充放电板原理图

合集下载

锂离子电池原理图

锂离子电池原理图

所谓锂离子电池是指分别用二个能可逆地嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。

人们将这种靠锂离子在正负极之间的转移来完成电池充放电工作的独特机理的锂离子电池形象地称为“摇椅式电池”,俗称“锂电”。

锂离子电池的内部结构如下图所示:此主题相关图片如下:电池由正极锂化合物、中间的电解质膜及负极碳组成。

◎当电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。

一般采用嵌锂过渡金属氧化物做正极,如LiCoO2、LiNiO2、LiMn2O4。

◎做为负极的材料则选择电位尽可能接近锂电位的可嵌入锂化合物,如各种碳材料包括天然石墨、合成石墨、碳纤维、中间相小球碳素等和金属氧化物,包括SnO、SnO2、锡复合氧化物SnBxPyOz等。

◎电解质采用LiPF6的乙烯碳酸脂(EC)、丙烯碳酸脂(PC)和低粘度二乙基碳酸脂(DEC)等烷基碳酸脂搭配的高分子材料。

◎隔膜采用聚烯微多孔膜如PE、PP或它们复合膜,采用PP/PE/PP三层隔膜优点是熔点较低,具有较高的抗穿刺强度,起到了过热保险作用。

◎外壳采用钢或铝材料,具有防爆的功能。

锂离子电池的额定电压为3.6V。

电池充满时的电压(称为终止充电电压)一般为4.2V;锂离子电池终止放电电压为2.75V。

如果锂离子电池在使用过程中电压已降到2.75V后还继续使用,则称为过放电,对电池有损害。

锂电池充电原理:锂离子电池充电原理图:此主题相关图片如下:其中:Iconst:恒流充电电流;Ipre:预充电电流;Ifull:充满判断电流;Vconst:恒压充电电压;=Vmin:预充结束电压及短路判断电压锂离子电池比较骄贵。

如果不满足其充电及使用要求,很容易出现爆炸,寿命下降等现象。

因为锂离子电池对温度、过压、过流及过放电很敏感,所以所有的电池内部均集成了热敏电阻(监控充电温度)及防过压、过流、过放电保护电路。

图一为标准锂离子电池充电原理曲线,锂离子电池的充电过程分三个阶段:预充电阶段;恒流充电阶段;恒压充电阶段。

手机充电器电路原理图分析

手机充电器电路原理图分析

专门找了几个例子,让大家看看。

自己也一边学习。

分析一个电源,往往从输入开始着手。

220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。

这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。

右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。

13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。

当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。

由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。

不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。

左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。

13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。

当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。

变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。

为了分析方便,我们取三极管C945发射极一端为地。

那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。

取样电压经过6.2V稳压二极管后,加至开关管13003的基极。

前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。

电动车充电器原理(图少)

电动车充电器原理(图少)

电动车充电器原理及维修常用电动车充电器根据电路结构可大致分为两种。

第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。

其电原理图和元件参数见图表1工作原理:220v交流电经TO双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。

U1为TL3842 脉宽调制集成电路。

其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最人电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。

2脚为电压反馈,可以调节充电器的输出电压。

4脚外接振荡电阻R1,和振荡电容Clo T1为高频脉冲变压器,其作用有三个。

第一是把高压脉冲将压为低压脉冲。

第二是起到隔离高压的作用,以防触电。

第三是为uc3842 提供工作电源。

D4为高频整流管(16A60V)C10为低压滤波电容,D5 为12V 稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35)起到自动调节充电器电压的作用。

