高一数学必修4:第三章章末检测Word版含解析
高中人教A版数学必修4:第三章 章末检测 Word版含解析
∴sinθ·cosθ= ,sin2θ= .
3
3
π
( ) 12.设动直线 x=a 与函数 f(x)=2sin2 +x 和 g(x)= 3cos2x 的图象分别交于 M,N 两 4 点,则|MN|的最大值为( )
A. 2 B. 3
C.2 D.3
答案:D
π
( ) 解析:f(x)=1-cos +2x =1+sin2x. 2
2
(2)列表:
π
π 7π 5π
x
0
π
12 3 12
6
π
π
2x+
3
3
π
3π
7π
π
2π
2
2
3
f(x)
3
2
0 -2 0
3
描点连线得图象,如图所示.
π
( ) 20.(12 分)已知向量 a=(sinθ,-2)与 b=(1,cosθ)互相垂直,其中 θ∈ 0, . 2 (1)求 sinθ 和 cosθ 的值;
答案:- 3
解析:∵f(x)是奇函数,∴f(0)=0,∴ 3cos(-θ)-sin(-θ)=0,∴ 3cosθ+sinθ=0,
∴tanθ=- 3.
三、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步
骤.
sinα+cosα
17.(10 分)已知
=3,tan(α-β)=2,求 tan(β-2α)的值.
5
值.
解:∵a=(cosα,sinα),b=(cosβ,sinβ),
∴a-b=(cosα-cosβ,sinα-sinβ),
∴|a-b|= cosα-cosβ2+sinα-sinβ2
25 = 2-2cosα-β= ,
数学必修四第三章试卷(含答案).
必修四第三章姓名:___________班级:___________考号:___________一、单选题 1.若sin cos 1sin cos 2αααα+=-,则tan 2α等于( )A .34-B .34C .43-D .432.计算212sin 22.5-︒的结果等于( )A .12B .2C D 3.已知1(0,),sin cos ,cos 22απααα∈+=且则的值为( ) )A .±B C D .-344.13cos80-的值为( ) A .2B .4C .6D .85.若3sin 5α=,,22ππα⎛⎫∈- ⎪⎝⎭,则5cos 4πα⎛⎫+= ⎪⎝⎭( )A .10-B .10C .10-D .106.若tan θ+1tan θ=4,则sin2θ= A .15 B .14C .13D .12—A .2πB .C .πD .4π 8.已知函数22()3cos sin 3f x x x =-+,则函数( ) A .()f x 的最小正周期为π,最大值为5B .()f x 的最小正周期为π,最大值为6C .()f x 的最小正周期为2π,最大值为5D .()f x 的最小正周期为2π,最大值为69.若1 s in 3α=,则2 c os +24απ⎛⎫= ⎪⎝⎭( ) A .23B .12C .13D .0}10.已知,则( )A .B .C .D .11.若α,β均是锐角,且αβ<,已知()3cos 5αβ+=,()12sin ,13αβ-=-,则sin 2α=( )A .1665-B .5665C .5665或1665D .5665或1665-12.若sinθcosθ=12,则tanθ+cosθsinθ的值是( )1二、填空题 13.已知1sin 23α=,则2cos ()4πα-= _ . @14.已知tan 3α=,则2sin sin 2αα-=______.15.如果tanα+tanβ=2, tan(α+β)=4,那么tanαtanβ等于_______.16.已知1tan 2α=,()2tan 5αβ-=-,则()tan 2βα-=____________.三、解答题17.已知函数23()cos()cos()2f x x x x ππ=+-+. (I )求()f x 的最小正周期和最大值; (II )求()f x 在2[,]63ππ上的单调递增区间. [18.已知3sin cos 0x x +=,求下列各式的值, (1)3cos 5sin sin cos x xx x+-;(2)22sin 2sin cos 3cos x x x x +-.\19.已知,2παπ⎛⎫∈⎪⎝⎭,且1sin 3α=..1)求sin 2α的值;(2)若()3sin 5αβ+=-.0,2πβ⎛⎫∈ ⎪⎝⎭,求sin β的值.]20.已知函数()sin cos cos sin 22x x x x f x ππ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭,x ∈R . (1)求12f π⎛⎫⎪⎝⎭的值; (2)求函数()f x 的单调递增区间.~21.已知函数2(cos cos f x x x x +. "(Ⅰ)求()f x 的最小正周期.(Ⅰ)求()f x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上的最大值和最小值.—22.设函数f(x)=2cosx(cosx+√3sinx)(x∈R). (1)求函数y=f(x)的周期和单调递增区间;#]时,求函数f(x)的最大值.(2)当x∈[0,π2参考答案1.B 【解析】试题分析:sin cos tan 11,tan 3sin cos tan 12ααααααα++===---,22tan 63tan 21tan 84ααα-===--. 考点:三角恒等变形、诱导公式、二倍角公式、同角三角函数关系. 2.B 【解析】 【分析】由余弦的二倍角公式可得结果. 【详解】由余弦的二倍角公式得 212sin 22.5cos 452-︒=︒=故选:B 【点睛】本题考查余弦二倍角公式的应用,属于简单题. 3.C 【解析】 【详解】试题分析:1sin cos 2αα+=,(0,)απ∈,3,24ππα⎛⎫∴∈ ⎪⎝⎭32,2παπ⎛⎫∴∈ ⎪⎝⎭,sin 44πα⎛⎫+= ⎪⎝⎭,cos 44πα⎛⎫∴+=- ⎪⎝⎭cos 2sin 22sin cos 224444πππαααα⎛⎛⎫⎛⎫⎛⎫=+=++=⨯-= ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭考点:二倍角公式的运用,同角三角函数间的关系. 4.B 【解析】 【分析】利用诱导公式、两角差的正弦公式和二倍角公式进行化简,求得表达式的值. 【详解】13cos80-13sin10=-cos103sin10-=()2sin 3010sin10cos10-=2sin 2041sin 202==. 故选:B 【点睛】本小题主要考查三角恒等变换,主要是诱导公式、两角差的正弦公式和二倍角公式的应用,考查化归与转化的数学思想方法,属于基础题.5.A 【解析】 【分析】由已知利用同角三角函数基本关系式可求cos α的值,进而根据两角和的余弦函数公式,特殊角的三角函数值即可计算得解. 【详解】解:3sin 5α=, ,22ππα⎛⎫∈- ⎪⎝⎭,4cos 5α∴==,)5cos cos sin 4210πααα⎛⎫∴+=--=- ⎪⎝⎭. 故选:A . 【点睛】本题主要考查了同角三角函数基本关系式,两角和的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题. 6.D 【解析】本题考查三角恒等变形式以及转化与化归的数学思想.因为221sin cos sin cos 1tan 41tan cos sin sin cos sin 22θθθθθθθθθθθ++=+===,所以.1sin 22θ=. 【点评】本题需求解正弦值,显然必须切化弦,因此需利用公式sin tan cos θθθ=转化;另外,22sin cos θθ+在转化过程中常与“1”互相代换,从而达到化简的目的;关于正弦、余弦的齐次分式,常将正弦、余弦转化为正切,即弦化切,达到求解正切值的目的. 体现考纲中要求理解三角函数的基本关系式,二倍角公式.来年需要注意二倍角公式的正用,逆用等 7.A 【解析】 【分析】把三角函数式整理变形,变为()()sin f x A x =+ωϕ的形式,再用周期公式求出最小正周期. 【详解】()sin cos f x x x =+sin 22x x ⎫=+⎪⎪⎭4x π⎛⎫=+ ⎪⎝⎭,2T π∴=.故选:A. 【点睛】本小题主要考查辅助角公式,考查三角函数最小正周期的求法,属于基础题. 8.B 【解析】 【分析】利用降次公式化简()f x ,由此求出函数的最小正周期和最大值. 【详解】 依题意()1cos 21cos 2332cos 2422x x f x x +-=⨯-+=+,故最小正周期为2ππ2T ==,最大值为246+=,所以本小题选B. 【点睛】本小题主要考查降次公式,考查三角函数的最小正周期,考查三角函数的最大值的求法,属于基础题. 9.C 【解析】 【分析】直接利用降幂公式和诱导公式化简求值. 【详解】2cos +24απ⎛⎫= ⎪⎝⎭21cos()1sin 1322223παα++-===.故答案为:C. 【点睛】(1)本题主要考查降幂公式和诱导公式,意在考查学生对这些知识的掌握水平.(2)降幂公式:221cos 1cos sin ,cos 2222αααα-+==,这两个公式要记准,不要记错了. 10.C 【解析】分析:利用余弦的差角公式将cos 6x π⎛⎫-= ⎪⎝⎭展开,1sin 2x x += ,将cos cos 3x x π⎛⎫+-⎪⎝⎭展开合并化简,即可求出值.详解:∵cos 63x π⎛⎫-= ⎪⎝⎭1sin 2x x +=∵3cos cos cos 32x x x x π⎛⎫+-= ⎪⎝⎭1cos sin 22x x ⎫=+⎪⎪⎭13⎛⎫=-=- ⎪ ⎪⎝⎭所以选C点睛:本题考查了余弦差角公式的应用,主要注意符号的变化,属于简单题. 11.A 【解析】 【分析】根据α,β的范围,得到αβ+和αβ-的范围,结合条件,得到()sin αβ+和()cos αβ-,由()()sin2sin ααβαβ⎡⎤=++-⎣⎦,根据两角和的正弦公式,得到答案. 【详解】α,β均是锐角,且αβ<()0,αβπ∴+∈,,02παβ⎛⎫-∈- ⎪⎝⎭()3cos 5αβ+=, ()4sin 5αβ∴+==,()12sin 13αβ-=-,()5cos 13αβ∴-==, ∴()()sin2sin ααβαβ⎡⎤=++-⎣⎦()()()()sin cos cos sin αβαβαβαβ=+-++-45312513513⎛⎫=⨯+⨯- ⎪⎝⎭1665=-故选:A. 【点睛】本题考查同角三角函数关系,两角和的正弦公式,属于简单题. 12.B 【解析】依题意有:tanθ+cosθsinθ=1sinθcosθ=2.点睛:本题主要考查:同角三角函数的基本关系,是个简单题,主要要熟记两个同角三角函数的基本关系,即:tanθ=sinθcosθ和sin 2θ+cos 2θ=1.在运算过程中,主要采用的是切化弦的方法,即遇到正切,一般情况下是化为正弦和余弦来化简,化简过程中要注意通分和合并同类项,有时候还要结合二倍角公式来考虑. 13.23【解析】试题分析:21cos 21cos 21sin 2222cos 42223ππααπαα⎛⎫⎛⎫+-+- ⎪ ⎪+⎛⎫⎝⎭⎝⎭-==== ⎪⎝⎭.考点:1余弦的二倍角公式;2诱导公式. 14.310【解析】 【分析】利用二倍角公式将sin 2α化简,再把分母看做22sin cos αα+,分子分母同时除以2cos α,即可求得. 【详解】tan 3α=,22sin sin 2sin 2cos sin ααααα-=-222sin 2cos sin cos sin ααααα-=+ 22tan 2tan tan 1ααα-=+ 9691-=+ 310=. 故答案为:310. 【点睛】本题主要考查的是二倍角正弦公式的应用,以及同角三角函数基本关系式的应用,熟练掌握和应用这些公式是解决本题的关键,是基础题.15.【解析】 【分析】 由tan(α+β)=tanα+tanβ1−tanαtanβ可得tanαtanβ=1−tanα+tanβtan(α+β),从而可得结果.【详解】 因为tan(α+β)=tanα+tanβ1−tanαtanβ,tanα+tanβ=2, tan(α+β)=4,所以tanαtanβ=1−tanα+tanβtan(α+β)=1−24=12,故答案为12.【点睛】三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.16.112-【解析】()25tan αβ-=-,()25tan βα∴-=()()()()211522tan 21112152tan tan tan tan tan βααβαβααβαα---⎡⎤-=--===-⎣⎦+-⨯+⨯ 17.(I )()f x 的最小正周期为π,最大值为1;(II )5[,]612ππ.【解析】试题分析:(I )利用三角恒等变换的公式,化简()sin(2)3f x x π=-,即可求解()f x 的最小正周期和最大值;(II )由()f x 递增时,求得51212k x k ππππ-≤≤+()k Z ∈,即可得到()f x 在5[,]612ππ上递增.试题解析:1cos 2()-cos )(sin )2x f x x x +=⋅-+(1sin 22sin(2)23x x x π==- (I )()f x 的最小正周期为π,最大值为1; (II ) 当()f x 递增时,222? ()232k x k k Z πππππ-≤-≤+∈,即51212k x k ππππ-≤≤+()k Z ∈, 所以,()f x 在5[,]612ππ上递增 即()f x 在2[,]63ππ上的单调递增区间是5[,]612ππ 考点:三角函数的图象与性质. 18.(1)-1;(2)165- 【解析】 【分析】(1)由题意可得1tan 3x =-,将原式化为含tan x 的表达式,代入可得答案;(2)将原式化为含tan x 的表达式,代入1tan 3x =-可得答案. 【详解】解:由题意得:3sin cos 0x x +=,可得1tan 3x =-,可得(1)533cos 5sin 35tan 311sin cos tan 113x x x x x x -++===-----; (2)222222sin 2sin cos 3cos sin 2sin cos 3cos sin cos x x x xx x x x x x+-+-=+222211()2()3tan 2tan 316331tan 15()13x x x -+⨯--+-===-+-+【点睛】本题主要考查三角恒等变化,相对简单,得出1tan 3x =-代入各式子是解题的关键.19.(1) .. 【解析】 【详解】分析:(1)根据正弦的二倍角公式求解即可;(2)由()βαβα=+-,然后两边取正弦计算即可.详解:(Ⅰ)2(,)παπ∈,且1sin 3α=,cos α∴=,-------2分于是 sin22sin cos 9ααα==-; (Ⅱ),2παπ⎛⎫∈⎪⎝⎭,02πβ∈(,),322(,)παβπ∴+∈,结合()3sin 5αβ+=-得:()4cos 5αβ+=-, 于是()()()sin sin sin cos cos sin βαβααβααβα⎡⎤=+-=+-+⎣⎦3414535315⎛+⎛⎫=-⋅---⋅= ⎪ ⎝⎭⎝⎭. 点睛:考查二倍角公式,同角三角函数关系,三角凑角计算,对于()βαβα=+-的配凑是解第二问的关键,属于中档题.20.(1)122f π⎛⎫=-⎪⎝⎭(2)(),2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦. 【解析】 【分析】先根据诱导公式及降幂公式化简得()f x cos2x =-;(1)代入求值即可;(2)由222,k x k k Z πππ≤≤+∈即可解出答案. 【详解】解:()sin cos cos sin 22x x x x f x ππ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭22sin cos x x =-cos2x =-;(1)cos 1262f ππ⎛⎫=-=-⎪⎝⎭; (2)由222,k x k k Z πππ≤≤+∈得,,2k x k k Z πππ≤≤+∈,∴函数()f x 的单调递增区间是(),2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦. 【点睛】本题主要考查三角函数的化简与性质,属于基础题. 21.(Ⅰ)π(Ⅰ)最大值和最小值分别是32,0. 【解析】试题分析:(1)将()2cos cos f x x x x =+通过降幂公式、辅助角公式化简为()π1sin 262f x x ⎛⎫=++ ⎪⎝⎭,得到周期;(2)通过整体思想,得到ππ5π2,666x ⎡⎤+∈-⎢⎥⎣⎦,求得π1sin 2,162x ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,所以最大值和最小值分别是32,0. 试题解析:解:(Ⅰ)()2cos cos f x x x x +1cos22xx +=+π1sin 262x ⎛⎫=++ ⎪⎝⎭.(Ⅰ)Ⅰππ,63x ⎡⎤∈-⎢⎥⎣⎦, Ⅰππ5π2,666x ⎡⎤+∈-⎢⎥⎣⎦, Ⅰπ1sin 2,162x ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦, Ⅰ()30,2f x ⎧⎫∈⎨⎬⎩⎭,Ⅰ()f x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上的最大值和最小值分别是32,0.点睛:三角函数的化简需要对三角函数的二倍角公式(降幂公式)、辅助角公式熟悉应用,三角函数的性质考察通常利用整体思想解题,然后通过()sin f x x =的原始性质进行解题,得到对应的解。
天津市2016-2017学年高一数学必修4:第三章 章末测试 Word版含解析
2
2
12.函数 f(x)=sin3x+cos3x 的图像相邻两条对称轴之间的距离是________. 3π
答案: 2
2
2
2π
T 3π
解析:∵f(x)=sin3x+cos3x= 2sin(3x+4),∴其相邻两条对称轴之间的距离是2= 2 .
13.如图,四边形 ABCD 为矩形,且 AB=2,AD=1,延长 BA 至 E,使 AE=2,连接 EC、ED,则 tan∠CED=________.
A. 1-m2 B.- 1-m2
C. m2-1 D.- m2-1
3
2
答案:B
解析:∵sin(α-β)cosα-cos(α-β)sinα=m,∴sin(-β)=m,sinβ=-m,又∵β 为第三象
限角,∴cosβ=- 1-m2.
2
π1
π
8.已知 tan(α+β)=5,tan(β-4)=4,则 tan(α+4)等于( ) 1 13
解析:∵α∈(2,π),由同角基本关系易知 cosα=-5. sinα 3
tanα=cosα=-4.
4
π
2.若 cosα=-5,α 是第三象限的角,则 sin(α+4)的值为( ) 72 72
A.- 10 B. 10
2
2
C.-10 D.10
答案:A
4
3
解析:由题知,cosα=-5,α 是第三象限的角,所以 sinα=-5,由两角和的正弦公
11 1- · tan(∠AO3O1+∠BO3O6)= 2 3=1,又∵∠AO3O1,∠BO3O6∈(0,45°),
∴∠AO3O1+∠BO3O6=45°,∴∠AO3B=135°,同理根据对称性有∠AO4B=135°.
