网包括:一个节点的导线网、两个以上节点的导线网和两个
A
a
az B
• VLBI测量长度的相对精度可达10-6。
• 该技术在研究地球极移、地球自转速率的短周期变化、地球固体 潮、大地板块运动的相对速率和方向中得到广泛的应用,在常规 大地测量中很少用。
3*、惯性测量系统(INS)
• 惯性测量是利用惯性力学基本原理,在相距较远的两点之间,对 装有惯性测量系统的运动载体(汽车或直升飞机)从一个已知点到另 一个待定点的加速度,分别沿三个正交的坐标轴方向对加速度分 量进行两次积分,从而求定其运动载体在三个坐标轴方向的坐标 增量,进而求出待定点的位置。
• 因此,在普遍应用全站仪和GPS定位技术的现代,城市控制测量 和工程控制测量基本上不采用三角网。
2. 导线测量法 • 导线:由设站点(控制点)连成的折线(若干条直线首尾相连)。 • 布设控制点时,使点与点之间单线相连形成链状折线,测量出边

大地测量学基础知识

大地测量学基础知识

第一章1.大地测量学的定义大地测量学是在一定的时间-空间参考系统中,测量和描绘地球及其他行星体的一门学科。

2.大地测量学的基本体系以三个基本分支为主所构成的基本体系。

几何大地测量学物理大地测量学空间大地测量学3.大地测量学的基本任务精确确定地面点位及其变化研究地球重力场、地球形状和地球动力现象4.大地测量学的基本内容1、大地测量基础知识(基准面和基准线,坐标系统和时间系统,地球重力场等);2、大地测量学的基本理论(地球椭球基本的理论,高斯投影的基本理论,大地坐标系统的建立与坐标系统的转换等);3、大地测量基本技术与方法(经典的、现代的)4、大地控制网的建立(包括国家大地控制网、工程控制网。

形式有三角网、导线网、高程网、GPS网等);5、大地测量数据处理(概算与平差计算)。

5.大地测量学的基本作用1、为地形测图与大型工程测量提供基本控制;2、为城建和矿山工程测量提供起始数据;3、为地球科学的研究提供信息;4、在防灾、减灾和救灾中的作用;5、发展空间技术和国防建设的重要保障。

第二章1.岁差章动极移由于日、月等天体的影响,类似于旋转陀螺,地球的旋转轴在空间围绕黄极发生ε=︒,旋转周期为26000缓慢旋转,形成一个倒圆锥体,其锥角等于黄赤交角23.5年,这种运动称为岁差。

月球绕地球旋转的轨道称为白道,由于白道对黄道有约5︒的倾斜,使得月球引力产生的大小和方向不断变化,从而导致地球旋转轴在岁差的基础上叠加18.6年的短周期运动,振幅为9.21'',这种现象称为章动。

地球自转轴存在相对于地球体自身内部结构的相对位置变化,从而导致极点在地球表面上的位置随时间而变化,这种现象称为极移。

2.恒星时太阳时原子时以春分点作为基本参考点,由春分点周日视运动确定的时间,称为恒星时。

以真太阳作为基本参考点,由其周日视运动确定的时间,称为真太阳时。

原子时是一种以原子谐振信号周期为标准,并对它进行连续计数的时标。

大地测量学基础

大地测量学基础

1.大地测量学的定义:是指在一定的时间与空间参考系中,测量和描绘地球形状及其重力场并监测其变化,为人类活动提供关于地球的空间信息的一门学科。

2.大地测量学的作用:(1)为人类活动提供地球信息。

(2)在防灾减灾和救援活动中发挥日益增强的作用。

(3)在环境监测和保护等领域中发挥重要作用。

(4)探索地球物理现象的力学机制,获取表征地球运动和形变的参数。

(5)为空间技术和国防现代化建设提供重要保障。

3.在测量工作中,为了不使误差积累,必须遵循“从整体到局部”,“先控制后碎部”的原则。

4.布设原则:从高级到低级逐级加密。

国家水准网遵循“从整体到局部、由高级到低级、逐级控制、逐级加密”的原则布设为一、二、三、四等。

5.大地测量学的基本任务:建立控制网,确定控制点的位置。

6.大地测量学的基准面和基准线:椭球面、参考椭球面、水准面、大地水准面、高斯面、地球自然表面、(似)大地水准面、首子午面、赤道;(铅)垂线、法线地球自转轴。

7.我国的参考椭球:1954北京坐标系、1980西安坐标系,“1980年国家大地坐标系”(简称80系)(大地原点位于陕西省泾阳县永乐镇)。

8.大地水准面的铅垂线与椭球面的法线必然不重合,两者之间的夹角u称为垂线偏差。

9.大地水准面与椭球面在某一点上的高差称为大地水准面差距,用N表示。

似大地水准面与椭球面在某一点上的高差称为高程异常,用 表示。

大地高——地面点沿法线至椭球面的距离,正高——地面点沿实际重力(垂)线至大地水准面的距离,正常高——地面点沿实际重力(垂)线至似大地水准面的距离。

10.经纬仪仪器误差:⑴视准轴误差⑵度盘偏心误差⑶横轴(水平轴)倾斜误差⑷竖轴倾斜误差11.度盘偏心误差:度盘中心与照准部旋转中心不重合,即度盘中心与地面点不在同一铅垂线上。