调整w2(微调电阻)可以细调充电器的电压。

D10是电源指示灯。

D6为充电指示灯。

R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)通电开始时,C11上有300v左右电压。

此电压一路经T1加载到Q1。

第二路经R5,C8,C3,达到U1的第7脚。

强迫U1启动。

U1的6脚输出方波脉冲,Q1工作,电流经R25到地。

同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。

T1 输出线圈的电压经D4,C10整流滤波得到稳定的电压。

此电压一路经D7 (D7起到防止电池的电流倒灌给充电器的作用)给电池充电。

第二路经R14,D5,C9,为LM358(双运算放犬器,1脚为电源地,8脚为电源正)及其外圉电路提供12V工作电源。

D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚。

第14讲 应急配电板

第14讲  应急配电板
地绝缘电阻的巡回检测,当绝缘电阻降低到 规定值时,发出声光报警信号。 • 14.负载配电 14.负载配电 • 负载配电开关均采用装置式空气断路器, 380V负载出线(2 31~2-40)配电开关选用 380V负载出线(2-31~2-40)配电开关选用 额定电流为100A、保护整定电流为16A、 额定电流为100A、保护整定电流为16A、 25A、40A、250A、800A不等;220V负载出 25A、40A、250A、800A不等;220V负载出 线(2 1~2-19)配电开关选用额定电流为 线(2-1~2-19)配电开关选用额定电流为 63A、保护整定电流为10、16A、20A、25A、 63A、保护整定电流为10、16A、20A、25A、 32A、50A不等。 32A、50A不等。
• 3.发电机调压装置 • 发电机控制屏内设有发电机电压自动调整装
置VR,可实现发电机的输出电压恒定在额定 VR,可实现发电机的输出电压恒定在额定 值范围内。 • 4.应急发电机的输出电流指示 • 电流表1A及转换开关1AS可分别测量应急发 电流表1A及转换开关1AS可分别测量应急发 电机任意一相的负载的线电流,其通过转换 开关进行选择操作。 • 5.应急发电机的输出电压指示 • 电压表1V及转换开关1VS可分别测量发电机 电压表1V及转换开关1VS可分别测量发电机 和380V汇流排任意二线间的电压,其通过转 380V汇流排任意二线间的电压,其通过转 换开关进行选择。
三、岸电箱
• 岸电箱应能满足接岸电时的各项要求: • ⑴岸电箱内应设有岸电接线柱、自动开关
或开关加熔断器。在岸电箱与主配电板上 应有岸电指示灯,以指示岸电是否有电。 • ⑵对岸电和中点接地的交流三相系统, 应设有一接地接线柱,以便将船体接至岸 上的接装置或岸上电网的零点。

电瓶车充电器电路图及原理

电瓶车充电器电路图及原理

电瓶车充电器电路图及原理(上)根据电动自行车铅酸蓄电池的特点,当其为36V/12AH时,采用限压恒流充电方式,初始充电电流最大不宜超过3A。

也就是说,充电器输出最大达到43V/3A/129W,已经可满足。

在充电过程中,充电电流还将逐渐降低。

以目前开关电源技术和开关管生产水平而言,单端开关稳压器输出功率的极限值已提高到180W,甚至更大。

输出功率为150W以下的单端它激式开关稳压器,其可靠性已达到极高的程度。

MOS FET开关管的应用,成功地解决了开关管二次击穿的难题,使开关电源的可靠性更上一层楼。

目前,应用最广的、也是最早的可直接驱动MOS FET开关管的单端驱动器为MC3842。

MC3842在稳定输出电压的同时,还具有负载电流控制功能,因而常称其为电流控制型开关电源驱动器,无疑用于充电器此功能具有独特的优势,只用极少的外围元件即可实现恒压输出,同时还能控制充电电流。

尤其是MC3842可直接驱动MOS FET管的特点,可以使充电器的可靠性大幅提高。

由于MC3842的应用极广,本文只介绍其特点。

MC3842为双列8脚单端输出的它激式开关电源驱动集成电路,其内部功能包括:基准电压稳压器、误差放大器、脉冲宽度比较器、锁存器、振荡器、脉宽调制器(PWM)、脉冲输出驱动级等等。

MC3842的同类产品较多,其中可互换的有UC3842、IR3842N、SG3842、CM3842(国产)、LM3842等。

MC3842内部方框图见图1。

其特点如下:单端PWM脉冲输出,输出驱动电流为200mA,峰值电流可达1A。

启动电压大于16V,启动电流仅1mA即可进入工作状态。

进入工作状态后,工作电压在10~34V之间,负载电流为15mA。

超过正常工作电压,开关电源进入欠电压或过电压保护状态,此时集成电路无驱动脉冲输出。

内设5V/50mA基准电压源,经2:1分压作为取样基准电压。

输出的驱动脉冲既可驱动双极型晶体管,也可驱动MOS场效应管。

电容器充放电过程中电流与电压变化规律演示器

电容器充放电过程中电流与电压变化规律演示器

电容器充放电过程中电流与电压变化规律演示器◆赵平电容器的充放电过程是电容器工作的最基本的过程。

在此过程中,电路中的电流i c和电压u o是瞬态变化量,是摸不着,看不到的。

我在多年的教学实践中,经过多次的实验、改进,终于做成了“电容器充放电过程中电流与电压变化规律演示器”。

该演示器能用电流表,发光二极管的亮暗显示充放电过程电流的变化规律;用电压表的示数显示电路中电容器两极板间电压的变化规律。

这样就把抽象的概念,变成了形象直观的过程。

演示器的电原理图如图1所示。

本演示器电路由直流电压E,转换开关S,电位器W,微安电流G,发光二极管LED1、LED2,电容器C和电压表V组成。

电路的工作过程1.充电过程当开关与位置“1”接通的瞬间,电路进行充电过程,电流的流向为:电源E正极流出,“1”点开关,电位器W电流表,LED1电空器流回电源负极。

充电电流开始最大电流表的指针向右摆至最大位置,发光二极管LED1最亮,电压表的指针由零逐渐加大;随着时间的推移充电电流逐渐减小,电流表的指针向左偏,发光二极管LED1逐渐变暗,电压表的指数逐渐加大;最后充电电流几乎为零,发光二极管完全变暗,电压表的指数达到最大值,几乎等于电源电动势。