高中数学人教a高一必修4章末综合测评(第三章)_word版含解析
高中数学人教a高一必修4章末综合测评(第三章)_word版含解析章末综合测评(三)三角恒等变换(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知cos(α+β)+cos(α-β)=13,则cos αcos β的值为()A.12B.13C.14D.16【解析】由题意得:cos αcos β-sin αsin β+cos αcos β+sin αsin β=2cos αcos β=1 3,所以cos αcos β=1 6.【答案】 D2.已知tan(π+α)=2,则1sin αcos α等于()A.52B.75C.-52D.-75【解析】由tan(π+α)=2,得tan α=2,∴1sin αcos α=sin2α+cos2αsin αcos α=tan2α+1tan α=52.【答案】 A3.若tan α=2tan π5,则cos⎝⎛⎭⎪⎫α-3π10sin⎝⎛⎭⎪⎫α-π5=()【导学号:00680080】A.1 B.2C .3D .4【解析】 ∵cos ⎝ ⎛⎭⎪⎫α-3π10=cos ⎝ ⎛⎭⎪⎫α+π5-π2=sin ⎝ ⎛⎭⎪⎫α+π5,∴原式=sin ⎝⎛⎭⎪⎫α+π5sin ⎝⎛⎭⎪⎫α-π5=sin αcos π5+cos αsin π5sin αcos π5-cos αsinπ5=tan α+tanπ5tan α-tanπ5.又∵tan α=2tan π5,∴原式=2tanπ5+tan π52tan π5-tanπ5=3.【答案】 C 4.2cos 10°-sin 20°cos 20°的值为( )A . 3B .62C .1D .12【解析】 原式=2cos (30°-20°)-sin 20°cos 20°=2(cos 30°cos 20°+sin 30°sin 20°)-sin 20°cos 20°=3cos 20°cos 20°= 3.【答案】 A 5.cos 4π8-sin 4π8等于( ) A .0 B .22C .1D .-22【解析】 原式=⎝ ⎛⎭⎪⎫cos 2π8-sin 2π8⎝⎛⎭⎪⎫cos 2π8+sin 2π8=cos 2π8-sin 2π8=cos π4=22. 【答案】 B6.已知函数y =tan(2x +φ)的图象过点⎝ ⎛⎭⎪⎫π12,0,则φ的值可以是( ) A .-π6B .π6C .-π12D .π12【解析】 由题得tan ⎝ ⎛⎭⎪⎫2×π12+φ=0,即tan ⎝ ⎛⎭⎪⎫π6+φ=0,π6+φ=k π,k ∈Z , φ=k π-π6,k ∈Z , 当k =0时,φ=-π6,故选A .【答案】 A7.若θ∈⎝⎛⎭⎪⎫0,π2,sin θ-cos θ=22,则cos 2θ等于( )A .32 B .-32C .±32D .±12【解析】 由sin θ-cos θ=22两边平方得,sin 2θ=12, 又θ∈⎝⎛⎭⎪⎫0,π2,且sin θ>cos θ,所以π4<θ<π2,所以π2<2θ<π, 因此,cos 2θ=-32,故选B .【答案】 B8.已知sin ⎝ ⎛⎭⎪⎫π4-x =45,则sin 2x 的值为( ) A .1925B .725C .1425D .-725【解析】 sin 2x =cos ⎝ ⎛⎭⎪⎫π2-2x =cos 2⎝ ⎛⎭⎪⎫π4-x=1-2sin 2⎝ ⎛⎭⎪⎫π4-x =1-2×⎝ ⎛⎭⎪⎫452=-725.【答案】 D9.已知cos ⎝⎛⎭⎪⎫x +π6=35,x ∈(0,π),则sin x 的值为( )A .-43-310B .43-310C .12D .32【解析】 由cos ⎝⎛⎭⎪⎫x +π6=35,且0<x <π,得π6<x +π6<π2, 所以sin ⎝⎛⎭⎪⎫x +π6=45,所以sin x =sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +π6-π6 =sin ⎝ ⎛⎭⎪⎫x +π6cos π6-cos ⎝⎛⎭⎪⎫x +π6sin π6=45×32-35×12=43-310. 【答案】 B10.函数y =sin x +cos x +2⎝⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最小值是( ) A .2- 2 B .2+ 2 C .3D .1【解析】 由y =2sin ⎝ ⎛⎭⎪⎫x +π4+2,且0≤x ≤π2,所以π4≤x +π4≤34π,所以22≤sin ⎝⎛⎭⎪⎫x +π4≤1,所以3≤y ≤2+2. 【答案】 C11.已知函数f (x )=3sin w x +cos w x (w >0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( ) A .π2B .2π3C .πD .2π【解析】 由曲线f (x )=2sin ⎝ ⎛⎭⎪⎫w x +π6与y =1交点中相邻交点最小值为π3正好等于f (x )的周期的13倍,设f (x )的最小正周期为T ,则13T =π3,故有T =π.【答案】 C12.已知a =(sin α,1-4cos 2α),b =(1,3sin α-2),α∈⎝⎛⎭⎪⎫0,π2,若a ∥b ,则tan ⎝ ⎛⎭⎪⎫α-π4=( ) A .17B .-17C .27D .-27【解析】 因为a ∥b ,所以有sin α(3sin α-2)-(1-4cos 2α)=0, 即3sin 2 α-2sin α-1+4cos 2α=0 ⇒5sin 2 α+2sin α-3=0,解得sin α=35或-1,又α∈⎝⎛⎭⎪⎫0,π2,所以sin α=35,cos α=45,tan α=34,所以tan ⎝⎛⎭⎪⎫α-π4=tan α-11+tan α=34-11+34=-17.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,请将答案填在题中的横线上) 13.函数f (x )=sin x -3cos x (x ∈R )的最小正周期为________,最大值为________.【解析】 因为f (x )=2sin ⎝⎛⎭⎪⎫x -π3,所以f (x )=2sin ⎝⎛⎭⎪⎫x -π3的最小正周期为T =2π,最大值为2.【答案】 2π 2 14.tan ⎝⎛⎭⎪⎫π6-θ+tan ⎝ ⎛⎭⎪⎫π6+θ+3tan ⎝ ⎛⎭⎪⎫π6-θ·tan ⎝ ⎛⎭⎪⎫π6+θ的值是________. 【解析】 ∵tan π3=tan ⎝ ⎛⎭⎪⎫π6-θ+π6+θ=tan ⎝⎛⎭⎪⎫π6-θ+tan ⎝ ⎛⎭⎪⎫π6+θ1-tan ⎝ ⎛⎭⎪⎫π6-θtan ⎝ ⎛⎭⎪⎫π6+θ=3,∴3=tan ⎝ ⎛⎭⎪⎫π6-θ+tan ⎝ ⎛⎭⎪⎫π6+θ+ 3tan ⎝⎛⎭⎪⎫π6-θtan ⎝ ⎛⎭⎪⎫π6+θ.【答案】 315.已知tan α=-2,tan(α+β)=17,则tan β的值为________.【解析】 tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=17-(-2)1+17×(-2)=3.【答案】 316.已知A ,B ,C 皆为锐角,且tan A =1,tan B =2,tan C =3,则A +B +C 的值为________.【解析】 因为tan(A +B )=tan A +tan B 1-tan A tan B =1+21-2=-3<0,①又0<A <π2,0<B <π2,∴0<A +B <π,② 由①②知,π2<A +B <π,又tan[(A +B )+C ]=tan (A +B )+tan C 1-tan (A +B )tan C =-3+31-(-3)×3=0,又∵0<C <π2,∴π2<A +B +C <32π, ∴A +B +C =π. 【答案】 π三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值. 【解】 (1)因为f (x )=sin x +3cos x -3=2sin ⎝⎛⎭⎪⎫x +π3-3,所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3,所以π3≤x +π3≤π. 当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值为f ⎝ ⎛⎭⎪⎫2π3=- 3. 18.(本小题满分12分)已知锐角α,β满足tan(α-β)=sin 2β,求证:tan α+tan β=2tan 2β.【证明】 因为tan(α-β)=sin 2β, tan(α-β)=tan α-tan β1+tan αtan β,sin 2β=2sin βcos β=2sin βcos βsin 2β+cos 2β=2tan β1+tan 2β,所以tan α-tan β1+tan αtan β=2tan β1+tan 2β,整理得:tan α=3tan β+tan 3β1-tan 2β.所以tan α+tan β=3tan β+tan 3β+tan β-tan 3β1-tan 2β=2×2tan β1-tan 2β=2tan 2β. 19.(本小题满分12分)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值;(2)讨论f (x )在⎣⎢⎡⎦⎥⎤π6,2π3上的单调性. 【解】 (1)f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x=cos x sin x -32(1+cos 2x )=12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎪⎫2x -π3-32,因此f (x )的最小正周期为π,最大值为2-32. (2)当x ∈⎣⎢⎡⎦⎥⎤π6,2π3时,0≤2x -π3≤π,从而 当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增,当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎢⎡⎦⎥⎤π6,5π12上单调递增;在⎣⎢⎡⎦⎥⎤5π12,2π3上单调递减. 20.(本小题满分12分)已知函数f (x )=sin 2x -sin 2⎝⎛⎭⎪⎫x -π6,x ∈R .(1)求f (x )的最小正周期; (2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值和最小值. 【解】 (1)由已知,有f (x )=1-cos 2x2-1-cos ⎝⎛⎭⎪⎫2x -π32=12⎝ ⎛⎭⎪⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x =12sin ⎝ ⎛⎭⎪⎫2x -π6. 所以f (x )的最小正周期T =2π2=π. (2)因为f (x )在区间⎣⎢⎡⎦⎥⎤-π3,-π6上是减函数,在区间⎣⎢⎡⎦⎥⎤-π6,π4上是增函数,且f ⎝ ⎛⎭⎪⎫-π3=-14,f ⎝ ⎛⎭⎪⎫-π6=-12,f ⎝ ⎛⎭⎪⎫π4=34,所以f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值为34,最小值为-12. 21.(本小题满分12分)陵中学第四次模拟)如图1所示,已知α的终边所在直线上的一点P 的坐标为(-3,4),β的终边在第一象限且与单位圆的交点Q 的纵坐标为210.图1(1)求tan(2α-β)的值; (2)若π2<α<π,0<β<π2,求α+β. 【解】 (1)由三角函数的定义知tan α=-43,∴tan 2α=2×⎝ ⎛⎭⎪⎫-431-⎝ ⎛⎭⎪⎫-432=247.又由三角函数线知sin β=210,∵β为第一象限角,∴tan β=17,∴tan(2α-β)=247-171+247×17=16173.(2)∵cos α=-35,∵π2<α<π,0<β<π2,∴π2<α+β<3π2. ∵sin(α+β)=sin αcos β+cos αsin β=45×7210-35×210=22.又∵π2<α+β<3π2,∴α+β=3π4. 22.(本小题满分12分)已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎪⎫5π4的值; (2)求函数f (x )的最小正周期及单调递增区间. 【解】 法一:(1)f ⎝⎛⎭⎪⎫5π4第11页 共11页 =2cos 5π4⎝ ⎛⎭⎪⎫sin 5π4+cos 5π4 =-2cos π4⎝ ⎛⎭⎪⎫-sin π4-cos π4=2. (2)因为f (x )=2sin x cos x +2cos 2 x=sin 2x +cos 2x +1=2sin ⎝⎛⎭⎪⎫2x +π4+1, 所以T =2π2=π,故函数f (x )的最小正周期为π. 由2k π-π2≤2x +π4≤2k π+π2,k ∈Z , 得k π-3π8≤x ≤k π+π8,k ∈Z . 所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z . 法二:f (x )=2sin x cos x +2cos 2 x=sin 2x +cos 2x +1=2sin ⎝⎛⎭⎪⎫2x +π4+1. (1)f ⎝ ⎛⎭⎪⎫5π4=2sin 11π4+1=2sin π4+1=2. (2)因为T =2π2=π,所以函数f (x )的最小正周期为π. 由2k π-π2≤2x +π4≤2k π+π2,k ∈Z , 得k π-3π8≤x ≤k π+π8,k ∈Z . 所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z .。
高一数学必修4第三章综合检测题
第三章综合检测题、选择题(本大题共12个小题,每小题5分,共60分)1. si门2右一cos2;n的值为(C )B.2 D. ,3~2[解析]原式=-(cos2^- sin^F - cos62.函数f(x)= sin2x—cos2x的最小正周期是(B )nA.q3 B . n C . 2 n D . 4 n[解析]f(x) = sin2x—cos2x= , 2sin(2x—4),故T=今=冗13.已知cos 0= 3,(0,n )则cos(32 + 2 0 = ( C )4;29D.9[解析]cos(3n + 2 0= sin2 A 2sin 0os0= 2X 屮3=普44.若tan a= 3, ta n B= 3,则tan (a— 3 等于(D )C. 3D.13 —4tan a—tan 3 3 1[解析]tan(a—®=■—o= = 3.1 + tan dt an B〔+ 3X4 335. COS275°+COS215°+COS75°C OS15的值是(A )5 6 3 2A.4B.〒eq D. 1 +可2 21 5 [解析]原式=sin215°+ cos 15° + sin15 6os15°= 1 + ?sin30 = 4.6. y= cos2x—sin2x+ 2sinxcosx的最小值是(B )A. 2 B2 C. 2 D2_ n _[解析]y= cos2x+ si n2x= 2si n( 2x+ 4),.,.y max=— 2.7.若tan a= 2, tan(B— M= 3,贝U tan(B—2 0)= ( D )A. —1B. —5C.7D.1tan p- a—tan a 3 —2 i[解析]tan( p—2 a = tan[( p— a) —a = = =千1 + tan p—a tan a 1 + 68.已知点P(cos a, sin M, Q(cos p, sin®,贝U |PQ| 的最大值是(B )A. 2[解析] PQ = (cos® —cos a, sin p—si n a ,贝U |PQ| = p cos®—cos a2+ sin p- sin a2='2—2cos a— p,故|PQ|的最大值为2.cos2x+ sin2x”^「十厂9.函数y= cos2x —sin2x的最小正周期为(C )n nA. 2 nB. nC.qD.41 + tan2x n n[解析]y= =tan(2x+ 4),.T=2.1 —tan2x 4 210. 若函数f(x) = sin2x —*x€ R),则f(x)是(D )A .最小正周期为訓勺奇函数B .最小正周期为n的奇函数C.最小正周期为2 n的偶函数 D .最小正周期为n的偶函数1 12 12[解析]f(x)= sin2x—2= —2(1 —2sin2x) = —^cos2x,.f(x)的周期为n的偶函数.n11. y= sin(2x —3)—sin2x 的一个单调递增区间是(B )n n n 7^ r 5 1^ _ _ _ n 5 nA . [—6, 3] B.[石,石n]c.[匚n 石n ] D . [3,石!5 n n n n n[解析] y = sin(2x — 3) — sin2x = sin2xcos^ — coshes% — sin2x =- (sin2xcos^ + cos2xsin^)=—sin(2x + 3),其增区间是函数y = sin(2x +3)的减区间,即2k n+㊁三2x + 3W 2k n+~2,「k nn7 n 「 r 「 n 7 n+12= x <k n+12,当 k = 0 时,x € [乜,乜].12. 已知 sin(a+ 3 = 2,sin(a- 3 = £,则 log • 5(器 等于 (C . 41 sin a os 3+ cos a in 23得 1sin a os 3— cos a in 3= 313. (1+ tan 17 )(1 + tan28 °tan 17 ° tan28[解析] 原式=1 + tan 17 + tan28 °tan 17 °tan28 ;又 tan(17 +28°) = ------------- =1 — tan17 )an28 0 tan45 = 1,Atan17 + tan28 = 1— tan 17 °tan28 )14. (2012全国高考江苏卷)设a 为锐角,若cosn a+6=5,贝U sin 2 a+ 的值为弋^2.n n 2 n n [解析]Ta 为锐角,.「6<a+ 6<3,v cos a- 6 =4 5, n 3 sin a+ 6 = 5;n n n 24.••sin 2 a+ 3 = 2sin a+ 6 cos a+ 6 = 25,n n 2 .2 n 7cos(2 a+ 3) = cos( a+ g) 一 sin ( a+ g) =25 . n n n . n .•sin 2 a+ 12 = sin 2 + 3— 4 = sin 2 a — 3 ncos4—cosc n . n 1A /2 2a+3 sin 4= 50 .115.已知 cos2a= 3,贝U sin 4 a+ cos 4a=[解析]由sin(a+ 3 = 2, sin(a- a 5sin ocos 3=12.tan a 1,• °tan 3cos a i n 3=徨=5,「•log ‘5(眯沪 g 552 = 4.、填空题(本大题共4个小题, 每小题5分,共20分)代入原式可得结果为2.521 2 2 2[解析]cos2o a 2cos a—1= 3 得cos a 3,由cos2o a 1 —2s in a得sin2a 3(或据sin2a2 2 1 , + cos a 1得Sin a= 3),代入计算可得.3 1 n n16.设向量a=(刃sin0, b= (cos0 3),其中0€ (0,刃,若a / b,贝U 0= ___41 n [解析]若a//b,贝U sin 0cos A2,即卩2sin(Cos B= 1 ,:sin2 A1,又(0,㊁),n 4.三、解答题(本大题共6个小题,共70分,写出文字说明,证明过程或演算步骤3 - 3 sin2 a+ 2sin a,17.(本题满分10分)已知cos a—sin a= 5^,且na^n 求—1 —t an a—的值.[解析]因为cos a—sin aa%"2,所以1 —2si n a cos a=卷,所以2si n«cos a= £又a€ ( n "2),故sin a+ CoS a=-冷 1 + 2sin0cos a= —誉,2 2sin2 a+ 2sin a 2sin a cos a+ 2sin a cos a 2sin a cos a cos a+ sin a所以=1 —tan a COS a—sin a COS a—sin aZ x4/225x一 55 28 75.18.(本题满分12分)设x€ [0 , 3],求函数y= cos(2x-3) + 2sin(x—力的最值.n n n n[解析]y = cos(2x—3) + 2si n(x—6)= cos2(x—6)+ 2sin(x—石)2n n n 1 2 3=1 —2sin (x—舌)+ 2sin(x —6)= —2[sin(x—$) —2 + 21 1 3 1 • x€ [0 , 3], —x—g[一6,6].• °sin(x—g) € [一?, 2] ,^ymax a2,ymin= —2*19.(本题满分12分)已知tan2a2tan2a+ 1,求证:cos20+ sin2a= 0.十卄2cos20- sin20 2 1 —tan20 2—2tan2a[证明] cos2 0+ sin a= 2 2 + sin a= 2 + sin a= 2cos20+ sin20 1 + tan20 1 + 2tan2a+ 1+ si n2a=.2—sin a 2 + sin a= COS a+ Sin a 2 o—sin a+ sin a 0.3x . 3xx . x »亠12分)已知向量 a = (cos^, sin_2), b = (co^,— sin^), c = (.3— 1),其中 x €R.(1)当a 丄b 时,求x 值的集合; ⑵求a —ci 的最大值.3x x 3x xk n n [解析](1)由 a 丄b 得 a b = 0,即卩 cos^cos^ —sin-^sin^a 0,贝Ucos2x = 0,得x a ^ + 4(kk n n€ Z), Ax 值的集合是{x|x = 2 + 4, « Z}.2 3x1- 2 3x 2 o 3x t -3x o 3x 3x(2)|a — c| = (cos 刁—.3) + (sin_2 + 1) = cos"^ — 2.3cos^ + 3+ sin + 2sin^ + 1=5+ 2sin^x —2 ,3。
高一数学人教A版必修四练习:第三章 三角恒等变换3 阶段质量评估 含解析
(本栏目内容,在学生用书中以独立形式分册装订)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin 2π12-cos 2π12的值为( ) A .-12B.12 C .-32D.32解析: 原式=-⎝ ⎛⎭⎪⎫cos 2π12-sin 2π12=-cos π6=-32.答案: C 2.若sin ⎝⎛⎭⎫π6-α=13,则cos ⎝⎛⎭⎫2π3+2α等于( ) A .-79B .-13C.13D.79解析: cos ⎝⎛⎭⎪⎫2π3+2α=cos ⎣⎢⎡⎦⎥⎤π-2⎝ ⎛⎭⎪⎫π6-α =-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π6-α=2sin 2⎝ ⎛⎭⎪⎫π6-α-1=-79.答案: A3.已知sin α=35且α∈⎝⎛⎭⎫π2,π,那么sin 2αcos 2α的值等于( )A .-34B.34 C .-32D.32解析: ∵sin α=35,α∈⎝ ⎛⎭⎪⎫π2,π,∴cos α=-45,∴tan α=-34.∴sin 2αcos 2α=2sin αcos αcos 2α=2tan α=-32.答案: C4.函数f (x )=sin 2x -cos 2x 的最小正周期是( ) A.π2 B .π C .2πD .4π解析: f (x )=sin 2x -cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π4,故T =2π2=π.答案: B5.若tan α=3,tan β=43,则tan (α-β)等于( )A .-3B .-13C .3D.13 解析: tan(α-β)=tan α-tan β1+tan αtan β=3-431+3×43=13.答案: D6.已知点P (cos α,sin α),Q (cos β,sin β),则|PQ →|的最大值是( ) A. 2 B .2 C .4D.22解析: PQ →=(cos β-cos α,sin β-sin α),则|PQ →|=(cos β-cos α)2+(sin β-sin α)2 =2-2cos (α-β),故|PQ →|的最大值为2.答案: B7.下列函数为奇函数的是( ) A .y =2cos 2πx -1 B .y =sin 2πx +cos 2πx C .y =tanπx 2+1 D .y =sin πx cos πx解析: 对于A ,y =2cos 2πx -1=cos 2πx 是偶函数;对于B ,y =sin 2πx +cos 2πx =2sin ⎝ ⎛⎭⎪⎫2πx +π4是非奇非偶函数;对于C ,y =tan πx2+1是非奇非偶函数;对于D ,y =sin πx cos πx =12sin 2πx 是奇函数.故选D.答案: D8.在△ABC 中,A =15°,则3sin A -cos(B +C )的值为( ) A.22B.32C. 2D .2解析: ∵A +B +C =π,∴原式=3sin A -cos (π-A )=3sin A +cos A =2sin(A +30°) =2sin(15°+30°)=2sin 45°= 2. 答案: C9.已知A ,B ,C 是△ABC 的三个内角,设f (B )=4sin B ·cos 2⎝⎛⎭⎫π4-B2+cos 2B ,若f (B )-m <2恒成立,则实数m 的取值范围是( )A .m <1B .m >-3C .m <3D .m >1解析: f (B )=4sin B cos 2⎝ ⎛⎭⎪⎫π4-B 2+cos 2B=4sin B 1+cos ⎝ ⎛⎭⎪⎫π2-B 2+cos 2B=2sin B (1+sin B )+(1-2sin 2B ) =2sin B +1.∵f (B )-m <2恒成立,即m >2sin B -1恒成立. ∵0<B <π,∴0<sin B ≤1. ∴-1<2sin B -1≤1,故m >1. 答案: D10.函数y =cos 2x +2a sin x 在区间⎣⎡⎦⎤-π6,π上的最大值为2,则实数a 的值为( )A .1或-54B .-54C.54D .1或54解析: 因为y =cos 2x +2a sin x =1-sin 2x +2a sin x =-(sin x -a )2+a 2+1. 令t =sin x ⎝ ⎛⎭⎪⎫-π6≤x ≤π,故t ∈⎣⎡⎦⎤-12,1,f (t )=y =-(t -a )2+a 2+1⎝⎛⎭⎫t ∈⎣⎡⎦⎤-12,1. 当a ≤-12时,f (t )在⎣⎡⎦⎤-12,1单调递减,所以[f (t )]max =f ⎝⎛⎭⎫-12=-⎝⎛⎭⎫-12-a 2+a 2+1=34-a =2,此时a =-54<-12,符合要求;当-12<a <1时,f (t )在⎣⎡⎦⎤-12,a 单调递增,在[a ,1]单调递减,故[f (t )]max =f (a )=a 2+1=2,解得a =±1∉⎝⎛⎭⎫-12,1舍去;当a ≥1时,f (t )在⎣⎡⎦⎤-12,1单调递增,所以[f (t )]max =f (1)=-(1-a )2+a 2+1=2a =2,解得a =1∈[1,+∞),符合要求.综上可知,a =1或a =-54,故选A.答案: A二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.设向量a =⎝⎛⎭⎫32,sin θ,b =⎝⎛⎭⎫cos θ,13,其中θ∈⎝⎛⎭⎫0,π2,若a ∥b ,则θ=________. 解析: 若a ∥b ,则sin θcos θ=12,即2sin θcos θ=1,∴sin 2θ=1,又θ∈⎝ ⎛⎭⎪⎫0,π2,∴θ=π4.答案:π412.若tan ⎝⎛⎭⎫α+π4=3+22,则1-cos 2αsin 2α=________.解析: 由tan ⎝⎛⎭⎪⎫α+π4=1+tan α1-tan α=3+22,得tan α=22,∴1-cos 2αsin 2α=2sin 2 α2sin αcos α=tan α=22.答案:2213.tan 10°+tan 50°+3tan 10°tan 50°=________.解析: ∵tan 60°=tan(10°+50°)=tan 10°+tan 50°1-tan 10°tan 50°,∴tan 60°(1-tan 10°tan 50°)=tan 10°+tan 50°, 即3-3tan 10°tan 50°=tan 10°+tan 50°, ∴3=tan 10°+tan 50°+3tan 10°tan 50°. 答案:314.已知sin ⎝⎛⎭⎫x +π6=33,则sin ⎝⎛⎭⎫5π6-x +sin 2⎝⎛⎭⎫π3-x =________.解析: sin ⎝⎛⎭⎪⎫5π6-x +sin 2⎝ ⎛⎭⎪⎫π3-x =sin ⎣⎢⎡⎦⎥⎤π-⎝⎛⎭⎪⎫5π6-x +cos 2⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-x=sin ⎝ ⎛⎭⎪⎫x +π6+1-sin 2⎝ ⎛⎭⎪⎫x +π6=33+1-13=2+33. 答案:2+33三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)化简:2cos 2α-12tan ⎝⎛⎭⎫π4-αsin 2⎝⎛⎭⎫π4+α.解析: 方法一 原式=2cos 2α-12·sin ⎝ ⎛⎭⎪⎫π4-αcos ⎝ ⎛⎭⎪⎫π4-αsin 2⎝ ⎛⎭⎪⎫π4+α=2cos 2α-12·sin ⎝ ⎛⎭⎪⎫π4-αcos ⎝ ⎛⎭⎪⎫π4-αcos 2⎝ ⎛⎭⎪⎫π4-α=2cos 2α-1sin ⎝ ⎛⎭⎪⎫π2-2α=cos 2αcos 2α=1.方法二 原式=cos 2α2·1-tan α1+tan α⎝⎛⎭⎫22sin α+22cos α2=cos 2αcos α-sin αcos α+sin α(sin α+cos α)2=cos 2α(cos α-sin α)(cos α+sin α)=cos 2αcos 2α-sin 2α=cos 2αcos 2α=1.16.(本小题满分12分)已知cos ⎝⎛⎭⎫α-β2=-277,sin ⎝⎛⎭⎫α2-β=12且α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2.求:(1)cosα+β2;(2)tan(α+β).解析: (1)∵π2<α<π,0<β<π2,∴π4<α-β2<π,-π4<α2-β<π2. ∴sin ⎝⎛⎭⎫α-β2= 1-cos 2⎝⎛⎭⎫α-β2=217. cos ⎝ ⎛⎭⎪⎫α2-β= 1-sin 2⎝⎛⎭⎫α2-β=32. ∴cosα+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝ ⎛⎭⎪⎫α2-β =⎝⎛⎭⎫-277×32+217×12=-2114. (2)∵π4<α+β2<3π4,∴sinα+β2= 1-cos 2α+β2=5714.∴tanα+β2=sinα+β2cosα+β2=-533.∴tan(α+β)=2tanα+β21-tan 2α+β2=5311. 17.(本小题满分12分)设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎡⎦⎤0,π2.(1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值.解析: (1)由|a |2=(3sin x )2+(sin x )2=4sin 2x , |b |2=(cos x )2+(sin x )2=1, 及|a |=|b |,得4sin 2x =1.又x ∈⎣⎢⎡⎦⎥⎤0,π2,从而sin x =12,所以x =π6.(2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin ⎝⎛⎭⎪⎫2x -π6+12, ∵x ∈⎣⎡⎦⎤0,π2, ∴2x ∈[0,π], ∴2x -π6∈⎣⎢⎡⎦⎥⎤-π6,56π,当x =π3∈⎣⎢⎡⎦⎥⎤0,π2时,sin ⎝⎛⎭⎪⎫2x -π6取f (x )的最大值为1.所以f (x )的最大值为32.18.(本小题满分14分)设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎡⎦⎤π,3π2上的最大值和最小值.解析: (1)f (x )=32-3sin 2ωx -sin ωx cos ωx =32-3·1-cos 2ωx 2-12sin 2ωx =32cos 2ωx -12sin 2ωx =-sin ⎝⎛⎭⎪⎫2ωx -π3.∵图象的一个对称中心到最近的对称轴的距离为π4,又∵ω>0,∴2π2ω=4×π4,∴ω=1.(2)由(1)知,f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.当π≤x ≤3π2时,5π3≤2x -π3≤8π3.故-32≤sin ⎝⎛⎭⎪⎫2x -π3≤1. 故-1≤f (x )≤32. 故f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1.。