误差特点:在度盘的不同位置对读数的影响不同。

减弱或消除办法:(1)不同测回间配置度盘,使读数均匀分布在度盘上;(2)采用度盘对径分划取平均值的办法;(3)盘左盘右取平均值的办法。

大地测量学基础:第五章 大地测量技术-1-2-3

大地测量学基础:第五章 大地测量技术-1-2-3
三角点的密度是指每幅图中包含有多少个控制点,而测图的比 例尺不同,每幅图的面积也不同。所以,三角点的密度也用平 均若干平方公里有一个三角点来表示。常规大地测量和GPS测 量的基本要求:
(1)不同比例尺地图对大地点的数量要求 :
测图比例尺
1:5万 1:2.5万 1:1万
平均每幅图面积(km2) 350~500 100~125 15~20
国家平面大地控制网
惯性测量系统(INS)
惯性测量是利用惯性力学基本原理,在相距较远的两点之间, 对装有惯性测量系统的运动载体(汽车或直升飞机)从一个已知点 到另一个待定点的加速度,分别沿三个正交的坐标轴方向进行 两次积分,从而求定其运动载体在三个坐标轴方向的坐标增量 ,进而求出待定点的位置,它属于相对定位,其相对精度为 (1~2)·10-5,测定的平面位置中误差为±25cm左右。 优点:完全自主式,点间也不要求通视;全天候,只取决于汽 车能否开动、飞机能否飞行。 缺点:相对测量,精度不高。
平均每幅图的三角点个数
3
2~3
1
每点控制的面积(km2)
150
50
20
三角网的平均边长(km)
13
8
2~6
相应的三角网等级
二等
三等
四等
国家平面大地控制网布设原则
(2)GPS测量中两相邻点间的距离要求(单位:km):
等级 相邻点最小距离
A
100
B
15
C
5
D
2
E
1
相邻点最大距离 2000 250 40 15 10
测图比例尺
1∶5万 1∶2.5万 1∶1万 1∶5千 1∶2千
图根点对于三角点 的点位误差(m) ±5.0 ±2.5 ±1.0 ±0.5 ±0.2

第五章 大地测量的基本技术与方法(1)

第五章 大地测量的基本技术与方法(1)

② 技术设计的内容和方法 [1] 搜集和分析资料 (1)测区内各种比例尺的地形图。 (2)已有的控制测量成果(包括全部有关技术文件、图表、手簿 等等)。 (3)有关测区的气象、地质等情况,以供建标、埋石、安排作业 时间等方面的参考。 (4)现场踏勘了解已有控制标志的保存完好情况。 (5)调查测区的行政区划、交通便利情况和物资供应情况。若在 少数民族地区,则应了解民族风俗、习惯。 对搜集到的上述资料进行分析,以确定网的布设形式,起始 数据如何获得,网的未来扩展等。 其次还应考虑网的坐标系投影带和投影面的选择。 此外还应考虑网的图形结构,旧有标志可否利用等问题。
上海港GPS扩展网网图
2 甚长基线干涉测量(VLBI) 甚长基线干涉测量系统是在甚长基线的两端(相距几千公里), 用射电望远镜,接收银河系或银河系以外的类星体发出的无线电辐 射信号,通过信号对比,根据干涉原理,直接确定基线长度和方向 的一种空间技术。长度的相对精度可优于10-6,对测定射电源的空 间位置,可达0.001”,由于其定位的精度高,可在研究地球的极移 、地球自转速率的短周期变化、地球固体潮、大地板块运动的相对 速率和方向中得到广泛的应用。
(3)从安全生产方面考虑 点位离公路、铁路和其他建筑物以及高压电线等应有一定的 距离。 图上设计的方法及主要步骤 图上设计宜在中比例尺地形图(根据测区大小,选用1:25 000~1 :100 000地形图)上进行,其方法和步骤如下: a 展绘已知点; b 按上述对点位的基本要求,从已知点开始扩展; c 判断和检查点间的通视; d 估算控制网中各推算元素的精度; e 据测区的情况调查和图上设计结果,写出文字说明,并拟定作业 计划。
2. 大地控制网应有足够的精度。 国家三角网的精度,应能满足大比例尺测图的要求。在测图中 ,要求首级图根点相对于起算三角点的点位误差,在图上应不 超过±0.1mm,相对于地面点的点位误差则不超过 ±0.1Nmm(N 为测图比例尺分母)。 为使国家三角点的误差对图点的影响可以忽略不计,应使相邻国 家三角点的点位误差小于(1/3) ×0.1Nmm。