整个充电过程中LED2是不亮的。

2.放电过程当开关与位置“2”接通是进行放电过程。

其电流的流向为:电容器C的正极,LED2电流表电位器W 开关,“2”电容器负极。

放电电流的方向与充电电流方向相反。

放电开始瞬间,电流最大,电流表的指针向左摆至最大,发光二极管LED2最亮,电压表的指针由最大值(电源电动势)开始减小;随着时间的推移,放电电流逐渐减小,电流表的指针向右偏,发光二极管逐渐变暗,电压表的指数减小,最后电流表的指数几乎为零,LED2完全熄灭,电压表的指数几乎指零,放电结束。

整个放电过程中,LED1是不亮的。

元器件的选择与装调(1)整修电路的元器件安装在一块面积合适的绝缘板上,根据教学的需要来确定,以让学生能看清演示为好。

船用主电盘电路原理图_对小型船用升压充放电配电板电路的分析

船用主电盘电路原理图_对小型船用升压充放电配电板电路的分析

对小型船用升压充放电配电板电路的分析缪骏骅南通航运职业技术学院机电系江苏南通 226010[摘要] 本文叙述了小型船舶中升压充放电设备的重要性,介绍了升压充放电电路的基本结构和升压充放电的基本原理,为从事船舶电器工作人员提供了一定的参考依据。

[关键词] 电路结构设备组成工作原理中图分类号:文献标识码:文章编号:0、引言船用辅助设备是船舶结构中极其重要的部分,升压充放电装置是船舶航行中必不可少的组成部分,该设备使用性能的好坏,关系到船舶能否安全航行、船员生活是否正常的关键。

当升压充放电设备发生故障时,操作人员应能在第一时间内及时、准确地判断故障位置的所在,并能及时给予维修。

这就要求操作人员掌握一定的专业知识和维修基础。

本文对船用升压充放电设备进行简单的电路分析,为从事船舶电器的工作人员提供参考依据,我在这里也只能是起到抛砖引玉的作用。

1、船用蓄电池升压充放电的原由蓄电池在充电过程中每单格电池的端电压能逐渐升高到2.6V以上,这一情况在低压蓄电池充电时,一般的充电发电机可胜任。

如24V蓄电池(有12只单格电池串联)充足电压可达30V以上,而充电发电机的电动势可达36V,故不需要另加设备。

但在220V系统中,它实有108只单格电池,在每单格电池充电至2.6V时,总电压达到280V以上。

汇流排如达到这个数值时,对额定电压使用的负载来说是不允许的,而当汇流排电压升高到245V时,过电压继电器即要动用,从而使主接触器跳闸,如果充电电压升不到应有的数值,而蓄电池长期处于充电不足的状态,则会导致蓄电池的容量减少和寿命缩短的结果,这也是不允许的。

所以要采用升压充电的方法来解决这一问题。

2、升压充电的基本原理在所有的远洋船舶中都备有升压充电发电机组,在需要升压充电时,起动充电发电机组,串入汇流排提高充电电压,就可达到充电要求,它的原理如图1所示。

在这种升压充电系统中,升压发电机除能与汇流排串联给220V蓄电池组充电外,还可兼供24V低压网路用电和低压24V蓄电池组的充电。

笔记本电池充放电原理

笔记本电池充放电原理

笔记本电池充放电原理(1) NB 电池:目前电池皆以锂电池(Li-Ion) 为主, 锂离子电池除了轻巧,电容量又大,而且也没有记忆特性。

当一颗电池被反覆的充到一特定的电量时,它会产生出一种化学记忆特性,日後任你再怎样充电,都没法超过那个特地的电量额度了,这就是电池的记忆性。

锂离子电池没有这种问题,但它唯一的缺点是怕冷。

而锂电池是以持续等电压方式来充电的, 我们以下图来加以说明锂电池的充电原理:在上图中, 横轴是充电时间, 纵轴为电压, 在充电过程中,电池的电压数缓缓的升高,到达一个顶点(在我们图上是 4.2 伏特) 然後保持恒定,一直以4.2v 来充电, 所以为定电压充电(固定在4.2v, 但并非所有锂电池都是固定在 4.2 v, 要看各厂商的规格), 同时,充电电流则是缓缓下降。