必修4 第三章 章末复习(含练习答案)
必修4 第三章章末复习学习目标1.进一步掌握三角恒等变换的方法.2.会运用正弦、余弦、正切的两角和与差的公式与二倍角公式对三角函数式进行化简、求值和证明.1.两角和与差的正弦、余弦、正切公式 cos(α-β)=cos_αcos_β+sin_αsin_β. cos(α+β)=cos_αcos_β-sin_αsin_β. sin(α+β)=sin_αcos_β+cos_αsin_β. sin(α-β)=sin_αcos_β-cos_αsin_β. tan(α+β)=tan α+tan β1-tan αtan β.tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角公式 sin 2α=2sin_αcos_α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan 2α=2tan α1-tan 2α.3.升幂缩角公式 1+cos 2α=2cos 2α. 1-cos 2α=2sin 2α. 4.降幂扩角公式sin x cos x =sin 2x2,cos 2x =1+cos 2x 2,sin 2x =1-cos 2x 2. 5.和差角正切公式变形tan α+tan β=tan(α+β)(1-tan_αtan_β), tan α-tan β=tan(α-β)(1+tan_αtan_β).6.辅助角公式y =a sin ωx +b cos ωx =a 2+b 2sin(ωx +θ).类型一 三角函数求值例1 (1)sin 110°sin 20°cos 2155°-sin 2155°的值为( )A .-12 B.12 C.32 D .-32考点 利用简单的三角恒等变换化简求值 题点 综合运用三角恒等变换公式化简求值 答案 B解析 原式=sin 70°sin 20°cos 310°=cos 20°sin 20°cos 50°=12sin 40°sin 40°=12. (2)已知α,β为锐角,cos α=45,tan(α-β)=-13,求cos β的值.考点 两角和与差的正切公式 题点 利用两角和与差的正切公式求角 解 ∵α是锐角,cos α=45,∴sin α=35,tan α=34.∴tan β=tan[α-(α-β)]=tan α-tan (α-β)1+tan αtan (α-β)=139.∵β是锐角,故cos β=91050.反思与感悟 三角函数的求值问题通常包括三种类型 给角求值,给值求值,给值求角.给角求值的关键是将要求角转化为特殊角的三角函数值;给值求值关键是找准要求角与已知角之间的联系,合理进行拆角、凑角;给值求角实质是给值求值,先求角的某一三角函数值,再确定角的范围,从而求出角. 跟踪训练1 已知α∈⎝⎛⎭⎫π2,π,sin α=55. (1)求sin ⎝⎛⎭⎫π4+α的值; (2)求cos ⎝⎛⎭⎫5π6-2α的值. 考点 利用简单的三角恒等变换化简求值 题点 综合运用三角恒等变换公式化简求值 解 (1)因为α∈⎝⎛⎭⎫π2,π,sin α=55, 所以cos α=-1-sin 2α=-255.故sin ⎝⎛⎭⎫π4+α=sin π4cos α+cos π4sin α =22×⎝⎛⎭⎫-255+22×55=-1010. (2)由(1)知sin 2α=2sin αcos α=2×55×⎝⎛⎭⎫-255=-45, cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫552=35, 所以cos ⎝⎛⎭⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α=⎝⎛⎭⎫-32×35+12×⎝⎛⎭⎫-45=-4+3310.类型二 三角函数式的化简与证明 例2 化简:2cos 4x -2cos 2x +122tan ⎝⎛⎭⎫π4-x sin 2⎝⎛⎭⎫π4+x .考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换公式化简求值 解 原式=-2sin 2x cos 2x +122sin ⎝⎛⎭⎫π4-x cos 2⎝⎛⎭⎫π4-x cos ⎝⎛⎭⎫π4-x=12(1-sin 22x )2sin ⎝⎛⎭⎫π4-x cos ⎝⎛⎭⎫π4-x =12cos 22x sin ⎝⎛⎭⎫π2-2x=12cos 2x . 反思与感悟 三角函数化简常用策略有:切化弦、异名化同名、降幂公式、1的代换等,化简的结果应做到项数尽可能少,次数尽可能低,函数名尽量统一.三角函数证明常用方法有:从左向右(或从右向左),一般由繁向简;从两边向中间,左右归一法;作差证明,证明“左边-右边=0”;左右分子、分母交叉相乘,证明差值为0等. 跟踪训练2 在△ABC 中,求证:sin A +sin B +sin C =4cos A 2cos B 2cos C2.考点 三角恒等式的证明 题点 三角恒等式的证明 证明 因为A +B +C =π, 所以C =π-(A +B ),C 2=π2-A +B2.因此sin A +sin B +sin C =2sin A +B 2·cos A -B 2+sin(A +B )=2sin A +B 2cos A -B 2+2sinA +B2cos A +B 2=2sin A +B 2⎝ ⎛⎭⎪⎫cos A -B 2+cos A +B 2=2sin A +B 2·2cos A 2·cos B 2=2cos C 2·2cos A2·cos B 2=4cos A 2·cos B 2·cos C 2.类型三 三角恒等变换与函数、向量的综合运用例3 设平面向量a =⎝⎛⎭⎫3sin x ,cos 2x -12,b =(cos x ,-1),函数f (x )=a ·b . (1)求f (x )的最小正周期,并求出f (x )的单调递增区间; (2)若锐角α满足f ⎝⎛⎭⎫α2=13,求cos ⎝⎛⎭⎫2α+π6的值.考点 简单的三角恒等变换的综合应用题点 简单的三角恒等变换与三角函数的综合应用解 (1)由题意得f (x )=a ·b =3sin x ·cos x +12-cos 2x =32sin 2x -12cos 2x =sin ⎝⎛⎭⎫2x -π6. ∴f (x )的最小正周期为π.由-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z .∴函数f (x )的单调递增区间为⎣⎡⎦⎤k π-π6,k π+π3,k ∈Z . (2)由(1)可得f ⎝⎛⎭⎫α2=sin ⎝⎛⎭⎫α-π6=13, ∵α为锐角, ∴-π6<α-π6<π3,∴cos ⎝⎛⎭⎫α-π6=1-sin 2⎝⎛⎭⎫α-π6=223,∴cos ⎝⎛⎭⎫2α+π6=cos ⎣⎡⎦⎤2⎝⎛⎭⎫α-π6+π2 =-sin 2⎝⎛⎭⎫α-π6=-2sin ⎝⎛⎭⎫α-π6·cos ⎝⎛⎭⎫α-π6 =-429.反思与感悟 三角函数与三角恒等变换综合问题,通常是通过三角恒等变换,如降幂公式,辅助角公式对三角函数式进行化简,最终化为y =A sin(ωx +φ)+k 或y =A cos(ωx +φ)+k 的形式,再研究三角函数的性质.当问题以向量为载体时,一般是通过向量运算,将问题转化为三角函数形式,再运用三角恒等变换进行求解.跟踪训练3 已知函数f (x )=23sin(x -3π)·sin ⎝⎛⎭⎫x -π2+2sin 2⎝⎛⎭⎫x +5π2-1,x ∈R . (1)求函数f (x )的最小正周期及在区间⎣⎡⎦⎤0,π2上的最大值和最小值; (2)若f (x 0)=65,x 0∈⎣⎡⎦⎤π4,π2,求cos 2x 0的值. 考点 简单的三角恒等变换的综合应用题点 简单的三角恒等变换与三角函数的综合应用解 (1)因为f (x )=3(2sin x cos x )+(2cos 2x -1) =3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6, 所以f (x )的最小正周期为π.又因为x ∈⎣⎡⎦⎤0,π2,所以2x +π6∈⎣⎡⎦⎤π6,7π6, 所以f (x )的最大值为2,最小值为-1. (2)由(1)可知,f (x 0)=2sin ⎝⎛⎭⎫2x 0+π6. 又因为f (x 0)=65,所以sin ⎝⎛⎭⎫2x 0+π6=35. 由x 0∈⎣⎡⎦⎤π4,π2,得2x 0+π6∈⎣⎡⎦⎤2π3,7π6, 所以cos ⎝⎛⎭⎫2x 0+π6=-1-sin 2⎝⎛⎭⎫2x 0+π6=-45, cos 2x 0=cos ⎣⎡⎦⎤⎝⎛⎭⎫2x 0+π6-π6 =cos ⎝⎛⎭⎫2x 0+π6cos π6+sin ⎝⎛⎭⎫2x 0+π6sin π6 =3-4310.1.知识网络2.本章所学的内容是三角恒等变换重要的工具,在三角函数式求值、化简、证明,进而研究三角函数的性质等方面都是必要的基础,是解答整个三角函数类试题的必要基本功,要求准确,快速化到最简,再进一步研究函数的性质.1.两角和与差的正弦、余弦公式中的角α,β是任意的.()2.对任意角α,sin 2α=2sin α均不成立.()3.y=sin x+cos x的最大值为2.()4.存在角α,β,使等式cos(α+β)=cos α+cos β成立.()1.若α,β都是锐角,且cos α=55,sin(α-β)=1010,则cos β等于( ) A.22B.210 C.22或-210D.22或2102.设5π<θ<6π,cos θ2=a ,则sin θ4的值为________.3.已知sin α+cos β=13,sin β-cos α=12,则sin(α-β)=________.4.设A ,B 为锐角△ABC 的两个内角,向量a =(2cos A ,2sin A ),b =(3cos B,3sin B ).若a ,b 的夹角的弧度数为π3,则A -B =________ .5.已知函数f (x )=cos x ·sin ⎝⎛⎭⎫x +π3-3cos 2x +34,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在闭区间⎣⎡⎦⎤-π4,π4上的最大值和最小值.答案1.两角和与差的正弦、余弦公式中的角α,β是任意的.( √ ) 2.对任意角α,sin 2α=2sin α均不成立.( × ) 提示 如α=k π,k ∈Z ,则sin 2α=2sin α=0. 3.y =sin x +cos x 的最大值为2.( × )提示 ∵y =sin x +cos x =2sin ⎝⎛⎭⎫x +π4,∴函数最大值为 2. 4.存在角α,β,使等式cos(α+β)=cos α+cos β成立.( √ )提示 如α=-π4,β=π2,则cos(α+β)=cos ⎝⎛⎭⎫-π4+π2=22,cos α+cos β=cos ⎝⎛⎭⎫-π4+cos π2=cos π4=22,两式相等.1.若α,β都是锐角,且cos α=55,sin(α-β)=1010,则cos β等于( ) A.22B.210 C.22或-210D.22或210考点 和、差角公式的综合应用题点 综合运用和差角公式化简求值答案 A解析 由α,β都是锐角,且cos α=55,sin(α-β)=1010,得sin α=255,cos(α-β)=31010,∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=22. 2.设5π<θ<6π,cos θ2=a ,则sin θ4的值为________. 考点 利用简单的三角恒等变换化简求值题点 利用降幂公式化简求值答案 -1-a 2解析 sin 2θ4=1-cos θ22, ∵θ∈(5π,6π),∴θ4∈⎝⎛⎭⎫5π4,3π2, ∴sin θ4=-1-cos θ22=-1-a 2. 3.已知sin α+cos β=13,sin β-cos α=12,则sin(α-β)=________. 考点 两角和与差的正弦公式题点 利用两角和与差的正弦公式求值答案 -5972解析 由(sin α+cos β)2+(sin β-cos α)2=1336, 得2sin(α-β)=-5936,即sin(α-β)=-5972. 4.设A ,B 为锐角△ABC 的两个内角,向量a =(2cos A ,2sin A ),b =(3cos B,3sin B ).若a ,b 的夹角的弧度数为π3,则A -B =________ . 考点 两角差的余弦公式题点 两角差的余弦公式的综合应用答案 ±π3解析 cos π3=a ·b |a ||b |=6(cos A cos B +sin A sin B )2×3=cos A cos B +sin A sin B =cos(A -B ).又-π2<A -B <π2,∴A -B =±π3. 5.已知函数f (x )=cos x ·sin ⎝⎛⎭⎫x +π3-3cos 2x +34,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在闭区间⎣⎡⎦⎤-π4,π4上的最大值和最小值. 考点 简单的三角恒等变换的综合应用题点 简单的三角恒等变换与三角函数的综合应用 解 (1)由已知,得f (x )=cos x ·⎝⎛⎭⎫12sin x +32cos x -3cos 2x +34 =12sin x ·cos x -32cos 2x +34=14sin 2x -34(1+cos 2x )+34=14sin 2x -34cos 2x =12sin ⎝⎛⎭⎫2x -π3. 所以f (x )的最小正周期T =2π2=π. (2)因为f (x )在区间⎣⎡⎦⎤-π4,-π12上是减函数,在区间⎣⎡⎦⎤-π12,π4上是增函数, f ⎝⎛⎭⎫-π4=-14,f ⎝⎛⎭⎫-π12=-12,f ⎝⎛⎭⎫π4=14, 所以函数f (x )在闭区间⎣⎡⎦⎤-π4,π4上的最大值为14,最小值为-12.。
高中数学人教b版高一必修4章末综合测评3 含解析
高中数学人教b版高一必修4章末综合测评3 含解析章末综合测评(三)三角恒等变换(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知cos(α+β)+cos(α-β)=13,则cos αcos β的值为()A.12 B.13C.14 D.16【解析】由题意得:cos αcos β-sin αsin β+cos αcos β+sin αsin β=2cos αcos β=13,所以cos αcos β=1 6.【答案】 D2.已知tan(π+α)=2,则1sin αcos α等于()A.52 B.75C.-52 D.-7 5【解析】由tan(π+α)=2,得tan α=2,∴1sin αcos α=sin2α+cos2αsin αcos α=tan2α+1tan α=52.【答案】 A3.若tan α=2tan π5,则cos⎝⎛⎭⎪⎫α-3π10sin⎝⎛⎭⎪⎫α-π5=()A.1B.2C.3D.4【解析】 ∵cos ⎝ ⎛⎭⎪⎫α-3π10=cos ⎝ ⎛⎭⎪⎫α+π5-π2=sin ⎝ ⎛⎭⎪⎫α+π5, ∴原式=sin ⎝ ⎛⎭⎪⎫α+π5sin ⎝ ⎛⎭⎪⎫α-π5=sin αcos π5+cos αsin π5sin αcos π5-cos αsin π5=tan α+tan π5tan α-tan π5.又∵tan α=2tan π5,∴原式=2tan π5+tanπ52tan π5-tanπ5=3.【答案】 C4.2cos 10°-sin 20°cos 20°的值为( )A. 3B.62C.1D.12【解析】 原式=2cos (30°-20°)-sin 20°cos 20°=2(cos 30°cos 20°+sin 30°sin 20°)-sin 20°cos 20°=3cos 20°cos 20°= 3.【答案】 A5.cos 4π8-sin 4π8等于( )A.0B.22C.1D.-22【解析】 原式=⎝⎛⎭⎪⎫cos 2π8-sin 2π8⎝⎛⎭⎪⎫cos 2π8+sin 2π8=cos 2π8-sin 2π8=cos π4=22.【答案】 B6.已知函数y =tan(2x +φ)的图象过点⎝ ⎛⎭⎪⎫π12,0,则φ的值可以是( ) A.-π6B.π6C.-π12D.π12【解析】 由题得tan ⎝ ⎛⎭⎪⎫2×π12+φ=0,即tan ⎝ ⎛⎭⎪⎫π6+φ=0,π6+φ=k π,k ∈Z , φ=k π-π6,k ∈Z ,当k =0时,φ=-π6,故选A.【答案】 A7.若θ∈⎝ ⎛⎭⎪⎫0,π2,sin θ-cos θ=22,则cos 2θ等于( )A.32B.-32C.±32D.±12【解析】 由sin θ-cos θ=22两边平方得,sin 2θ=12, 又θ∈⎝ ⎛⎭⎪⎫0,π2,且sin θ>cos θ,所以π4<θ<π2,所以π2<2θ<π,因此,cos 2θ=-32,故选B. 【答案】 B8.已知θ∈⎝ ⎛⎭⎪⎫0,π4,且sin θ-cos θ=-144,则2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ等于( )A.23B.43C.34D.32【解析】 由sin θ-cos θ=-144得sin ⎝ ⎛⎭⎪⎫π4-θ=74,∵θ∈⎝ ⎛⎭⎪⎫0,π4,∴π4-θ∈⎝ ⎛⎭⎪⎫0,π4,∴cos ⎝ ⎛⎭⎪⎫π4-θ=34,∴2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ=cos 2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin ⎝ ⎛⎭⎪⎫π2-2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-θsin ⎝ ⎛⎭⎪⎫π4-θ=2cos ⎝ ⎛⎭⎪⎫π4-θ=32. 【答案】 D9.已知cos ⎝ ⎛⎭⎪⎫x +π6=35,x ∈(0,π),则sin x 的值为( )A.-43-310B.43-310C.12D.32【解析】 由cos ⎝ ⎛⎭⎪⎫x +π6=35,且0<x <π,得π6<x +π6<π2, 所以sin ⎝ ⎛⎭⎪⎫x +π6=45,所以sin x =sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +π6-π6=sin ⎝ ⎛⎭⎪⎫x +π6cos π6-cos ⎝ ⎛⎭⎪⎫x +π6sin π6=45×32-35×12=43-310. 【答案】 B10.函数y =sin x +cos x +2⎝⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最小值是( )A.2- 2B.2+ 2C.3D.1【解析】 由y =2sin ⎝ ⎛⎭⎪⎫x +π4+2,且0≤x ≤π2, 所以π4≤x +π4≤34π,所以22≤sin ⎝ ⎛⎭⎪⎫x +π4≤1,所以3≤y ≤2+2. 【答案】 C11.已知函数f (x )=3sin w x +cos w x (w >0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( )A.π2B.2π3C.πD.2π【解析】 由曲线f (x )=2sin ⎝ ⎛⎭⎪⎫w x +π6与y =1交点中相邻交点最小值为π3正好等于f (x )的周期的13倍,设f (x )的最小正周期为T ,则13T =π3,故有T =π.【答案】 C12.已知a =(sin α,1-4cos 2α),b =(1,3sin α-2),α∈⎝ ⎛⎭⎪⎫0,π2,若a ∥b ,则tan ⎝ ⎛⎭⎪⎫α-π4=( )A.17 B.-17C.27D.-27【解析】 因为a ∥b ,所以有sin α(3sin α-2)-(1-4cos 2α)=0, 即3sin 2 α-2sin α-1+4cos 2α=0 ⇒5sin 2 α+2sin α-3=0,解得sin α=35或-1,又α∈⎝ ⎛⎭⎪⎫0,π2, 所以sin α=35,cos α=45,tan α=34,所以tan ⎝ ⎛⎭⎪⎫α-π4=tan α-11+tan α=34-11+34=-17.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分.请将答案填在题中的横线上) 13.函数f (x )=sin x -3cos x (x ∈R )的最小正周期为________,最大值为________. 【解析】 因为f (x )=2sin ⎝⎛⎭⎪⎫x -π3,所以f (x )=2sin ⎝ ⎛⎭⎪⎫x -π3的最小正周期为T =2π,最大值为2.【答案】 2π 214.tan ⎝ ⎛⎭⎪⎫π6-θ+tan ⎝ ⎛⎭⎪⎫π6+θ+3tan ⎝ ⎛⎭⎪⎫π6-θ·tan ⎝ ⎛⎭⎪⎫π6+θ的值是________.【解析】 ∵tan π3=tan ⎝ ⎛⎭⎪⎫π6-θ+π6+θ=tan ⎝ ⎛⎭⎪⎫π6-θ+tan ⎝ ⎛⎭⎪⎫π6+θ1-tan ⎝ ⎛⎭⎪⎫π6-θtan ⎝ ⎛⎭⎪⎫π6+θ=3,∴3=tan ⎝ ⎛⎭⎪⎫π6-θ+tan ⎝ ⎛⎭⎪⎫π6+θ+3tan ⎝ ⎛⎭⎪⎫π6-θtan ⎝ ⎛⎭⎪⎫π6+θ. 【答案】 315.已知tan α=-2,tan(α+β)=17,则tan β的值为________.【解析】 tan β=tan[(α+β)-α] =tan (α+β)-tan α1+tan (α+β)tan α=17-(-2)1+17×(-2)=3.【答案】 316.已知A ,B ,C 皆为锐角,且tan A =1,tan B =2,tan C =3,则A +B +C 的值为________.【解析】 因为tan(A +B )=tan A +tan B 1-tan A tan B =1+21-2=-3<0,①又0<A <π2,0<B <π2,∴0<A +B <π,②由①②知,π2<A +B <π,又tan[(A +B )+C ]=tan (A +B )+tan C 1-tan (A +B )tan C =-3+31-(-3)×3=0,又∵0<C <π2,∴π2<A +B +C <32π,∴A +B +C =π. 【答案】 π三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值.【解】 (1)因为f (x )=sin x +3cos x - 3 =2sin ⎝⎛⎭⎪⎫x +π3-3,所以f (x )的最小正周期为2π. (2)因为0≤x ≤2π3,所以π3≤x +π3≤π. 当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值为f ⎝ ⎛⎭⎪⎫2π3=- 3.18.(本小题满分12分)已知锐角α,β满足tan(α-β)=sin 2β,求证:tan α+tan β=2tan 2β.【证明】 因为tan(α-β)=sin 2β, tan(α-β)=tan α-tan β1+tan αtan β,sin 2β=2sin βcos β=2sin βcos βsin 2β+cos 2β=2tan β1+tan 2β,所以tan α-tan β1+tan αtan β=2tan β1+tan 2β,整理得:tan α=3tan β+tan 3β1-tan 2β.所以tan α+tan β=3tan β+tan 3β+tan β-tan 3β1-tan 2β=2×2tan β1-tan 2β=2tan 2β. 19.(本小题满分12分)已知函数f (x )=sin ⎝⎛⎭⎪⎫π2-x sin x -3cos 2x .(1)求f (x )的最小正周期和最大值;(2)讨论f (x )在⎣⎢⎡⎦⎥⎤π6,2π3上的单调性.【解】 (1)f (x )=sin ⎝⎛⎭⎪⎫π2-x sin x -3cos 2x=cos x sin x -32(1+cos 2x )=12sin 2x -32cos 2x -32=sin ⎝ ⎛⎭⎪⎫2x -π3-32, 因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎢⎡⎦⎥⎤π6,2π3时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增,当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎢⎡⎦⎥⎤π6,5π12上单调递增;在⎣⎢⎡⎦⎥⎤5π12,2π3上单调递减. 20.(本小题满分12分)已知函数f (x )=sin 2x -sin 2⎝⎛⎭⎪⎫x -π6,x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值和最小值.【解】 (1)由已知, 有f (x )=1-cos 2x2-1-cos ⎝ ⎛⎭⎪⎫2x -π32=12⎝ ⎛⎭⎪⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x =12sin ⎝ ⎛⎭⎪⎫2x -π6. 所以f (x )的最小正周期T =2π2=π. (2)因为f (x )在区间⎣⎢⎡⎦⎥⎤-π3,-π6上是减函数,在区间⎣⎢⎡⎦⎥⎤-π6,π4上是增函数,且f ⎝ ⎛⎭⎪⎫-π3=-14,f ⎝ ⎛⎭⎪⎫-π6=-12,f ⎝ ⎛⎭⎪⎫π4=34,所以f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值为34,最小值为-12.21. (本小题满分12分)陵中学第四次模拟)如图1所示,已知α的终边所在直线上的一点P 的坐标为(-3,4),β的终边在第一象限且与单位圆的交点Q 的纵坐标为210.图1(1)求tan(2α-β)的值;(2)若π2<α<π,0<β<π2,求α+β.【解】 (1)由三角函数的定义知tan α=-43,∴tan 2α=2×⎝ ⎛⎭⎪⎫-431-⎝ ⎛⎭⎪⎫-432=247.又由三角函数线知sin β=210,∵β为第一象限角,∴tan β=17, ∴tan(2α-β)=247-171+247×17=16173.(2)∵cos α=-35,∵π2<α<π,0<β<π2,∴π2<α+β<3π2. ∵sin(α+β)=sin αcos β+cos αsin β=45×7210-35×210=22.又∵π2<α+β<3π2,∴α+β=3π4.22.(本小题满分12分)已知函数f (x )=2cos x (sin x +cos x ).(1)求f ⎝ ⎛⎭⎪⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.【解】 (1)f ⎝ ⎛⎭⎪⎫5π4=2cos5π4⎝ ⎛⎭⎪⎫sin 5π4+cos 5π4=-2cos π4⎝ ⎛⎭⎪⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2 x =sin 2x +cos 2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π4+1, 所以T =2π2=π,故函数f (x )的最小正周期为π. 由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .第11页 共11页 所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z .。
北师大版数学必修4第三章章末检测卷含答案解析.doc
所以g(x)=cos(2x+θ)为奇函数,
而θ∈(0,π),故θ= ,
所以f(x)=-(a+2cos2x)sin2x,
代入 得a=-1.