大地测量学基础

大地测量学基础

大地测量学基础:《大地测量学基础》是2010年5月1日武汉大学出版社出版的图书,作者是孔祥元。

图书简介:该书是“十一五”国家级规划教材,也是国家精品课程教材。

本教材严格按照教育部批准的“十一五”国家级规划教材立项要求和全国高等学校测绘学科教学指导委员会以及武汉大学的具体要求进行编写,是全国高等学校测绘工程专业本科教学用教材,也可供从事测绘工程专业及相关专业的科技人员、管理人员及研究生等参考。

图书目录:序第二版前言前言第1章绪论1.1 大地测量学的定义和作用1.1.1 大地测量学的定义1.1.2 大地测量学的地位和作用1.2 大地测量学的基本体系和内容1.2.1 大地测量学的基本体系1.2.2 大地测量学的基本内容1.2.3 大地测量学同其他学科的关系1.3 大地测量学的发展简史及展望1.3.1 大地测量学的发展简史1.3.2 大地测量的展望第2章坐标系统与时间系统2.1 地球的运转2.1.1 地球绕太阳公转2.1.2 地球的自转2.2 时间系统2.2.1 恒星时(ST)2.2.2 世界时(UT)2.2.3 历书时(ET)与力学时(DT)2.2.4 原子时(AT)2.2.5 协调世界时(UTC)2.2.6 卫星定位系统时间2.3 坐标系统2.3.1 基本概念2.3.2 惯性坐标系(ClS)与协议天球坐标系2.3.3 地固坐标系2.3.4 坐标系换算第3章地球重力场及地球形状的基本理论3.1 地球及其运动的基本概念3.1.1 地球概说3.1.2 地球运动概说3.1.3 地球基本参数:3.2 地球重力场的基本原理3.2.1 引力与离心力3.2.2 引力位和离心力位3.2.3 重力位3.2.4 地球的正常重力位和正常重力3.2.5 正常椭球和水准椭球,总的地球椭球和参考椭球3.3 高程系统3.3.1 一般说明3.3.2 正高系统3.3.3 正常高系统3.3.4 力高和地区力高高程系统3.3.5 国家高程基准3.4 关于测定垂线偏差和大地水准面差距的基本概念3.4.1 关于测定垂线偏差的基本概念3.4.2 关于测定大地水准面差距的基本概念3.5 关于确定地球形状的基本概念3.5.1 天文大地测量方法3.5.2 重力测量方法3.5.3 空间大地测量方法第4章地球椭球及其数学投影变换的基本理论4.1 地球椭球的基本几何参数及其相互关系4.1.1 地球椭球的基本几何参数4.1.2 地球椭球参数间的相互关系4.2 椭球面上的常用坐标系及其相互关系4.2.1 各种坐标系的建立4.2.2 各坐标系间的关系4.2.3 站心地平坐标系4.3 椭球面上的几种曲率半径4.3.1 子午圈曲率半径4.3.2 卯酉圈曲率半径4.3.3 主曲率半径的计算4.3.4 任意法截弧的曲率半径4.3.5 平均曲率半径4.3.6 M,N,R的关系4.4 椭球面上的弧长计算4.4.1 子午线弧长计算公式4.4.2 由子午线弧长求大地纬度4.4.3 平行圈弧长公式4.4.4 子午线弧长和平行圈弧长变化的比较4.4.5 椭球面梯形图幅面积的计算4.5 大地线4.5.1 相对法截线4.5.2 大地线的定义和性质4.5.3 大地线的微分方程和克莱劳方程4.6 将地面观测值归算至椭球面4.6.1 将地面观测的水平方向归算至椭球面4.6.2 将地面观测的长度归算至椭球面4.7 大地测量主题解算概述4.7.1 大地主题解算的一般说明4.7.2 勒让德级数式4.7.3 高斯平均引数正算公式4.7.4 高斯平均引数反算公式4.7.5 白塞尔大地主题解算方法4.8 地图数学投影变换的基本概念4.8.1 地图数学投影变换的意义和投影方程4.8.2 地图投影的变形4.8.3 地图投影的分类4.8.4 高斯投影简要说明4.9 高斯平面直角坐标系4.9.1 高斯投影概述4.9.2 正形投影的一般条件4.9.3 高斯投影坐标正反算公式4.9.4 高斯投影坐标计算的实用公式及算例4.9.5 平面子午线收敛角公式4.9.6 方向改化公式4.9.7 距离改化公式4.9.8 高斯投影的邻带坐标换算4.10通用横轴墨卡托投影和高斯投影族的概念4.10.1 通用横轴墨卡托投影概念4.10.2 高斯投影族的概念4.11兰勃脱投影概述4.11.1 兰勃脱投影基本概念4.11.2 兰勃脱投影坐标正、反算公式4.11.3 兰勃脱投影长度比、投影带划分及应用第5章大地测量基本技术与方法5.1 国家平面大地控制网建立的基本原理5.1.1 建立国家平面大地控制网的方法5.1.2 建立国家平面大地控制网的基本原则5.1.3 国家平面大地控制网的布设方案5.1.4 大地控制网优化设计简介5.2 国家高程控制网建立的基本原理5.2.1 国家高程控制网的布设原则5.2.2 国家水准网的布设方案及精度要求5.2.3 水准路线的设计、选点和埋石5.2.4 水准路线上的重力测量5.2.5 我国国家水准网的布设概况5.3 工程测量控制网建立的基本原理5.3.1 工程泓量控制网的分类5.3.2 工程平面控制网的布设原则5.3.3 工程平面控制网的布设方案5.3.4 工程高程控制网的布设5.4 大地测量仪器5.4.1 精密测角仪器——经纬仪5.4.2 电磁波测距仪5.4.3 全站仪5.4.4 GPS接收机5.4.5 TPS和GPS的集成——徕卡系统1200-超站仪(system1200-SmartStation5.4.6 精密水准测量的仪器——水准仪5.5 电磁波在大气中的传播5.5.1 一般概念5.5.2 电磁波在大气中的衰减5.5.3 电磁波的传播速度5.5.4 电磁波的波道弯曲5.6 精密角度测量方法5.6.1 精密测角的误差来源及影响5.6.2 精密测角的一般原则5.6.3 方向观测法5.6.4 分组方向观测法5.6.5 归心改正5.7 精密的电磁波测距方法5.7.1 电磁波测距基本原理5.7.2 N值解算的一般原理5.7.3 距离观测值的改正……第6章深空在地测量简介主要参考文献。