一旦电流低到一个设定的阈值(我们图上的例子是80 mA (毫安培)),充电器则自动停止充电, 这里的所设定的阀值, 也必须是各厂商而定.而锂电池有六个对外的接脚连接至Notebook,Pins:1. 接地(GND)2. TS (侦测电池插入)3. HDQ BUS (主要在存取电池的各项叁数)4. BAT_BC5. No connection6. 电池输入/ 输出电压(2) Gauge IC:Gauge IC 一般称为"电池管理晶片", 而华硕Notebook 常用的电池当中皆含有此Gauge IC, 以M2A 为例, 其电池中所包含的Gauge IC 就是采用美国Bechmar q 公司的锂电池管理晶片"BQ2050H". 而Gauge IC 中包含了电池容量暂存器,温度暂存器, 电池识别(ID) 暂存器, 电池状态暂存器, 锂电池充电状态暂存器, 放电计数暂存器, 这些暂存器中的值, 会因为使用的时间或使用不当而产生变化, 导致电池充不满, 或使用时间变短等情形, 而这些暂存器中的值是可以利用特殊的方式来更改的, 大家常听到的电池学习, 其实就是更改电池容量暂存器以及电池状态暂存器中的值, 将原本暂存器中错误或误差的值加以修正, 使电池的充电时间及充电容量能恢复正常.(3) Charge IC:Charge IC 顾名思义就是用来控制电池充电的IC, 华硕常用的Charge IC 为M B3877 系列, 但Charge IC 并无法单独工作, 必须搭配一颗可程式化的IC (如: PIC 16C54) 才能正常工作, 而此PIC 16C54 是一颗可程式化的IC, 里面记载着电池充电时所需要的数据, 例如: 要用多大的电压电流来充电, 必须符合哪些条件, 电池才会被充电, 电池充饱时要切断哪些电源以及电池的充电指示灯该如何变化(闪烁或改变颜色) 等等, 而这些"值" 或"条件" 都是RD 预先设定好的, 下图以A1B 的充电简易方块图为各位说明NOTEBOOK 的充电流程:在上图中, 只有AC_IN (外加电源) 有讯号进来时, 才会进行电池的充电动作,而Battery 中的Gauge IC 会告知MB3877(Charge IC) 目前的电池状态(例如: 是否需要充电, 电量多少等等), 而PIC16C54 亦会侦测目前是否符合充电的条件(例如: AC_IN 是否有讯号, Battery 是否有插好等等), 如果目前Battery 是符合需要充电的条件, 其充电过程如下:Step1:AC_IN 有讯号, 而且也已侦测到Battery in.Step 2: PIC 16C54 会发出CHG_EN 的讯号, 告知MB 3877 可以对Battery 进行充电.Step 3: 同时PIC 16C54 亦会控制CHG_LED 的状态(例如: 闪烁或以其他颜色显示)Step 4: 当Battery 充饱时, 会由MB3877 发出Full# 的讯号给PIC 16C54, 告知目前电池已充饱电.Step 5: 当PIC 16C54 收到full# 讯号时, 会断开充电电源, 停止充电, 同时亦会改变CHG_LED 的状态(改成充饱的灯号), 完成充电程序.笔记本电脑故障的分析处理程一、笔记本常见故障开机不亮-硬件判断1. 笔记本电脑主板BIOS出现故障会引起开机不亮2.笔记本电脑CPU出现故障笔记本液晶屏无反应,也是开机不亮的原因3.笔记本电脑信号输出端口出现故障会引起开机不亮4. 笔记本电脑主板显卡控制芯片出现故障会引起开机不亮。

3.7v锂电池保护板原理图

3.7v锂电池保护板原理图

3.7v锂电池保护板原理图锂电池保护板主要由维护IC(过压维护)和MOS管(过流维护)构成,是用来保护锂电池电芯安全的器材。

锂电池具有放电电流大、内阻低、寿数长、无回忆效应等被人们广泛运用,锂离子电池在运用中禁止过充电、过放电、短路,不然将会使电池起火、爆破等丧命缺陷,所以,在运用可充锂电池都会带有一块维护板来维护电芯的安全。

1、电压保护能力过充电保护板:保护板有必要具有防止电芯电压超越预设值的才干过放电维护:保护板有必要具有防止电芯电压底于预设值的才干。

2、电流能力(过流保护电流,短路保护)保护板作为锂电芯的安全保护器材,既要在设备的正常作业电流规模内,能可靠工作,又要在当电池被意外短路或过流时能迅速动作,使电芯得到保护。

3、导通电阻定义:当充电电流为500mA时,MOS管的导通阻抗。

由于通讯设备的工作频率较高,数据传输要求误码率低,其脉冲串的上升及下降沿陡,故对电池的电流输出能力和电压稳定度要求高,因而保护板的MOS管开关导通时电阻要小,单节电芯保护板通常在《70m,如太大会导致通讯设备作业不正常,如手机在通话时突然断线、电话接不通、噪声等现象。

4、自耗电流定义:IC作业电压为3。

6V,空载状况下,流经保护IC的作业电流,一般极小。

保护板的自耗电流直接影响电池的待机时刻,通常规则保护板的自耗电流小于10微安。

5、机械功能、温度适应能力、抗静电能力保护板有必要能通过国标规则的轰动,冲击实验;保护板在40到85度能安全工作,能经受15KV的非触摸ESD静电测验。

锂电池充放电保护电路的特点及工作原理锂电池的保护功能通常由保护电路板和PTC协同完成,保护板由电子元件组成,在-40℃~+85℃的环境下时刻准确地监视电芯的电压和充放电回路的电流,并及时控制电流回路的通断;PTC的主要作用是在高温环境下进行保护,防止电池发生燃烧、爆炸等恶性事故。