所以a=-1,θ= .
(2)f(x)=-(-1+2cos2x)sin2x=-cos2xsin2x=- sin4x,
因为f =- ,
答案:B
4.(2016·齐齐哈尔实验中学高一月考) 等于()
A.- B.-
C. D.
解析:原式=
=
=sin30°= .故选C.
答案:C
5.cos275°+cos215°+cos75°cos15°的值是()
A. B.
C. D.
解析:原式=sin215°+cos215°+sin15°cos15°=1+ sin30°=1+ × = .故选B.
(2)求 的值.
解析:(1)tan =
= = =-3.
(2)
=
=
=
=
=1.
20.(12分)(2016·杭州高一检测)已知f(x)=Asin (A≠0).
(1)若A=1,将f(x)的图象上各点的纵坐标不变,横坐标扩大到原来的2倍,再将所得图象上各点的横坐标不变,纵坐标扩大为原来的2倍,得到g(x)的图象,求g(x)的解析式及对称轴方程.
17.(10分)化简:sin2αsin2β+cos2αcos2β- cos2αcos2β.
解析:原式=sin2αsin2β+cos2αcos2β- (2cos2α-1)·(2cos2β-1)
=sin2αsin2β+cos2αcos2β- (4cos2αcos2β-2cos2α-2cos2β+1)
=sin2αsin2β-cos2αcos2β+cos2α+cos2β-
高中数学人教A版必修四教学案第三章章末小结与测评含答案
5
A+B C
(3)sin =cos ,
2
2
A+B C
cos =sin ,
1.三角函数式的化简与证明,主要从三方面寻求思路:一是观察函数特点,已知和所
求中包含什么函数,它们可以怎样联系;二是观察角的特点,它们之间可经过何种形式联系
起来;三是观察结构特点,它们之间经过怎样的变形可达到统一.
2.三角恒等式的证明问题主要有两种类型:不附加条件的恒等式证明和条件恒等式证
明.
(1)不附加条件的恒等式证明
2
2
=
2|cos 5°|
2sin 50°+2sin(30°+10°) 2sin 50°+2sin 40°
=
=
2cos 5°
2cos 5°
50°+40° 50°-40°
4 × sin
2
cos
2
4sin 45°cos 5°
=
=
=2.
2cos 5°
2cos 5°
[对点训练]
1 2(3+cos 4x) 1.求证:tan2x+tan2x= 1-cos 4x .
2
π A.4π B.2π C.π D.
2
( ) x
x
解析:选 B ∵y=2cos2 +1= 2cos2 -1 +2=cos x+2,
2
2
∴函数的最小正周期 T=2π.
2.sin 45°·cos 15°+cos 225°·sin 15°的值为( )
(典型题)高中数学必修四第三章《三角恒等变形》测试卷(含答案解析)
一、选择题1.若10,0,cos ,sin 2243423ππππβαβα⎛⎫⎛⎫<<-<<+=-=⎪ ⎪⎝⎭⎝⎭,则cos 2βα⎛⎫+= ⎪⎝⎭( )A B .C . D2.已知函数()sin f x x x ωω=()0ω>的图像与直线2y =交于,A B 两点,若AB 的最小值为π,则函数()f x 的一条对称轴是( )A .3x π=B .4x π=C .6x π=D .12x π=3.已知函数2()2sin cos (0)f x x x x ωωωω=->图像的相邻两条对称轴之间的距离为2π,则2f π⎛⎫= ⎪⎝⎭( )A .1B .1--C .0D .-4.设函数22()cos sin 2cos sin f x x x x x =-+,下列说法中,错误的是( )A .()f x 的最小值为B .()f x 在区间,48ππ⎡⎤-⎢⎥⎣⎦上单调递增.C .函数()y f x =的图象可由函数y x =的图象先向左平移4π个单位,再将横坐标缩短为原来的一半(纵坐标不变)而得到. D .将函数()y f x =的图象向左平移4π个单位,所得函数的图象关于y 轴对称.5.在ABC 中,cos A =,1tan 3B =,则()tan A B -=( )A .2-B .12-C .12D .26.若1sin 34a π⎛⎫-= ⎪⎝⎭,则sin 26a π⎛⎫-= ⎪⎝⎭( )A .78-B .78C .1516-D .15167.已知,22ππα⎛⎫∈- ⎪⎝⎭,1cos 63πα⎛⎫+= ⎪⎝⎭,则sin α=( )A B .6C .D .168.已知α∈3π,π2⎛⎫ ⎪⎝⎭,cos α=-45,则tan π4α⎛⎫- ⎪⎝⎭等于( ) A .7B .17C .-17D .-79.已知αβ、均为锐角,满足sin ,cos 510αβ==,则αβ+=( ) A .6πB .4π C .3π D .34π 10.已知,2παπ⎛⎫∈ ⎪⎝⎭,3sin 5α=,则tan 4πα⎛⎫+= ⎪⎝⎭( )A .17 B .7C .17-D .-711.已知直线524x π=是函数21()sin (08)222x f x x ωωω=+-<≤图象的一条对称轴,则ω=( ) A .2B .4C .6D .812.已知cos()6πα+=sin(2)6πα-的值为( ) A.3B .13C .13-D.3-二、填空题13.已知1cos 3α=,且02πα-<<,则()()()cos sin 2tan 23sin cos 22αππαπαππαα--+-=⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭______. 14.函数2cos sin y x x =+的最大值为____________.15.在区间,22ππ⎛⎫- ⎪⎝⎭范围内,函数tan y x =与函数sin y x =的图象交点有_______个.16.已知sin α=,()1cos 3αβ+=-,且,0,2παβ⎛⎫∈ ⎪⎝⎭,则sin β=_____.17.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若3sin 4α=,则()cos αβ-=______. 18.已知4sin 3cos 0+=αα,则2sin 23cos +αα的值为____________. 19________.20.已知x 是第二象限的角.化简:1sin 1sin 1sin 1sin x xx x+---+的值为____________. 三、解答题21.已知函数()()23sin cos 3cos 02f x x x x ωωωω=⋅-+>图象的两条相邻对称轴之间的距离为2π. (1)求函数()y f x =的解析式及其图象的对称轴方程; (2)若函数()13y f x =-在()0,π上的零点为1x 、2x ,求()12cos x x -的值. 22.已知函数()3sin 2cos 2f x x x =-,[,]34x ππ∈-.(1)求函数()f x 的周期和值域; (2)设()3a g x x x =+,若对任意的1(0)x ∈+∞,及任意的2[,]34x ππ∈-,都有不等式12() ()g x f x ≥恒成立,求实数a 的取值范围.23.已知5sin2α=,()5cos 13αβ+=,()0,απ∈,0,2πβ⎛⎫∈⎪⎝⎭. (1)求sin 2α的值; (2)求sin β的值.24.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式. (2)若3()5f x =-,且36x ππ-<<,求cos2x 的值.25.已知02πα<<,02πβ-<<,310cos α=3cos()42πβ-=.(1)求cos()4πα+的值;(2)求sin()2+βα的值.26.已知关于x 的方程21204x bx -+=的两根为sin θ和cos θ,3,44θππ⎛⎫∈ ⎪⎝⎭. (1)求实数b 的值; (2)求2sin cos 1cos sin θθθθ+-的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由cos cos 2442βππβαα⎡⎤⎛⎫⎛⎫⎛⎫+=+-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦展开计算正余弦值代入可得答案. 【详解】 因为10,cos 243ππαα⎛⎫<<+= ⎪⎝⎭,所以3444πππα<+<,sin +4πα⎛⎫= ⎪⎝⎭因为02πβ-<<,所以4422ππβπ<-<,又因为sin 423πβ⎛⎫-=⎪⎝⎭,所以cos 423πβ⎛⎫-= ⎪⎝⎭而cos cos +2442βππβαα⎡⎤⎛⎫⎛⎫⎛⎫+=-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, cos +cos sin +sin 442442ππβππβαα⎛⎫⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭133339=⨯+=. 故选:A. 【点睛】三角函数式的化简要遵循“三看”原则:(1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;(2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.2.D解析:D 【分析】化简得()2sin 3f x x πω⎛⎫=+⎪⎝⎭,由题可得周期为π,即可求出2ω=,令2,32πππ+=+∈x k k Z 求出对称轴即可得出答案.【详解】()sin 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,()f x 直线2y =交于,A B 两点,且AB 的最小值为π,T π=,则22T πω==,即()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,令2,32πππ+=+∈x k k Z ,则,122k x k Z ππ=+∈, ()f x ∴的对称轴为,122k x k Z ππ=+∈, 当0k =时,12x π=.故选:D. 【点睛】本题考查正弦型函数的对称轴问题,解题的关键是利用辅助角公式化简函数得出周期,求出解析式,即可解决.3.D解析:D 【分析】先将函数化简整理,根据相邻对称轴之间距离求出周期,确定1ω=,再求2f π⎛⎫ ⎪⎝⎭. 【详解】因为()21cos 22sin cos sin 22x f x x x x x ωωωωω-=-=- πsin 222sin 23x x x ωωω⎛⎫=+=+- ⎪⎝⎭由题意知()f x 的最小正周期为π22π⨯=,所以2π2πω=,即1ω=,所以()π2sin 23f x x ⎛⎫=+⎪⎝⎭π2sin 23f ππ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭.故选:D. 【点睛】本题考查了三角函数的性质,关键点是根据已知条件先化简正弦函数的解析式,还要熟练掌握三角函数的性质才能正确的解题,属于中档题.4.D解析:D 【分析】由二倍角公式及辅助角公式化简,再根据正弦型函数性质判断AB ,利用图象平移伸缩判断CD. 【详解】由22()cos sin 2cos sin cos 2sin 2)4f x x x x x x x x π=-+=+=+,可知函数的最小值为,故A 正确;当,48x ππ⎡⎤∈-⎢⎥⎣⎦时,2,442x πππ⎡⎤+∈-⎢⎥⎣⎦,由正弦函数单调性知())4f x x π=+单调递增,故B 正确;y x =的图象先向左平移4π个单位得)4y x π=+,再将横坐标缩短为原来的一半(纵坐标不变)得)4y x π=+,故C 正确;将函数()y f x =的图象向左平移4π个单位得)]))44424y x x x πππππ=++=++=+,图象不关于y 轴对称,故D 错误. 故选:D 【点睛】关键点点睛:首先要把函数解析式化简,利用正弦型函数的图象与性质判断值域与单调性,利用图象变换的时候,注意平移与伸缩都变在自变量上,属于中档题.5.A解析:A 【分析】根据已知条件计算出tan A 的值,然后根据两角差的正切公式结合tan ,tan A B 的值计算出()tan A B -的值.【详解】因为cos 2A =-且()0,A π∈,所以34A π=,所以tan 1A =-,所以()()11tan tan 3tan 211tan tan 113A BA B A B ----===-++-⨯,故选:A. 【点睛】关键点点睛:解答本题的关键是根据特殊角的余弦值求出其正切值以及两角差的正切公式的熟练运用.6.B解析:B 【分析】 化简sin 2cos 2()63a ππα⎛⎫-=- ⎪⎝⎭,再利用二倍角公式化简求值. 【详解】22sin 2sin[(2)]cos(2)=cos 2()cos 2()632333a ππππππαααα⎛⎫-=-+=--=- ⎪⎝⎭=21712sin ()123168πα--=-⨯=. 故选:B 【点睛】方法点睛:三角恒等变换常用的方法有:三看(看角、看名、看式)三变(变角变名变式),要根据已知条件灵活选择方法化简求值.7.D解析:D 【分析】结合同角三角函数基本关系计算sin 6πα⎛⎫+ ⎪⎝⎭的值,再利用两角差的正弦公式进行求解即可.【详解】 由,22ππα⎛⎫∈-⎪⎝⎭可得2,633πππα⎛⎫+∈- ⎪⎝⎭, 又11cos cos 6323ππα⎛⎫+=<= ⎪⎝⎭,所以2,633πππα⎛⎫+∈ ⎪⎝⎭所以sin 63πα⎛⎫+== ⎪⎝⎭, sin sin sin cos cos sin 666666ππππππαααα⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11332=-⨯=故选:D 【点睛】本题主要考查两角和与差的正余弦公式与同角三角函数基本关系,解题的关键是熟练运用公式.8.B解析:B 【分析】先根据同角三角函数关系求tan α,再根据两角差正切公式求结果. 【详解】 由已知得tan α=34,则tan π1tan 141tan 7ααα-⎛⎫-== ⎪+⎝⎭. 选B 【点睛】本题考查同角三角函数关系、两角差正切公式,考查基本求解能力.9.B解析:B 【分析】依题意,求cos (α+β),结合角的范围可求得α+β的值. 【详解】由已知α、β均为锐角,sin αβ==,cos αβ∴==又cos (α+β)=cosαcosβ﹣sinαsinβ=2, ∵0<α+β<π,∴α+β=4π. 故选B . 【点睛】解答给值求角问题的一般思路:①求角的某一个三角函数值,此时要根据角的范围合理地选择一种三角函数;②确定角的范围,此时注意范围越精确越好;③根据角的范围写出所求的角.10.A解析:A 【分析】根据角的范围以及平方关系求出4cos ,5α=-再利用商的关系求出3tan 4α=-,最后由两角和的正切公式可得答案. 【详解】 因为,2παπ⎛⎫∈⎪⎝⎭,3sin 5α=,所以4cos ,5α==-sin 3tan cos 4ααα==-, tan tan4tan 41tan tan 4παπαπα+⎛⎫+== ⎪⎝⎭-⋅17 故选:A. 【点睛】本题主要考查平方关系、商的关系以及两角和的正切公式,属于基础题.11.B解析:B 【分析】首先通过三角函数关系式的变换,把函数的关系式变形成正弦型函数,进一步利用函数的性质的应用求出结果. 【详解】解:函数211()sin cos )sin sin()2223xf x x x x x ωπωωωω=+=-+=-, 令:5()2432k k Z πππωπ-=+∈,解得244()5kk Z ω=+∈, 由于08ω<, 所以4ω=. 故选:B . 【点睛】本题考查三角函数关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,12.B解析:B 【解析】∵cos 6πα⎛⎫+= ⎪⎝⎭5sin 2sin 2sin 26662ππππααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦][221cos 2[2cos 11]6633ππαα⎛⎫⎛⎫=-+=-+-=--= ⎪ ⎪⎝⎭⎝⎭,故选B.二、填空题13.【分析】用同角间的三角函数关系计算用诱导公式化简后再计算然后计算可得【详解】∵且∴∴故答案为:【点睛】方法点睛:本题考查诱导公式同角间的三角函数关系三角函数求值问题首先要进行化简应用诱导公式化简应用解析:-【分析】用同角间的三角函数关系计算sin α,用诱导公式化简后再计算.然后计算tan α,可得. 【详解】∵1cos 3α=,且02πα-<<,∴sin 3α==-, ∴()()()cos sin 2tan 2cos sin (tan )sin tan 3cos (sin )cos sin cos 22αππαπααααααππααααα--+---=====---⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭.故答案为:-. 【点睛】方法点睛:本题考查诱导公式,同角间的三角函数关系.三角函数求值问题,首先要进行化简,应用诱导公式化简,应用同角间的三角函数关系化简,最后才代入求值.应用诱导公式应牢记:奇变偶不变,符号看象限,应用同角间的三角函数关系应注意在应用平方关系求函数值需确定角的范围,以确定正弦余弦值的正负.14.【分析】将函数解析式变形为且有利用二次函数的基本性质可求出该函数的最大值【详解】且因此当时函数取得最大值故答案为:【点睛】本题考查二次型三角函数的最值利用二倍角余弦公式将问题转化为二次函数的最值问题解析:98【分析】将函数解析式变形为22sin sin 1y x x =-++,且有1sin 1x -≤≤,利用二次函数的基本性质可求出该函数的最大值. 【详解】2219cos 2sin 12sin sin 2sin 48y x x x x x ⎛⎫=+=-+=--+ ⎪⎝⎭,且1sin 1x -≤≤,因此,当1sin 4x =时,函数2cos sin y x x =+取得最大值98. 故答案为:98. 【点睛】本题考查二次型三角函数的最值,利用二倍角余弦公式将问题转化为二次函数的最值问题是解题的关键,考查计算能力,属于中等题.15.1【分析】将函数图象交点个数等价于方程在根的个数即可得答案【详解】∵函数图象交点个数等价于方程在根的个数∴解得:∴方程只有一解∴函数与函数的图象交点有1个故答案为:1【点睛】本题考查函数图象交点个数解析:1 【分析】将函数图象交点个数等价于方程tan sin x x =在,22x ππ⎛⎫∈- ⎪⎝⎭根的个数,即可得答案. 【详解】∵函数图象交点个数等价于方程tan sin x x =在,22x ππ⎛⎫∈- ⎪⎝⎭根的个数, ∴sin 1tan sin sin 0sin (1)0cos cos x x x x x x x=⇔-=⇔-=,解得:0x =, ∴方程只有一解,∴函数tan y x =与函数sin y x =的图象交点有1个. 故答案为:1. 【点睛】本题考查函数图象交点个数与方程根个数的等价性,考查函数与方程思想,考查逻辑推理能力和运算求解能力.16.【分析】由已知分别求得再由展开两角差的正弦得答案【详解】解:∵∴∴∴又∴则故答案为:【点睛】本题考查同角三角函数间的关系正弦的差角公式给值求值型的问题属于中档题解析:9【分析】由已知分别求得cos α,()sin αβ+,再由()sin sin βαβα=+-⎡⎤⎣⎦,展开两角差的正弦得答案.【详解】解:∵sin α=,0,2πα⎛⎫∈ ⎪⎝⎭,∴1cos 3α==, ∴,0,2παβ⎛⎫∈ ⎪⎝⎭,∴()0,αβπ+∈,又()1cos 3αβ+=-,∴()sin αβ+==. 则()()()sin sin sin cos cos sin βαβααβααβα=+-=+-+⎡⎤⎣⎦1133339⎛⎫=⨯--⨯=⎪⎝⎭.故答案为:9. 【点睛】本题考查同角三角函数间的关系,正弦的差角公式,给值求值型的问题,属于中档题.17.;【分析】根据角的终边关于轴对称得到以及两角差的余弦公式即可求出【详解】因为角与角均以为始边它们的终边关于轴对称所以所以故答案为:【点睛】本题主要考查了三角函数定义的应用两角差的余弦公式同角三角函数解析:18; 【分析】根据角的终边关于y 轴对称得到cos cos ,sin sin αβαβ=-=,以及两角差的余弦公式即可求出. 【详解】因为角α与角β均以Ox 为始边,它们的终边关于y 轴对称, 所以3cos cos ,sin sin 4αβαβ=-==, 所以()22cos cos cos sin sin sincos αβαβαβαα-=+=-22sin 1α=-92116=⨯- 18= 故答案为:18【点睛】本题主要考查了三角函数定义的应用,两角差的余弦公式,同角三角函数的关系,属于中档题.18.【分析】由已知式求出利用同角三角函数间的平方关系和商数关系将化为代入即可求值【详解】则故答案为:【点睛】本题考查了同角三角函数间的平方关系和商数关系正余弦其次式的计算二倍角的正弦公式属于中档题 解析:2425【分析】由已知式求出3tan 4α=-,利用同角三角函数间的平方关系和商数关系,将2sin 23cos +αα化为22tan 3tan 1αα++,代入即可求值. 【详解】4sin 3cos 0αα+=,3tan 4α∴=-,则22222sin cos 3cos sin 23cos sin cos ααααααα++=+22tan 3tan 1αα+=+232()343()14⨯-+=-+ 2425=. 故答案为:2425. 【点睛】本题考查了同角三角函数间的平方关系和商数关系,正、余弦其次式的计算,二倍角的正弦公式,属于中档题.19.【分析】利用同角三角函数的基本关系式二倍角公式结合根式运算化简求得表达式的值【详解】依题意由于所以故答案为:【点睛】本小题主要考查同角三角函数的基本关系式二倍角公式考查根式运算属于基础题解析:4【分析】利用同角三角函数的基本关系式、二倍角公式,结合根式运算,化简求得表达式的值. 【详解】=4==,由于342ππ<<=故答案为:4 【点睛】本小题主要考查同角三角函数的基本关系式、二倍角公式,考查根式运算,属于基础题.20.【分析】本题可以先通过是第二象限的角得出然后对进行化简即可得到结果【详解】因为是第二象限的角所以所以故答案为:【点睛】关键点睛:本题主要考查三角函数式的化简利用三角函数的同角三角函数关系式进行化简是 解析:2tan x -【分析】本题可以先通过x 是第二象限的角得出cos 0x <进行化简即可得到结果. 【详解】因为x 是第二象限的角,所以cos 0x <,==1sin 1sin cos cos x xx x+-=---11tan tan cos cos x x x x=--+- 2tan x =-.故答案为:2tan x -. 【点睛】关键点睛:本题主要考查三角函数式的化简,利用三角函数的同角三角函数关系式进行化简是本题的关键.三、解答题21.(1)()sin 23πf x x ⎛⎫=- ⎪⎝⎭,对称轴方程为()5122k x k Z ππ=+∈;(2)13. 【分析】(1)利用三角恒等变换化简函数解析式为()sin 23f x x πω⎛⎫=- ⎪⎝⎭,求出函数()f x 的最小正周期,可得出函数()f x 的解析式,解方程()232x k k Z πππ-=+∈可解得函数()y f x =图象的对称轴方程;(2)求得121sin 2sin 2333x x ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,分析得出点()()11,x f x 、()()22,x f x 关于直线512x π=对称,可得出1256x x π+=,再利用诱导公式可求得()12cos x x -的值.【详解】 (1)())221sin cos sin 22cos 12f x x x x x x ωωωωω=⋅+=--1sin 2cos2sin 2223x x x πωωω⎛⎫=-=- ⎪⎝⎭, 由于函数()f x 图象的两条相邻对称轴之间的距离为2π,则该函数的最小正周期为22T ππ=⨯=,0ω>,所以,222Tπω==,解得1ω=. 所以,()sin 23πf x x ⎛⎫=- ⎪⎝⎭, 由()232x k k Z πππ-=+∈,解得()5122k x k Z ππ=+∈, 所以,函数()y f x =图象的对称轴方程为()5122k x k Z ππ=+∈; (2)由题意可得()1111sin 20333f x x π⎛⎫-=--= ⎪⎝⎭,则11sin 233x π⎛⎫-= ⎪⎝⎭,同理可得21sin 233x π⎛⎫-= ⎪⎝⎭.当0πx <<时,则52333x πππ-<-<, 若()20,3x ππ-∈,设232x ππ-=,解得512x π=. 因为()()1213f x f x ==,所以,点()()11,x f x 、()()22,x f x 关于直线512x π=对称. 所以,1256x x π+=. 所以,()12111155cos cos cos 2cos 26632x x x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫-=--=-=-- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦11sin 233x π⎛⎫=-= ⎪⎝⎭.