大地测量学

大地测量学

第一章绪论1、大地测量学:在一定时间、空间参考系统中,测量和描绘地球及其他行星体的一门学科。

最基本任务:测量和描绘地球并检测其变化,为人类活动提供关于地球等行星体的空间信息经典测量学是把地球假设为刚体不变,均匀旋转的球体或椭球体,并一定范围内测绘地和研究其形状、大小及外部重力场。

2、大地测量学地位及作用:(1)大地测量学在国民经济各项建设和社会发展中发挥着基础先行性的重要保证作用。

(2)大地测量学在防灾减灾救灾及环境监测、评价与保护中发挥着独具风貌的特殊作用。

(3)大地测量学是发展空间技术和国防建设的重要保障。

(4)大地测量学在当代地球科学研究中的地位显得越来越重要。

(5)大地测量学是测绘学科的各类分支学科(大地测量、工程测量、海洋测量、矿山测量、航空摄影测量与遥感、地图学与地理信息系统等)的基础学科。

3、大地测量学的三个基本分支:几何大地测量学、物理大地测量学及空间大地测量学。

4、现代大地测量学同传统大地测量学之间没有严格界限,但是现代大地测量学确实具有许多新的特征(测量范围大,动态方式,周期短,精度高)。

5、大地测量学的基本内容:(1)确定地球形状及外部重力场及其随时间的变化,建立统一的大地测量坐标系,研究地壳形变(包括地壳垂直升降及水平位移),测定极移以及海洋水平面地形及其变化等。

(2)研究月球及太阳系行星的形状及重力场。

(3)建立和维持具有高科技水平的国家和全球的天文大地水平控制网和精密水准网以及海洋大地控制网,以满足国民经济和国防建设的需要.(4)研究为获得告警的测量成果的仪器和方法等。