锂电池充放电电路原理

锂电池充放电电路原理
《新能源汽车电力电子技术》
广东合赢教学设备有限公司
任务5 锂电池充放电电路原理
建议课时:2学时
广东合赢教学设备有限公司
任务5 锂电池充放电电路原理
知识目标
(1)知道新能源汽车常用的电池种类; (2)能理解三元锂电池的充放电工作特性; (3)能够理解BSM的工作控制过程; (4)能够理解电池的散热类型及工作原理; (5)能够通过实训使用万用表测量锂电池控制电路,正确分析充放电过程; (6)正确规范的使用实训板,养成良好的新能源汽车维修职业素养。
同样,电池放电的过程中,锂离子脱离负极 碳层,在电解液内穿过隔膜运动到正极。而电子 则通过外电路流动,形成电流。回正极的锂离子 越多,放电量越高。
图3-5-3 锂电池的充放电原理
广东合赢教学设备有限公司
任务5 锂电池充放电电路原理 知识链接4:BMS的功能
知识准备
BMS(BATTERY MANAGEMENT SYSTEM),也就是电池管理系统,如图35-4所示。其主要作用是通过电池内部安装 的温度传感器和电流传感器,对电池的温度 进行实时检测,监控动力电池充放电过程的 电流大小等信息。简而言之,BMS就是汽 车动力电池的管理者。
本实训通过搭建电路,模拟电池充电过热的工作情况,学习充电保护的原理, 并通过规范的操作,养成良好的任务5 锂电池充放电电路原理
知识准备
知识链接1:新能源汽车常用电池的种类
现在新能源车常用的电池种类主要有两种:锂电池 和镍氢电池。其中锂电池的应用更为广泛,也更具有实 用性。锂电池根据材料的不同,又分为许多种,但目前 应用最成熟的主要为三元锂电池。锂电池整体优点是零 排放、环境污染小、能耗低、能量密度高和充电快等优 点。
图3-5-4 BMS在电池包的位置

船用主电盘电路原理图_对小型船用升压充放电配电板电路的分析

船用主电盘电路原理图_对小型船用升压充放电配电板电路的分析

对小型船用升压充放电配电板电路的分析缪骏骅南通航运职业技术学院机电系江苏南通 226010[摘要] 本文叙述了小型船舶中升压充放电设备的重要性,介绍了升压充放电电路的基本结构和升压充放电的基本原理,为从事船舶电器工作人员提供了一定的参考依据。

[关键词] 电路结构设备组成工作原理中图分类号:文献标识码:文章编号:0、引言船用辅助设备是船舶结构中极其重要的部分,升压充放电装置是船舶航行中必不可少的组成部分,该设备使用性能的好坏,关系到船舶能否安全航行、船员生活是否正常的关键。

当升压充放电设备发生故障时,操作人员应能在第一时间内及时、准确地判断故障位置的所在,并能及时给予维修。

这就要求操作人员掌握一定的专业知识和维修基础。

本文对船用升压充放电设备进行简单的电路分析,为从事船舶电器的工作人员提供参考依据,我在这里也只能是起到抛砖引玉的作用。

1、船用蓄电池升压充放电的原由蓄电池在充电过程中每单格电池的端电压能逐渐升高到2.6V以上,这一情况在低压蓄电池充电时,一般的充电发电机可胜任。

如24V蓄电池(有12只单格电池串联)充足电压可达30V以上,而充电发电机的电动势可达36V,故不需要另加设备。

但在220V系统中,它实有108只单格电池,在每单格电池充电至2.6V时,总电压达到280V以上。

汇流排如达到这个数值时,对额定电压使用的负载来说是不允许的,而当汇流排电压升高到245V时,过电压继电器即要动用,从而使主接触器跳闸,如果充电电压升不到应有的数值,而蓄电池长期处于充电不足的状态,则会导致蓄电池的容量减少和寿命缩短的结果,这也是不允许的。

所以要采用升压充电的方法来解决这一问题。

2、升压充电的基本原理在所有的远洋船舶中都备有升压充电发电机组,在需要升压充电时,起动充电发电机组,串入汇流排提高充电电压,就可达到充电要求,它的原理如图1所示。

在这种升压充电系统中,升压发电机除能与汇流排串联给220V蓄电池组充电外,还可兼供24V低压网路用电和低压24V蓄电池组的充电。

实验 观察电容器的充、放电现象-高考物理复习

实验 观察电容器的充、放电现象-高考物理复习
阻R放电。
(3)根据传感器传递给电子计算机的放电电流信息,通过计算机中的软件
将传感器收集的信息拟合成I-t图像,仔细观察I-t图像,可以分析出电容器放
电时电流随时间变化的规律(如图所示)。
五、实验数据处理
若实验电路中直流电源电压为8 V。
1.在图中画出一个如图所示竖立的狭长矩形(Δt很小),它的面积的物理意
解析:(1)由题图知,最大电流为Im=90 mA=0.09 A,因此最大电压为
Um=ImR1=9 V;i-t曲线和两坐标轴所围的面积表示电容器的电荷量Q=90
mA·
s,根据电容的定义式可得C=1.0×10-2 F。
m
(2)根据 im= 知第2次实验的最大放电电流小些,所以不是虚线b。因i-t曲
间变化的I-t曲线如图乙,这个曲线的横坐标是放电时间,纵坐标是放电电流。
若其他条件不变,只将电阻R换为阻值更大的定值电阻,现用虚线表示电阻
值变大后的I-t曲线,则下列四个图像可能正确的是(
)