【点睛】思路点睛:利用三角恒等变换思想化简正弦型函数解析式的步骤如下: (1)利用两角和与差的正弦、余弦公式展开;(2)利用二倍角的正弦、余弦的降幂公式将二次式降幂,并合并同类项; (3)利用辅助角公式化简.22.(1)T π=,[-;(2)14a ≥. 【分析】(1)利用辅助角公式化简可得()2sin(2)6f x x π=-,代入周期公式,可求得周期T ,根据x 的范围,求得26x π-的范围,根据正弦型函数的性质,即可求得答案.(2)根据题意可得min max ()()g x f x ≥,由(1)可得max ()f x =0a <,0a =,0a >三种,()3ag x x x=+的最小值,结合对勾函数的性质,即可求得答案.【详解】(1)1()2cos 2)2sin(2)26f x x x x π=-=-, 周期22T ππ== 由[,]34x ππ∈-,则52[,]663x πππ-∈-, 所以当262x ππ-=-,即6x π=-时,()2sin(2)6f x x π=-有最小值-1当263x ππ-=,即4x π=时,()2sin(2)6f x x π=-有最大值2,所以1sin(2)62x π-≤-≤,所以22sin(2)6x π-≤-≤即()f x 的值域为[-(2)对任意的1(0)x ∈+∞,及任意的2[,]34x ππ∈-,都有不等式12() ()g x f x ≥恒成立,只需当min max ()()g x f x ≥由(1)知,max ()f x =当0a <,()3ag x x x=+为(0,)+∞上增函数,值域为R ,不满足题意; 当0a =,()3g x x =为(0,)+∞上增函数,值域为(0,)+∞,不满足题意;当0a >,()3ag x x x=+为对勾函数,所以()3a g x x x =+≥=min ()g x =,当且仅当3ax x=,即x =.由题意,即可,所以14a ≥. 【点睛】解题的关键是将题干条件等价为min max ()()g x f x ≥,分别根据12,x x 的范围,求得两函数的最值,再进行求解,考查分析计算的能力,属中档题. 23.(1)2425;(2)1665.【分析】(1)由二倍角公式求得cos α,再由平方关系得sin α,然后由正弦的二倍角公式得sin 2α;(2)确定α的范围,得αβ+范围,从而可求得sin()αβ+,再由两角差的正弦公式计算. 【详解】(1)由已知223cos 12sin 12255αα⎛⎫=-=-⨯= ⎪ ⎪⎝⎭,又(0,)απ∈,∴(0,)2πα∈,∴sin 45α==, ∴4324sin 22sin cos 25525ααα==⨯⨯=; (2)∵(0,)2πβ∈,∴(0,)αβπ+∈,∴12sin()13αβ+=,∴1235416sin sin[()]sin()cos cos()sin 13513565βαβααβααβα=+-=+-+=⨯-⨯=. 【点睛】关键点点睛:本题考查二倍角公式,两角和与差的正弦公式,同角间的三角函数关系,解题关键是确定“已知角”和“未知角”之间的关系,确定选用的公式和应用公式的顺序.在应用三角函数恒等变换公式时注意“单角”和“复角”的相对性.如在sin ,cos αβ,求cos()a β+时,,αβ是单角,αβ+是两个单角的和,但象本题中求sin β时,αβ+作为一个单角,α作为一个单角,()βαβα=+-.由此直接应用公式求解.24.(1)()sin 26f x x π⎛⎫=+ ⎪⎝⎭;(2)310. 【分析】(1)根据最大值求出A ,根据周期求出ω,根据极大值点求出ϕ (2)根据角的范围求出4cos 265x π⎛⎫+= ⎪⎝⎭,将cos2x 写成cos 2cos 266x x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,利用两角和与差的余弦公式展开,求解即可.【详解】(1)由图知121,,2362A T πππ==-= ,2πω∴==T又22,,62k k Z ππϕπ⨯+=+∈26k πϕπ∴=+又||2πϕ<,,()sin 266f x x ππϕ⎛⎫∴==+ ⎪⎝⎭ (2)3()5f x =-所以3sin 265x π⎛⎫+=- ⎪⎝⎭, ,236262x x πππππ-<<-<+<,又因为34sin 2,cos 26565x x ππ⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭,所以 cos 2cos 266x x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦cos 2cos sin 2sin 6666x x ππππ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭431552=-⨯=【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.25.(1;(2)15. 【分析】(1)根据02πα<<,cos 10α=10sin α=,再利用两角和的余弦公式求解..(2)由(1)求得sin()4+=πα,再由02πβ-<<,求得sin()42πβ-=,然后由sin()sin[()()]2442+=+--βππβαα,利用两角差的正弦公式求解.【详解】(1)因为02πα<<,cos α=所以sin α= 所以cos()cos cossin sin444πππααα+=-,1021025=⋅-=. (2)因为02πα<<,所以3444πππα<+<,所以sin()45+=πα, 因为02πβ-<<,所以4422ππβπ<-<,所以sin()42πβ-=,所以sin()sin[()()]2442+=+--βππβαα, sin()cos()cos()sin()442442=+--+-ππβππβαα,535315=-=. 【点睛】 方法点睛:三角函数式的化简要遵循“三看”原则:①一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;②二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;③三看结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇到根式一般要升幂”等. 26.(1)b =2). 【分析】()1根据题意,利用韦达定理列出关系式,利用完全平方式和同角三角函数的基本关系化简求出b 的值,利用3,44θππ⎛⎫∈⎪⎝⎭对b 的值进行取舍即可. ()2由()1可知sin cos θθ+的值,利用()2sin cos 12sin cos θθθθ-=-,求出sin cos θθ-的值,代入原式即可.【详解】(1)∵sin ,cos θθ为关于x 的方程21204x bx -+=的两根,∴220sin cos 21sin cos 8b b θθθθ⎧⎪∆=-≥⎪⎪+=⎨⎪⎪⋅=⎪⎩,所以()221sin cos 1+2sin cos 1+44b θθθθ+===,即21144b =+,解得b =520∆=->,又3,44θππ⎛⎫∈⎪⎝⎭,∴sin cos 0θθ+>,∴b = (2)由(1),得sin cos θθ+=,又3,44θππ⎛⎫∈ ⎪⎝⎭,所以sin cos θθ>,∴sin cos 2θθ-===,∴12+12sin cos1cos sin6θθθθ⨯+==--.【点睛】关键点点睛:本题考查同角三角函数的基本关系与一元二次方程中的韦达定理相结合,通过利用韦达定理得到sin cosθθ+和cos sinθθ的表达式,再结合()2sin cos12sin cosθθθθ+=+是求解本题的关键;其中由3,44θππ⎛⎫∈ ⎪⎝⎭对取值进行取舍是本题的易错点.。
湖北襄阳2018学年数学必修4练习:第三章 章末测试 Word版含解析
7.若sin(α-β)cosα-cos(α-β)sinα=m,且β为第三象限角,则cosβ的值为()
A. B.-
C. D.-
答案:B
解析:∵sin(α-β)cosα-cos(α-β)sinα=m,∴sin(-β)=m,sinβ=-m,又∵β为第三象限角,∴cosβ=- .
8.已知tan(α+β)= ,tan(β- )= ,则tan(α+ )等于()
(2)h(x)=f(x)+g(x)= [1+cos(2x+ )]+1+ sin2x
= [cos(2x+ )+sin2x]+
= ( cos2x+ sin2x)+ = sin(2x+ )+ .
当2kπ- ≤2x+ ≤2kπ+ ,即kπ- ≤x≤kπ+ (k∈Z)时,
函数h(x)= sin(2x+ )+ 是递增的.
(1)若a∥b,求tanθ的值;
(2)若|a|=|b|,0<θ<π,求θ的值.
解:(1)因为a∥b,所以2sinθ=cosθ-2sinθ,于是4sinθ=cosθ,故tanθ= .
(2)由|a|=|b|知,sin2θ+(cosθ-2sinθ)2=5,所以
1-2sin2θ+4sin2θ=5.
从而-2sin2θ+2(1-cos2θ)=4,即sin2θ+cos2θ=-1,于是
sin(2θ+ )=- .
又由0<θ<π知, <2θ+ < ,所以2θ+ = 或2θ+ = .
因此θ= 或θ= .
18.已知函数f(x)=cos2(x+ ),g(x)=1+ sin2x.
(1)设x=x0是函数y=f(x)图像的一条对称轴,求g(x0)的值;
(2)求函数h(x)=f(x)+g(x)的单调递增区间.
2019-2020学年高中数学人教A版必修4同步作业与测评:第三章 单元质量测评 Word版含解析
第三章 单元质量测评对应学生用书P97 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2sin 275°-1的值是( ) A .12 B .-12 C .32 D .-32 答案 C解析 2sin 275°-1=2cos 215°-1=cos30°=32.2.函数f (x )=2sin ωx cos φ+2cos ωx sin φω>0,-π2<φ<π2的部分图象如图所示,则φ的值是( )A .-π3B .-π6C .π6D .π3 答案 A解析 f (x )=2sin ωx cos φ+2cos ωx sin φ=2sin(ωx +φ).由图象,得34T =5π12-⎝ ⎛⎭⎪⎫-π3,T =π,所以ω=2.因为图象过点⎝ ⎛⎭⎪⎫5π12,2,且-π2<φ<π2,所以2×5π12+φ=π2,所以φ=-π3,故选A .3.设a =12cos6°-32sin6°,b =2tan13°1-tan 213°,c =1-cos50°2,则有( ) A .c <b <a B .a <b <c C .a <c <b D .b <c <a 答案 C解析 ∵a =sin30°cos6°-cos30°sin6°=sin(30°-6°)=sin24°,b =tan(2×13°)=tan26°,c =sin 50°2=sin25°,∴a <c <b .4.2cos10°-sin20°cos20°的值为( )A . 3B .62C .1D .12 答案 A解析 原式=2cos (30°-20°)-sin20°cos20°=2(cos30°cos20°+sin30°sin20°)-sin20°cos20°=3cos20°cos20°=3.5.已知θ是锐角,那么下列各值中,sin θ+cos θ能取得的值是( ) A .43 B .34 C .53 D .12 答案 A解析 ∵0<θ<π2,∴θ+π4∈π4,3π4, 又sin θ+cos θ=2sin θ+π4, 所以22<sin θ+π4≤1, 所以1<sin θ+cos θ≤2.6.函数y =sin2x +π3·cos x -π6+cos2x +π3·sin π6-x 的图象的一条对称轴方程是( )A .x =π4B .x =π2C .x =πD .x =3π2 答案 C解析 y =sin ⎣⎢⎡⎦⎥⎤2x +π3-x -π6=sin π2+x =cos x ,当x =π时,y =-1.故x =π是图象的一条对称轴方程.7.sin163°sin223°+sin253°sin313°等于( ) A .-12 B .12 C .-32 D .32 答案 B解析 sin163°sin223°+sin253°sin313°=sin163°sin223°+sin(90°+163°)sin(90°+223°) =sin163°sin223°+cos163°cos223° =cos(223°-163°) =cos60°=12.8.函数f (x )=3sin2x -cos2x 的图象可以由函数g (x )=4sin x cos x 的图象________得到.( )A .向右移动π12个单位B .向左移动π12个单位 C .向右移动π6个单位 D .向左移动π6个单位 答案 A解析 ∵g (x )=4sin x cos x =2sin2x ,f (x )=3sin2x -cos2x =2sin2x -π6=2sin2x -π12,∴f (x )可以由g (x )向右移动π12个单位得到.9.设向量a =(1,cos θ)与b =(-1,2cos θ)垂直,则cos2θ等于( ) A .22 B .12 C .0 D .-1 答案 C解析 a =(1,cos θ),b =(-1,2cos θ). ∵a ⊥b ,∴a ·b =-1+2cos 2θ=0, ∴cos2θ=2cos 2θ-1=0.10.设函数f (x )=2cos 2x +3sin2x +a (a 为实常数)在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为-4,则a 的值等于( )A .4B .-6C .-4D .-3 答案 C解析 f (x )=2cos 2x +3sin2x +a =1+cos2x +3sin2x +a =2sin ⎝ ⎛⎭⎪⎫2x +π6+a +1.当x ∈0,π2时,2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,∴f (x )min=2×⎝ ⎛⎭⎪⎫-12+a +1=-4.∴a =-4.故选C .11.已知1-cos x +sin x1+cos x +sin x=-2,则sin x 的值为( )A .45B .-45C .-35D .-155 答案 B 解析 原式=(1-cos x )+sin x(1+cos x )+sin x=2sin 2x 2+2sin x 2cos x 22cos 2x 2+2sin x 2cos x 2=tan x2=-2,∴sin x =2sin x 2cos x 2sin 2x 2+cos 2x 2=2tan x 21+tan2x 2=2×(-2)1+4=-45,故选B . 12.已知方程x 2+4ax +3a +1=0(a >1)的两根分别为tan α,tan β,且α,β∈⎝ ⎛⎭⎪⎫-π2,π2,则tanα+β2的值是( ) A .12 B .-2 C .43 D .12或-2 答案 B解析 由题意知:⎩⎨⎧tan α+tan β=-4a ,tan α·tan β=3a +1,∴tan(α+β)=tan α+tan β1-tan αtan β=-4a 1-3a -1=43,tan(α+β)=2tan α+β21-tan 2α+β2=43,∴tan α+β2=12或tan α+β2=-2. 由a >1,可得 tan α+tan β=-4a <0, tan α·tan β=3a +1>0, ∴tan α<0,tan β<0, 结合α,β∈⎝ ⎛⎭⎪⎫-π2,π2,∴α,β∈⎝ ⎛⎭⎪⎫-π2,0,α+β2∈⎝ ⎛⎭⎪⎫-π2,0,∴tan α+β2<0,故tan α+β2=-2,故选B .第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知0<θ<π2,向量a =(sin2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.答案 12解析 因为向量a ∥b ,所以sin2θ-cos θ·cos θ=0,又cos θ≠0,所以2sin θ=cos θ,故tan θ=12.14.若(tan α-1)(tan β-1)=2,则α+β=________. 答案 k π-π4,k ∈Z解析 (tan α-1)(tan β-1)=2⇒tan αtan β-tan α-tan β+1=2⇒tan α+tan β=tan αtan β-1⇒tan α+tan β1-tan αtan β=-1.即tan(α+β)=-1,∴α+β=k π-π4,k ∈Z .15.已知sin ⎝ ⎛⎭⎪⎫x +π6=33,则sin ⎝ ⎛⎭⎪⎫5π6-x +sin 2π3-x =________.答案2+33解析 sin ⎝ ⎛⎭⎪⎫5π6-x +sin 2⎝ ⎛⎭⎪⎫π3-x =sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫5π6-x +cos 2⎣⎢⎡⎦⎥⎤π2-⎝⎛⎭⎪⎫π3-x =sin ⎝ ⎛⎭⎪⎫x +π6+1-sin 2⎝ ⎛⎭⎪⎫x +π6=33+1-13=2+33.16.关于函数f (x )=cos2x -23sin x cos x ,下列命题: ①存在x 1,x 2,当x 1-x 2=π时,f (x 1)=f (x 2)成立; ②f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π3上是单调递增;③函数f (x )的图象关于点⎝ ⎛⎭⎪⎫π12,0成中心对称图形;④将函数f (x )的图象向左平移5π12个单位长度后将与y =2sin2x 的图象重合.其中正确命题的序号是________(注:把你认为正确命题的序号都填上).答案 ①③解析 ∵f (x )=2sin ⎝ ⎛⎭⎪⎫π6-2x =2sin ⎝ ⎛⎭⎪⎫2x +5π6=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +5π12,∴周期T =π,故①正确;∵π2≤2x +5π6≤3π2,解之得x ∈⎣⎢⎡⎦⎥⎤-π6,π3,是其递减区间,故②错误;∵对称中心的横坐标满足2x +5π6=k π⇒x =k π2-5π12,当k =1时,x =π12,故③正确;④中应该是向右平移,故④不正确.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知cos α-sin α=325,且π<α<3π2,求sin2α+2sin 2α1-tan α的值.解 因为cos α-sin α=325,所以1-2sin αcos α=1825.所以2sin αcos α=725.又α∈π,3π2,故sin α+cos α=-1+2sin αcos α=-425. 所以sin2α+2sin 2α1-tan α=(2sin αcos α+2sin 2α)cos αcos α-sin α=2sin αcos α(cos α+sin α)cos α-sin α=725×-425325=-2875.18.(本小题满分12分)已知向量a =cos x ,-12,b =(3sin x ,cos2x ),x ∈R ,设函数f (x )=a ·b .(1)求f(x)的最小正周期;(2)求f(x)在0,π2上的最大值和最小值.解f(x)=cos x,-12·(3sin x,cos2x)=3cos x sin x-12cos2x=32sin2x-12cos2x=cos π6sin2x-sin π6cos2x=sin2x-π6.(1)T=2π2=π,即函数f(x)的最小正周期为π.(2)∵0≤x≤π2,∴-π6≤2x-π6≤5π6.由正弦函数的性质知,当2x-π6=π2,即x=π3时,f(x)取得最大值1;当2x-π6=-π6,即x=0时,f(x)取得最小值-12.因此,f(x)在0,π2上的最大值是1,最小值是-12.19.(本小题满分12分)在斜△ABC中,sin A=-cos B·cos C,且tan B tan C=1-3,求角A.解在△ABC中,有A+B+C=π,所以sin A=sin(B+C).所以-cos B cos C=sin B cos C+cos B sin C.上式两边同时除以cos B cos C,得tan B+tan C=-1.又tan(B+C)=tan B+tan C1-tan B tan C=-11-(1-3)=-33=-tan A . 所以tan A =33. 又0<A <π,所以A =π6.20.(本小题满分12分)函数f (x )=3sin ωx ·cos ωx +sin 2ωx +k ,ω>0. (1)若f (x )图象中相邻两条对称轴间的距离不小于π2,求ω的取值范围; (2)若f (x )的最小正周期为π,且当x ∈-π6,π6时,f (x )的最大值是12,求f (x )最小值,并说明如何由y =sin2x 的图象变换得到y =f (x )的图象.解 f (x )=32sin2ωx +1-cos2ωx 2+k =32sin2ωx -12cos2ωx +12+k =sin ⎝ ⎛⎭⎪⎫2ωx -π6+k +12. (1)由题意可知T 2=π2ω≥π2,∴ω≤1.又ω>0, ∴0<ω≤1.(2)∵T =πω=π,∴ω=1. ∴f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6+k +12.∵x ∈⎣⎢⎡⎦⎥⎤-π6,π6,∴2x -π6∈⎣⎢⎡⎦⎥⎤-π2,π6.从而当2x -π6=π6,即x =π6时, f (x )max =f ⎝ ⎛⎭⎪⎫π6=sin π6+k +12=k +1=12,∴k =-12,故f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6,∴当2x -π6=-π2,即x =-π6时f (x )取最小值-1.把y =sin2x 的图象向右平移π12个单位得到y =sin (2x -π6 )的图象. 21.(本小题满分12分)已知函数f (x )=2cos x -π3+2sin ⎝ ⎛⎭⎪⎫3π2-x . (1)求函数f (x )的单调减区间;(2)求函数f (x )的最大值并求f (x )取得最大值时的x 的取值集合;(3)若f (x )=65,求cos ⎝ ⎛⎭⎪⎫2x -π3的值. 解 (1)f (x )=2cos x cos π3+2sin x sin π3-2cos x=cos x +3sin x -2cos x =3sin x -cos x =2sin ⎝ ⎛⎭⎪⎫x -π6. 令2k π+π2≤x -π6≤2k π+3π2(k ∈Z ),∴2k π+2π3≤x ≤2k π+5π3(k ∈Z ),∴单调递减区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3(k ∈Z ). (2)f (x )取最大值2时,x -π6=2k π+π2(k ∈Z ),则x =2k π+2π3(k ∈Z ).∴f (x )的最大值是2,取得最大值时的x的取值集合是⎩⎨⎧⎭⎬⎫xx =2k π+2π3,k ∈Z . (3)f (x )=65,即2sin ⎝ ⎛⎭⎪⎫x -π6=65,∴sin ⎝ ⎛⎭⎪⎫x -π6=35. ∴cos ⎝ ⎛⎭⎪⎫2x -π3=1-2sin 2⎝ ⎛⎭⎪⎫x -π6=1-2×⎝ ⎛⎭⎪⎫352=725. 22.(本小题满分12分)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,且2sin 2A +B 2+cos2C =1.(1)求角C 的大小;(2)若sin 2A -sin 2B =12sin 2C ,试求sin2A +π3的值.解 (1)由2sin 2A +B 2+cos2C =1,得1-cos(A +B )+2cos 2C -1=1.又由A +B +C =π,将上式整理,得2cos 2C +cos C -1=0,即(2cos C -1)(cos C +1)=0.∴cos C =12或cos C =-1(舍去).由0<C <π,得C =π3.(2)由sin 2A -sin 2B =12sin 2C ,得2sin 2A -2sin 2B =sin 2C ,即1-cos2A -1+cos2B =34,cos2B -cos2A =34,∵A +B =2π3,∴B =2π3-A .∴cos ⎝ ⎛⎭⎪⎫4π3-2A -cos2A =34,∴-32cos2A -32sin2A =34. 得32cos2A +12sin2A =-34,∴sin ⎝ ⎛⎭⎪⎫2A +π3=-34.。
高一数学高中数学必修4:第三章++三角恒等变换+单元同步测试(含解析)
答案 A
二、填空题 (本大题共 4 小题,每题 5 分,共 20 分.将答案填在题中
横线上 )
13.已知 α,β为锐角,且 cos(α+β)=sin(α-β),则 tanα=________.