(5)研究地球表面向椭球面或平面的投影数学变换及有关的大地测量计算。

(6)研究大规模、高精度和多类别的地面网、空间网及其联合网的数据处理的理论和方法,测量数据库建立及应用等。

第二章坐标系统与时间系统1、地球的运转可分为四类:(1)与银河系一起在宇宙中运动。

(2)在银河系内与太阳系一起旋转。

(3)与其他行星一起绕太阳旋转(公转或周年视运动)(4)绕其瞬时旋转轴旋转(自转或周日视运动)。

大地测量学基础

大地测量学基础

(举例)
二、怎样发现观测误差
三、如何处理观Байду номын сангаас误差 —— 测量平差的任务
近代测量平差(偶然误差与系统误差并存)
注:经典测量平差(仅含偶然误差或偶然误差主导)
例: 三角形闭和差的处理
理论与方法。
测误差的观测数据,求定未知量的最佳估值与精度的
测量平差:依据某种优化准则,由一系列带有观
E
D
观测误差的概念
测量仪器、②观测者、③外界条件 三者统称为观测条件。
产生观测误差的原因
偶然误差(不可避免) 系统误差(可以消除或削弱) 粗差
观测误差的分类
一、什么是观测误差
必要观测:为了确定某观测量所必需的观测次数。
(举例) 多余观测:多于必要观测的观测数。 多余观测是揭示误差存在和提高成果质量的必要手段。
《近代平差理论及其应用》,解放军出版社, 1992年;
《测量平差》,中国矿业大学出版社 ,2005年。
四、参考文献
01
什么是观测误差
02
怎样发现观测误差
03
如何处理观测误差
04
本课程的主要内容
第一章 绪 论
观测误差:某量的各观测值之间,或各观测值与其 理论上的应有值之间的不符值,统称为观测误差。
不旷课、不迟到、不早退。 注:每班选一名课代表,负责收发作业 及师生沟通!
综上所述,提出以下几点要求:
《误差理论与测量平差基础》,武汉大学出版社, 2003年;
《测量平差基础》,测绘出版社,1996年;
《测量平差基础》,测绘出版社,1981年;
《测量平差通用习题集》,武汉测绘科技大学 出版社,1999年;
大地测量学基础
课 程 简 介

(最新整理)大地测量学基础

(最新整理)大地测量学基础

大地测量学基础编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(大地测量学基础)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为大地测量学基础的全部内容。

教案2014—2015学年第 1 学期授课班级:测绘工程1241-1242 课程名称:大地测量学基础任课教师:刘小强院部名称:土木工程学院二〇一四年八月十八日上课日期2014年 9 月 2 日第 1 讲章节第1章 绪论1.1 大地测量学的定义和作用1。

2 大地测量学的基本体系和内容1.3 大地测量学的发展简史及展望教学目的要求了解大地测量学的定义和作用理解大地测量学的基本体系和内容了解大地测量学的发展简史及展望重点及处理方法大地测量学的基本体系和内容 重点、详细讲授难点及处理方法无授课方式讲授时间分配5分钟10分钟20分钟40分钟10分钟教学内容1。

本门课程在测绘工程专业中的介绍2。

本门课程的主要内容与课程安排3.大地测量学的定义和作用4.大地测量学的基本体系和内容5.大地测量学的发展简史及展望6。

本讲小结5分钟主要教学方法与手段多媒体+板书+提问课后作业1.大地测量学有什么作用?试举例说明。

2.简述大地测量学的基本体系和内容。

参考资料《应用大地测量学(第三版)》,张华海,王宝山,赵长胜著,中国矿业大学出版社,2007《大地测量学基础(第一版)》,吕志平,乔书波著,测绘出版社,2010教学后记大地测量学的核心是定位,是一门重要的测绘基础学科.主要教学方法与手段多媒体+板书+提问课后作业1。

岁差和章动指的是什么?它们会造成什么影响? 2。

时间系统的要素是什么?如何描述时间系统?3.几种典型的时间系统各自有什么用途?参考资料《应用大地测量学(第三版)》,张华海,王宝山,赵长胜著,中国矿业大学出版社,2007《大地测量学基础(第一版)》,吕志平,乔书波著,测绘出版社,2010教学后记时间对于大地测量学而言是一个非常重要的参数。

大地测量中的常用仪器与测量方法

大地测量中的常用仪器与测量方法

大地测量中的常用仪器与测量方法大地测量是测量地球形状、地球重力场以及大地水准面等地理要素的一门学科。

在大地测量中,常常需要使用一些特殊的仪器和测量方法,以获取精确的测量数据。

一、全站仪:精确高效的测量仪器全站仪是一种集合了测角、测距和测高等功能于一体的仪器。

它通过内置的激光器和接收器,以及高度计等附加设备,可以实现高精度的三维测量。

全站仪的使用大大提高了测量的效率和精度。

在大地测量中,全站仪常常用于测量点的坐标和高程等数据。

二、水准仪:测量地球表面水平面的利器水准仪是一种用于测量地球表面水平面的仪器。

它利用重力和测量仪器的自身特点,可以精确测量地面高程差。

常见的水准仪有光学水准仪和电子水准仪。

在大地测量中,水准仪通常用于确定测量点与参考水准面之间的高程差,从而绘制出地图或制定工程计划。

三、GNSS技术:高精度定位的利器GNSS(全球导航卫星系统)技术是一种利用卫星信号进行三维定位的技术。

它通过接收来自多颗卫星的信号并测量其传播时间,从而计算出测点的三维坐标。

GNSS技术的应用范围广泛,它在大地测量中可以实现高精度的定位和导航,为地图绘制、工程建设等提供了重要支持。

四、卫星测高技术:测量地球重力场的工具卫星测高技术是一种利用卫星测量地面高程的技术。

通过卫星发射激光束并测量其反射回来的时间,可以计算出地面的高程。

卫星测高技术在大地测量中常用于测量山脉、地震活动区等地区的地质变化,从而预测可能发生的地质灾害。

五、激光测距仪:高精度测量距离的工具激光测距仪是一种利用激光测量物体距离的仪器。

它通过发送激光脉冲并测量其返回时间,从而计算出物体的距离。

激光测距仪具有高精度、远距离和快速测量等特点,在大地测量中被广泛应用于测量地面、建筑物等对象的距离。

以上提到的仪器和测量方法只是大地测量中的一部分,随着科技的进步和技术的发展,还会不断涌现出新的仪器和方法。

这些仪器和方法的出现,不仅提高了大地测量的效率和精度,也为地理学、环境科学、工程建设等领域的发展提供了重要支持。

大地测量学基础复习资料

大地测量学基础复习资料

1.什么是大地测量学,现代大地测量学由哪几部分组成?谈谈其基本任务和作用?2.什么是重力、引力、离心力、引力位、离心力位、重力位、地球重力场、正常重力、正常重力位、扰动位等概念,简述其相应关系。