解析:I-t图线与坐标轴所围图形的面积表示经过导体的电荷量,即电容器上
所带电荷量。当把电阻R换成阻值更大的电阻时,因为电容器两板间电压
C3
____________(填代号)。
R3
(4)图乙是本次实验当UC=2.5 V时描出的iC-t图像,由图可求得所测电容器
电容C=____________
μF(保留1位有效数字)。
6×102
解析:(1)由题图可知,滑动变阻器是分压式接法,因此S'、S闭合前滑动变阻
器滑片应调到a处,使得所测电路的电压为零,从而确保安全。
能力形成点2
实验数据处理与误差分析
【例2】 图甲是一种测量电容器电容的实验电路图,实验是通过对高阻

手机充电器电子电路原理分析及图解

手机充电器电子电路原理分析及图解

手机充电器电子电路原理分析及图解分析一个电源,往往从输入开始着手。

220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。

这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。

右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。

13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。

当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。

由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。

不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。

左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。

13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。

当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。

变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。

为了分析方便,我们取三极管C945发射极一端为地。

那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。

取样电压经过6.2V稳压二极管后,加至开关管13003的基极。

前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。

锂电池的原理图

锂电池的原理图

锂电池的原理图
锂电池是一种常用的化学电源,由阴极、阳极和电解质组成。

其工作原理如下:
1. 阴极(正极):阴极通常由锂化合物(如LiCoO2)构成。

在充电过程中,锂离子离开阴极,从而转化为锂金属。

2. 阳极(负极):阳极通常由碳材料(如石墨)构成。

在充电过程中,锂金属离子(Li+)从电解液中脱离,进入阳极结构,形成锂盐。

3. 电解质:电解质是锂离子的载体。

它通常是有机溶剂(如聚合物电解质或液体电解质),能够在锂离子运动时提供离子传输的途径。

4. 电子导体:为了形成电流,电子需要在阴极和阳极之间进行传输。

在锂电池中,电子通过外部电路传输,从而供电给设备。

在充电过程中,外部电源通过电解液中的电子将锂离子从阳极移动到阴极,以储存能量。

在放电过程中,储存的能量转化为电流,从阴极流向阳极,通过外部电路供给设备使用。

总结:锂离子在充放电过程中在阴极和阳极之间的往复迁移,通过外部电路传输电子,完成电能储存和释放的过程。

电学实验板使用说明

电学实验板使用说明

电学实验板使用说明一、Plab-EXB-01 整流与滤波1、工作原理利用二极管的单向导电性,电容存储电荷的特性,可构造整流与滤波电路。

电学实验板电原理如图1、2所示。

图1 半波整流与滤波电路图2 全波整流电路2、典型实验①半波整流与滤波工作原理②全波整流与滤波工作原理3、使用说明实验板上共有四组接线柱,具体连接方法如右图所示,两个电键可以实现对整流输出与滤波输出的选择。

实验时在电源接线柱上接入6V50Hz的低压交流电源,然后将两个电压传感器分别接到电路中电压接线柱和半波或者全波电路电压接线柱,通过电键选择整流输出或者滤波输出,在软件窗口便可以观察到整流或滤波后的电压波形与未经整流滤波前的电压波形比较图像。

图3 思迈电学实验板PLab-EXB-01二、PLab-EXB-02 复杂电路分析1、工作原理实验电原理见图4、5图4 实验电路图1 图5 实验电路图22、典型实验研究混联电路3、使用说明PLab-EXB-02复杂电路分析电学实验板共包含两个实验电路,这两个实验电路可以通过开关K1进行选择。

具体连接方法如图6所示,接入的电源为6V直流电源,三组接线柱可以根据实验需要接入电流传感器或者电压传感器。

图6 思迈电学实验板PLab-EXB-02三、PLab-EXB-03 RC、LC移相电路1、实验原理电容、电感在交流电路中的电压与电流有一定的相位差。

根据设计好的电路能够测量出具体的电流电压相位图。

实验电路图如图7、图8所示。

图7 RC移相电路图8 RL移相电路2、典型实验①RC移相电路工作原理②RL移相电路工作原理3、使用说明实验电路板上,电源接入端接入6V50Hz的交流电源,开关K1为电源开关,K2为电路选择开关,可以选择RC移相电路,RL移相电路,通过两个电压传感器波形可以观察到RC、RL移相现象及其特征,通过电路板上旋钮式电位器可以调节电路中的总电阻的大小,观察R不同时,RC、RL移相现象相应的变化。

船舶电力系统概述(1)