解析 ∵cos(α+β)=sin(α-β),
∴ cosαcosβ-sinαsinβ=sinαcosβ- cosαsinβ.
高中同步学习方略
3
1
3sinA-cos(B+C)= 3sinA+ cosA=2( 2 sinA+2cosA)
=2cos(60 °- A)=2cos45°= 2.
答案 A
ห้องสมุดไป่ตู้
5.已知
tanθ=13,则
cos2θ+
1 2sin2θ等于
(
)
6
4
4
6
A.- 5 B.- 5
C.5
D.5
cos2θ+sinθcosθ 1+tanθ 6 解析 原式= cos2θ+sin2θ =1+tan2θ=5.
时,
y
有最大值
1+ 2
2 ;
当
sin
2x+π4 =- 1
时, y
有最小值
1- 2
2 .
3
新课标 A 版·数学·必修 4
高中同步学习方略
∴值域为
1- 2
2 1+ ,2
2 .答案
C
2cos10 °-sin20 ° 11. sin70 ° 的值是 ( )
1
3
A. 2 B. 2
C. 3
D. 2
解析
2cos 30°-20°-sin20 °
新课标 A 版·数学·必修 4
高中同步学习方略
第三章测试
人教版高中数学必修4第三章单元测试(二)- Word版含答案
2018-2019学年必修四第三章训练卷三角恒等变换(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.22cos 15sin 15︒-︒的值为( )A .12B .2 C .3 D .62.函数sin 2cos cos 2sin 3636y x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=+⋅-++⋅- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的图象的一条对称轴方程是( ) A .4x π=B .2x π=C .x =πD .2x 3π=3.已知()5sin 45α︒=+,则sin 2α等于( ) A .45-B .35-C .35D .454.sin 2sin 23y x x π⎛⎫=-- ⎪⎝⎭的一个单调递增区间是( )A .,63ππ⎡⎤-⎢⎥⎣⎦B .,1212π7π⎡⎤⎢⎥⎣⎦C .,12125π13π⎡⎤⎢⎥⎣⎦D .,36π5π⎡⎤⎢⎥⎣⎦5.已知θ是锐角,那么下列各值中,sin cos θθ+能取得的值是( ) A .43B .34 C .53D .126.sin163sin223sin253sin313︒︒+︒︒等于( ) A .12-B .12C .3-D .3 7.已知tan 222θ=-,22θπ<<π,则tan θ的值为( ) A .2 B .2-C .2D .2或2-8.函数sin cos y x x =-的图象可以看成是由函数sin cos y x x =+的图象平移得到的.下列所述平移方法正确的是( ) A .向左平移2π个单位 B .向右平移4π个单位 C .向右平移2π个单位 D .向左平移4π个单位 9.设sin17cos45cos17sin45a =︒︒+︒︒,22cos 131b =︒-,3c =,则有( ) A .c a b << B .b c a <<C .a b c <<D .b a c <<10.化简1sin 4cos41sin 4cos4αααα+-++的结果是( )A .1tan 2αB .tan 2αC .1tan αD .tan α11.如图,角α的顶点在坐标原点O ,始边在y 轴的正半轴,终边经过点()3,4P --.角β的顶点在原点O ,始边在x 轴的正半轴,终边OQ 落在第二象限,且tan 2β=-,则cos POQ ∠的值为( )此卷只装订不密封班级 姓名 准考证号 考场号 座位号A.B.CD12.设12(,)a a =a ,12(,)b b =b .定义一种向量积:1212(,)(,)a a b b ⊗⊗=a b 1122(,)a b a b =.已知12,2⎛⎫= ⎪⎝⎭m ,,03π⎛⎫= ⎪⎝⎭n ,点,()P x y 在sin y x =的图象上运动,点Q 在()y f x =的图象上运动.且满足OQ OP =⊗+uuu v uu u vm n (其中O 为坐标原点),则()y f x =的最大值A 及最小正周期T 分别为( ) A .2,π B .2,4π C .12,4π D .12,π二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13的值是________.14.已知sin cos2αα=,,2απ⎛⎫∈π ⎪⎝⎭,则tan α=________.15.函数2sin si o (n c s )y x x x =+的最大值为________.16.已知α、β均为锐角,且()cos s n(i )αβαβ=+-,则tan α=________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知tan α,tan β是方程26510x x +=-的两根,且02απ<<,2β3ππ<<. 求:tan()αβ+及αβ+的值.18.(12分)已知函数()22cos 2sin 4cos f x x x x -=+. (1)求3f ⎛⎫⎪⎝⎭π的值;(2)求()f x 的最大值和最小值.19.(12分)已知向量3si ()n ,cos αα=a ,2sin 5sin 4cos ()ααα=-,b ,3,22απ⎛⎫∈π ⎪⎝⎭,且⊥a b .(1)求tan α的值; (2)求cos 23απ⎛⎫+ ⎪⎝⎭的值.20.(12分)已知函数()2s 2sin o 24f x x x π⎛⎫=+ ⎪⎝⎭.(1)求()f x 的周期和单调递增区间;(2)若关于x 的方程()2f x m -=在,42x ππ⎡⎤∈⎢⎥⎣⎦上有解,求实数m 的取值范围.21.(12分)已知函数()()2cos 2s co 1f x x x x x +-=∈R . (1)求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值;(2)若()065f x =,0,42x ππ⎡⎤∈⎢⎥⎣⎦,求0cos2x 的值.22.(12分)已知02αβπ<<<<π,1tan 22α=,1os (0c )βα=-. (1)求sin α的值; (2)求β的值.2018-2019学年必修四第三章训练卷三角恒等变换(二)答 案一、选择题 1.【答案】C【解析】由题可知:22cos 15sin 15cos30︒-︒=︒=,故选C .2.【答案】C【解析】sin 2sin cos 362y x x x x ⎡ππ⎤π⎛⎫⎛⎫⎛⎫=+--=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,当x =π时,1y =-.故选C . 3.【答案】B【解析】()()sin cos sin 45ααα=+︒+,∴sin cos αα+ 两边平方,∴21sin 25α+=,∴3sin 25α=-.故选B . 4.【答案】B【解析】1sin 2sin 2sin 2cos cos 2sin sin 2sin 223332y x x x x x x x πππ⎛⎫=--=--=- ⎪⎝⎭sin 23x π⎛⎫=-+ ⎪⎝⎭当12x π=时,min 1y =-;当12x 7π=时,max 1y =, 且T =π.故选B . 5.【答案】A 【解析】∵02θπ<<,∴,444θππ3π⎛⎫+∈ ⎪⎝⎭,又sin cos 4θθθπ⎛⎫+=+ ⎪⎝⎭,sin 14θπ⎛⎫<+≤ ⎪⎝⎭,1sin cos θθ<+≤.故选A . 6.【答案】B【解析】sin163sin223sin253sin313︒︒+︒︒sin 9073sin 270()()()(47sin 18073sin 36)047+=︒+︒︒-︒︒+︒︒-︒ cos73cos47si ()()n73sin 47---=︒︒︒︒ cos73cos47sin73sin 4(7)︒︒-︒=︒- cos 73)4(7=-︒+︒ 1cos1202=-︒=.故选B . 7.【答案】B【解析】∵22θπ<<π,∴2θπ<<π, 则tan 0θ<,22tan tan 21tan θθθ==--2tan 0θθ-=,解得tan 2θ=或tan θ=(舍去),∴tan 2θ=.故选B . 8.【答案】C【解析】sin cos 4y x x x π⎛⎫=+=+ ⎪⎝⎭∴sin cos 424y x x x x π⎡ππ⎤⎛⎫⎛⎫=-=-=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.故选C .9.【答案】A【解析】sin62a =︒,cos26sin64b =︒=︒,sin60c =︒. ∵sin y x =,0,2x π⎛⎫∈ ⎪⎝⎭为递增函数,∴c a b <<.故选A .10.【答案】B【解析】原式()()222sin 2sin 2cos 22sin 22sin 2cos 2tan 22cos 22sin 2cos 22cos 2cos 2sin 2ααααααααααααα++===++. 故选B . 11.【答案】A【解析】11t ()an tan tan 2βθθ=π--=-=, ∴1tan 2θ=,2tan 43θ=.∴1212tan tan 21tan tan tan POQ θθθθ+-==-∠,∴2POQ <∠π<π.∴cos POQ ∠=.故选A . 12.【答案】C【解析】112,(),02,2332,OQ OP x x y y ππ⎛⎫⎛⎫⎛⎫+=+ ⎪ ⎪ ⎪⎝⎭⎝=⊗+=⊗⎭⎝⎭uuu v uu u v m n ,则023x x π=+,012y y =,所以0126x x π=-,02y y =, 所以()11sin 226x y f x π⎛⎫=- ⎪⎝⎭=.所以最大值12A =,最小正周期4T =π.故选C .二、填空题 13.【答案】1【解析】tan 60tan15tan 4511tan 60tan15︒-︒==︒=+︒︒1=. 14.【答案】 【解析】∵2sin cos212sin ααα==-,∴22sin sin 10αα+-=,∴1sin 2α=或1-. ∵,2απ⎛⎫∈π ⎪⎝⎭,∴1sin 2α=,∴56α=π,∴tan α=.15.1【解析】2sin sin co ()1cos 2sin 2s n 214x y x x x x x π⎛⎫=-+- ⎝++⎪⎭=,∴max 1y . 16.【答案】1【解析】∵()cos s n(i )αβαβ=+-∴cos cos sin sin sin cos cos sin αβαβαβαβ-=- ∴()cos sin cos s ()in cos sin αββαββ=++ ∵α、β均为锐角, ∴sin cos 0ββ+≠,∴cos sin αα=,∴tan 1α=.三、解答题 17.【答案】1,54π. 【解析】∵tan α,tan β是方程26510x x +=-的两根,∴5tan tan 6αβ+=,1tan tan 6αβ=,()115tan tan 6tan 1tan t n 61a αβαβαβ==--+=+. ∵02απ<<,2β3ππ<<, ∴2αβπ<+<π,∴54αβπ+=. 18.【答案】(1)94-;(2)6,73-.【解析】(1)2392cos sin 4cos 12333344f π2ππ⎛⎫= ⎪⎝⎭π+-=-+-=-.(2)()()()2222cos 11cos 4cos 3cos 4cos 12f x x x x x x -+--=--=2273cos 33x ⎛⎫=-- ⎪⎝⎭,x ∈R .因为[]cos 1,1x ∈-,所以,当cos 1x =-时,()f x 取得最大值6; 当2cos 3x =时,()f x 取得最小值73-. 19.【答案】(1)43-;(2).【解析】(1)∵⊥a b ,∴0⋅=a b .而3si ()n ,cos αα=a ,2sin 5sin 4cos ()ααα=-,b , 故226sin 5sin cos 4cos 0αααα⋅=+-=a b . 由于cos 0α≠,∴26tan 5tan 40αα+-=. 解之,得4tan 3α=-,或1tan 2α=.∵3,22απ⎛⎫∈π ⎪⎝⎭,tan 0α<,故1tan 2α= (舍去).∴4tan 3α=-.(2)∵3,22απ⎛⎫∈π ⎪⎝⎭,∴3,24απ⎛⎫∈π ⎪⎝⎭.由4tan 3α=-,求得1tan 22α=-或tan 22α=(舍去).∴sin2α=cos 2α=,1cos cos cos sin sin 2323223αααπππ⎛⎫+=-=-= ⎪⎝⎭20.【答案】(1)π,2,1212k k k π5π⎡⎤π-π+∈⎢⎥⎣⎦Z ;(2)[]0,1m ∈.【解析】(1)()2s 2sin o 24f x x x π⎛⎫=+ ⎪⎝⎭1cos 222x x π⎛⎫=-+ ⎪⎝⎭1sin 2x x =+2sin 213x π⎛⎫=-+ ⎪⎝⎭,周期T =π;222232k x k ππππ-≤-≤π+, 解得()f x 的单调递增区间为,1212k k k π5π⎡⎤π-π+∈⎢⎥⎣⎦Z .(2),42x ππ⎡⎤∈⎢⎥⎣⎦,所以22,363x πππ⎡⎤-∈⎢⎥⎣⎦,1sin 2,132x π⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,所以()f x 的值域为[]2,3.而()2f x m =+,所以[]22,3m +∈,即[]0,1m ∈. 21.【答案】(1)π,最大值为2,最小值为1-;(2. 【解析】(1)由()2cos 2c o s 1f x x x x =+-,得())2()2cos 22sin 22sin cos 2co 6s 1x x f x x x x x π⎛⎫++=+ ⎪⎝⎭-,所以函数()f x 的最小正周期为π.因为()2sin 26x f x π⎛⎫=+ ⎪⎝⎭在区间0,6π⎡⎤⎢⎥⎣⎦上为增函数,在区间,62ππ⎡⎤⎢⎥⎣⎦上为减函数,又()01f =,26f π⎛⎫= ⎪⎝⎭,12f π⎛⎫=- ⎪⎝⎭, 所以函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值为2,最小值为1-.(2)由(1)可知()002sin 26f x x π⎛⎫=+ ⎪⎝⎭.因为()065f x =,所以03sin 265x π⎛⎫+= ⎪⎝⎭.由0,42x ππ⎡⎤∈⎢⎥⎣⎦,得0272,636x πππ⎡⎤+∈⎢⎥⎣⎦,从而04cos 265x π⎛⎫+=- ⎪⎝⎭.∴0000cos 2cos 2cos sin 2sin 66666cos 26x x x x ⎡ππ⎤ππππ⎛⎫⎛⎫⎛⎫=+-=+++= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.22.【答案】(1)45;(2)34π. 【解析】(1)22tan42tan 31tan 2ααα==-,∴sin 4cos 3αα=.又∵22sin cos 1αα+=, 解得4sin 5α=. (2)∵02αβπ<<<<π,∴0βα<-<π.∵os (c )βα=-,∴()sin βα=- ∴[]sin sin sin cos cos s ()()()in ββααβααβαα-+-+==-3455=+=∵,2βπ⎛⎫∈π ⎪⎝⎭,∴34βπ=.。
(好题)高中数学必修四第三章《三角恒等变形》测试卷(答案解析)
一、选择题1.已知函数44()cos sin f x x x =-在区间,()4t t t R π⎡⎤-∈⎢⎥⎣⎦上的最大值为()M t ,最小值为()N t 则函数()()()g t M t N t =-的最小值为( )A 1-B .1C .2D .12-2.已知矩形ABCD 中,AB AD >.设点B 关于AC 的对称点为B ',AB '与CD 交于点P ,若3CP PD =,则tan BCB '∠=( )A .-B .C .2-D .4-3.函数()2cos ||cos 2f x x x =-在[,]x ππ∈-上的单调增区间为( ) A .,3ππ⎡⎤--⎢⎥⎣⎦和0,3π⎡⎤⎢⎥⎣⎦B .,03π⎡⎤-⎢⎥⎣⎦和,3ππ⎡⎤⎢⎥⎣⎦C .,06π⎡⎤-⎢⎥⎣⎦和,6ππ⎡⎤⎢⎥⎣⎦D .,6ππ⎡⎤--⎢⎥⎣⎦和06,π⎡⎤⎢⎥⎣⎦4.已知tan α,tan β是方程2506x x a -+=的两个实数根,且()tan 1αβ+=,则实数a =( )A .16B .116C .512D .7125.已知2tan 23θ=,则1cos sin 1cos sin θθθθ-+++的值为( )A .23B .23-C .32D .32-6.已知sin cos x x +=,则1tan tan x x +=( ) A .6- B .7-C .8-D .9-7.已知cos 410πθ⎛⎫-=⎪⎝⎭,则sin 2θ=( ) A .2425-B .1225-C .1225D .24258.已知函数()sin (0)f x x x ωωω=+>的图象关于直线8x π=对称,则ω的最小值为( ) A .13B .23C .43D .839.已知α∈3π,π2⎛⎫ ⎪⎝⎭,cos α=-45,则tan π4α⎛⎫- ⎪⎝⎭等于( ) A .7B .17C .-17D .-710.已知角α满足1cos()63πα+=,则sin(2)6πα-=( ) A.9-B.9C .79-D .7911.已知,2παπ⎛⎫∈ ⎪⎝⎭,3sin 5α=,则tan 4πα⎛⎫+= ⎪⎝⎭( )A .17 B .7C .17-D .-712.已知直线524x π=是函数21()sin 8)22x f x x ωωω=+<≤图象的一条对称轴,则ω=( ) A .2B .4C .6D .8二、填空题13.已知1cos 3α=,且02πα-<<,则()()()cos sin 2tan 23sin cos 22αππαπαππαα--+-=⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭______. 14.4cos50tan40-=______.15.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若3sin 4α=,则()cos αβ-=______. 16.若函数()2cos 2,[0,]f x x x x π=-+∈的图象与直线y m =恰有两个不同交点,则m 的取值范围是________.17.已知()()sin 2sin 223cos cos 2πθπθπθπθ⎛⎫--- ⎪⎝⎭=⎛⎫+++ ⎪⎝⎭,则22sin 2sin cos cos θθθθ+-=___________.18.若函数()sin()cos f x x x ϕ=++为偶函数,则常数ϕ的一个取值为________.19.已知角θ的终边经过点(4,3)P -,则22cos sin 12)4--=+θθπθ_____________.20.已知sin 4πθ⎛⎫-= ⎪⎝⎭sin 2θ=___________. 三、解答题21.已知函数2()cos 2cos 1(0)f x x x x ωωωω=-+>,且()y f x =的图象与直线2y =的两个相邻公共点之间的距离为π. (1)求函数()f x 的最小正周期和单调递减区间; (2)将函数()f x 图象上的所有点向左平移6π个单位,得到函数()g x 的图象,当0,2x π⎡⎤∈⎢⎥⎣⎦时,关于x 的方程()g x a =有两个不相等的实数根,求实数a 的取值范围.22.已知310,2,tan ,sin 223ππαβπαβ<<<<==. (1)求cos()αβ-的值; (2)求αβ+的值.23.①角α的终边上有一点()2,4M ;②角α的终边与单位圆的交点在第一象限且横坐标为13;③2α为锐角且22sin 42cos 22sin 2ααα=-.在这三个条件中任选一个,补充在下面问题中的横线上,并加以解答.问题:已知角α的顶点在原点O ,始边在x 轴的非负半轴上,___________.求cos 23πα⎛⎫+ ⎪⎝⎭的值.注:如果选择多个条件分别解答,则按第一个解答记分.24.已知300cos 25παβπα<<<<=,,. (1)分别求cos 2sin 2sin 2ααα,,的值;(2)若1sin()3αβ+=,求cos β.25.已知函数()22sin cos 1444x x x f x ⎛⎫=+- ⎪⎝⎭.(1)求函数()f x 的最小正周期及()f x 的单调递减区间﹔ (2)将()f x 的图象先向左平移6π个单位长度,再将其横坐标缩小为原来的12,纵坐标不变得到函数()g x ,若()04g x =,05,4x ππ⎛⎫∈⎪⎝⎭,求0sin x 的值. 26.已知函数2()sin 22sin 6f x x x π⎛⎫=-+ ⎪⎝⎭.(1)求512f π⎛⎫⎪⎝⎭;(2)求()f x 的单调递增区间及最小正周期.(3)若(0,)2πα∈,且()22f α=,求sin α.(4)若tan 2β=,求3()cos 22f ββ+的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先利用平方差公式、同角三角函数关系以及二倍角公式将函数变形为()cos 2f x x =,然后发现区间长度刚好是四分之一个周期,从而利用余弦函数的对称性,得到当区间,4t t π⎡⎤-⎢⎥⎣⎦,关于cos 2y x =的对称轴对称时,此时最大值与最小值的差值最小,求出此时的最大值和最小值,即可得到答案. 【详解】 函数44222222()cos sin (cos sin )(cos sin )cos sin cos 2f x x x x x x x x x x =-=+-=-=,所以函数()f x 的周期为22T ππ==,区间,()4t t t R π⎡⎤-∈⎢⎥⎣⎦的区间长度刚好是函数()f x 的四分之一个周期,因为()f x 在区间,()4t t t R π⎡⎤-∈⎢⎥⎣⎦上的最大值为()M t ,最小值为()N t ,由函数cos 2y x =的对称性可知,当区间,4t t π⎡⎤-⎢⎥⎣⎦,关于2y cos x =的对称轴对称时,此时最大值与最小值的差值最小,即函数()()()g t M t N t =-取最小值,区间,4t t π⎡⎤-⎢⎥⎣⎦,的中点为428t tt t ππ-+==-,此时()f t 取得最值±1, 不妨()f t 取得最大值()=1M t , 则有cos 2()18t π-=,解得224t k ππ-=,所以,,8t k k Z ππ=+∈所以2()cos 2cos 2cos 44N t t k πππ⎛⎫==+==⎪⎝⎭, 故()()()g t M t N t =-取最小值为212-. 故选:D . 【点睛】关键点睛:本题考查了三角函数的最值,涉及了二倍角公式的应用、同角三角函数关系的应用、三角函数的周期性、对称性的应用,解题的关键是分析出当区间,4t t π⎡⎤-⎢⎥⎣⎦关于cos 2y x =的对称轴对称时,此时最大值与最小值的差值最小.2.A解析:A 【分析】根据对称性可得BAC CAP ACP ∠=∠=∠,设1PD =,可计算出AB 的长,利用勾股定理可得BC 的长,在Rt ABC 中,由ABBC可得tan BCA ∠,再利用正切函数的二倍角公式可得答案. 