3.什么是大地水准面、大地体、总椭球、参考椭球、大地天文学、拉普拉斯点、黄道面、春分点、大地水准面差距。

4.解释水准面的含义及性质,为什么说水准面有多个?5.解释似大地水准面含义和性质,简述水准面、大地水准面、似大地水准面的异同点?6.解释总椭球、参考椭球及正常椭球的含义、性质和作用,分析它们异同点。

7.简述地球椭球基本参数、相互关系。

8.简述大地纬度、地心纬度、归化纬度的概念,其相互关系如何?9.水准测量中,研究高程系统的作用如何?高程系统分为几种,我国规定采用哪种作为高程的统一系统。

10.绘图说明大地高,正高与正常高的关系.11.什么叫子午圈、平行圈、法截面、法截线、卯酉圈?12.简要叙述M、N、R三种曲率半径之间的关系。

13.子午线弧长和平行圈弧长是怎么变化的?14.怎样理解克莱洛定理中大地线常数C的含义?15.地面观测的方向值归算至椭球面应加哪些改正?16.白塞尔投影条件是什么?17.论述白塞尔大地主题解算步骤。

18.简述地图投影变形有几种,分别适用于何种情况。

19.简述高斯投影过程,高斯投影应满足那些条件?20.6°带和3°带的分带方法是什么?如何计算中央子午线的经度及测区带号?21.正形投影有那些特征?何为长度比?22.椭球定位分几类?什么是参数坐标系?什么是地心坐标系?其区别表现在什么方面?23.布设全国统一的平面控制网及高程控制网,分别应遵守哪些原则?24.岁差25.球面角超26.垂线偏差27.参考椭球28.理论闭合差29.大地水准面30.正高系统31.正常高系统32.垂线偏差33.空间直角坐标系34.法截面35.法截线(法截弧)36.卯酉圈:37.相对法截线38.大地线39.垂线偏差改正40.标高差改正41.截面差改正42.大地主题正解43.大地主题反解44.地图数学投影45.长度比(m)46.以___________作为基本参考点,由春分点___________运动确定的时间称为恒星时;以格林尼治子夜起算的___________称为世界时。