船舶电力系统概述(1)
机 照明设备 助航、通讯用变
流机
主空气压缩 机
油灶鼓风机 空调压缩机 空调淡水泵 空调送风机 伙食冷库压
缩机 电动锅炉给
水泵 充电机组 无线电 雷达
船舶电力系统概述(1)
返回
2.电动机负荷系数的计算
(1)电动机利用系数K1
P 1 :电动机额定功率; P 2 :电动机轴上拖动的机械设备的额定功率 。 通常电动机的额定功率应略大于机械设备的额定功率
船舶电力系统概述(1)
5. 控制电器 主要有各种类型的控制箱、接触器、继电器、各种控 制器和主令电器等。
6. 电工测量用仪器、仪表 船舶上常用的电工测量仪表有万用表、兆欧表、钳形 电流表、交(直)流电压表、电流表、功率表、功率 因数表、频率表、交流并车屏上的整步表、平时用于 检修的直流稳压电源和自耦变压器、示波器等。
船舶电力系统概述(1)
(2)机械负荷系数K2 P3: 电机拖动的机械设备的实际使用功率
(3)电动机负荷系数K3
船舶电力系统概述(1)
(4)电动机以额定功率运行时从电网吸收的功率 P4
ηe: 电动机在额定功率时的效率 (5)电动机实际消耗的功率P5
η'为电动机相当于功率P2时的效率
船舶电力系统概述(1)
船舶电力系统概述(1)
第二节 船舶电站容量和发电机组台数的选择
一、确定电站容量和发电机台数的基本原则 1. 船舶的运行工况 货轮和油轮的典型运行工况大致划分如下: (1)航行工况:占运营周期的41%,油船64% (2)进出港工况:占运营周期的1%。
(3)装卸货工况:占运营周期的18%,油船7%。 (4)停泊工况:占运营周期的40%,油船28%
(6)无功功率Q5
为电动机的功率因数角。

锂电池充放电保护板及保护板原理

锂电池充放电保护板及保护板原理

锂电池充放电保护板及保护板原理随着科技的发展,电子产品也越来越多,充电也成了一个问题如怎么充电能不损坏电池,怎么充电能使用更久,怎么充电能节约电能。

下面给大家介绍一种锂电池保护板,经过测试和实践证明,该保护板的保护功能完善,工作稳定,性价比高。

(国昱电气/叶宝国)。

现在我们就来谈谈而在动力锂电池成组使用时,各节锂电池均要求充电过电压、放电欠电压、过流、短路的保护,充电过程中要实现整组电池均衡充电的问题,设计了采用单节锂电池保护芯片对任意串联数的成组锂电池进行保护的含均衡充电功能的电池组保护板。

当锂电池组串联充电时,每个电池应该均等充电,否则会影响整个电池的性能和寿命。

常用的均衡充电技术有恒定分流电阻均衡充电、通断分流电阻均衡充电、平均电池电压均衡充电、开关电容均衡充电、降压型变换器均衡充电、电感均衡充电等。

现有的单锂电池保护芯片不具备均衡充电控制功能,多节锂电池保护芯片均衡充电控制功能需要外接CPU,通过与保护芯片(如I2C总线)的串行通信来实现。

增加了保护电路设计的复杂性和难度,降低了系统的效率和可靠性。

并且增加了功耗。

锂电池保护板均衡充电基本工作原理在采用单片锂电池保护芯片设计的锂电池组保护板平衡充电原理图中:1为单锂离子电池;2为充电过电压分流放电支路电阻;3为分流放电支路控制开关装置;4为过流检测保护电阻;5省略锂电池保护芯片和电路连接部分;6是单个锂电池保护芯片(一般包括充电控制引脚CO、放电控制引脚DO、放电过电流和短路检测引脚VM、电池正端VDD、电池负端VSS);7在充电过电压保护信号被光耦隔离后形成在并联关系驱动主电路中充电用MOS 管栅极;8为放电欠压、过流和短路保护信号被光耦隔离形成串联关系驱动为主电路中放电控制用MOS管栅极;,9为充电控制开关;10为放电控制开关;11为控制电路;12为主电路;13为分流放电支路。

单个锂电池的保护芯片的数量根据锂电池组的电池数量来确定,串联使用以保护相应的单个锂电池免于充电、放电、过电流和短路。

实验10 观察电容器的充放电现象

实验10 观察电容器的充放电现象

解析:(1)对电容器进行充电时,电容器两端应与电源两端相接,所以开关S接1。
答案:(1)1
[例1] [电容器充、放电现象的定性分析]某同学利用如图所示的实验电路观察
平行板电容器的充放电。
(2)充电完成后,再将开关S接通另一端,观察到电流随时间变化的情况是

解析:(2)放电开始时电流较大,随着电容器所带电荷量不断减小,电容器电压
放电现象。先将选择开关合到“1”,使电容器充电至稳定后进行如下两种操作:
(2)保持开关S合在“1”,适当增大电容器两极板间距离的过程中,二极管
(选填
“D1”或“D2”)发光。
解析:(2)保持开关S合在“1”,适当增大电容器两极板间距离的过程中,增大两板间距
离时,电容减小,电压不变,由Q=UC可知电荷量应减小,所以则会形成反向放电,电流为
电阻R无关,如果不改变电路其他参数,只减小电阻R,放电电流增大,放电时间
将变短。
答案:(3)变短
[例2] [电容器充、放电现象的定量计算]电容器是一种重要的电学元件,在电
工、电子技术中应用广泛。某实验小组用如图甲所示的电路研究电容器充、放
电情况及电容大小,他们用电流传感器和计算机测出电路中电流随时间变化的
实验时,根据图甲所示的电路原理图连接好电路,t=0时刻把开关K掷向1端,电容
器充电完毕后,再把开关K掷向2端,电容器通过电阻R放电,传感器将电流信息传
入计算机,屏幕上显示出电流随时间变化的I-t图像如图乙所示。
(2)图乙中,阴影部分的面积S1
(选填“>”“<”或“=”)S2。