【详解】如图,由题意得BAC CAP ACP ∠=∠=∠. 不妨设1PD =,则3AP CP ==,4AB CD ==, 在Rt APD 中,223122AD =-=,即22BC AD ==. 在Rt ABC 中,tan 222AB BCA BC ∠===. 则22tan 22tan tan 2221tan 12BCA BCB BCA BCA ∠'∠=∠===--∠-,故选:A.【点睛】本题考查了利用三角函数解决几何图形问题,关键点是利用对称性找到边长之间的关系然后利用正切函数求解,考查了学生分析问题、解决问题的能力.3.A解析:A【分析】先把函数解析式化简,然后令cos t x =,利用复合函数单调性求解即可 【详解】 当[]0,x π∈时,22()2cos ||cos 2=2cos (2cos 1)2cos 2cos 1f x x x x x x x =---=-++,令cos [1,1]t x t =∈-,,则cos t x =在[]0,x π∈上为减函数;而2221y t t =-++ 对称轴为12t =, ∴2221y t t =-++在1[1,]2t ∈-上单增,在1[,1]2t ∈上单减, ∴()y f x =在0,3x π⎡⎤∈⎢⎥⎣⎦上为增函数,在,3x ππ⎡⎤∈⎢⎥⎣⎦上为减函数. 又()2cos ||cos 2f x x x =-为偶函数,其图像关于y 轴对称, ∴()y f x =在,3ππ⎡⎤--⎢⎥⎣⎦上为增函数,在,03π⎡⎤-⎢⎥⎣⎦上为减函数. 故()y f x =的单调增区间为,3ππ⎡⎤--⎢⎥⎣⎦和0,3π⎡⎤⎢⎥⎣⎦. 故选:A 【点睛】复合函数的单调性口诀:同增异减,其具体含义为: 内外函数的单调性相同(同),则复合函数为增函数(增); 内外函数的单调性相反(异),则复合函数为减函数(减).4.A解析:A 【分析】首先利用韦达定理求得5tan tan 6αβ+=,tan tan a αβ⋅=,再结合()tan 1αβ+=,利用两角和正切公式得到关于a 的等量关系式,求得结果. 【详解】因为tan α,tan β是方程2506x x a -+=的两个实数根, 所以有5tan tan 6αβ+=,tan tan a αβ⋅=, 因为()tan 1αβ+=,所以有5611a=-,所以16a =,故选:A. 【点睛】思路点睛:该题考查的是有关两角和正切公式,解题思路如下:(1)先利用韦达定理,写出两根和与两根积;(2)利用两角和正切公式,结合题中条件,得到等量关系式,求得结果.5.A解析:A 【分析】根据半角公式得22sin sin cos221cos sin 1co 2cos sin cos 22s s 2in θθθθθθθθθθ=+++++-,再分子分母同除以2cos 2θ得2tan 1cos sin 21cos si tan2n 31ta 2n 2θθθθθθθ-+=++=++. 【详解】解:根据半角公式得:22cos 12sin2cos 122θθθ=-=-,sin 2sincos22θθθ=所以22222sin 2sin cos sin sin cos2222222cos 2sin cos cos sin cos 21cos sin 1cos 222n 2i 2s θθθθθθθθθθθθθθθθ-+==++++++, 对上述式子分子分母同除以2cos 2θ得: 222sin sin cos tan22222cos s 42ta in cos 22n 1cos sin 1029321cos sin 1531tan 1322θθθθθθθθθθθθθ+-+==+++===++++. 故选:A. 【点睛】本题解题的关键在于利用半角公式化简得22sin sin cos221cos sin 1co 2cos sin cos 22s s 2in θθθθθθθθθθ=+++++-,进而构造齐次式求解即可,考查运算求解能力,是中档题. 6.C解析:C 【分析】将等式sin cos x x +=sin cos x x 的值,利用切化弦可求得1tan tan x x+的值. 【详解】由sin cos x x +=,可得()23sin cos 12sin cos 4x x x x +=+=,得1sin cos 8x x =-,因此,221sin cos sin cos 1tan 8tan cos sin sin cos sin cos x x x x x x x x x x x x++=+===-.故选:C. 【点睛】方法点睛:应用公式时注意方程思想的应用,对于sin cos αα+、sin cos αα-、sin cos αα这三个式子,利用()2sin cos 12sin cos αααα±=±可以知一求二.7.D解析:D 【分析】由2sin 2cos(2)cos[2()]2cos ()1244πππθθθθ=-=-=--,代入即可求解. 【详解】因为cos 410πθ⎛⎫-=⎪⎝⎭, 由24924sin 2cos(2)cos[2()]2cos ()1212445025πππθθθθ=-=-=--=⨯-=. 故选:D. 【点睛】本题主要考查了三角恒等变换的化简、求值,其中解答中熟记余弦的倍角公式,准确运算是解答的关键,着重考查了运算与求解能力.8.C解析:C 【分析】利用辅助角公式将函数()y f x =的解析式化简为()2sin 3f x x πω⎛⎫=+ ⎪⎝⎭,根据题意得出()832k k Z πππωπ+=+∈,可得出关于ω的表达式,即可求出正数ω的最小值.【详解】()sin 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,由于该函数的图象关于直线8x π=对称,则()832k k Z πππωπ+=+∈,得()483k k Z ω=+∈, 0ω>,当0k =时,ω取得最小值43.故选:C. 【点睛】本题考查利用正弦型函数的对称性求参数,解题时要将三角函数的解析式利用三角恒等变换思想化简,并通过对称性列出参数的表达式求解,考查计算能力,属于中等题.9.B解析:B 【分析】先根据同角三角函数关系求tan α,再根据两角差正切公式求结果. 【详解】 由已知得tan α=34,则tan π1tan 141tan 7ααα-⎛⎫-== ⎪+⎝⎭. 选B 【点睛】本题考查同角三角函数关系、两角差正切公式,考查基本求解能力.10.D解析:D 【分析】由已知利用诱导公式可求133sin πα⎛⎫-= ⎪⎝⎭,sin 2263cos ππαα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,再由二倍角公式化简,即可得结果. 【详解】162633cos sin sin ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,2sin 2cos 2cos 2262633cos πππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴-=--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦22171212()339sin πα⎛⎫=--=-⨯= ⎪⎝⎭.故选D . 【点睛】本题主要考查了诱导公式,二倍角公式在三角函数化简求值中的应用,属于基础题.三角函数求值有三类,(1)“给角求值”;(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种系;(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.11.A解析:A 【分析】根据角的范围以及平方关系求出4cos ,5α=-再利用商的关系求出3tan 4α=-,最后由两角和的正切公式可得答案. 【详解】因为,2παπ⎛⎫∈ ⎪⎝⎭,3sin 5α=,所以4cos ,5α==-sin 3tan cos 4ααα==-, tan tan4tan 41tan tan 4παπαπα+⎛⎫+== ⎪⎝⎭-⋅17 故选:A. 【点睛】本题主要考查平方关系、商的关系以及两角和的正切公式,属于基础题.12.B解析:B 【分析】首先通过三角函数关系式的变换,把函数的关系式变形成正弦型函数,进一步利用函数的性质的应用求出结果. 【详解】解:函数211()sin cos )sin sin()2223xf x x x x x ωπωωωω=+=-+=-, 令:5()2432k k Z πππωπ-=+∈,解得244()5kk Z ω=+∈, 由于08ω<, 所以4ω=. 故选:B . 【点睛】本题考查三角函数关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,二、填空题13.【分析】用同角间的三角函数关系计算用诱导公式化简后再计算然后计算可得【详解】∵且∴∴故答案为:【点睛】方法点睛:本题考查诱导公式同角间的三角函数关系三角函数求值问题首先要进行化简应用诱导公式化简应用解析:-【分析】用同角间的三角函数关系计算sin α,用诱导公式化简后再计算.然后计算tan α,可得.【详解】∵1cos 3α=,且02πα-<<,∴sin 3α==-, ∴()()()cos sin 2tan 2cos sin (tan )sin tan 3cos (sin )cos sin cos 22αππαπααααααππααααα--+---=====---⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭.故答案为:-. 【点睛】方法点睛:本题考查诱导公式,同角间的三角函数关系.三角函数求值问题,首先要进行化简,应用诱导公式化简,应用同角间的三角函数关系化简,最后才代入求值.应用诱导公式应牢记:奇变偶不变,符号看象限,应用同角间的三角函数关系应注意在应用平方关系求函数值需确定角的范围,以确定正弦余弦值的正负.14.【详解】故答案为考点:三角函数诱导公式切割化弦思想【详解】4sin 40cos 40sin 404cos50tan 40cos 40--=2cos10sin 30cos10sin10cos30cos 40--=,1sin102cos 40⎫-⎪⎝⎭=40340==.考点:三角函数诱导公式、切割化弦思想.15.;【分析】根据角的终边关于轴对称得到以及两角差的余弦公式即可求出【详解】因为角与角均以为始边它们的终边关于轴对称所以所以故答案为:【点睛】本题主要考查了三角函数定义的应用两角差的余弦公式同角三角函数解析:18; 【分析】根据角的终边关于y 轴对称得到cos cos ,sin sin αβαβ=-=,以及两角差的余弦公式即可求出. 【详解】因为角α与角β均以Ox 为始边,它们的终边关于y 轴对称,所以3cos cos ,sin sin 4αβαβ=-==, 所以()22cos cos cos sin sin sincos αβαβαβαα-=+=-22sin 1α=-92116=⨯- 18= 故答案为:18【点睛】本题主要考查了三角函数定义的应用,两角差的余弦公式,同角三角函数的关系,属于中档题.16.【分析】化简函数解析式为做出函数的图象数形结合可得的取值范围【详解】解:因为所以由可得则函数的图象与直线恰有两个不同交点即方程在上有两个不同的解画出的图象如下所示:依题意可得时函数的图象与直线恰有两 解析:[4,6)【分析】化简函数解析式为()4sin()26f x x π=-+,做出函数的图象,数形结合可得m 的取值范围. 【详解】解:因为()2cos 2,[0,]f x x x x π=-+∈所以()2cos 24sin()26f x x x x π=-+=-+,[0,]x π∈,由[]0,x π∈,可得5,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 则函数()f x ,[]0,x π∈的图象与直线y m =恰有两个不同交点,即方程4sin()26x m π-+=在[]0,x π∈上有两个不同的解,画出()f x 的图象如下所示:依题意可得46m ≤<时,函数()232cos 2,[0,]f x x x x π=-+∈的图象与直线y m =恰有两个不同交点,故答案为:[)4,6 【点睛】本题主要考查正弦函数的最大值和单调性,函数sin()y A x ωϕ=+的图象变换规律,正弦函数的图象特征,体现了转化、数形结合的数学思想,属于中档题.17.【分析】利用诱导公式结合弦化切的思想求出的值然后在代数式上除以并在所得分式的分子和分母中同时除以可得出关于的分式代值计算即可【详解】解得因此故答案为:【点睛】本题考查诱导公式和同角三角函数的商数关系 解析:75【分析】利用诱导公式结合弦化切的思想求出tan θ的值,然后在代数式22sin 2sin cos cos θθθθ+-上除以22sin cos θθ+,并在所得分式的分子和分母中同时除以2cos θ可得出关于tan θ的分式,代值计算即可. 【详解】()()sin 2sin sin cos tan 1223sin cos tan 1cos cos 2πθπθθθθπθθθθπθ⎛⎫--- ⎪++⎝⎭===--⎛⎫+++ ⎪⎝⎭,解得tan 3θ=.因此,22222222sin 2sin cos cos tan 2tan 1sin 2sin cos cos sin os tan 1θθθθθθθθθθθθθ+-+-+-==++2232317315+⨯-==+. 故答案为:75.【点睛】本题考查诱导公式和同角三角函数的商数关系化简求值,解题的关键就是求出tan θ的值,考查运算求解能力,属于中等题.18.(答案不唯一)【分析】根据函数为偶函数有化简得对任意恒成立所以有取其中一个值即可得出答案【详解】解:因为函数为偶函数则所以所以等价于对任意恒成立所以所以所以常数的一个取值为故答案为:(答案不唯一)【解析:π2(答案不唯一) 【分析】根据函数为偶函数有()()f x f x =-,化简得sin cos 0x ϕ=对任意x 恒成立,所以有()2k k Z πϕπ=+∈,取其中一个值即可得出答案.【详解】解:因为函数()sin()cos f x x x ϕ=++为偶函数,则()()f x f x =- 所以sin()cos sin()cos()x x x x ϕϕ++=-++-所以sin cos cos sin cos sin()cos cos()sin cos x x x x x x ϕϕϕϕ++=-+-+ 等价于sin cos 0x ϕ=对任意x 恒成立,所以cos 0ϕ=, 所以()2k k Z πϕπ=+∈,所以常数ϕ的一个取值为π2. 故答案为:π2(答案不唯一) 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.19.7【分析】根据角终边定义得将所求分式用倍角公式和差公式化简化为齐次式代化简即可【详解】解:由角的终边经过点得所以故答案为:7【点睛】任意角的三角函数值:(1)角与单位圆交点则;(2)角终边任意一点则;解析:7 【分析】根据角终边定义得3tan 4θ=-,将所求分式用倍角公式、和差公式化简,化为齐次式,代3tan 4θ=-化简即可.【详解】解:由角θ的终边经过点(4,3)P -得3tan 4θ=-所以222cos sin 1(2cos 1)sin cos sin 22sin cos )coscos sin )444-----==+++θθθθθθπππθθθθθ31cos sin 1tan 473sin cos tan 114θθθθθθ⎛⎫-- ⎪--⎝⎭====++-+.故答案为:7 【点睛】任意角的三角函数值:(1)角α与单位圆交点(,)P x y ,则sin ,cos ,tan (0)yy x x xααα===≠; (2)角α终边任意一点(,)P x y,则sin tan (0)yx xααα===≠; 20.【分析】根据可得的值将平方结合正弦的二倍角公式即可计算出的值【详解】因为所以所以所以且所以所以故答案为:【点睛】关键点点睛:解答本题的关键是通过展开得到的值再根据与之间的关系:去完成求解解析:23【分析】根据sin 46πθ⎛⎫-= ⎪⎝⎭可得sin cos θθ-的值,将sin cos θθ-平方结合正弦的二倍角公式即可计算出sin 2θ的值. 【详解】因为sin 46πθ⎛⎫-= ⎪⎝⎭,所以()sin cos 26θθ-=,所以sin cos 3θθ-=,所以()21sin cos 3θθ-=且22sin cos 1θθ+=, 所以112sin cos 3θθ-=,所以2sin 23θ=, 故答案为:23. 【点睛】关键点点睛:解答本题的关键是通过展开sin 4πθ⎛⎫-⎪⎝⎭得到sin cos θθ-的值,再根据sin cos θθ-与sin 2θ之间的关系:()2sin cos 1sin 2θθθ-=-去完成求解. 三、解答题21.(1)最小正周期为π,单调递减区间为5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)1,12⎡⎫⎪⎢⎣⎭【分析】(1)化简可得()2sin 26f x x πω⎛⎫=-⎪⎝⎭,由题可得T π=,则可解出1ω=,令3222,262k x k k Z πππππ+≤-≤+∈可求出单调递减区间; (2)可得()2sin 26g x x π⎛⎫=+⎪⎝⎭,题目等价于找出()g x 有两个点相等的区间,即可求出a 的范围.【详解】(1)()2cos 22sin 26f x x x x πωωω⎛⎫=-=-⎪⎝⎭, ()y f x =的图象与直线2y =的两个相邻公共点之间的距离为π,T π∴=,则22ππω=,解得1ω=, ()2sin 26f x x π⎛⎫∴=- ⎪⎝⎭,令3222,262k x k k Z πππππ+≤-≤+∈, 解得5,36k x k k Z ππππ+≤≤+∈, 故()f x 的单调递减区间为5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)可得()2sin 22sin 26666g x f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 当0,2x π⎡⎤∈⎢⎥⎣⎦时,672,66x πππ⎡⎤⎢⎥⎣⎦-∈,()1,12g x ⎡⎤∈-⎢⎥⎣⎦, 要使关于x 的方程()g x a =有两个不相等的实数根, 只需找出()g x 有两个点相等的区间即可, 当2,662x πππ⎡⎫-∈⎪⎢⎣⎭和52,626x πππ⎛⎤-∈ ⎥⎝⎦时满足题意,此时()1,12g x ⎡⎫∈⎪⎢⎣⎭,1,12a ⎡⎫∴∈⎪⎢⎣⎭.【点睛】本题考查三角函数与方程的应用,解题的关键是得出题目等价于找出()g x 有两个点相等的区间.22.(1;(2)74π. 【分析】(1)由tan α求得sin ,cos αα,由sin β求得cos β,然后由两角差的余弦公式计算; (2)由两角和的正弦公式求得sin()αβ+后,由3522ππαβ<+<可得αβ+ 【详解】 因为1tan 3α=,所以sin 1cos 3αα=,又因为22sin cos 1αα+=,02πα<<,所以sin α=cos α=sin β=322πβπ<<,所以cos β===.(1)cos()cos cos sin sin αβαβαβ-=+⎛=⎝⎭=(2)因为sin()sin cos cos sin αβαβαβ+=+⎛= ⎝⎭2=-. 因为02πα<<,322πβπ<<,所以3522ππαβ<+<,所以74αβπ+=. 【点睛】方法点睛:本题考查两角和与差的正弦、余弦公式,考查同角间的三角函数关系,求角求值.解题关键是确定“已知角”和“未知角”的关系,以便选用恰当的公式求值.在求角,一般先确定出这个角的范围,在这个范围内选三角函数值是一对一的函数求得这个三角函数值,然后得角,如果不能直接得出一对一的函数,常常需要由已知或已求出的三角函数值缩小角的范围,从而得出角. 23.答案见解析 【分析】选条件①,则根据三角函数定义得cosα=,sin α=,进而根据二倍角公式得3cos25α=-,4sin 25α=,再结合余弦的和角公式求解即可;选条件②,由三角函数单位圆的定义得1cos 3α=,sin 3α=,进而根据二倍角公式得7cos 29α=-,sin 29α=,再结合余弦的和角公式求解即可; 选条件③,由二倍角公式得222sin 42tan 22cos 22sin 212tan 2ααααα==--,并结合题意得1tan 22α=,故cos 2α=,sin 2α=【详解】解:方案一:选条件①. 由题意可知2cos ||OM α===4sin ||OM α===. 所以23cos 22cos 15αα=-=-,4sin 22sin cos 5ααα==.所以cos 2cos 2cos sin 2sin 333πππααα⎛⎫+=- ⎪⎝⎭3145252=-⨯-⨯= 方案二:选条件②.因为角α的终边与单位圆的交点在第一象限且横坐标为13,所以1cos 3α=,sin α==所以27cos 22cos 19αα=-=-,sin 22sin cos 9ααα==.所以cos 2cos 2cos sin 2sin 333πππααα⎛⎫+=- ⎪⎝⎭719292=-⨯-⨯=. 方案三:选条件③.22222sin 42sin 2cos 22tan 22cos 22sin 2cos 22sin 212tan 2ααααααααα===---,结合2α为锐角,解得1tan 22α=,所以cos 2α=,sin 2α=. 所以cos 2cos 2cos sin 2sin 333πππααα⎛⎫+=- ⎪⎝⎭12==. 【点睛】本题解题的关键在于根据三角函数的定义求得cos ,sin αα,进而根据三角恒等变换求解,考查运算求解能力,是基础题. 24.(1)724cos 2,sin 2,sin 25252ααα=-==;(2. 【分析】 (1)先由30cos 25παα<<=,,求出sin α,然后分别求cos 2sin 2sin 2ααα,,的值; (2)先判断αβ+的范围,再凑角()βαβα=+-,利用两角差的余弦公式即可求解. 【详解】 (1)因为30,cos 25παα<<=,所以24sin 1cos 5αα.所以27cos 22cos 1,2524sin 22sin cos ,25sin 2αααααα=-=-====;(2)因为0,02παβπ<<<<,所以302παβ<+<,因为14sin()sin 35αβα+=<=,所以αβ+不可能是锐角,所以cos()αβ+==,所以4cos cos[()]cos()cos sin()sin 15βαβααβααβα-=+-=+++=. 【点睛】利用三角公式求三角函数值的关键: (1)角的范围的判断;(2)根据条件进行合理的拆角,如()()2()βαβαααβαβ=+-=++-,等. 25.(1)最小正周期为4π,单调递减区间是5114,4,33k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ;(2). 【分析】(1)利用完全平方公式、正弦的二倍角公式、逆用两角差正弦公式化简()f x ,再求最小正周期及()f x 的单调递减区间;(2)求出()f x 的图象变换后的解析式,再求出04x π-的正余弦值利用凑角可得答案.【详解】()22sin cos 112sin cos 1cos 1444442x x x x x x f x ⎛⎫⎫=+-=++ ⎪⎪⎝⎭⎭1sin 2sin 2sin 22222223x x x x x π⎛⎫⎛⎫==-=- ⎪ ⎪ ⎪⎝⎭⎝⎭. (1)()f x 的最小正周期为4T π=, 由3222232x k k πππππ+≤-≤+,k ∈Z ,解得5114433k x k ππππ+≤≤+,k ∈Z , 所以函数()f x 的单调递减区间是5114,4,33k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z .(2)将()f x 的图象先向左平移6π个单位长度,得到函数62sin 2sin 2324x x y πππ⎛⎫+ ⎪⎛⎫=-=- ⎪ ⎪⎝⎭ ⎪⎝⎭,再将其横坐标缩小为原来的12,纵坐标不变得到函数()2sin 4g x x π⎛⎫=- ⎪⎝⎭,据题意有0sin 4x π⎛⎫-= ⎪⎝⎭03,44x πππ⎛⎫-∈ ⎪⎝⎭,则0cos 4x π⎛⎫-= ⎪⎝⎭则0000sin sin sin cos cos sin 444444x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦822=⨯-=. 【点睛】 本题考查了三角函数的图象和性质,其中解答中利用三角恒等变换的公式,化简()f x 的解析式,再利用三角函数的图象与性质求解是解答的关键,着重考了学生的计算能力,属于基础题.26.(11(2)5[,],1212k k k Z ππππ-+∈,π(3)6(4)15+ 【分析】(1)化简函数解析式代入直接求值即可;(2)由正弦型函数的性质求解即可; (3)先求出cos()3πα-,sin()3πα-再利用33ππαα=-+求解即可; (4)由两角差的正弦化简后再利用弦化切求解.【详解】 (1)2()sin 22sin 6f x x x π⎛⎫=-+= ⎪⎝⎭ sin2cos cos2sin 1cos 266x x x ππ⋅-⋅+-1cos21cos22x x x =-+-3cos212x x =-+213x π⎛⎫=-+ ⎪⎝⎭,故55sin()111263f πππ⎛⎫=-+= ⎪⎝⎭.(2)由(1)知()213f x x π⎛⎫=-+ ⎪⎝⎭, 令222,232k x k k Z πππππ-≤-≤+∈, 解得5,1212k x k k Z ππππ-≤≤+∈, 所以函数()f x 的单调递增区间为5[,],1212k k k Z ππππ-+∈,函数()f x 的周期为22T ππ==. (3)(0,)2πα∈,且()22f α=,())1223f απα=-+=,即sin()33πα-=, 因为(0,)2πα∈,所以cos()33πα-=, 故sin sin[()]sin()cos cos()sin 333333ππππππαααα=-+=-+-12=+=(4)33()cos 2)1cos 2232f πββββ+=-++3221cos 22βββ=-++211β=+=+1=+1= 【点睛】关键点点睛:涉及三角函数的求值化简问题,关键要根据式子结构特征,选择合适的公式,正用、逆用公式,并结合切化弦、弦化切思想,角的变换技巧,灵活运用公式,熟练运算,属于中档题.。