大地测量中的常用仪器和测量方法介绍

大地测量中的常用仪器和测量方法介绍

大地测量中的常用仪器和测量方法介绍大地测量是地球科学中极为重要的一个分支,涉及到地球形状、重力场、地壳变形等方面的研究。

在大地测量中,使用各种仪器和测量方法来获取地球表面各种参数和数据信息,为地球科学研究和应用提供了必要的基础。

一、GPS测量全球定位系统(GPS)是目前应用最广泛的测量技术之一。

通过卫星与接收机的通信,可以准确测量出接收机所在位置的三维坐标。

这一技术在地球测量中的应用非常广泛,可以用来确定任意一点的经纬度、高程等参数,精度较高。

目前,GPS在大地测量和导航定位等领域都发挥着重要作用。

二、激光扫描测量激光扫描测量是一种通过激光束扫描目标表面并测量扫描点坐标的测量方法。

激光扫描仪通过发射激光束并接收反射的激光束,可以得到被测目标表面的三维坐标信息,包括位置和形状等参数。

激光扫描测量技术具有高精度、高效率和无接触等特点,在地质勘探、建筑测量等领域得到广泛应用。

三、测绘仪器测绘仪器是大地测量的重要工具之一,主要包括经纬仪、水平仪、高程仪等。

经纬仪用于测量地球上某一点的经度和纬度,可以提供精确的地理坐标信息;水平仪用于测量某一点的水平方向和水平角度;高程仪则用于测量某一点的高度和高程差等参数。

这些测绘仪器通常用于实地测量,对于地理信息的采集和整理至关重要。

四、重力仪器重力仪器主要用于测量地球重力场的变化。

重力仪器可以通过测量物体受到的重力大小和方向,来推断地球地壳的形状、密度和变形情况。

常用的重力仪器包括重力测量仪、万有引力仪等。

重力测量在大地测量中有着重要的应用,可以用于地壳运动的监测和地震灾害的预测等。

五、人工卫星测量人工卫星测量是大地测量中一种先进的技术手段。

通过搭载在卫星上的各种测量设备,可以对地球表面进行全方位的测量和观测。

人工卫星测量可以获取大范围和高精度的地理和地形信息,对地球形状、地壳变形等问题提供重要依据。

近年来,人工卫星测量在地质灾害监测、资源勘查等方面的应用越来越广泛。

大地测量学基础大纲

大地测量学基础大纲

大地测量学基础教学大纲与2009年考研考试大纲对比注:教学要求中有下划线的内容即为考研考试大纲内容,不一样的要求用小括号说明并加画下划线。

●课程学习的基本要求一本课程的性质本课程是测绘专业的专业基础课,必修课;开课对象:测绘专业学生。

二本课程的特点与教学内容为了适应新形势下教学的需要,在原有课程的基础上,删除了陈旧、过时的内容,增添了大量的新理论、新技术。

所涉及的内容较为广泛。

如地球重力学、实用天文学、椭球大地测量学、控制测量学、大地坐标系的建立与变换等相关内容。

内容广、难、深。

但课时短。

在教学内容基本要求如下:第一章绪论部分侧重于(了解)大地测量学的基本概念,掌握大地测量学的定义和内容、地位与作用、(了解)发展简史及未来展望,熟练掌握(熟悉)经典大地测量与现代大地测量的区别。

第二章坐标系统与时间系统,1、了解行星运动的三大规律,掌握岁差、章动、极移的概念,掌握恒星时、世界时、历书时、力学时、原子时、协调世界时的概念以及它们之间的相互关系。

2、了解坐标系统的基本概念,熟练掌握惯性坐标系、协议天球坐标系、瞬时平天球坐标系、瞬时真天球坐标系的定义以及其相互关系;3、掌握地固坐标系的定义,熟练掌握协议地球坐标系、瞬时地球坐标系的定义及其相互关系;熟练掌握协议地球坐标系与协议天球坐标系的其相互关系;4、了解参心坐标系的建立方法,一点定位和多点定位的基本原理;了解北京54坐标系、80坐标系、新北京54坐标系的主要特点及其相互联系与区别;了解地心坐标系的建立方法,掌握国际地球参考系统(ITRS)与国际地球参考框架(ITRF)的概念;5、熟练掌握站心坐标系的定义、站心坐标系与空间直角坐标系之间的相互关系;6、熟练掌握坐标系之间的换算关系(平面之间坐标、空间直角坐标、不同大地坐标等)。