解析:(2)根据电流的定义式 I= ,则 q=It,题图乙中,阴影部分的面积等于充、
向相反。

笔记本电池充放电原理

笔记本电池充放电原理

笔记本电池充放电原理(1) NB 电池:目前电池皆以锂电池(Li-Ion) 为主, 锂离子电池除了轻巧,电容量又大,而且也没有记忆特性。

当一颗电池被反覆的充到一特定的电量时,它会产生出一种化学记忆特性,日後任你再怎样充电,都没法超过那个特地的电量额度了,这就是电池的记忆性。

锂离子电池没有这种问题,但它唯一的缺点是怕冷。

而锂电池是以持续等电压方式来充电的, 我们以下图来加以说明锂电池的充电原理:在上图中, 横轴是充电时间, 纵轴为电压, 在充电过程中,电池的电压数缓缓的升高,到达一个顶点(在我们图上是 4.2 伏特) 然後保持恒定,一直以4.2v 来充电, 所以为定电压充电(固定在4.2v, 但并非所有锂电池都是固定在 4.2 v, 要看各厂商的规格), 同时,充电电流则是缓缓下降。

一旦电流低到一个设定的阈值(我们图上的例子是80 mA (毫安培)),充电器则自动停止充电,这里的所设定的阀值, 也必须是各厂商而定. 而锂电池有六个对外的接脚连接至Notebook,Pins:1. 接地(GND)2. TS (侦测电池插入)3. HDQ BUS (主要在存取电池的各项叁数)4. BAT_BC5. No connection6. 电池输入/ 输出电压(2) Gauge IC:Gauge IC 一般称为"电池管理晶片", 而华硕Notebook 常用的电池当中皆含有此Gauge IC, 以M2A 为例, 其电池中所包含的Gauge IC 就是采用美国Bechmar q 公司的锂电池管理晶片"BQ2050H". 而Gauge IC 中包含了电池容量暂存器,温度暂存器, 电池识别(ID) 暂存器, 电池状态暂存器, 锂电池充电状态暂存器, 放电计数暂存器, 这些暂存器中的值, 会因为使用的时间或使用不当而产生变化, 导致电池充不满, 或使用时间变短等情形, 而这些暂存器中的值是可以利用特殊的方式来更改的, 大家常听到的电池学习, 其实就是更改电池容量暂存器以及电池状态暂存器中的值, 将原本暂存器中错误或误差的值加以修正, 使电池的充电时间及充电容量能恢复正常.(3) Charge IC:Charge IC 顾名思义就是用来控制电池充电的IC, 华硕常用的Charge IC 为M B3877 系列, 但Charge IC 并无法单独工作, 必须搭配一颗可程式化的IC (如: PIC 16C54) 才能正常工作, 而此PIC 16C54 是一颗可程式化的IC, 里面记载着电池充电时所需要的数据, 例如: 要用多大的电压电流来充电, 必须符合哪些条件, 电池才会被充电, 电池充饱时要切断哪些电源以及电池的充电指示灯该如何变化(闪烁或改变颜色) 等等, 而这些"值" 或"条件" 都是RD 预先设定好的, 下图以A1B 的充电简易方块图为各位说明NOTEBOOK 的充电流程:在上图中, 只有AC_IN (外加电源) 有讯号进来时, 才会进行电池的充电动作,而Battery 中的Gauge IC 会告知MB3877(Charge IC) 目前的电池状态(例如: 是否需要充电, 电量多少等等), 而PIC16C54 亦会侦测目前是否符合充电的条件(例如: AC_IN 是否有讯号, Battery 是否有插好等等), 如果目前Battery 是符合需要充电的条件, 其充电过程如下:Step1:AC_IN 有讯号, 而且也已侦测到Battery in.Step 2: PIC 16C54 会发出CHG_EN 的讯号, 告知MB 3877 可以对Battery 进行充电.Step 3: 同时PIC 16C54 亦会控制CHG_LED 的状态(例如: 闪烁或以其他颜色显示)Step 当Battery 充饱时, 会由MB3877 发出Full# 的讯号给PIC 16C54, 告4: 知目前电池已充饱电.Step 5: 当PIC 16C54 收到full# 讯号时, 会断开充电电源, 停止充电, 同时亦会改变CHG_LED 的状态(改成充饱的灯号), 完成充电程序.笔记本电脑故障的分析处理程一、笔记本常见故障开机不亮-硬件判断1. 笔记本电脑主板BIOS出现故障会引起开机不亮2.笔记本电脑CPU出现故障笔记本液晶屏无反应,也是开机不亮的原因3.笔记本电脑信号输出端口出现故障会引起开机不亮4. 笔记本电脑主板显卡控制芯片出现故障会引起开机不亮。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档