北师大版数学高一-必修4章末综合测评3
章末综合测评(三) 三角恒等变形(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算sin 21°·cos 9°+sin 69°·sin 9°的结果是( ) A .32 B .12 C .-12D .-32【解析】 sin 21°·cos 9°+sin 69°·sin 9°=sin 21°·cos 9°+cos 21°·sin 9° =sin(21°+9°)=sin 30°=12. 【答案】 B2.(2016·贺州高一检测)cos 4π8-sin 4 π8等于( ) A .0 B .22C .1D .-22【解析】 原式=⎝ ⎛⎭⎪⎫cos 2π8-sin 2π8⎝ ⎛⎭⎪⎫cos 2π8+sin 2π8=cos 2π8-sin 2π8 =cos π4=22. 【答案】 B3.设tan α,tan β是方程x 2-3x +2=0的两个根,则tan(α+β)的值为( ) A .-3 B .-1 C .1D .3【解析】 依题意得⎩⎪⎨⎪⎧tan α+tan β=3,tan αtan β=2,则tan(α+β) =tan α+tan β1+tan αtan β=31-2=-3. 【答案】 A4.已知sin ⎝ ⎛⎭⎪⎫π4-x =35,则sin 2x 的值为( )A .1925B .1625C.1425D .725【解析】 sin 2x =cos ⎝ ⎛⎭⎪⎫π2-2x =cos 2⎝ ⎛⎭⎪⎫π4-x=1-2sin 2⎝ ⎛⎭⎪⎫π4-x =1-2×⎝ ⎛⎭⎪⎫352=725. 【答案】 D5.2-sin 22+cos 4的值等于( ) A .sin 2 B .-cos 2 C.3cos 2 D .-3cos 2【解析】 原式=2-sin 22+1-2sin 22=3(1-sin 22)=3|cos 2|.∵π2<2<π,∴cos 2<0, ∴原式=-3cos2. 【答案】 D6.tan (α+β)=25,tan ⎝ ⎛⎭⎪⎫α+π4=322,那么tan ⎝ ⎛⎭⎪⎫β-π4=( )A .15B .1318C.14 D .1322【解析】 tan ⎝ ⎛⎭⎪⎫β-π4=tan ⎣⎢⎡⎦⎥⎤(α+β)-⎝ ⎛⎭⎪⎫α+π4 =tan (α+β)-tan ⎝ ⎛⎭⎪⎫α+π41+tan (α+β)·tan ⎝ ⎛⎭⎪⎫α+π4 =25-3221+25×322=14. 【答案】 C7.(2016·西安高一检测)若tan α=3,则sin 2αcos 2α的值等于( )【导学号:66470076】A .2B .3C .4D .6【解析】sin 2αcos 2α=2sin αcos αcos 2α=2tan α=6. 【答案】 D8.设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,且tan α=1+sin βcos β,则( )A .3α-β=π2 B .2α-β=π2 C .3α+β=π2D .2α+β=π2【解析】 由条件得sin αcos α=1+sin βcos β,即sin αcos β=cos α(1+sin β),sin(α-β)=cos α=sin ⎝ ⎛⎭⎪⎫π2-α,因为-π2<α-β<π2,0<π2-α<π2,所以α-β=π2-α,所以2α-β=π2,故选B.【答案】 B9.已知cos ⎝ ⎛⎭⎪⎫α-π6+sin α=453,则sin ⎝ ⎛⎭⎪⎫α+7π6的值是( )A .-235 B .235 C .-45D .45【解析】 由条件可知32cos α+12sin α+sin α=45 3. 所以32(cos α+3sin α)=453, 所以sin ⎝ ⎛⎭⎪⎫α+π6=45,所以sin ⎝ ⎛⎭⎪⎫α+76π =-sin ⎝ ⎛⎭⎪⎫α+π6=-45.【答案】 C10.在△ABC 中,已知tan A +B2=sin C ,则△ABC 的形状为( )A .正三角形B .等腰三角形C .直角三角形D .等腰直角三角形【解析】 在△ABC 中,tan A +B 2=sin C =sin(A +B )=2sin A +B 2cos A +B2, 所以2cos 2A +B2=1,所以cos(A +B )=0.从而A +B =π2,△ABC 为直角三角形. 【答案】 C11.设α,β,γ∈⎝ ⎛⎭⎪⎫0,π2,且sin α+sin γ=sin β,cos β+cos γ=cos α,则β-α等于( )A .-π3 B .π6 C.π3或-π3D .π3【解析】 由已知得,sin γ=sin β-sin α,① cos γ=cos α-cos β,②由①2+②2,得1=2-2cos(β-α), ∴cos(β-α)=12.又sin α+sin γ=sin β,且α,β,γ∈⎝ ⎛⎭⎪⎫0,π2,∴sin α<sin β. ∴α<β, ∴β-α=π3. 【答案】 D12.若cos ⎝ ⎛⎭⎪⎫π4-θcos ⎝ ⎛⎭⎪⎫π4+θ=26⎝ ⎛⎭⎪⎫0<θ<π2,则sin 2θ的值为( )A .23 B .73 C.76D .346【解析】 ∵⎝ ⎛⎭⎪⎫π4-θ+⎝ ⎛⎭⎪⎫π4+θ=π2,∴cos ⎝ ⎛⎭⎪⎫π4+θ=sin ⎝ ⎛⎭⎪⎫π4-θ.由已知得cos ⎝ ⎛⎭⎪⎫π4-θ·sin ⎝ ⎛⎭⎪⎫π4-θ=26,∴sin ⎝ ⎛⎭⎪⎫π2-2θ=23,即cos 2θ=23.∵0<θ<π2,∴0<2θ<π, ∴sin 2θ=73. 【答案】 B二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.已知1+tan α1-tan α=2 016,那么1cos 2α+tan 2α=________.【解析】 1cos 2α+tan 2α=1cos 2α+sin 2αcos 2α=1+sin 2αcos 2α=(sin α+cos α)2cos 2α-sin 2α=cos α+sin αcos α-sin α=1+tan α1-tan α=2 016.【答案】 2 01614.tan ⎝ ⎛⎭⎪⎫π6-θ+tan ⎝ ⎛⎭⎪⎫π6+θ+3tan ⎝ ⎛⎭⎪⎫π6-θtan ⎝ ⎛⎭⎪⎫π6+θ的值是________.【解析】 ∵tan π3=tan ⎝ ⎛⎭⎪⎫π6-θ+π6+θ=tan ⎝ ⎛⎭⎪⎫π6-θ+tan ⎝ ⎛⎭⎪⎫π6+θ1-tan ⎝ ⎛⎭⎪⎫π6-θtan ⎝ ⎛⎭⎪⎫π6+θ=3,∴tan ⎝ ⎛⎭⎪⎫π6-θ+tan ⎝ ⎛⎭⎪⎫π6+θ+3tan ⎝ ⎛⎭⎪⎫π6-θtan ⎝ ⎛⎭⎪⎫π6+θ= 3. 【答案】315.已知sin(α+β)=12,sin(α-β)=13,那么log 5tan αtan β=________.【解析】 由题意有sin αcos β+cos αsin β=12,sin αcos β-cos αsin β=13, 两式相加得sin αcos β=512,两式相减得cos αsin β=112, 则tan αtan β=5,故log 5tan αtan β=2.【答案】 216.已知α,β均为锐角,sin α=35,cos β=513,则tan(α-β)的值是________.【导学号:66470077】【解析】 由α为锐角,sin α=35,得cos α=45⇒tan α=34. 由β为锐角,cos β=513,得sin β=1213⇒tan β=125, 故tan(α-β)=tan α-tan β1+tan αtan β=-3356.【答案】 -3356三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知cos ⎝ ⎛⎭⎪⎫π4+x =35,求sin 2x -2sin 2x 1-tan x 的值.【解】 sin 2x -2sin 2x1-tan x=cos x ·2sin x cos x -2sin 2 x cos xcos x -sin x=sin 2x=-cos ⎝ ⎛⎭⎪⎫2x +π2=-2cos 2⎝ ⎛⎭⎪⎫x +π4+1=-2×925+1=725.18.(本小题满分12分)求值:cos 40°+sin 50°(1+3tan 10°)sin 70°1+sin 50°.【解】 cos 40°+sin 50°(1+3tan 10°)sin 70°1+sin 50°=cos 40°+sin 50°⎝⎛⎭⎪⎫1+3sin 10°cos 10°cos 20°1+cos 40°=cos 40°+cos 40°·2sin (10°+30°)cos 10°2cos 220°=cos 40°+sin 80°cos 10°2cos 220°=cos 40°+12cos 220°= 2. 19.(本小题满分12分)已知锐角α,β满足tan(α-β)=sin 2β,求证:tan α+tan β=2tan 2β.【证明】 因为tan(α-β)=sin 2β, tan(α-β)=tan α-tan β1+tan αtan β,sin 2β=2sin βcos β=2sin βcos βsin 2β+cos 2β=2tan α1+tan 2β, 所以tan α-tan β1+tan αtan β=2tan β1+tan 2β, 整理得:tan α=3tan β+tan 3β1-tan 2β.所以tan α+tan β =3tan β+tan 3β+tan β-tan 3β1-tan 2β=2×2tan β1-tan 2β=2tan 2β.20.(本小题满分12分)已知函数f (x )=32sin ωx -sin 2ωx 2+12(ω>0)的最小正周期为π.(1)求ω的值及函数f (x )的单调增区间; (2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求函数f (x )的取值范围.【解】 (1)f (x )=32sin ωx -1-cos ωx 2+12=32sin ωx +12 cos ωx =sin ⎝ ⎛⎭⎪⎫ωx +π6.因为f (x )的最小正周期为π,所以ω=2,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6.由2k π-π2≤2x +π6≤2k π+π2,k ∈Z , 得k π-π3≤x ≤k π+π6,k ∈Z .所以函数f (x )的单调增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6,k ∈Z . (2)因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,所以-12≤sin ⎝ ⎛⎭⎪⎫2x +π6≤1.所以函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的取值范围是⎣⎢⎡⎦⎥⎤-12,1.21.(本小题满分12分)已知cos ⎝ ⎛⎭⎪⎫α-β2=-277,sin ⎝ ⎛⎭⎪⎫α2-β=12且α∈⎝ ⎛⎭⎪⎫π2,π,β∈⎝ ⎛⎭⎪⎫0,π2.求: (1)cosα+β2; (2)tan(α+ β).【解】 (1)∵π2<α<π,0<β<π2, ∴π4<α-β2<π,-π4<α2-β<π2, ∴sin ⎝ ⎛⎭⎪⎫α-β2=1-cos 2⎝ ⎛⎭⎪⎫α-β2=217, cos ⎝ ⎛⎭⎪⎫α2-β=1-sin 2⎝ ⎛⎭⎪⎫α2-β=32.∴cos α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β=cos ⎝ ⎛⎭⎪⎫α-β2·cos ⎝ ⎛⎭⎪⎫α2-β+sin ⎝ ⎛⎭⎪⎫α-β2·sin ⎝ ⎛⎭⎪⎫α2-β=⎝⎛⎭⎪⎫-277×32+217×12=-2114.(2)∵π4<α+β2<34π, ∴sin α+β2=1-cos 2α+β2=5714,∴tan α+β2=sin α+β2cos α+β2=-533, ∴tan(α+β)=2tan α+β21-tan 2α+β2=5311. 22.(本小题满分12分)已知函数f (x )=sin x +cos x . (1)若f (x )=2f (-x ),求cos 2x -sin x cos x1+sin 2x的值;(2)求函数F (x )=f (x )f (-x )+f 2(x )的最大值和单调增区间. 【解】 (1)∵f (x )=sin x +cos x , ∴f (-x )=-sin x +cos x . 又f (x )=2f (-x ),∴sin x +cos x =2(cos x -sin x ), ∴3sin x =cos x , 即tan x =sin x cos x =13, ∴cos 2x -sin x cos x 1+sin 2x=cos 2x -sin x cos x 2sin 2x +cos 2x=1-tan x 2tan 2x +1打印版高中数学 =1-132×⎝ ⎛⎭⎪⎫132+1=611. (2)由题意知,F (x )=(cos x +sin x )(cos x -sin x )+(cos x +sin x )2 =cos 2x -sin 2x +1+2sin x cos x=cos 2x +sin 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1. ∴当sin ⎝ ⎛⎭⎪⎫2x +π4=1时, F (x )max =2+1.由-π2+2k π≤2x +π4≤π2+2k π,k ∈Z .得-3π8+k π≤x ≤π8+k π,k ∈Z .∴F (x )的单调增区间为⎣⎢⎡⎦⎥⎤-3π8+k π,π8+k π(k ∈Z ).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章章末检测 本试卷满分 150 分,考试时间 120 分钟. 12 题,每题 5 分,共 60 分.在下列各题的四个选项中,只有一个选
1. sin68 s°in67 -°sin23 c°os68 °的值为 ( )
2
2
A .2sin2α)=
2sin2α-
1
=
2×
4- 9
1
=-
1 9.
1 3.已知 M = x sinx= 2
,N=
x
1 cos2x= 2
,则 (
)
A.M= N B. M? N C.N? M D . M∩ N= ? 答案: B
解析:
由
cos2x=
1
-
2sin
2x=
1 2
,得
sinx= ±1,故选 2
B.
4.已知 sinθ2=- 45, cosθ2= 35,则角 θ终边所在象限是 (
kπ
+32π,
k∈
Z ,∴
kπ+
π 4<
x< kπ+
34π,
k∈
Z.
6.若函数 f (x)= sinax+ cosax(a>0) 的最小正周期为 1,则它的图象的一个对称中心为
()
A. - π8, 0 B . (0,0)
C.
- 1, 0 8
D. 1, 0 8
答案: C
解析: 由条件得 f( x)= 2sin ax+4π,又函数的最小正周期为
)
A .第一象限 B.第二象限
C.第三象限 D.第四象限 答案: C
解析:
∵ sinθ= 2sinθ2cosθ2=-
24 25<0,cosθ=
cos2θ2-
sin
2θ=- 2
7 25<0,∴θ终边在第三象限.
5.函数 f(x)= lg (sin 2x- cos2x)的定义域是 (
)
A.
x
2kπ-
3π 4<
π2 13. cos5cos5π的值是 ________.
答案: 1 4
解析: 原式=
1 π·2sinπ5cosπ5·cos25π=
1
2π 2
π·2sin 5 cos5π=
1 41 πsin 5π= 4.
2sin5
4sin5
4sin5
14.已知
sin
α=
1+ 2
cosα,且
α∈
0,π2 ,则
cos2α π
D.1
解析: 原式=
sin68 °cos23°- cos68°sin23 °= sin(68
°- 23°)= sin45 °=
2 2.
2.已知
sinα=
2,则 3
cos( π- 2α)等于 (
)
5
1
A .- 3 B .- 9
1
5
C.9
D. 3
答案: B
解析:
cos(
π-2α)=-
cos2α=-
(1-
A. 2 B. 3
C.2 D. 3
答案: D
解析: f(x)= 1- cos π+ 2x = 1+sin2x. 2
π |MN |= |f(a)- g(a)|= |1+ sin2a- 3cos2a|= |2sin 2a-3 + 1|≤3.
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.把答案填在题中横线上.
∴ 3- 3tan20 °tan40 °=tan20 °+ tan40 °,
∴ tan20 °+ tan40 °+ 3tan20 °tan40 °= 3.
8.关于 x 的方程 sin x+ 3cosx-a= 0 有实数解,则实数 a 的范围是 ( )
A . [- 2,2] B. (- 2,2) C.( -2,0) D. (0,2) 答案: A
的值为
________ .
sin α- 4
答案: -
14 2
解析:
∵
sin
2α+
cos2α=
1
,
sinα=
1 2
+
cosα,
∴ 12+ cosα2+ cos2α= 1,∴ 2cos2α+ cosα- 34= 0,
- 1± 7
x<2
kπ+
π4,k∈
Z
B.
x
2kπ+
π 4 <x<2kπ+
54π,
k∈
Z
C. x
kπ-
π 4< x<
kπ+
π4,
k∈
Z
D.
x
kπ+
π 4<
x<kπ+
34π,
k∈
Z
答案: D
解析:∵
f(x)=
lg
(sin
2x-
cos2x)=
lg
(
-
cos2x),∴-
cos2x>0,∴
cos2x<0,∴
π 2kπ+2<2x<2
f
-
5 3π=2sin
-
5 6π+
π 3
= 2sin - π=- 2, 2
∴
x=-
5 3π为函数的一条对称轴.
11.已知 θ为第三象限角,若
sin
4θ+
cos4θ=
5,则 9
sin2θ等于 (
)
22
22
A. 3 B .- 3
2
2
C.3
D.- 3
答案: A
解析: 由
sin
4θ+
cos4θ=
(sin2θ+
cos2θ)2
-
2sin
2θcos2θ=
5,知 9
sin
2θcos2θ=
2,又 9
θ为第三
象限角,
∴ sinθ·cosθ=
32, sin2θ=2
3
2 .
12.设动直线
x= a 与函数
f(x)= 2sin2
π+x 4
和
g(x)=
点,则 |MN |的最大值为 ( )
3cos2x 的图象分别交于
M,N 两
∴ cosβ=- 4× 5
5+ 2 55
5×
3= 5
25 25
.
10.函数 y= sinx2+ 3cos2x的图象的一条对称轴方程为 (
)
11
5
A . x= 3 π B. x= 3π
5
π
C.x=- 3π D. x=- 3
答案: C
解析: y= sin2x+
3cos2x= 2sin
x+ 2
π 3
,
又
解析: sinx+ 3cosx- a= 0,∴ a=sinx+ 3cosx
=2
1 2sin x+
3 2 cosx
=2sin
x+
π 3
,-
1≤sin
π x+3
≤
1,∴-
2≤ a≤2.
9.若 α, β为锐角, sinα= 2 5 5, sin(α+β)= 35,则 cosβ等于 (
)
25 A. 5
25 B. 25
2 C.
5
5
或
25 25
25 D .- 25
答案: B
解析: cosβ= cos[( α+β)-α]
= cos(α+ β)cosα+sin(α+ β)sinα,
∵ α为锐角 cosα=
1- 2205= 55,
∴
sin(α+
β)=
35<
sinα,∴
α+
β>
π 2.
∴ cos(α+ β)=-
1- 295=- 45,
故 f(x)=
2sin
2πx+
π 4 .将
x=-
1代入得函数值为 8
0.
1,故 2π= 1,∴ a= 2π, a
7. tan20 +°tan40 +° 3(tan20 +°tan40 °)等于 ( )
3 A. 3 B . 1
C. 3 D. 6 答案: C
解析: tan60 °= tan20 +°tan40 °, 1- tan20 ·°tan40 °