(熟练掌握几种坐标系统的定义以及其相互换算关系);第三章地球重力场基本原理1、了解地球的基本概念;掌握地球重力位、地球重力、正常重力位、正常重力的概念;掌握正常重力公式推导思路;2、了解正常重力场参数;掌握正常椭球、水准椭球、总地球椭球、参考椭球的概念;3、熟练掌握正高系统、正常高系统的概念,了解(掌握)力高高程系统的定义(概念);4、熟练掌握国家高程基准;5、了解(掌握)垂线偏差和大地水准面差距的定义与测定方法;了解(掌握)确定地球形状的基本方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大地测量仪器
optical theodolite—electronic theodolite Steel tape ——— EDM
11
大地测量仪器
12
大地测量仪器
徕卡TPS700系 列卓越中文全 站仪
拓普康GTS 332W 全站仪
13
索佳10系列全站仪
大地测量仪器
尼康DTM801 系列全站仪
宾得全站仪 PTS V2
a=148cm十(6.50mm一5mm) 即a=148.650cm一5mm。 由述可知,每次读数中应减去常数(初始数)5mm.但因在水准测量中计算 高差 时能自动抵消这个常数,所以在水准测量作业时,读数、记录、计算 过程中部可以不考虑。
21
2)、 Ni004精密水准仪
大地测量仪器
22
3)、国产S1型精密水准仪
y x / tg y x /
一般光栅度盘上刻有1024条光栅条纹相邻两
条纹角距(光栅度盘的单位角值φ0 )为:
0
2
1024
2105.625
16
n0
大地测量仪器
光栅度盘外侧对径处各装一个固定光栅探测 器Ls,光栅度盘内侧对径处各装一个活动光栅 探测器LR, Ls 与LR之间的夹角即为所测角的 大小。
大地测量仪器
仪器内安装刻有光栅的玻璃度盘(可旋转)和 与度盘严格平行的固定光栅平面,二者的光栅 相错一固定小角,如果两光栅的相对移动是沿 x方向从一条格线移到相邻的另一条格线,则 干涉条纹将在y方向上移动一整周,即光强由 暗到明,再由明到暗变化一个周期,于是干涉 条纹移动的总周数将等于所通过的格线数。反 之,如果数出和记录光感器所接收的光强曲线 总周数,便可测得移动量,再经过电信号转换, 最后得到角度值。
2f
2
u (称为“电子尺”)
2 N是整周未知数
8
大地测量仪器
2、电磁波测距仪分类 1).按测程分:短程(3km以下)、中程(数公里至十余公
里)、远程(几十公里)。 2).按传播时间t的测定方法分:脉冲法测距、相位法测距。 3).按测距仪所使用的载波源分:光源(红外光源、激光光
源)、微波。 4).按测距精度分:Ⅰ级(mD≤5㎜)、Ⅱ级( 5㎜<mD≤10
大地测量仪器
2
大地测量仪器
②、T3精密光学经纬仪读数方法
T3度盘最小分划值为4′,测微器 总读数为2′,分成600小格,每小 格值为0.2″。 读数前先调测微轮,使上下刻划对 齐,取两次读得的格数之和作为测 微读数秒值,如图:
346
347
度盘读数: 166º36' 测微器读数:Ⅰ 68.9g
Ⅱ 69.0g
20
大地测量仪器
a
N3水准仪测微装置
当平行政璃板与水平视线正交时,水准标尺上读数应为a,a在两相邻 分划148与149之间,此时测微分划上读数为5mm,而不是0。转动测微螺 旋,平行玻璃 板作前俯,使水平视线向下平移与就近的148分划重合,这 时测微分划尺上的读数为6.50 mm,而水平视线的平移量应为6.50mm5mm,最后读数为:
6
大地测量仪器
二、电磁波测距仪(Electronic Distance Measuring)
测距仪(EDM instrument)
反光棱镜(reflector)
S 1 Ct
B
2
7
1、相位式测距原理公式
大地测量仪器
t 2f
N 2 2 (N N)
D c (N N ) (N N ) u(N N )
5
DJ2经纬仪度盘最小刻划
值为20′
测微尺总的读数为10′,分
为600小格,最小刻划为1″。
读数时先调测微轮,使度盘上
下刻划对齐。
2
右图读数:
3
度盘: 59º10′
测微尺:Ⅰ 03′06. ″0
Ⅱ 03′06. ″2
3
59º13′06. ″1
大地测量仪器
58 59 60 0 1
138 139 240
大地测量仪器
23
大地测量仪器
2、精密水准尺(因瓦水准尺)
精密水准尺的分划值有10mm,5mm。 与N3水准仪配套的因瓦水准尺的分划 值是10mm,右边一排为基本分划,从0~ 300cm,左边一排为辅助分划,从300~ 600cm,基辅差为301.55cm。 与S1和Ni004水准仪配套的水准尺分划 值为5mm,只有基本分划,分成两排,每 排分划之间的间隔也是10mm,两排分划 错开,左边为单数分划,右边为双数分划 ,右边注记米数,左边注记分米,整个注 记从0.1至5.9m,分划格为5mm,分划 注记比实际大了一倍,所以观测值除以2 才是实际值。
14
南方NTS 202 205全站仪
大地测量仪器
2、全站仪测角原理
1)、编码度盘及其读数系统 将光学圆盘上刻制n(如 n=4)个马道,再将马道等分成2n(如16)个
马区(则度盘分辨率为2π/2n=22.5°),然后在每个马区将马道由里向外赋 予二进制代码,每个代码表示一个方向值。
15
2)、光栅度盘及其测角原理
大地测量仪器
一、精密角度测量仪等; (1)精密光学经纬仪的主要特点 ①、角度标准设备:双面(对径)读数 ②、目标照准设备:望远镜经消色差处理。 ③、有强制归心机构,精密光学对中器,快速安平机构 ④、制造材料优质。
1
①、T3精密光学经纬仪基本构造
166º38´17."9
166
167
69
68
70
3
大地测量仪器
③ 、J2光学经纬仪的构造 如图与J6相比,增加了: 1、测微轮——读数时,对径分划线影像符合。 2、换像手轮——水平读数和竖直读数间的互换。 3、竖直读盘反光镜——竖直读数时反光。
竖直读盘 反光镜
测微轮
换像手轮
4
大地测量仪器
④、DJ2的读数方法 一般采用对径重合读数法——转动测微轮,使上下分划线 精 确重合后读数。
㎜ )、Ⅲ级(10㎜<mD≤20㎜) 。
9
大地测量仪器
3、测距误差及标称精度
测距仪测距误差可表示为:
m
2 D
A2
(B D)2 简写为 : mD
(A B D)
式中,A——固定误差;B——比例误差系数。 如:某测距仪出厂时的标称精度:±(2+2×10-6·D)mm, 简称“2+2”
10
三、全站仪(Total Station) 1、全站仪(total station)的发展
光栅度盘上有四个参考标志,用来初测n φ0, ∆ φ要用脉冲填充的方法来测定。
17
大地测量仪器
四、GPS接收机 五、超站仪(Smart Station):
全站仪与GPS 接收机的结合.
18
大地测量仪器
19
六、精密水准测量仪器 1、微倾精密水准仪
1)、 N3精密水准仪
大地测量仪器
N3精密水准仪微倾螺旋装置
相关文档
最新文档